linux/tools/lib/bpf/btf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32        /* raw BTF data in native endianness */
  33        void *raw_data;
  34        /* raw BTF data in non-native endianness */
  35        void *raw_data_swapped;
  36        __u32 raw_size;
  37        /* whether target endianness differs from the native one */
  38        bool swapped_endian;
  39
  40        /*
  41         * When BTF is loaded from an ELF or raw memory it is stored
  42         * in a contiguous memory block. The hdr, type_data, and, strs_data
  43         * point inside that memory region to their respective parts of BTF
  44         * representation:
  45         *
  46         * +--------------------------------+
  47         * |  Header  |  Types  |  Strings  |
  48         * +--------------------------------+
  49         * ^          ^         ^
  50         * |          |         |
  51         * hdr        |         |
  52         * types_data-+         |
  53         * strs_data------------+
  54         *
  55         * If BTF data is later modified, e.g., due to types added or
  56         * removed, BTF deduplication performed, etc, this contiguous
  57         * representation is broken up into three independently allocated
  58         * memory regions to be able to modify them independently.
  59         * raw_data is nulled out at that point, but can be later allocated
  60         * and cached again if user calls btf__raw_data(), at which point
  61         * raw_data will contain a contiguous copy of header, types, and
  62         * strings:
  63         *
  64         * +----------+  +---------+  +-----------+
  65         * |  Header  |  |  Types  |  |  Strings  |
  66         * +----------+  +---------+  +-----------+
  67         * ^             ^            ^
  68         * |             |            |
  69         * hdr           |            |
  70         * types_data----+            |
  71         * strset__data(strs_set)-----+
  72         *
  73         *               +----------+---------+-----------+
  74         *               |  Header  |  Types  |  Strings  |
  75         * raw_data----->+----------+---------+-----------+
  76         */
  77        struct btf_header *hdr;
  78
  79        void *types_data;
  80        size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82        /* type ID to `struct btf_type *` lookup index
  83         * type_offs[0] corresponds to the first non-VOID type:
  84         *   - for base BTF it's type [1];
  85         *   - for split BTF it's the first non-base BTF type.
  86         */
  87        __u32 *type_offs;
  88        size_t type_offs_cap;
  89        /* number of types in this BTF instance:
  90         *   - doesn't include special [0] void type;
  91         *   - for split BTF counts number of types added on top of base BTF.
  92         */
  93        __u32 nr_types;
  94        /* if not NULL, points to the base BTF on top of which the current
  95         * split BTF is based
  96         */
  97        struct btf *base_btf;
  98        /* BTF type ID of the first type in this BTF instance:
  99         *   - for base BTF it's equal to 1;
 100         *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101         */
 102        int start_id;
 103        /* logical string offset of this BTF instance:
 104         *   - for base BTF it's equal to 0;
 105         *   - for split BTF it's equal to total size of base BTF's string section size.
 106         */
 107        int start_str_off;
 108
 109        /* only one of strs_data or strs_set can be non-NULL, depending on
 110         * whether BTF is in a modifiable state (strs_set is used) or not
 111         * (strs_data points inside raw_data)
 112         */
 113        void *strs_data;
 114        /* a set of unique strings */
 115        struct strset *strs_set;
 116        /* whether strings are already deduplicated */
 117        bool strs_deduped;
 118
 119        /* BTF object FD, if loaded into kernel */
 120        int fd;
 121
 122        /* Pointer size (in bytes) for a target architecture of this BTF */
 123        int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128        return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142                     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144        size_t new_cnt;
 145        void *new_data;
 146
 147        if (cur_cnt + add_cnt <= *cap_cnt)
 148                return *data + cur_cnt * elem_sz;
 149
 150        /* requested more than the set limit */
 151        if (cur_cnt + add_cnt > max_cnt)
 152                return NULL;
 153
 154        new_cnt = *cap_cnt;
 155        new_cnt += new_cnt / 4;           /* expand by 25% */
 156        if (new_cnt < 16)                 /* but at least 16 elements */
 157                new_cnt = 16;
 158        if (new_cnt > max_cnt)            /* but not exceeding a set limit */
 159                new_cnt = max_cnt;
 160        if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161                new_cnt = cur_cnt + add_cnt;
 162
 163        new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164        if (!new_data)
 165                return NULL;
 166
 167        /* zero out newly allocated portion of memory */
 168        memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170        *data = new_data;
 171        *cap_cnt = new_cnt;
 172        return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180        void *p;
 181
 182        if (need_cnt <= *cap_cnt)
 183                return 0;
 184
 185        p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186        if (!p)
 187                return -ENOMEM;
 188
 189        return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194        return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195                              btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200        __u32 *p;
 201
 202        p = btf_add_type_offs_mem(btf, 1);
 203        if (!p)
 204                return -ENOMEM;
 205
 206        *p = type_off;
 207        return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212        h->magic = bswap_16(h->magic);
 213        h->hdr_len = bswap_32(h->hdr_len);
 214        h->type_off = bswap_32(h->type_off);
 215        h->type_len = bswap_32(h->type_len);
 216        h->str_off = bswap_32(h->str_off);
 217        h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222        struct btf_header *hdr = btf->hdr;
 223        __u32 meta_left;
 224
 225        if (btf->raw_size < sizeof(struct btf_header)) {
 226                pr_debug("BTF header not found\n");
 227                return -EINVAL;
 228        }
 229
 230        if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231                btf->swapped_endian = true;
 232                if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233                        pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234                                bswap_32(hdr->hdr_len));
 235                        return -ENOTSUP;
 236                }
 237                btf_bswap_hdr(hdr);
 238        } else if (hdr->magic != BTF_MAGIC) {
 239                pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240                return -EINVAL;
 241        }
 242
 243        if (btf->raw_size < hdr->hdr_len) {
 244                pr_debug("BTF header len %u larger than data size %u\n",
 245                         hdr->hdr_len, btf->raw_size);
 246                return -EINVAL;
 247        }
 248
 249        meta_left = btf->raw_size - hdr->hdr_len;
 250        if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251                pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252                return -EINVAL;
 253        }
 254
 255        if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256                pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257                         hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258                return -EINVAL;
 259        }
 260
 261        if (hdr->type_off % 4) {
 262                pr_debug("BTF type section is not aligned to 4 bytes\n");
 263                return -EINVAL;
 264        }
 265
 266        return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271        const struct btf_header *hdr = btf->hdr;
 272        const char *start = btf->strs_data;
 273        const char *end = start + btf->hdr->str_len;
 274
 275        if (btf->base_btf && hdr->str_len == 0)
 276                return 0;
 277        if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278                pr_debug("Invalid BTF string section\n");
 279                return -EINVAL;
 280        }
 281        if (!btf->base_btf && start[0]) {
 282                pr_debug("Invalid BTF string section\n");
 283                return -EINVAL;
 284        }
 285        return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290        const int base_size = sizeof(struct btf_type);
 291        __u16 vlen = btf_vlen(t);
 292
 293        switch (btf_kind(t)) {
 294        case BTF_KIND_FWD:
 295        case BTF_KIND_CONST:
 296        case BTF_KIND_VOLATILE:
 297        case BTF_KIND_RESTRICT:
 298        case BTF_KIND_PTR:
 299        case BTF_KIND_TYPEDEF:
 300        case BTF_KIND_FUNC:
 301        case BTF_KIND_FLOAT:
 302        case BTF_KIND_TYPE_TAG:
 303                return base_size;
 304        case BTF_KIND_INT:
 305                return base_size + sizeof(__u32);
 306        case BTF_KIND_ENUM:
 307                return base_size + vlen * sizeof(struct btf_enum);
 308        case BTF_KIND_ARRAY:
 309                return base_size + sizeof(struct btf_array);
 310        case BTF_KIND_STRUCT:
 311        case BTF_KIND_UNION:
 312                return base_size + vlen * sizeof(struct btf_member);
 313        case BTF_KIND_FUNC_PROTO:
 314                return base_size + vlen * sizeof(struct btf_param);
 315        case BTF_KIND_VAR:
 316                return base_size + sizeof(struct btf_var);
 317        case BTF_KIND_DATASEC:
 318                return base_size + vlen * sizeof(struct btf_var_secinfo);
 319        case BTF_KIND_DECL_TAG:
 320                return base_size + sizeof(struct btf_decl_tag);
 321        default:
 322                pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 323                return -EINVAL;
 324        }
 325}
 326
 327static void btf_bswap_type_base(struct btf_type *t)
 328{
 329        t->name_off = bswap_32(t->name_off);
 330        t->info = bswap_32(t->info);
 331        t->type = bswap_32(t->type);
 332}
 333
 334static int btf_bswap_type_rest(struct btf_type *t)
 335{
 336        struct btf_var_secinfo *v;
 337        struct btf_member *m;
 338        struct btf_array *a;
 339        struct btf_param *p;
 340        struct btf_enum *e;
 341        __u16 vlen = btf_vlen(t);
 342        int i;
 343
 344        switch (btf_kind(t)) {
 345        case BTF_KIND_FWD:
 346        case BTF_KIND_CONST:
 347        case BTF_KIND_VOLATILE:
 348        case BTF_KIND_RESTRICT:
 349        case BTF_KIND_PTR:
 350        case BTF_KIND_TYPEDEF:
 351        case BTF_KIND_FUNC:
 352        case BTF_KIND_FLOAT:
 353        case BTF_KIND_TYPE_TAG:
 354                return 0;
 355        case BTF_KIND_INT:
 356                *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 357                return 0;
 358        case BTF_KIND_ENUM:
 359                for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 360                        e->name_off = bswap_32(e->name_off);
 361                        e->val = bswap_32(e->val);
 362                }
 363                return 0;
 364        case BTF_KIND_ARRAY:
 365                a = btf_array(t);
 366                a->type = bswap_32(a->type);
 367                a->index_type = bswap_32(a->index_type);
 368                a->nelems = bswap_32(a->nelems);
 369                return 0;
 370        case BTF_KIND_STRUCT:
 371        case BTF_KIND_UNION:
 372                for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 373                        m->name_off = bswap_32(m->name_off);
 374                        m->type = bswap_32(m->type);
 375                        m->offset = bswap_32(m->offset);
 376                }
 377                return 0;
 378        case BTF_KIND_FUNC_PROTO:
 379                for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 380                        p->name_off = bswap_32(p->name_off);
 381                        p->type = bswap_32(p->type);
 382                }
 383                return 0;
 384        case BTF_KIND_VAR:
 385                btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 386                return 0;
 387        case BTF_KIND_DATASEC:
 388                for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 389                        v->type = bswap_32(v->type);
 390                        v->offset = bswap_32(v->offset);
 391                        v->size = bswap_32(v->size);
 392                }
 393                return 0;
 394        case BTF_KIND_DECL_TAG:
 395                btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 396                return 0;
 397        default:
 398                pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 399                return -EINVAL;
 400        }
 401}
 402
 403static int btf_parse_type_sec(struct btf *btf)
 404{
 405        struct btf_header *hdr = btf->hdr;
 406        void *next_type = btf->types_data;
 407        void *end_type = next_type + hdr->type_len;
 408        int err, type_size;
 409
 410        while (next_type + sizeof(struct btf_type) <= end_type) {
 411                if (btf->swapped_endian)
 412                        btf_bswap_type_base(next_type);
 413
 414                type_size = btf_type_size(next_type);
 415                if (type_size < 0)
 416                        return type_size;
 417                if (next_type + type_size > end_type) {
 418                        pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 419                        return -EINVAL;
 420                }
 421
 422                if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 423                        return -EINVAL;
 424
 425                err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 426                if (err)
 427                        return err;
 428
 429                next_type += type_size;
 430                btf->nr_types++;
 431        }
 432
 433        if (next_type != end_type) {
 434                pr_warn("BTF types data is malformed\n");
 435                return -EINVAL;
 436        }
 437
 438        return 0;
 439}
 440
 441__u32 btf__get_nr_types(const struct btf *btf)
 442{
 443        return btf->start_id + btf->nr_types - 1;
 444}
 445
 446__u32 btf__type_cnt(const struct btf *btf)
 447{
 448        return btf->start_id + btf->nr_types;
 449}
 450
 451const struct btf *btf__base_btf(const struct btf *btf)
 452{
 453        return btf->base_btf;
 454}
 455
 456/* internal helper returning non-const pointer to a type */
 457struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 458{
 459        if (type_id == 0)
 460                return &btf_void;
 461        if (type_id < btf->start_id)
 462                return btf_type_by_id(btf->base_btf, type_id);
 463        return btf->types_data + btf->type_offs[type_id - btf->start_id];
 464}
 465
 466const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 467{
 468        if (type_id >= btf->start_id + btf->nr_types)
 469                return errno = EINVAL, NULL;
 470        return btf_type_by_id((struct btf *)btf, type_id);
 471}
 472
 473static int determine_ptr_size(const struct btf *btf)
 474{
 475        const struct btf_type *t;
 476        const char *name;
 477        int i, n;
 478
 479        if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 480                return btf->base_btf->ptr_sz;
 481
 482        n = btf__type_cnt(btf);
 483        for (i = 1; i < n; i++) {
 484                t = btf__type_by_id(btf, i);
 485                if (!btf_is_int(t))
 486                        continue;
 487
 488                name = btf__name_by_offset(btf, t->name_off);
 489                if (!name)
 490                        continue;
 491
 492                if (strcmp(name, "long int") == 0 ||
 493                    strcmp(name, "long unsigned int") == 0) {
 494                        if (t->size != 4 && t->size != 8)
 495                                continue;
 496                        return t->size;
 497                }
 498        }
 499
 500        return -1;
 501}
 502
 503static size_t btf_ptr_sz(const struct btf *btf)
 504{
 505        if (!btf->ptr_sz)
 506                ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 507        return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 508}
 509
 510/* Return pointer size this BTF instance assumes. The size is heuristically
 511 * determined by looking for 'long' or 'unsigned long' integer type and
 512 * recording its size in bytes. If BTF type information doesn't have any such
 513 * type, this function returns 0. In the latter case, native architecture's
 514 * pointer size is assumed, so will be either 4 or 8, depending on
 515 * architecture that libbpf was compiled for. It's possible to override
 516 * guessed value by using btf__set_pointer_size() API.
 517 */
 518size_t btf__pointer_size(const struct btf *btf)
 519{
 520        if (!btf->ptr_sz)
 521                ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 522
 523        if (btf->ptr_sz < 0)
 524                /* not enough BTF type info to guess */
 525                return 0;
 526
 527        return btf->ptr_sz;
 528}
 529
 530/* Override or set pointer size in bytes. Only values of 4 and 8 are
 531 * supported.
 532 */
 533int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 534{
 535        if (ptr_sz != 4 && ptr_sz != 8)
 536                return libbpf_err(-EINVAL);
 537        btf->ptr_sz = ptr_sz;
 538        return 0;
 539}
 540
 541static bool is_host_big_endian(void)
 542{
 543#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 544        return false;
 545#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 546        return true;
 547#else
 548# error "Unrecognized __BYTE_ORDER__"
 549#endif
 550}
 551
 552enum btf_endianness btf__endianness(const struct btf *btf)
 553{
 554        if (is_host_big_endian())
 555                return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 556        else
 557                return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 558}
 559
 560int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 561{
 562        if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 563                return libbpf_err(-EINVAL);
 564
 565        btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 566        if (!btf->swapped_endian) {
 567                free(btf->raw_data_swapped);
 568                btf->raw_data_swapped = NULL;
 569        }
 570        return 0;
 571}
 572
 573static bool btf_type_is_void(const struct btf_type *t)
 574{
 575        return t == &btf_void || btf_is_fwd(t);
 576}
 577
 578static bool btf_type_is_void_or_null(const struct btf_type *t)
 579{
 580        return !t || btf_type_is_void(t);
 581}
 582
 583#define MAX_RESOLVE_DEPTH 32
 584
 585__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 586{
 587        const struct btf_array *array;
 588        const struct btf_type *t;
 589        __u32 nelems = 1;
 590        __s64 size = -1;
 591        int i;
 592
 593        t = btf__type_by_id(btf, type_id);
 594        for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 595                switch (btf_kind(t)) {
 596                case BTF_KIND_INT:
 597                case BTF_KIND_STRUCT:
 598                case BTF_KIND_UNION:
 599                case BTF_KIND_ENUM:
 600                case BTF_KIND_DATASEC:
 601                case BTF_KIND_FLOAT:
 602                        size = t->size;
 603                        goto done;
 604                case BTF_KIND_PTR:
 605                        size = btf_ptr_sz(btf);
 606                        goto done;
 607                case BTF_KIND_TYPEDEF:
 608                case BTF_KIND_VOLATILE:
 609                case BTF_KIND_CONST:
 610                case BTF_KIND_RESTRICT:
 611                case BTF_KIND_VAR:
 612                case BTF_KIND_DECL_TAG:
 613                case BTF_KIND_TYPE_TAG:
 614                        type_id = t->type;
 615                        break;
 616                case BTF_KIND_ARRAY:
 617                        array = btf_array(t);
 618                        if (nelems && array->nelems > UINT32_MAX / nelems)
 619                                return libbpf_err(-E2BIG);
 620                        nelems *= array->nelems;
 621                        type_id = array->type;
 622                        break;
 623                default:
 624                        return libbpf_err(-EINVAL);
 625                }
 626
 627                t = btf__type_by_id(btf, type_id);
 628        }
 629
 630done:
 631        if (size < 0)
 632                return libbpf_err(-EINVAL);
 633        if (nelems && size > UINT32_MAX / nelems)
 634                return libbpf_err(-E2BIG);
 635
 636        return nelems * size;
 637}
 638
 639int btf__align_of(const struct btf *btf, __u32 id)
 640{
 641        const struct btf_type *t = btf__type_by_id(btf, id);
 642        __u16 kind = btf_kind(t);
 643
 644        switch (kind) {
 645        case BTF_KIND_INT:
 646        case BTF_KIND_ENUM:
 647        case BTF_KIND_FLOAT:
 648                return min(btf_ptr_sz(btf), (size_t)t->size);
 649        case BTF_KIND_PTR:
 650                return btf_ptr_sz(btf);
 651        case BTF_KIND_TYPEDEF:
 652        case BTF_KIND_VOLATILE:
 653        case BTF_KIND_CONST:
 654        case BTF_KIND_RESTRICT:
 655        case BTF_KIND_TYPE_TAG:
 656                return btf__align_of(btf, t->type);
 657        case BTF_KIND_ARRAY:
 658                return btf__align_of(btf, btf_array(t)->type);
 659        case BTF_KIND_STRUCT:
 660        case BTF_KIND_UNION: {
 661                const struct btf_member *m = btf_members(t);
 662                __u16 vlen = btf_vlen(t);
 663                int i, max_align = 1, align;
 664
 665                for (i = 0; i < vlen; i++, m++) {
 666                        align = btf__align_of(btf, m->type);
 667                        if (align <= 0)
 668                                return libbpf_err(align);
 669                        max_align = max(max_align, align);
 670                }
 671
 672                return max_align;
 673        }
 674        default:
 675                pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 676                return errno = EINVAL, 0;
 677        }
 678}
 679
 680int btf__resolve_type(const struct btf *btf, __u32 type_id)
 681{
 682        const struct btf_type *t;
 683        int depth = 0;
 684
 685        t = btf__type_by_id(btf, type_id);
 686        while (depth < MAX_RESOLVE_DEPTH &&
 687               !btf_type_is_void_or_null(t) &&
 688               (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 689                type_id = t->type;
 690                t = btf__type_by_id(btf, type_id);
 691                depth++;
 692        }
 693
 694        if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 695                return libbpf_err(-EINVAL);
 696
 697        return type_id;
 698}
 699
 700__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 701{
 702        __u32 i, nr_types = btf__type_cnt(btf);
 703
 704        if (!strcmp(type_name, "void"))
 705                return 0;
 706
 707        for (i = 1; i < nr_types; i++) {
 708                const struct btf_type *t = btf__type_by_id(btf, i);
 709                const char *name = btf__name_by_offset(btf, t->name_off);
 710
 711                if (name && !strcmp(type_name, name))
 712                        return i;
 713        }
 714
 715        return libbpf_err(-ENOENT);
 716}
 717
 718static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 719                                   const char *type_name, __u32 kind)
 720{
 721        __u32 i, nr_types = btf__type_cnt(btf);
 722
 723        if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 724                return 0;
 725
 726        for (i = start_id; i < nr_types; i++) {
 727                const struct btf_type *t = btf__type_by_id(btf, i);
 728                const char *name;
 729
 730                if (btf_kind(t) != kind)
 731                        continue;
 732                name = btf__name_by_offset(btf, t->name_off);
 733                if (name && !strcmp(type_name, name))
 734                        return i;
 735        }
 736
 737        return libbpf_err(-ENOENT);
 738}
 739
 740__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 741                                 __u32 kind)
 742{
 743        return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 744}
 745
 746__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 747                             __u32 kind)
 748{
 749        return btf_find_by_name_kind(btf, 1, type_name, kind);
 750}
 751
 752static bool btf_is_modifiable(const struct btf *btf)
 753{
 754        return (void *)btf->hdr != btf->raw_data;
 755}
 756
 757void btf__free(struct btf *btf)
 758{
 759        if (IS_ERR_OR_NULL(btf))
 760                return;
 761
 762        if (btf->fd >= 0)
 763                close(btf->fd);
 764
 765        if (btf_is_modifiable(btf)) {
 766                /* if BTF was modified after loading, it will have a split
 767                 * in-memory representation for header, types, and strings
 768                 * sections, so we need to free all of them individually. It
 769                 * might still have a cached contiguous raw data present,
 770                 * which will be unconditionally freed below.
 771                 */
 772                free(btf->hdr);
 773                free(btf->types_data);
 774                strset__free(btf->strs_set);
 775        }
 776        free(btf->raw_data);
 777        free(btf->raw_data_swapped);
 778        free(btf->type_offs);
 779        free(btf);
 780}
 781
 782static struct btf *btf_new_empty(struct btf *base_btf)
 783{
 784        struct btf *btf;
 785
 786        btf = calloc(1, sizeof(*btf));
 787        if (!btf)
 788                return ERR_PTR(-ENOMEM);
 789
 790        btf->nr_types = 0;
 791        btf->start_id = 1;
 792        btf->start_str_off = 0;
 793        btf->fd = -1;
 794        btf->ptr_sz = sizeof(void *);
 795        btf->swapped_endian = false;
 796
 797        if (base_btf) {
 798                btf->base_btf = base_btf;
 799                btf->start_id = btf__type_cnt(base_btf);
 800                btf->start_str_off = base_btf->hdr->str_len;
 801        }
 802
 803        /* +1 for empty string at offset 0 */
 804        btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 805        btf->raw_data = calloc(1, btf->raw_size);
 806        if (!btf->raw_data) {
 807                free(btf);
 808                return ERR_PTR(-ENOMEM);
 809        }
 810
 811        btf->hdr = btf->raw_data;
 812        btf->hdr->hdr_len = sizeof(struct btf_header);
 813        btf->hdr->magic = BTF_MAGIC;
 814        btf->hdr->version = BTF_VERSION;
 815
 816        btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 817        btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 818        btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 819
 820        return btf;
 821}
 822
 823struct btf *btf__new_empty(void)
 824{
 825        return libbpf_ptr(btf_new_empty(NULL));
 826}
 827
 828struct btf *btf__new_empty_split(struct btf *base_btf)
 829{
 830        return libbpf_ptr(btf_new_empty(base_btf));
 831}
 832
 833static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 834{
 835        struct btf *btf;
 836        int err;
 837
 838        btf = calloc(1, sizeof(struct btf));
 839        if (!btf)
 840                return ERR_PTR(-ENOMEM);
 841
 842        btf->nr_types = 0;
 843        btf->start_id = 1;
 844        btf->start_str_off = 0;
 845        btf->fd = -1;
 846
 847        if (base_btf) {
 848                btf->base_btf = base_btf;
 849                btf->start_id = btf__type_cnt(base_btf);
 850                btf->start_str_off = base_btf->hdr->str_len;
 851        }
 852
 853        btf->raw_data = malloc(size);
 854        if (!btf->raw_data) {
 855                err = -ENOMEM;
 856                goto done;
 857        }
 858        memcpy(btf->raw_data, data, size);
 859        btf->raw_size = size;
 860
 861        btf->hdr = btf->raw_data;
 862        err = btf_parse_hdr(btf);
 863        if (err)
 864                goto done;
 865
 866        btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 867        btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 868
 869        err = btf_parse_str_sec(btf);
 870        err = err ?: btf_parse_type_sec(btf);
 871        if (err)
 872                goto done;
 873
 874done:
 875        if (err) {
 876                btf__free(btf);
 877                return ERR_PTR(err);
 878        }
 879
 880        return btf;
 881}
 882
 883struct btf *btf__new(const void *data, __u32 size)
 884{
 885        return libbpf_ptr(btf_new(data, size, NULL));
 886}
 887
 888static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 889                                 struct btf_ext **btf_ext)
 890{
 891        Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 892        int err = 0, fd = -1, idx = 0;
 893        struct btf *btf = NULL;
 894        Elf_Scn *scn = NULL;
 895        Elf *elf = NULL;
 896        GElf_Ehdr ehdr;
 897        size_t shstrndx;
 898
 899        if (elf_version(EV_CURRENT) == EV_NONE) {
 900                pr_warn("failed to init libelf for %s\n", path);
 901                return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 902        }
 903
 904        fd = open(path, O_RDONLY | O_CLOEXEC);
 905        if (fd < 0) {
 906                err = -errno;
 907                pr_warn("failed to open %s: %s\n", path, strerror(errno));
 908                return ERR_PTR(err);
 909        }
 910
 911        err = -LIBBPF_ERRNO__FORMAT;
 912
 913        elf = elf_begin(fd, ELF_C_READ, NULL);
 914        if (!elf) {
 915                pr_warn("failed to open %s as ELF file\n", path);
 916                goto done;
 917        }
 918        if (!gelf_getehdr(elf, &ehdr)) {
 919                pr_warn("failed to get EHDR from %s\n", path);
 920                goto done;
 921        }
 922
 923        if (elf_getshdrstrndx(elf, &shstrndx)) {
 924                pr_warn("failed to get section names section index for %s\n",
 925                        path);
 926                goto done;
 927        }
 928
 929        if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 930                pr_warn("failed to get e_shstrndx from %s\n", path);
 931                goto done;
 932        }
 933
 934        while ((scn = elf_nextscn(elf, scn)) != NULL) {
 935                GElf_Shdr sh;
 936                char *name;
 937
 938                idx++;
 939                if (gelf_getshdr(scn, &sh) != &sh) {
 940                        pr_warn("failed to get section(%d) header from %s\n",
 941                                idx, path);
 942                        goto done;
 943                }
 944                name = elf_strptr(elf, shstrndx, sh.sh_name);
 945                if (!name) {
 946                        pr_warn("failed to get section(%d) name from %s\n",
 947                                idx, path);
 948                        goto done;
 949                }
 950                if (strcmp(name, BTF_ELF_SEC) == 0) {
 951                        btf_data = elf_getdata(scn, 0);
 952                        if (!btf_data) {
 953                                pr_warn("failed to get section(%d, %s) data from %s\n",
 954                                        idx, name, path);
 955                                goto done;
 956                        }
 957                        continue;
 958                } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 959                        btf_ext_data = elf_getdata(scn, 0);
 960                        if (!btf_ext_data) {
 961                                pr_warn("failed to get section(%d, %s) data from %s\n",
 962                                        idx, name, path);
 963                                goto done;
 964                        }
 965                        continue;
 966                }
 967        }
 968
 969        err = 0;
 970
 971        if (!btf_data) {
 972                err = -ENOENT;
 973                goto done;
 974        }
 975        btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 976        err = libbpf_get_error(btf);
 977        if (err)
 978                goto done;
 979
 980        switch (gelf_getclass(elf)) {
 981        case ELFCLASS32:
 982                btf__set_pointer_size(btf, 4);
 983                break;
 984        case ELFCLASS64:
 985                btf__set_pointer_size(btf, 8);
 986                break;
 987        default:
 988                pr_warn("failed to get ELF class (bitness) for %s\n", path);
 989                break;
 990        }
 991
 992        if (btf_ext && btf_ext_data) {
 993                *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
 994                err = libbpf_get_error(*btf_ext);
 995                if (err)
 996                        goto done;
 997        } else if (btf_ext) {
 998                *btf_ext = NULL;
 999        }
1000done:
1001        if (elf)
1002                elf_end(elf);
1003        close(fd);
1004
1005        if (!err)
1006                return btf;
1007
1008        if (btf_ext)
1009                btf_ext__free(*btf_ext);
1010        btf__free(btf);
1011
1012        return ERR_PTR(err);
1013}
1014
1015struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1016{
1017        return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1018}
1019
1020struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1021{
1022        return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1023}
1024
1025static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1026{
1027        struct btf *btf = NULL;
1028        void *data = NULL;
1029        FILE *f = NULL;
1030        __u16 magic;
1031        int err = 0;
1032        long sz;
1033
1034        f = fopen(path, "rb");
1035        if (!f) {
1036                err = -errno;
1037                goto err_out;
1038        }
1039
1040        /* check BTF magic */
1041        if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1042                err = -EIO;
1043                goto err_out;
1044        }
1045        if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1046                /* definitely not a raw BTF */
1047                err = -EPROTO;
1048                goto err_out;
1049        }
1050
1051        /* get file size */
1052        if (fseek(f, 0, SEEK_END)) {
1053                err = -errno;
1054                goto err_out;
1055        }
1056        sz = ftell(f);
1057        if (sz < 0) {
1058                err = -errno;
1059                goto err_out;
1060        }
1061        /* rewind to the start */
1062        if (fseek(f, 0, SEEK_SET)) {
1063                err = -errno;
1064                goto err_out;
1065        }
1066
1067        /* pre-alloc memory and read all of BTF data */
1068        data = malloc(sz);
1069        if (!data) {
1070                err = -ENOMEM;
1071                goto err_out;
1072        }
1073        if (fread(data, 1, sz, f) < sz) {
1074                err = -EIO;
1075                goto err_out;
1076        }
1077
1078        /* finally parse BTF data */
1079        btf = btf_new(data, sz, base_btf);
1080
1081err_out:
1082        free(data);
1083        if (f)
1084                fclose(f);
1085        return err ? ERR_PTR(err) : btf;
1086}
1087
1088struct btf *btf__parse_raw(const char *path)
1089{
1090        return libbpf_ptr(btf_parse_raw(path, NULL));
1091}
1092
1093struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1094{
1095        return libbpf_ptr(btf_parse_raw(path, base_btf));
1096}
1097
1098static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1099{
1100        struct btf *btf;
1101        int err;
1102
1103        if (btf_ext)
1104                *btf_ext = NULL;
1105
1106        btf = btf_parse_raw(path, base_btf);
1107        err = libbpf_get_error(btf);
1108        if (!err)
1109                return btf;
1110        if (err != -EPROTO)
1111                return ERR_PTR(err);
1112        return btf_parse_elf(path, base_btf, btf_ext);
1113}
1114
1115struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1116{
1117        return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1118}
1119
1120struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1121{
1122        return libbpf_ptr(btf_parse(path, base_btf, NULL));
1123}
1124
1125static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1126
1127int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1128{
1129        LIBBPF_OPTS(bpf_btf_load_opts, opts);
1130        __u32 buf_sz = 0, raw_size;
1131        char *buf = NULL, *tmp;
1132        void *raw_data;
1133        int err = 0;
1134
1135        if (btf->fd >= 0)
1136                return libbpf_err(-EEXIST);
1137        if (log_sz && !log_buf)
1138                return libbpf_err(-EINVAL);
1139
1140        /* cache native raw data representation */
1141        raw_data = btf_get_raw_data(btf, &raw_size, false);
1142        if (!raw_data) {
1143                err = -ENOMEM;
1144                goto done;
1145        }
1146        btf->raw_size = raw_size;
1147        btf->raw_data = raw_data;
1148
1149retry_load:
1150        /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1151         * initially. Only if BTF loading fails, we bump log_level to 1 and
1152         * retry, using either auto-allocated or custom log_buf. This way
1153         * non-NULL custom log_buf provides a buffer just in case, but hopes
1154         * for successful load and no need for log_buf.
1155         */
1156        if (log_level) {
1157                /* if caller didn't provide custom log_buf, we'll keep
1158                 * allocating our own progressively bigger buffers for BTF
1159                 * verification log
1160                 */
1161                if (!log_buf) {
1162                        buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1163                        tmp = realloc(buf, buf_sz);
1164                        if (!tmp) {
1165                                err = -ENOMEM;
1166                                goto done;
1167                        }
1168                        buf = tmp;
1169                        buf[0] = '\0';
1170                }
1171
1172                opts.log_buf = log_buf ? log_buf : buf;
1173                opts.log_size = log_buf ? log_sz : buf_sz;
1174                opts.log_level = log_level;
1175        }
1176
1177        btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1178        if (btf->fd < 0) {
1179                /* time to turn on verbose mode and try again */
1180                if (log_level == 0) {
1181                        log_level = 1;
1182                        goto retry_load;
1183                }
1184                /* only retry if caller didn't provide custom log_buf, but
1185                 * make sure we can never overflow buf_sz
1186                 */
1187                if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1188                        goto retry_load;
1189
1190                err = -errno;
1191                pr_warn("BTF loading error: %d\n", err);
1192                /* don't print out contents of custom log_buf */
1193                if (!log_buf && buf[0])
1194                        pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1195        }
1196
1197done:
1198        free(buf);
1199        return libbpf_err(err);
1200}
1201
1202int btf__load_into_kernel(struct btf *btf)
1203{
1204        return btf_load_into_kernel(btf, NULL, 0, 0);
1205}
1206
1207int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1208
1209int btf__fd(const struct btf *btf)
1210{
1211        return btf->fd;
1212}
1213
1214void btf__set_fd(struct btf *btf, int fd)
1215{
1216        btf->fd = fd;
1217}
1218
1219static const void *btf_strs_data(const struct btf *btf)
1220{
1221        return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1222}
1223
1224static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1225{
1226        struct btf_header *hdr = btf->hdr;
1227        struct btf_type *t;
1228        void *data, *p;
1229        __u32 data_sz;
1230        int i;
1231
1232        data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1233        if (data) {
1234                *size = btf->raw_size;
1235                return data;
1236        }
1237
1238        data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1239        data = calloc(1, data_sz);
1240        if (!data)
1241                return NULL;
1242        p = data;
1243
1244        memcpy(p, hdr, hdr->hdr_len);
1245        if (swap_endian)
1246                btf_bswap_hdr(p);
1247        p += hdr->hdr_len;
1248
1249        memcpy(p, btf->types_data, hdr->type_len);
1250        if (swap_endian) {
1251                for (i = 0; i < btf->nr_types; i++) {
1252                        t = p + btf->type_offs[i];
1253                        /* btf_bswap_type_rest() relies on native t->info, so
1254                         * we swap base type info after we swapped all the
1255                         * additional information
1256                         */
1257                        if (btf_bswap_type_rest(t))
1258                                goto err_out;
1259                        btf_bswap_type_base(t);
1260                }
1261        }
1262        p += hdr->type_len;
1263
1264        memcpy(p, btf_strs_data(btf), hdr->str_len);
1265        p += hdr->str_len;
1266
1267        *size = data_sz;
1268        return data;
1269err_out:
1270        free(data);
1271        return NULL;
1272}
1273
1274const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1275{
1276        struct btf *btf = (struct btf *)btf_ro;
1277        __u32 data_sz;
1278        void *data;
1279
1280        data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1281        if (!data)
1282                return errno = ENOMEM, NULL;
1283
1284        btf->raw_size = data_sz;
1285        if (btf->swapped_endian)
1286                btf->raw_data_swapped = data;
1287        else
1288                btf->raw_data = data;
1289        *size = data_sz;
1290        return data;
1291}
1292
1293__attribute__((alias("btf__raw_data")))
1294const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1295
1296const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1297{
1298        if (offset < btf->start_str_off)
1299                return btf__str_by_offset(btf->base_btf, offset);
1300        else if (offset - btf->start_str_off < btf->hdr->str_len)
1301                return btf_strs_data(btf) + (offset - btf->start_str_off);
1302        else
1303                return errno = EINVAL, NULL;
1304}
1305
1306const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1307{
1308        return btf__str_by_offset(btf, offset);
1309}
1310
1311struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1312{
1313        struct bpf_btf_info btf_info;
1314        __u32 len = sizeof(btf_info);
1315        __u32 last_size;
1316        struct btf *btf;
1317        void *ptr;
1318        int err;
1319
1320        /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1321         * let's start with a sane default - 4KiB here - and resize it only if
1322         * bpf_obj_get_info_by_fd() needs a bigger buffer.
1323         */
1324        last_size = 4096;
1325        ptr = malloc(last_size);
1326        if (!ptr)
1327                return ERR_PTR(-ENOMEM);
1328
1329        memset(&btf_info, 0, sizeof(btf_info));
1330        btf_info.btf = ptr_to_u64(ptr);
1331        btf_info.btf_size = last_size;
1332        err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1333
1334        if (!err && btf_info.btf_size > last_size) {
1335                void *temp_ptr;
1336
1337                last_size = btf_info.btf_size;
1338                temp_ptr = realloc(ptr, last_size);
1339                if (!temp_ptr) {
1340                        btf = ERR_PTR(-ENOMEM);
1341                        goto exit_free;
1342                }
1343                ptr = temp_ptr;
1344
1345                len = sizeof(btf_info);
1346                memset(&btf_info, 0, sizeof(btf_info));
1347                btf_info.btf = ptr_to_u64(ptr);
1348                btf_info.btf_size = last_size;
1349
1350                err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351        }
1352
1353        if (err || btf_info.btf_size > last_size) {
1354                btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1355                goto exit_free;
1356        }
1357
1358        btf = btf_new(ptr, btf_info.btf_size, base_btf);
1359
1360exit_free:
1361        free(ptr);
1362        return btf;
1363}
1364
1365struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1366{
1367        struct btf *btf;
1368        int btf_fd;
1369
1370        btf_fd = bpf_btf_get_fd_by_id(id);
1371        if (btf_fd < 0)
1372                return libbpf_err_ptr(-errno);
1373
1374        btf = btf_get_from_fd(btf_fd, base_btf);
1375        close(btf_fd);
1376
1377        return libbpf_ptr(btf);
1378}
1379
1380struct btf *btf__load_from_kernel_by_id(__u32 id)
1381{
1382        return btf__load_from_kernel_by_id_split(id, NULL);
1383}
1384
1385int btf__get_from_id(__u32 id, struct btf **btf)
1386{
1387        struct btf *res;
1388        int err;
1389
1390        *btf = NULL;
1391        res = btf__load_from_kernel_by_id(id);
1392        err = libbpf_get_error(res);
1393
1394        if (err)
1395                return libbpf_err(err);
1396
1397        *btf = res;
1398        return 0;
1399}
1400
1401int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1402                         __u32 expected_key_size, __u32 expected_value_size,
1403                         __u32 *key_type_id, __u32 *value_type_id)
1404{
1405        const struct btf_type *container_type;
1406        const struct btf_member *key, *value;
1407        const size_t max_name = 256;
1408        char container_name[max_name];
1409        __s64 key_size, value_size;
1410        __s32 container_id;
1411
1412        if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1413                pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1414                        map_name, map_name);
1415                return libbpf_err(-EINVAL);
1416        }
1417
1418        container_id = btf__find_by_name(btf, container_name);
1419        if (container_id < 0) {
1420                pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1421                         map_name, container_name);
1422                return libbpf_err(container_id);
1423        }
1424
1425        container_type = btf__type_by_id(btf, container_id);
1426        if (!container_type) {
1427                pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1428                        map_name, container_id);
1429                return libbpf_err(-EINVAL);
1430        }
1431
1432        if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1433                pr_warn("map:%s container_name:%s is an invalid container struct\n",
1434                        map_name, container_name);
1435                return libbpf_err(-EINVAL);
1436        }
1437
1438        key = btf_members(container_type);
1439        value = key + 1;
1440
1441        key_size = btf__resolve_size(btf, key->type);
1442        if (key_size < 0) {
1443                pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1444                return libbpf_err(key_size);
1445        }
1446
1447        if (expected_key_size != key_size) {
1448                pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1449                        map_name, (__u32)key_size, expected_key_size);
1450                return libbpf_err(-EINVAL);
1451        }
1452
1453        value_size = btf__resolve_size(btf, value->type);
1454        if (value_size < 0) {
1455                pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1456                return libbpf_err(value_size);
1457        }
1458
1459        if (expected_value_size != value_size) {
1460                pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1461                        map_name, (__u32)value_size, expected_value_size);
1462                return libbpf_err(-EINVAL);
1463        }
1464
1465        *key_type_id = key->type;
1466        *value_type_id = value->type;
1467
1468        return 0;
1469}
1470
1471static void btf_invalidate_raw_data(struct btf *btf)
1472{
1473        if (btf->raw_data) {
1474                free(btf->raw_data);
1475                btf->raw_data = NULL;
1476        }
1477        if (btf->raw_data_swapped) {
1478                free(btf->raw_data_swapped);
1479                btf->raw_data_swapped = NULL;
1480        }
1481}
1482
1483/* Ensure BTF is ready to be modified (by splitting into a three memory
1484 * regions for header, types, and strings). Also invalidate cached
1485 * raw_data, if any.
1486 */
1487static int btf_ensure_modifiable(struct btf *btf)
1488{
1489        void *hdr, *types;
1490        struct strset *set = NULL;
1491        int err = -ENOMEM;
1492
1493        if (btf_is_modifiable(btf)) {
1494                /* any BTF modification invalidates raw_data */
1495                btf_invalidate_raw_data(btf);
1496                return 0;
1497        }
1498
1499        /* split raw data into three memory regions */
1500        hdr = malloc(btf->hdr->hdr_len);
1501        types = malloc(btf->hdr->type_len);
1502        if (!hdr || !types)
1503                goto err_out;
1504
1505        memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1506        memcpy(types, btf->types_data, btf->hdr->type_len);
1507
1508        /* build lookup index for all strings */
1509        set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1510        if (IS_ERR(set)) {
1511                err = PTR_ERR(set);
1512                goto err_out;
1513        }
1514
1515        /* only when everything was successful, update internal state */
1516        btf->hdr = hdr;
1517        btf->types_data = types;
1518        btf->types_data_cap = btf->hdr->type_len;
1519        btf->strs_data = NULL;
1520        btf->strs_set = set;
1521        /* if BTF was created from scratch, all strings are guaranteed to be
1522         * unique and deduplicated
1523         */
1524        if (btf->hdr->str_len == 0)
1525                btf->strs_deduped = true;
1526        if (!btf->base_btf && btf->hdr->str_len == 1)
1527                btf->strs_deduped = true;
1528
1529        /* invalidate raw_data representation */
1530        btf_invalidate_raw_data(btf);
1531
1532        return 0;
1533
1534err_out:
1535        strset__free(set);
1536        free(hdr);
1537        free(types);
1538        return err;
1539}
1540
1541/* Find an offset in BTF string section that corresponds to a given string *s*.
1542 * Returns:
1543 *   - >0 offset into string section, if string is found;
1544 *   - -ENOENT, if string is not in the string section;
1545 *   - <0, on any other error.
1546 */
1547int btf__find_str(struct btf *btf, const char *s)
1548{
1549        int off;
1550
1551        if (btf->base_btf) {
1552                off = btf__find_str(btf->base_btf, s);
1553                if (off != -ENOENT)
1554                        return off;
1555        }
1556
1557        /* BTF needs to be in a modifiable state to build string lookup index */
1558        if (btf_ensure_modifiable(btf))
1559                return libbpf_err(-ENOMEM);
1560
1561        off = strset__find_str(btf->strs_set, s);
1562        if (off < 0)
1563                return libbpf_err(off);
1564
1565        return btf->start_str_off + off;
1566}
1567
1568/* Add a string s to the BTF string section.
1569 * Returns:
1570 *   - > 0 offset into string section, on success;
1571 *   - < 0, on error.
1572 */
1573int btf__add_str(struct btf *btf, const char *s)
1574{
1575        int off;
1576
1577        if (btf->base_btf) {
1578                off = btf__find_str(btf->base_btf, s);
1579                if (off != -ENOENT)
1580                        return off;
1581        }
1582
1583        if (btf_ensure_modifiable(btf))
1584                return libbpf_err(-ENOMEM);
1585
1586        off = strset__add_str(btf->strs_set, s);
1587        if (off < 0)
1588                return libbpf_err(off);
1589
1590        btf->hdr->str_len = strset__data_size(btf->strs_set);
1591
1592        return btf->start_str_off + off;
1593}
1594
1595static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1596{
1597        return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1598                              btf->hdr->type_len, UINT_MAX, add_sz);
1599}
1600
1601static void btf_type_inc_vlen(struct btf_type *t)
1602{
1603        t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1604}
1605
1606static int btf_commit_type(struct btf *btf, int data_sz)
1607{
1608        int err;
1609
1610        err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1611        if (err)
1612                return libbpf_err(err);
1613
1614        btf->hdr->type_len += data_sz;
1615        btf->hdr->str_off += data_sz;
1616        btf->nr_types++;
1617        return btf->start_id + btf->nr_types - 1;
1618}
1619
1620struct btf_pipe {
1621        const struct btf *src;
1622        struct btf *dst;
1623        struct hashmap *str_off_map; /* map string offsets from src to dst */
1624};
1625
1626static int btf_rewrite_str(__u32 *str_off, void *ctx)
1627{
1628        struct btf_pipe *p = ctx;
1629        void *mapped_off;
1630        int off, err;
1631
1632        if (!*str_off) /* nothing to do for empty strings */
1633                return 0;
1634
1635        if (p->str_off_map &&
1636            hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) {
1637                *str_off = (__u32)(long)mapped_off;
1638                return 0;
1639        }
1640
1641        off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1642        if (off < 0)
1643                return off;
1644
1645        /* Remember string mapping from src to dst.  It avoids
1646         * performing expensive string comparisons.
1647         */
1648        if (p->str_off_map) {
1649                err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off);
1650                if (err)
1651                        return err;
1652        }
1653
1654        *str_off = off;
1655        return 0;
1656}
1657
1658int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1659{
1660        struct btf_pipe p = { .src = src_btf, .dst = btf };
1661        struct btf_type *t;
1662        int sz, err;
1663
1664        sz = btf_type_size(src_type);
1665        if (sz < 0)
1666                return libbpf_err(sz);
1667
1668        /* deconstruct BTF, if necessary, and invalidate raw_data */
1669        if (btf_ensure_modifiable(btf))
1670                return libbpf_err(-ENOMEM);
1671
1672        t = btf_add_type_mem(btf, sz);
1673        if (!t)
1674                return libbpf_err(-ENOMEM);
1675
1676        memcpy(t, src_type, sz);
1677
1678        err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1679        if (err)
1680                return libbpf_err(err);
1681
1682        return btf_commit_type(btf, sz);
1683}
1684
1685static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1686{
1687        struct btf *btf = ctx;
1688
1689        if (!*type_id) /* nothing to do for VOID references */
1690                return 0;
1691
1692        /* we haven't updated btf's type count yet, so
1693         * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1694         * add to all newly added BTF types
1695         */
1696        *type_id += btf->start_id + btf->nr_types - 1;
1697        return 0;
1698}
1699
1700static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx);
1701static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx);
1702
1703int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1704{
1705        struct btf_pipe p = { .src = src_btf, .dst = btf };
1706        int data_sz, sz, cnt, i, err, old_strs_len;
1707        __u32 *off;
1708        void *t;
1709
1710        /* appending split BTF isn't supported yet */
1711        if (src_btf->base_btf)
1712                return libbpf_err(-ENOTSUP);
1713
1714        /* deconstruct BTF, if necessary, and invalidate raw_data */
1715        if (btf_ensure_modifiable(btf))
1716                return libbpf_err(-ENOMEM);
1717
1718        /* remember original strings section size if we have to roll back
1719         * partial strings section changes
1720         */
1721        old_strs_len = btf->hdr->str_len;
1722
1723        data_sz = src_btf->hdr->type_len;
1724        cnt = btf__type_cnt(src_btf) - 1;
1725
1726        /* pre-allocate enough memory for new types */
1727        t = btf_add_type_mem(btf, data_sz);
1728        if (!t)
1729                return libbpf_err(-ENOMEM);
1730
1731        /* pre-allocate enough memory for type offset index for new types */
1732        off = btf_add_type_offs_mem(btf, cnt);
1733        if (!off)
1734                return libbpf_err(-ENOMEM);
1735
1736        /* Map the string offsets from src_btf to the offsets from btf to improve performance */
1737        p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1738        if (IS_ERR(p.str_off_map))
1739                return libbpf_err(-ENOMEM);
1740
1741        /* bulk copy types data for all types from src_btf */
1742        memcpy(t, src_btf->types_data, data_sz);
1743
1744        for (i = 0; i < cnt; i++) {
1745                sz = btf_type_size(t);
1746                if (sz < 0) {
1747                        /* unlikely, has to be corrupted src_btf */
1748                        err = sz;
1749                        goto err_out;
1750                }
1751
1752                /* fill out type ID to type offset mapping for lookups by type ID */
1753                *off = t - btf->types_data;
1754
1755                /* add, dedup, and remap strings referenced by this BTF type */
1756                err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1757                if (err)
1758                        goto err_out;
1759
1760                /* remap all type IDs referenced from this BTF type */
1761                err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1762                if (err)
1763                        goto err_out;
1764
1765                /* go to next type data and type offset index entry */
1766                t += sz;
1767                off++;
1768        }
1769
1770        /* Up until now any of the copied type data was effectively invisible,
1771         * so if we exited early before this point due to error, BTF would be
1772         * effectively unmodified. There would be extra internal memory
1773         * pre-allocated, but it would not be available for querying.  But now
1774         * that we've copied and rewritten all the data successfully, we can
1775         * update type count and various internal offsets and sizes to
1776         * "commit" the changes and made them visible to the outside world.
1777         */
1778        btf->hdr->type_len += data_sz;
1779        btf->hdr->str_off += data_sz;
1780        btf->nr_types += cnt;
1781
1782        hashmap__free(p.str_off_map);
1783
1784        /* return type ID of the first added BTF type */
1785        return btf->start_id + btf->nr_types - cnt;
1786err_out:
1787        /* zero out preallocated memory as if it was just allocated with
1788         * libbpf_add_mem()
1789         */
1790        memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1791        memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1792
1793        /* and now restore original strings section size; types data size
1794         * wasn't modified, so doesn't need restoring, see big comment above */
1795        btf->hdr->str_len = old_strs_len;
1796
1797        hashmap__free(p.str_off_map);
1798
1799        return libbpf_err(err);
1800}
1801
1802/*
1803 * Append new BTF_KIND_INT type with:
1804 *   - *name* - non-empty, non-NULL type name;
1805 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1806 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1807 * Returns:
1808 *   - >0, type ID of newly added BTF type;
1809 *   - <0, on error.
1810 */
1811int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1812{
1813        struct btf_type *t;
1814        int sz, name_off;
1815
1816        /* non-empty name */
1817        if (!name || !name[0])
1818                return libbpf_err(-EINVAL);
1819        /* byte_sz must be power of 2 */
1820        if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1821                return libbpf_err(-EINVAL);
1822        if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1823                return libbpf_err(-EINVAL);
1824
1825        /* deconstruct BTF, if necessary, and invalidate raw_data */
1826        if (btf_ensure_modifiable(btf))
1827                return libbpf_err(-ENOMEM);
1828
1829        sz = sizeof(struct btf_type) + sizeof(int);
1830        t = btf_add_type_mem(btf, sz);
1831        if (!t)
1832                return libbpf_err(-ENOMEM);
1833
1834        /* if something goes wrong later, we might end up with an extra string,
1835         * but that shouldn't be a problem, because BTF can't be constructed
1836         * completely anyway and will most probably be just discarded
1837         */
1838        name_off = btf__add_str(btf, name);
1839        if (name_off < 0)
1840                return name_off;
1841
1842        t->name_off = name_off;
1843        t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1844        t->size = byte_sz;
1845        /* set INT info, we don't allow setting legacy bit offset/size */
1846        *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1847
1848        return btf_commit_type(btf, sz);
1849}
1850
1851/*
1852 * Append new BTF_KIND_FLOAT type with:
1853 *   - *name* - non-empty, non-NULL type name;
1854 *   - *sz* - size of the type, in bytes;
1855 * Returns:
1856 *   - >0, type ID of newly added BTF type;
1857 *   - <0, on error.
1858 */
1859int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1860{
1861        struct btf_type *t;
1862        int sz, name_off;
1863
1864        /* non-empty name */
1865        if (!name || !name[0])
1866                return libbpf_err(-EINVAL);
1867
1868        /* byte_sz must be one of the explicitly allowed values */
1869        if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1870            byte_sz != 16)
1871                return libbpf_err(-EINVAL);
1872
1873        if (btf_ensure_modifiable(btf))
1874                return libbpf_err(-ENOMEM);
1875
1876        sz = sizeof(struct btf_type);
1877        t = btf_add_type_mem(btf, sz);
1878        if (!t)
1879                return libbpf_err(-ENOMEM);
1880
1881        name_off = btf__add_str(btf, name);
1882        if (name_off < 0)
1883                return name_off;
1884
1885        t->name_off = name_off;
1886        t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1887        t->size = byte_sz;
1888
1889        return btf_commit_type(btf, sz);
1890}
1891
1892/* it's completely legal to append BTF types with type IDs pointing forward to
1893 * types that haven't been appended yet, so we only make sure that id looks
1894 * sane, we can't guarantee that ID will always be valid
1895 */
1896static int validate_type_id(int id)
1897{
1898        if (id < 0 || id > BTF_MAX_NR_TYPES)
1899                return -EINVAL;
1900        return 0;
1901}
1902
1903/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1904static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1905{
1906        struct btf_type *t;
1907        int sz, name_off = 0;
1908
1909        if (validate_type_id(ref_type_id))
1910                return libbpf_err(-EINVAL);
1911
1912        if (btf_ensure_modifiable(btf))
1913                return libbpf_err(-ENOMEM);
1914
1915        sz = sizeof(struct btf_type);
1916        t = btf_add_type_mem(btf, sz);
1917        if (!t)
1918                return libbpf_err(-ENOMEM);
1919
1920        if (name && name[0]) {
1921                name_off = btf__add_str(btf, name);
1922                if (name_off < 0)
1923                        return name_off;
1924        }
1925
1926        t->name_off = name_off;
1927        t->info = btf_type_info(kind, 0, 0);
1928        t->type = ref_type_id;
1929
1930        return btf_commit_type(btf, sz);
1931}
1932
1933/*
1934 * Append new BTF_KIND_PTR type with:
1935 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1936 * Returns:
1937 *   - >0, type ID of newly added BTF type;
1938 *   - <0, on error.
1939 */
1940int btf__add_ptr(struct btf *btf, int ref_type_id)
1941{
1942        return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1943}
1944
1945/*
1946 * Append new BTF_KIND_ARRAY type with:
1947 *   - *index_type_id* - type ID of the type describing array index;
1948 *   - *elem_type_id* - type ID of the type describing array element;
1949 *   - *nr_elems* - the size of the array;
1950 * Returns:
1951 *   - >0, type ID of newly added BTF type;
1952 *   - <0, on error.
1953 */
1954int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1955{
1956        struct btf_type *t;
1957        struct btf_array *a;
1958        int sz;
1959
1960        if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1961                return libbpf_err(-EINVAL);
1962
1963        if (btf_ensure_modifiable(btf))
1964                return libbpf_err(-ENOMEM);
1965
1966        sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1967        t = btf_add_type_mem(btf, sz);
1968        if (!t)
1969                return libbpf_err(-ENOMEM);
1970
1971        t->name_off = 0;
1972        t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1973        t->size = 0;
1974
1975        a = btf_array(t);
1976        a->type = elem_type_id;
1977        a->index_type = index_type_id;
1978        a->nelems = nr_elems;
1979
1980        return btf_commit_type(btf, sz);
1981}
1982
1983/* generic STRUCT/UNION append function */
1984static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1985{
1986        struct btf_type *t;
1987        int sz, name_off = 0;
1988
1989        if (btf_ensure_modifiable(btf))
1990                return libbpf_err(-ENOMEM);
1991
1992        sz = sizeof(struct btf_type);
1993        t = btf_add_type_mem(btf, sz);
1994        if (!t)
1995                return libbpf_err(-ENOMEM);
1996
1997        if (name && name[0]) {
1998                name_off = btf__add_str(btf, name);
1999                if (name_off < 0)
2000                        return name_off;
2001        }
2002
2003        /* start out with vlen=0 and no kflag; this will be adjusted when
2004         * adding each member
2005         */
2006        t->name_off = name_off;
2007        t->info = btf_type_info(kind, 0, 0);
2008        t->size = bytes_sz;
2009
2010        return btf_commit_type(btf, sz);
2011}
2012
2013/*
2014 * Append new BTF_KIND_STRUCT type with:
2015 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2016 *   - *byte_sz* - size of the struct, in bytes;
2017 *
2018 * Struct initially has no fields in it. Fields can be added by
2019 * btf__add_field() right after btf__add_struct() succeeds.
2020 *
2021 * Returns:
2022 *   - >0, type ID of newly added BTF type;
2023 *   - <0, on error.
2024 */
2025int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2026{
2027        return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2028}
2029
2030/*
2031 * Append new BTF_KIND_UNION type with:
2032 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2033 *   - *byte_sz* - size of the union, in bytes;
2034 *
2035 * Union initially has no fields in it. Fields can be added by
2036 * btf__add_field() right after btf__add_union() succeeds. All fields
2037 * should have *bit_offset* of 0.
2038 *
2039 * Returns:
2040 *   - >0, type ID of newly added BTF type;
2041 *   - <0, on error.
2042 */
2043int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2044{
2045        return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2046}
2047
2048static struct btf_type *btf_last_type(struct btf *btf)
2049{
2050        return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2051}
2052
2053/*
2054 * Append new field for the current STRUCT/UNION type with:
2055 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2056 *   - *type_id* - type ID for the type describing field type;
2057 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2058 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2059 * Returns:
2060 *   -  0, on success;
2061 *   - <0, on error.
2062 */
2063int btf__add_field(struct btf *btf, const char *name, int type_id,
2064                   __u32 bit_offset, __u32 bit_size)
2065{
2066        struct btf_type *t;
2067        struct btf_member *m;
2068        bool is_bitfield;
2069        int sz, name_off = 0;
2070
2071        /* last type should be union/struct */
2072        if (btf->nr_types == 0)
2073                return libbpf_err(-EINVAL);
2074        t = btf_last_type(btf);
2075        if (!btf_is_composite(t))
2076                return libbpf_err(-EINVAL);
2077
2078        if (validate_type_id(type_id))
2079                return libbpf_err(-EINVAL);
2080        /* best-effort bit field offset/size enforcement */
2081        is_bitfield = bit_size || (bit_offset % 8 != 0);
2082        if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2083                return libbpf_err(-EINVAL);
2084
2085        /* only offset 0 is allowed for unions */
2086        if (btf_is_union(t) && bit_offset)
2087                return libbpf_err(-EINVAL);
2088
2089        /* decompose and invalidate raw data */
2090        if (btf_ensure_modifiable(btf))
2091                return libbpf_err(-ENOMEM);
2092
2093        sz = sizeof(struct btf_member);
2094        m = btf_add_type_mem(btf, sz);
2095        if (!m)
2096                return libbpf_err(-ENOMEM);
2097
2098        if (name && name[0]) {
2099                name_off = btf__add_str(btf, name);
2100                if (name_off < 0)
2101                        return name_off;
2102        }
2103
2104        m->name_off = name_off;
2105        m->type = type_id;
2106        m->offset = bit_offset | (bit_size << 24);
2107
2108        /* btf_add_type_mem can invalidate t pointer */
2109        t = btf_last_type(btf);
2110        /* update parent type's vlen and kflag */
2111        t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2112
2113        btf->hdr->type_len += sz;
2114        btf->hdr->str_off += sz;
2115        return 0;
2116}
2117
2118/*
2119 * Append new BTF_KIND_ENUM type with:
2120 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2121 *   - *byte_sz* - size of the enum, in bytes.
2122 *
2123 * Enum initially has no enum values in it (and corresponds to enum forward
2124 * declaration). Enumerator values can be added by btf__add_enum_value()
2125 * immediately after btf__add_enum() succeeds.
2126 *
2127 * Returns:
2128 *   - >0, type ID of newly added BTF type;
2129 *   - <0, on error.
2130 */
2131int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2132{
2133        struct btf_type *t;
2134        int sz, name_off = 0;
2135
2136        /* byte_sz must be power of 2 */
2137        if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2138                return libbpf_err(-EINVAL);
2139
2140        if (btf_ensure_modifiable(btf))
2141                return libbpf_err(-ENOMEM);
2142
2143        sz = sizeof(struct btf_type);
2144        t = btf_add_type_mem(btf, sz);
2145        if (!t)
2146                return libbpf_err(-ENOMEM);
2147
2148        if (name && name[0]) {
2149                name_off = btf__add_str(btf, name);
2150                if (name_off < 0)
2151                        return name_off;
2152        }
2153
2154        /* start out with vlen=0; it will be adjusted when adding enum values */
2155        t->name_off = name_off;
2156        t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2157        t->size = byte_sz;
2158
2159        return btf_commit_type(btf, sz);
2160}
2161
2162/*
2163 * Append new enum value for the current ENUM type with:
2164 *   - *name* - name of the enumerator value, can't be NULL or empty;
2165 *   - *value* - integer value corresponding to enum value *name*;
2166 * Returns:
2167 *   -  0, on success;
2168 *   - <0, on error.
2169 */
2170int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2171{
2172        struct btf_type *t;
2173        struct btf_enum *v;
2174        int sz, name_off;
2175
2176        /* last type should be BTF_KIND_ENUM */
2177        if (btf->nr_types == 0)
2178                return libbpf_err(-EINVAL);
2179        t = btf_last_type(btf);
2180        if (!btf_is_enum(t))
2181                return libbpf_err(-EINVAL);
2182
2183        /* non-empty name */
2184        if (!name || !name[0])
2185                return libbpf_err(-EINVAL);
2186        if (value < INT_MIN || value > UINT_MAX)
2187                return libbpf_err(-E2BIG);
2188
2189        /* decompose and invalidate raw data */
2190        if (btf_ensure_modifiable(btf))
2191                return libbpf_err(-ENOMEM);
2192
2193        sz = sizeof(struct btf_enum);
2194        v = btf_add_type_mem(btf, sz);
2195        if (!v)
2196                return libbpf_err(-ENOMEM);
2197
2198        name_off = btf__add_str(btf, name);
2199        if (name_off < 0)
2200                return name_off;
2201
2202        v->name_off = name_off;
2203        v->val = value;
2204
2205        /* update parent type's vlen */
2206        t = btf_last_type(btf);
2207        btf_type_inc_vlen(t);
2208
2209        btf->hdr->type_len += sz;
2210        btf->hdr->str_off += sz;
2211        return 0;
2212}
2213
2214/*
2215 * Append new BTF_KIND_FWD type with:
2216 *   - *name*, non-empty/non-NULL name;
2217 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2218 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2219 * Returns:
2220 *   - >0, type ID of newly added BTF type;
2221 *   - <0, on error.
2222 */
2223int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2224{
2225        if (!name || !name[0])
2226                return libbpf_err(-EINVAL);
2227
2228        switch (fwd_kind) {
2229        case BTF_FWD_STRUCT:
2230        case BTF_FWD_UNION: {
2231                struct btf_type *t;
2232                int id;
2233
2234                id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2235                if (id <= 0)
2236                        return id;
2237                t = btf_type_by_id(btf, id);
2238                t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2239                return id;
2240        }
2241        case BTF_FWD_ENUM:
2242                /* enum forward in BTF currently is just an enum with no enum
2243                 * values; we also assume a standard 4-byte size for it
2244                 */
2245                return btf__add_enum(btf, name, sizeof(int));
2246        default:
2247                return libbpf_err(-EINVAL);
2248        }
2249}
2250
2251/*
2252 * Append new BTF_KING_TYPEDEF type with:
2253 *   - *name*, non-empty/non-NULL name;
2254 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2255 * Returns:
2256 *   - >0, type ID of newly added BTF type;
2257 *   - <0, on error.
2258 */
2259int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2260{
2261        if (!name || !name[0])
2262                return libbpf_err(-EINVAL);
2263
2264        return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2265}
2266
2267/*
2268 * Append new BTF_KIND_VOLATILE type with:
2269 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2270 * Returns:
2271 *   - >0, type ID of newly added BTF type;
2272 *   - <0, on error.
2273 */
2274int btf__add_volatile(struct btf *btf, int ref_type_id)
2275{
2276        return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2277}
2278
2279/*
2280 * Append new BTF_KIND_CONST type with:
2281 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2282 * Returns:
2283 *   - >0, type ID of newly added BTF type;
2284 *   - <0, on error.
2285 */
2286int btf__add_const(struct btf *btf, int ref_type_id)
2287{
2288        return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2289}
2290
2291/*
2292 * Append new BTF_KIND_RESTRICT type with:
2293 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2294 * Returns:
2295 *   - >0, type ID of newly added BTF type;
2296 *   - <0, on error.
2297 */
2298int btf__add_restrict(struct btf *btf, int ref_type_id)
2299{
2300        return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2301}
2302
2303/*
2304 * Append new BTF_KIND_TYPE_TAG type with:
2305 *   - *value*, non-empty/non-NULL tag value;
2306 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2307 * Returns:
2308 *   - >0, type ID of newly added BTF type;
2309 *   - <0, on error.
2310 */
2311int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2312{
2313        if (!value|| !value[0])
2314                return libbpf_err(-EINVAL);
2315
2316        return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2317}
2318
2319/*
2320 * Append new BTF_KIND_FUNC type with:
2321 *   - *name*, non-empty/non-NULL name;
2322 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2323 * Returns:
2324 *   - >0, type ID of newly added BTF type;
2325 *   - <0, on error.
2326 */
2327int btf__add_func(struct btf *btf, const char *name,
2328                  enum btf_func_linkage linkage, int proto_type_id)
2329{
2330        int id;
2331
2332        if (!name || !name[0])
2333                return libbpf_err(-EINVAL);
2334        if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2335            linkage != BTF_FUNC_EXTERN)
2336                return libbpf_err(-EINVAL);
2337
2338        id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2339        if (id > 0) {
2340                struct btf_type *t = btf_type_by_id(btf, id);
2341
2342                t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2343        }
2344        return libbpf_err(id);
2345}
2346
2347/*
2348 * Append new BTF_KIND_FUNC_PROTO with:
2349 *   - *ret_type_id* - type ID for return result of a function.
2350 *
2351 * Function prototype initially has no arguments, but they can be added by
2352 * btf__add_func_param() one by one, immediately after
2353 * btf__add_func_proto() succeeded.
2354 *
2355 * Returns:
2356 *   - >0, type ID of newly added BTF type;
2357 *   - <0, on error.
2358 */
2359int btf__add_func_proto(struct btf *btf, int ret_type_id)
2360{
2361        struct btf_type *t;
2362        int sz;
2363
2364        if (validate_type_id(ret_type_id))
2365                return libbpf_err(-EINVAL);
2366
2367        if (btf_ensure_modifiable(btf))
2368                return libbpf_err(-ENOMEM);
2369
2370        sz = sizeof(struct btf_type);
2371        t = btf_add_type_mem(btf, sz);
2372        if (!t)
2373                return libbpf_err(-ENOMEM);
2374
2375        /* start out with vlen=0; this will be adjusted when adding enum
2376         * values, if necessary
2377         */
2378        t->name_off = 0;
2379        t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2380        t->type = ret_type_id;
2381
2382        return btf_commit_type(btf, sz);
2383}
2384
2385/*
2386 * Append new function parameter for current FUNC_PROTO type with:
2387 *   - *name* - parameter name, can be NULL or empty;
2388 *   - *type_id* - type ID describing the type of the parameter.
2389 * Returns:
2390 *   -  0, on success;
2391 *   - <0, on error.
2392 */
2393int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2394{
2395        struct btf_type *t;
2396        struct btf_param *p;
2397        int sz, name_off = 0;
2398
2399        if (validate_type_id(type_id))
2400                return libbpf_err(-EINVAL);
2401
2402        /* last type should be BTF_KIND_FUNC_PROTO */
2403        if (btf->nr_types == 0)
2404                return libbpf_err(-EINVAL);
2405        t = btf_last_type(btf);
2406        if (!btf_is_func_proto(t))
2407                return libbpf_err(-EINVAL);
2408
2409        /* decompose and invalidate raw data */
2410        if (btf_ensure_modifiable(btf))
2411                return libbpf_err(-ENOMEM);
2412
2413        sz = sizeof(struct btf_param);
2414        p = btf_add_type_mem(btf, sz);
2415        if (!p)
2416                return libbpf_err(-ENOMEM);
2417
2418        if (name && name[0]) {
2419                name_off = btf__add_str(btf, name);
2420                if (name_off < 0)
2421                        return name_off;
2422        }
2423
2424        p->name_off = name_off;
2425        p->type = type_id;
2426
2427        /* update parent type's vlen */
2428        t = btf_last_type(btf);
2429        btf_type_inc_vlen(t);
2430
2431        btf->hdr->type_len += sz;
2432        btf->hdr->str_off += sz;
2433        return 0;
2434}
2435
2436/*
2437 * Append new BTF_KIND_VAR type with:
2438 *   - *name* - non-empty/non-NULL name;
2439 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2440 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2441 *   - *type_id* - type ID of the type describing the type of the variable.
2442 * Returns:
2443 *   - >0, type ID of newly added BTF type;
2444 *   - <0, on error.
2445 */
2446int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2447{
2448        struct btf_type *t;
2449        struct btf_var *v;
2450        int sz, name_off;
2451
2452        /* non-empty name */
2453        if (!name || !name[0])
2454                return libbpf_err(-EINVAL);
2455        if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2456            linkage != BTF_VAR_GLOBAL_EXTERN)
2457                return libbpf_err(-EINVAL);
2458        if (validate_type_id(type_id))
2459                return libbpf_err(-EINVAL);
2460
2461        /* deconstruct BTF, if necessary, and invalidate raw_data */
2462        if (btf_ensure_modifiable(btf))
2463                return libbpf_err(-ENOMEM);
2464
2465        sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2466        t = btf_add_type_mem(btf, sz);
2467        if (!t)
2468                return libbpf_err(-ENOMEM);
2469
2470        name_off = btf__add_str(btf, name);
2471        if (name_off < 0)
2472                return name_off;
2473
2474        t->name_off = name_off;
2475        t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2476        t->type = type_id;
2477
2478        v = btf_var(t);
2479        v->linkage = linkage;
2480
2481        return btf_commit_type(btf, sz);
2482}
2483
2484/*
2485 * Append new BTF_KIND_DATASEC type with:
2486 *   - *name* - non-empty/non-NULL name;
2487 *   - *byte_sz* - data section size, in bytes.
2488 *
2489 * Data section is initially empty. Variables info can be added with
2490 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2491 *
2492 * Returns:
2493 *   - >0, type ID of newly added BTF type;
2494 *   - <0, on error.
2495 */
2496int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2497{
2498        struct btf_type *t;
2499        int sz, name_off;
2500
2501        /* non-empty name */
2502        if (!name || !name[0])
2503                return libbpf_err(-EINVAL);
2504
2505        if (btf_ensure_modifiable(btf))
2506                return libbpf_err(-ENOMEM);
2507
2508        sz = sizeof(struct btf_type);
2509        t = btf_add_type_mem(btf, sz);
2510        if (!t)
2511                return libbpf_err(-ENOMEM);
2512
2513        name_off = btf__add_str(btf, name);
2514        if (name_off < 0)
2515                return name_off;
2516
2517        /* start with vlen=0, which will be update as var_secinfos are added */
2518        t->name_off = name_off;
2519        t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2520        t->size = byte_sz;
2521
2522        return btf_commit_type(btf, sz);
2523}
2524
2525/*
2526 * Append new data section variable information entry for current DATASEC type:
2527 *   - *var_type_id* - type ID, describing type of the variable;
2528 *   - *offset* - variable offset within data section, in bytes;
2529 *   - *byte_sz* - variable size, in bytes.
2530 *
2531 * Returns:
2532 *   -  0, on success;
2533 *   - <0, on error.
2534 */
2535int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2536{
2537        struct btf_type *t;
2538        struct btf_var_secinfo *v;
2539        int sz;
2540
2541        /* last type should be BTF_KIND_DATASEC */
2542        if (btf->nr_types == 0)
2543                return libbpf_err(-EINVAL);
2544        t = btf_last_type(btf);
2545        if (!btf_is_datasec(t))
2546                return libbpf_err(-EINVAL);
2547
2548        if (validate_type_id(var_type_id))
2549                return libbpf_err(-EINVAL);
2550
2551        /* decompose and invalidate raw data */
2552        if (btf_ensure_modifiable(btf))
2553                return libbpf_err(-ENOMEM);
2554
2555        sz = sizeof(struct btf_var_secinfo);
2556        v = btf_add_type_mem(btf, sz);
2557        if (!v)
2558                return libbpf_err(-ENOMEM);
2559
2560        v->type = var_type_id;
2561        v->offset = offset;
2562        v->size = byte_sz;
2563
2564        /* update parent type's vlen */
2565        t = btf_last_type(btf);
2566        btf_type_inc_vlen(t);
2567
2568        btf->hdr->type_len += sz;
2569        btf->hdr->str_off += sz;
2570        return 0;
2571}
2572
2573/*
2574 * Append new BTF_KIND_DECL_TAG type with:
2575 *   - *value* - non-empty/non-NULL string;
2576 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2577 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2578 *     member or function argument index;
2579 * Returns:
2580 *   - >0, type ID of newly added BTF type;
2581 *   - <0, on error.
2582 */
2583int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2584                 int component_idx)
2585{
2586        struct btf_type *t;
2587        int sz, value_off;
2588
2589        if (!value || !value[0] || component_idx < -1)
2590                return libbpf_err(-EINVAL);
2591
2592        if (validate_type_id(ref_type_id))
2593                return libbpf_err(-EINVAL);
2594
2595        if (btf_ensure_modifiable(btf))
2596                return libbpf_err(-ENOMEM);
2597
2598        sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2599        t = btf_add_type_mem(btf, sz);
2600        if (!t)
2601                return libbpf_err(-ENOMEM);
2602
2603        value_off = btf__add_str(btf, value);
2604        if (value_off < 0)
2605                return value_off;
2606
2607        t->name_off = value_off;
2608        t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2609        t->type = ref_type_id;
2610        btf_decl_tag(t)->component_idx = component_idx;
2611
2612        return btf_commit_type(btf, sz);
2613}
2614
2615struct btf_ext_sec_setup_param {
2616        __u32 off;
2617        __u32 len;
2618        __u32 min_rec_size;
2619        struct btf_ext_info *ext_info;
2620        const char *desc;
2621};
2622
2623static int btf_ext_setup_info(struct btf_ext *btf_ext,
2624                              struct btf_ext_sec_setup_param *ext_sec)
2625{
2626        const struct btf_ext_info_sec *sinfo;
2627        struct btf_ext_info *ext_info;
2628        __u32 info_left, record_size;
2629        size_t sec_cnt = 0;
2630        /* The start of the info sec (including the __u32 record_size). */
2631        void *info;
2632
2633        if (ext_sec->len == 0)
2634                return 0;
2635
2636        if (ext_sec->off & 0x03) {
2637                pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2638                     ext_sec->desc);
2639                return -EINVAL;
2640        }
2641
2642        info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2643        info_left = ext_sec->len;
2644
2645        if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2646                pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2647                         ext_sec->desc, ext_sec->off, ext_sec->len);
2648                return -EINVAL;
2649        }
2650
2651        /* At least a record size */
2652        if (info_left < sizeof(__u32)) {
2653                pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2654                return -EINVAL;
2655        }
2656
2657        /* The record size needs to meet the minimum standard */
2658        record_size = *(__u32 *)info;
2659        if (record_size < ext_sec->min_rec_size ||
2660            record_size & 0x03) {
2661                pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2662                         ext_sec->desc, record_size);
2663                return -EINVAL;
2664        }
2665
2666        sinfo = info + sizeof(__u32);
2667        info_left -= sizeof(__u32);
2668
2669        /* If no records, return failure now so .BTF.ext won't be used. */
2670        if (!info_left) {
2671                pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2672                return -EINVAL;
2673        }
2674
2675        while (info_left) {
2676                unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2677                __u64 total_record_size;
2678                __u32 num_records;
2679
2680                if (info_left < sec_hdrlen) {
2681                        pr_debug("%s section header is not found in .BTF.ext\n",
2682                             ext_sec->desc);
2683                        return -EINVAL;
2684                }
2685
2686                num_records = sinfo->num_info;
2687                if (num_records == 0) {
2688                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2689                             ext_sec->desc);
2690                        return -EINVAL;
2691                }
2692
2693                total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2694                if (info_left < total_record_size) {
2695                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2696                             ext_sec->desc);
2697                        return -EINVAL;
2698                }
2699
2700                info_left -= total_record_size;
2701                sinfo = (void *)sinfo + total_record_size;
2702                sec_cnt++;
2703        }
2704
2705        ext_info = ext_sec->ext_info;
2706        ext_info->len = ext_sec->len - sizeof(__u32);
2707        ext_info->rec_size = record_size;
2708        ext_info->info = info + sizeof(__u32);
2709        ext_info->sec_cnt = sec_cnt;
2710
2711        return 0;
2712}
2713
2714static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2715{
2716        struct btf_ext_sec_setup_param param = {
2717                .off = btf_ext->hdr->func_info_off,
2718                .len = btf_ext->hdr->func_info_len,
2719                .min_rec_size = sizeof(struct bpf_func_info_min),
2720                .ext_info = &btf_ext->func_info,
2721                .desc = "func_info"
2722        };
2723
2724        return btf_ext_setup_info(btf_ext, &param);
2725}
2726
2727static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2728{
2729        struct btf_ext_sec_setup_param param = {
2730                .off = btf_ext->hdr->line_info_off,
2731                .len = btf_ext->hdr->line_info_len,
2732                .min_rec_size = sizeof(struct bpf_line_info_min),
2733                .ext_info = &btf_ext->line_info,
2734                .desc = "line_info",
2735        };
2736
2737        return btf_ext_setup_info(btf_ext, &param);
2738}
2739
2740static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2741{
2742        struct btf_ext_sec_setup_param param = {
2743                .off = btf_ext->hdr->core_relo_off,
2744                .len = btf_ext->hdr->core_relo_len,
2745                .min_rec_size = sizeof(struct bpf_core_relo),
2746                .ext_info = &btf_ext->core_relo_info,
2747                .desc = "core_relo",
2748        };
2749
2750        return btf_ext_setup_info(btf_ext, &param);
2751}
2752
2753static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2754{
2755        const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2756
2757        if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2758            data_size < hdr->hdr_len) {
2759                pr_debug("BTF.ext header not found");
2760                return -EINVAL;
2761        }
2762
2763        if (hdr->magic == bswap_16(BTF_MAGIC)) {
2764                pr_warn("BTF.ext in non-native endianness is not supported\n");
2765                return -ENOTSUP;
2766        } else if (hdr->magic != BTF_MAGIC) {
2767                pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2768                return -EINVAL;
2769        }
2770
2771        if (hdr->version != BTF_VERSION) {
2772                pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2773                return -ENOTSUP;
2774        }
2775
2776        if (hdr->flags) {
2777                pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2778                return -ENOTSUP;
2779        }
2780
2781        if (data_size == hdr->hdr_len) {
2782                pr_debug("BTF.ext has no data\n");
2783                return -EINVAL;
2784        }
2785
2786        return 0;
2787}
2788
2789void btf_ext__free(struct btf_ext *btf_ext)
2790{
2791        if (IS_ERR_OR_NULL(btf_ext))
2792                return;
2793        free(btf_ext->func_info.sec_idxs);
2794        free(btf_ext->line_info.sec_idxs);
2795        free(btf_ext->core_relo_info.sec_idxs);
2796        free(btf_ext->data);
2797        free(btf_ext);
2798}
2799
2800struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2801{
2802        struct btf_ext *btf_ext;
2803        int err;
2804
2805        btf_ext = calloc(1, sizeof(struct btf_ext));
2806        if (!btf_ext)
2807                return libbpf_err_ptr(-ENOMEM);
2808
2809        btf_ext->data_size = size;
2810        btf_ext->data = malloc(size);
2811        if (!btf_ext->data) {
2812                err = -ENOMEM;
2813                goto done;
2814        }
2815        memcpy(btf_ext->data, data, size);
2816
2817        err = btf_ext_parse_hdr(btf_ext->data, size);
2818        if (err)
2819                goto done;
2820
2821        if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2822                err = -EINVAL;
2823                goto done;
2824        }
2825
2826        err = btf_ext_setup_func_info(btf_ext);
2827        if (err)
2828                goto done;
2829
2830        err = btf_ext_setup_line_info(btf_ext);
2831        if (err)
2832                goto done;
2833
2834        if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2835                goto done; /* skip core relos parsing */
2836
2837        err = btf_ext_setup_core_relos(btf_ext);
2838        if (err)
2839                goto done;
2840
2841done:
2842        if (err) {
2843                btf_ext__free(btf_ext);
2844                return libbpf_err_ptr(err);
2845        }
2846
2847        return btf_ext;
2848}
2849
2850const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2851{
2852        *size = btf_ext->data_size;
2853        return btf_ext->data;
2854}
2855
2856static int btf_ext_reloc_info(const struct btf *btf,
2857                              const struct btf_ext_info *ext_info,
2858                              const char *sec_name, __u32 insns_cnt,
2859                              void **info, __u32 *cnt)
2860{
2861        __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2862        __u32 i, record_size, existing_len, records_len;
2863        struct btf_ext_info_sec *sinfo;
2864        const char *info_sec_name;
2865        __u64 remain_len;
2866        void *data;
2867
2868        record_size = ext_info->rec_size;
2869        sinfo = ext_info->info;
2870        remain_len = ext_info->len;
2871        while (remain_len > 0) {
2872                records_len = sinfo->num_info * record_size;
2873                info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2874                if (strcmp(info_sec_name, sec_name)) {
2875                        remain_len -= sec_hdrlen + records_len;
2876                        sinfo = (void *)sinfo + sec_hdrlen + records_len;
2877                        continue;
2878                }
2879
2880                existing_len = (*cnt) * record_size;
2881                data = realloc(*info, existing_len + records_len);
2882                if (!data)
2883                        return libbpf_err(-ENOMEM);
2884
2885                memcpy(data + existing_len, sinfo->data, records_len);
2886                /* adjust insn_off only, the rest data will be passed
2887                 * to the kernel.
2888                 */
2889                for (i = 0; i < sinfo->num_info; i++) {
2890                        __u32 *insn_off;
2891
2892                        insn_off = data + existing_len + (i * record_size);
2893                        *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2894                }
2895                *info = data;
2896                *cnt += sinfo->num_info;
2897                return 0;
2898        }
2899
2900        return libbpf_err(-ENOENT);
2901}
2902
2903int btf_ext__reloc_func_info(const struct btf *btf,
2904                             const struct btf_ext *btf_ext,
2905                             const char *sec_name, __u32 insns_cnt,
2906                             void **func_info, __u32 *cnt)
2907{
2908        return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2909                                  insns_cnt, func_info, cnt);
2910}
2911
2912int btf_ext__reloc_line_info(const struct btf *btf,
2913                             const struct btf_ext *btf_ext,
2914                             const char *sec_name, __u32 insns_cnt,
2915                             void **line_info, __u32 *cnt)
2916{
2917        return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2918                                  insns_cnt, line_info, cnt);
2919}
2920
2921__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2922{
2923        return btf_ext->func_info.rec_size;
2924}
2925
2926__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2927{
2928        return btf_ext->line_info.rec_size;
2929}
2930
2931struct btf_dedup;
2932
2933static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2934static void btf_dedup_free(struct btf_dedup *d);
2935static int btf_dedup_prep(struct btf_dedup *d);
2936static int btf_dedup_strings(struct btf_dedup *d);
2937static int btf_dedup_prim_types(struct btf_dedup *d);
2938static int btf_dedup_struct_types(struct btf_dedup *d);
2939static int btf_dedup_ref_types(struct btf_dedup *d);
2940static int btf_dedup_compact_types(struct btf_dedup *d);
2941static int btf_dedup_remap_types(struct btf_dedup *d);
2942
2943/*
2944 * Deduplicate BTF types and strings.
2945 *
2946 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2947 * section with all BTF type descriptors and string data. It overwrites that
2948 * memory in-place with deduplicated types and strings without any loss of
2949 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2950 * is provided, all the strings referenced from .BTF.ext section are honored
2951 * and updated to point to the right offsets after deduplication.
2952 *
2953 * If function returns with error, type/string data might be garbled and should
2954 * be discarded.
2955 *
2956 * More verbose and detailed description of both problem btf_dedup is solving,
2957 * as well as solution could be found at:
2958 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2959 *
2960 * Problem description and justification
2961 * =====================================
2962 *
2963 * BTF type information is typically emitted either as a result of conversion
2964 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2965 * unit contains information about a subset of all the types that are used
2966 * in an application. These subsets are frequently overlapping and contain a lot
2967 * of duplicated information when later concatenated together into a single
2968 * binary. This algorithm ensures that each unique type is represented by single
2969 * BTF type descriptor, greatly reducing resulting size of BTF data.
2970 *
2971 * Compilation unit isolation and subsequent duplication of data is not the only
2972 * problem. The same type hierarchy (e.g., struct and all the type that struct
2973 * references) in different compilation units can be represented in BTF to
2974 * various degrees of completeness (or, rather, incompleteness) due to
2975 * struct/union forward declarations.
2976 *
2977 * Let's take a look at an example, that we'll use to better understand the
2978 * problem (and solution). Suppose we have two compilation units, each using
2979 * same `struct S`, but each of them having incomplete type information about
2980 * struct's fields:
2981 *
2982 * // CU #1:
2983 * struct S;
2984 * struct A {
2985 *      int a;
2986 *      struct A* self;
2987 *      struct S* parent;
2988 * };
2989 * struct B;
2990 * struct S {
2991 *      struct A* a_ptr;
2992 *      struct B* b_ptr;
2993 * };
2994 *
2995 * // CU #2:
2996 * struct S;
2997 * struct A;
2998 * struct B {
2999 *      int b;
3000 *      struct B* self;
3001 *      struct S* parent;
3002 * };
3003 * struct S {
3004 *      struct A* a_ptr;
3005 *      struct B* b_ptr;
3006 * };
3007 *
3008 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3009 * more), but will know the complete type information about `struct A`. While
3010 * for CU #2, it will know full type information about `struct B`, but will
3011 * only know about forward declaration of `struct A` (in BTF terms, it will
3012 * have `BTF_KIND_FWD` type descriptor with name `B`).
3013 *
3014 * This compilation unit isolation means that it's possible that there is no
3015 * single CU with complete type information describing structs `S`, `A`, and
3016 * `B`. Also, we might get tons of duplicated and redundant type information.
3017 *
3018 * Additional complication we need to keep in mind comes from the fact that
3019 * types, in general, can form graphs containing cycles, not just DAGs.
3020 *
3021 * While algorithm does deduplication, it also merges and resolves type
3022 * information (unless disabled throught `struct btf_opts`), whenever possible.
3023 * E.g., in the example above with two compilation units having partial type
3024 * information for structs `A` and `B`, the output of algorithm will emit
3025 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3026 * (as well as type information for `int` and pointers), as if they were defined
3027 * in a single compilation unit as:
3028 *
3029 * struct A {
3030 *      int a;
3031 *      struct A* self;
3032 *      struct S* parent;
3033 * };
3034 * struct B {
3035 *      int b;
3036 *      struct B* self;
3037 *      struct S* parent;
3038 * };
3039 * struct S {
3040 *      struct A* a_ptr;
3041 *      struct B* b_ptr;
3042 * };
3043 *
3044 * Algorithm summary
3045 * =================
3046 *
3047 * Algorithm completes its work in 6 separate passes:
3048 *
3049 * 1. Strings deduplication.
3050 * 2. Primitive types deduplication (int, enum, fwd).
3051 * 3. Struct/union types deduplication.
3052 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3053 *    protos, and const/volatile/restrict modifiers).
3054 * 5. Types compaction.
3055 * 6. Types remapping.
3056 *
3057 * Algorithm determines canonical type descriptor, which is a single
3058 * representative type for each truly unique type. This canonical type is the
3059 * one that will go into final deduplicated BTF type information. For
3060 * struct/unions, it is also the type that algorithm will merge additional type
3061 * information into (while resolving FWDs), as it discovers it from data in
3062 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3063 * that type is canonical, or to some other type, if that type is equivalent
3064 * and was chosen as canonical representative. This mapping is stored in
3065 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3066 * FWD type got resolved to.
3067 *
3068 * To facilitate fast discovery of canonical types, we also maintain canonical
3069 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3070 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3071 * that match that signature. With sufficiently good choice of type signature
3072 * hashing function, we can limit number of canonical types for each unique type
3073 * signature to a very small number, allowing to find canonical type for any
3074 * duplicated type very quickly.
3075 *
3076 * Struct/union deduplication is the most critical part and algorithm for
3077 * deduplicating structs/unions is described in greater details in comments for
3078 * `btf_dedup_is_equiv` function.
3079 */
3080
3081DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0)
3082int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts)
3083{
3084        struct btf_dedup *d;
3085        int err;
3086
3087        if (!OPTS_VALID(opts, btf_dedup_opts))
3088                return libbpf_err(-EINVAL);
3089
3090        d = btf_dedup_new(btf, opts);
3091        if (IS_ERR(d)) {
3092                pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3093                return libbpf_err(-EINVAL);
3094        }
3095
3096        if (btf_ensure_modifiable(btf)) {
3097                err = -ENOMEM;
3098                goto done;
3099        }
3100
3101        err = btf_dedup_prep(d);
3102        if (err) {
3103                pr_debug("btf_dedup_prep failed:%d\n", err);
3104                goto done;
3105        }
3106        err = btf_dedup_strings(d);
3107        if (err < 0) {
3108                pr_debug("btf_dedup_strings failed:%d\n", err);
3109                goto done;
3110        }
3111        err = btf_dedup_prim_types(d);
3112        if (err < 0) {
3113                pr_debug("btf_dedup_prim_types failed:%d\n", err);
3114                goto done;
3115        }
3116        err = btf_dedup_struct_types(d);
3117        if (err < 0) {
3118                pr_debug("btf_dedup_struct_types failed:%d\n", err);
3119                goto done;
3120        }
3121        err = btf_dedup_ref_types(d);
3122        if (err < 0) {
3123                pr_debug("btf_dedup_ref_types failed:%d\n", err);
3124                goto done;
3125        }
3126        err = btf_dedup_compact_types(d);
3127        if (err < 0) {
3128                pr_debug("btf_dedup_compact_types failed:%d\n", err);
3129                goto done;
3130        }
3131        err = btf_dedup_remap_types(d);
3132        if (err < 0) {
3133                pr_debug("btf_dedup_remap_types failed:%d\n", err);
3134                goto done;
3135        }
3136
3137done:
3138        btf_dedup_free(d);
3139        return libbpf_err(err);
3140}
3141
3142COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2)
3143int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts)
3144{
3145        LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext);
3146
3147        if (unused_opts) {
3148                pr_warn("please use new version of btf__dedup() that supports options\n");
3149                return libbpf_err(-ENOTSUP);
3150        }
3151
3152        return btf__dedup(btf, &opts);
3153}
3154
3155#define BTF_UNPROCESSED_ID ((__u32)-1)
3156#define BTF_IN_PROGRESS_ID ((__u32)-2)
3157
3158struct btf_dedup {
3159        /* .BTF section to be deduped in-place */
3160        struct btf *btf;
3161        /*
3162         * Optional .BTF.ext section. When provided, any strings referenced
3163         * from it will be taken into account when deduping strings
3164         */
3165        struct btf_ext *btf_ext;
3166        /*
3167         * This is a map from any type's signature hash to a list of possible
3168         * canonical representative type candidates. Hash collisions are
3169         * ignored, so even types of various kinds can share same list of
3170         * candidates, which is fine because we rely on subsequent
3171         * btf_xxx_equal() checks to authoritatively verify type equality.
3172         */
3173        struct hashmap *dedup_table;
3174        /* Canonical types map */
3175        __u32 *map;
3176        /* Hypothetical mapping, used during type graph equivalence checks */
3177        __u32 *hypot_map;
3178        __u32 *hypot_list;
3179        size_t hypot_cnt;
3180        size_t hypot_cap;
3181        /* Whether hypothetical mapping, if successful, would need to adjust
3182         * already canonicalized types (due to a new forward declaration to
3183         * concrete type resolution). In such case, during split BTF dedup
3184         * candidate type would still be considered as different, because base
3185         * BTF is considered to be immutable.
3186         */
3187        bool hypot_adjust_canon;
3188        /* Various option modifying behavior of algorithm */
3189        struct btf_dedup_opts opts;
3190        /* temporary strings deduplication state */
3191        struct strset *strs_set;
3192};
3193
3194static long hash_combine(long h, long value)
3195{
3196        return h * 31 + value;
3197}
3198
3199#define for_each_dedup_cand(d, node, hash) \
3200        hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3201
3202static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3203{
3204        return hashmap__append(d->dedup_table,
3205                               (void *)hash, (void *)(long)type_id);
3206}
3207
3208static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3209                                   __u32 from_id, __u32 to_id)
3210{
3211        if (d->hypot_cnt == d->hypot_cap) {
3212                __u32 *new_list;
3213
3214                d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3215                new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3216                if (!new_list)
3217                        return -ENOMEM;
3218                d->hypot_list = new_list;
3219        }
3220        d->hypot_list[d->hypot_cnt++] = from_id;
3221        d->hypot_map[from_id] = to_id;
3222        return 0;
3223}
3224
3225static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3226{
3227        int i;
3228
3229        for (i = 0; i < d->hypot_cnt; i++)
3230                d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3231        d->hypot_cnt = 0;
3232        d->hypot_adjust_canon = false;
3233}
3234
3235static void btf_dedup_free(struct btf_dedup *d)
3236{
3237        hashmap__free(d->dedup_table);
3238        d->dedup_table = NULL;
3239
3240        free(d->map);
3241        d->map = NULL;
3242
3243        free(d->hypot_map);
3244        d->hypot_map = NULL;
3245
3246        free(d->hypot_list);
3247        d->hypot_list = NULL;
3248
3249        free(d);
3250}
3251
3252static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3253{
3254        return (size_t)key;
3255}
3256
3257static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3258{
3259        return 0;
3260}
3261
3262static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3263{
3264        return k1 == k2;
3265}
3266
3267static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3268{
3269        struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3270        hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3271        int i, err = 0, type_cnt;
3272
3273        if (!d)
3274                return ERR_PTR(-ENOMEM);
3275
3276        if (OPTS_GET(opts, force_collisions, false))
3277                hash_fn = btf_dedup_collision_hash_fn;
3278
3279        d->btf = btf;
3280        d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3281
3282        d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3283        if (IS_ERR(d->dedup_table)) {
3284                err = PTR_ERR(d->dedup_table);
3285                d->dedup_table = NULL;
3286                goto done;
3287        }
3288
3289        type_cnt = btf__type_cnt(btf);
3290        d->map = malloc(sizeof(__u32) * type_cnt);
3291        if (!d->map) {
3292                err = -ENOMEM;
3293                goto done;
3294        }
3295        /* special BTF "void" type is made canonical immediately */
3296        d->map[0] = 0;
3297        for (i = 1; i < type_cnt; i++) {
3298                struct btf_type *t = btf_type_by_id(d->btf, i);
3299
3300                /* VAR and DATASEC are never deduped and are self-canonical */
3301                if (btf_is_var(t) || btf_is_datasec(t))
3302                        d->map[i] = i;
3303                else
3304                        d->map[i] = BTF_UNPROCESSED_ID;
3305        }
3306
3307        d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3308        if (!d->hypot_map) {
3309                err = -ENOMEM;
3310                goto done;
3311        }
3312        for (i = 0; i < type_cnt; i++)
3313                d->hypot_map[i] = BTF_UNPROCESSED_ID;
3314
3315done:
3316        if (err) {
3317                btf_dedup_free(d);
3318                return ERR_PTR(err);
3319        }
3320
3321        return d;
3322}
3323
3324/*
3325 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3326 * string and pass pointer to it to a provided callback `fn`.
3327 */
3328static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3329{
3330        int i, r;
3331
3332        for (i = 0; i < d->btf->nr_types; i++) {
3333                struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3334
3335                r = btf_type_visit_str_offs(t, fn, ctx);
3336                if (r)
3337                        return r;
3338        }
3339
3340        if (!d->btf_ext)
3341                return 0;
3342
3343        r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3344        if (r)
3345                return r;
3346
3347        return 0;
3348}
3349
3350static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3351{
3352        struct btf_dedup *d = ctx;
3353        __u32 str_off = *str_off_ptr;
3354        const char *s;
3355        int off, err;
3356
3357        /* don't touch empty string or string in main BTF */
3358        if (str_off == 0 || str_off < d->btf->start_str_off)
3359                return 0;
3360
3361        s = btf__str_by_offset(d->btf, str_off);
3362        if (d->btf->base_btf) {
3363                err = btf__find_str(d->btf->base_btf, s);
3364                if (err >= 0) {
3365                        *str_off_ptr = err;
3366                        return 0;
3367                }
3368                if (err != -ENOENT)
3369                        return err;
3370        }
3371
3372        off = strset__add_str(d->strs_set, s);
3373        if (off < 0)
3374                return off;
3375
3376        *str_off_ptr = d->btf->start_str_off + off;
3377        return 0;
3378}
3379
3380/*
3381 * Dedup string and filter out those that are not referenced from either .BTF
3382 * or .BTF.ext (if provided) sections.
3383 *
3384 * This is done by building index of all strings in BTF's string section,
3385 * then iterating over all entities that can reference strings (e.g., type
3386 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3387 * strings as used. After that all used strings are deduped and compacted into
3388 * sequential blob of memory and new offsets are calculated. Then all the string
3389 * references are iterated again and rewritten using new offsets.
3390 */
3391static int btf_dedup_strings(struct btf_dedup *d)
3392{
3393        int err;
3394
3395        if (d->btf->strs_deduped)
3396                return 0;
3397
3398        d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3399        if (IS_ERR(d->strs_set)) {
3400                err = PTR_ERR(d->strs_set);
3401                goto err_out;
3402        }
3403
3404        if (!d->btf->base_btf) {
3405                /* insert empty string; we won't be looking it up during strings
3406                 * dedup, but it's good to have it for generic BTF string lookups
3407                 */
3408                err = strset__add_str(d->strs_set, "");
3409                if (err < 0)
3410                        goto err_out;
3411        }
3412
3413        /* remap string offsets */
3414        err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3415        if (err)
3416                goto err_out;
3417
3418        /* replace BTF string data and hash with deduped ones */
3419        strset__free(d->btf->strs_set);
3420        d->btf->hdr->str_len = strset__data_size(d->strs_set);
3421        d->btf->strs_set = d->strs_set;
3422        d->strs_set = NULL;
3423        d->btf->strs_deduped = true;
3424        return 0;
3425
3426err_out:
3427        strset__free(d->strs_set);
3428        d->strs_set = NULL;
3429
3430        return err;
3431}
3432
3433static long btf_hash_common(struct btf_type *t)
3434{
3435        long h;
3436
3437        h = hash_combine(0, t->name_off);
3438        h = hash_combine(h, t->info);
3439        h = hash_combine(h, t->size);
3440        return h;
3441}
3442
3443static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3444{
3445        return t1->name_off == t2->name_off &&
3446               t1->info == t2->info &&
3447               t1->size == t2->size;
3448}
3449
3450/* Calculate type signature hash of INT or TAG. */
3451static long btf_hash_int_decl_tag(struct btf_type *t)
3452{
3453        __u32 info = *(__u32 *)(t + 1);
3454        long h;
3455
3456        h = btf_hash_common(t);
3457        h = hash_combine(h, info);
3458        return h;
3459}
3460
3461/* Check structural equality of two INTs or TAGs. */
3462static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3463{
3464        __u32 info1, info2;
3465
3466        if (!btf_equal_common(t1, t2))
3467                return false;
3468        info1 = *(__u32 *)(t1 + 1);
3469        info2 = *(__u32 *)(t2 + 1);
3470        return info1 == info2;
3471}
3472
3473/* Calculate type signature hash of ENUM. */
3474static long btf_hash_enum(struct btf_type *t)
3475{
3476        long h;
3477
3478        /* don't hash vlen and enum members to support enum fwd resolving */
3479        h = hash_combine(0, t->name_off);
3480        h = hash_combine(h, t->info & ~0xffff);
3481        h = hash_combine(h, t->size);
3482        return h;
3483}
3484
3485/* Check structural equality of two ENUMs. */
3486static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3487{
3488        const struct btf_enum *m1, *m2;
3489        __u16 vlen;
3490        int i;
3491
3492        if (!btf_equal_common(t1, t2))
3493                return false;
3494
3495        vlen = btf_vlen(t1);
3496        m1 = btf_enum(t1);
3497        m2 = btf_enum(t2);
3498        for (i = 0; i < vlen; i++) {
3499                if (m1->name_off != m2->name_off || m1->val != m2->val)
3500                        return false;
3501                m1++;
3502                m2++;
3503        }
3504        return true;
3505}
3506
3507static inline bool btf_is_enum_fwd(struct btf_type *t)
3508{
3509        return btf_is_enum(t) && btf_vlen(t) == 0;
3510}
3511
3512static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3513{
3514        if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3515                return btf_equal_enum(t1, t2);
3516        /* ignore vlen when comparing */
3517        return t1->name_off == t2->name_off &&
3518               (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3519               t1->size == t2->size;
3520}
3521
3522/*
3523 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3524 * as referenced type IDs equivalence is established separately during type
3525 * graph equivalence check algorithm.
3526 */
3527static long btf_hash_struct(struct btf_type *t)
3528{
3529        const struct btf_member *member = btf_members(t);
3530        __u32 vlen = btf_vlen(t);
3531        long h = btf_hash_common(t);
3532        int i;
3533
3534        for (i = 0; i < vlen; i++) {
3535                h = hash_combine(h, member->name_off);
3536                h = hash_combine(h, member->offset);
3537                /* no hashing of referenced type ID, it can be unresolved yet */
3538                member++;
3539        }
3540        return h;
3541}
3542
3543/*
3544 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3545 * type IDs. This check is performed during type graph equivalence check and
3546 * referenced types equivalence is checked separately.
3547 */
3548static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3549{
3550        const struct btf_member *m1, *m2;
3551        __u16 vlen;
3552        int i;
3553
3554        if (!btf_equal_common(t1, t2))
3555                return false;
3556
3557        vlen = btf_vlen(t1);
3558        m1 = btf_members(t1);
3559        m2 = btf_members(t2);
3560        for (i = 0; i < vlen; i++) {
3561                if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3562                        return false;
3563                m1++;
3564                m2++;
3565        }
3566        return true;
3567}
3568
3569/*
3570 * Calculate type signature hash of ARRAY, including referenced type IDs,
3571 * under assumption that they were already resolved to canonical type IDs and
3572 * are not going to change.
3573 */
3574static long btf_hash_array(struct btf_type *t)
3575{
3576        const struct btf_array *info = btf_array(t);
3577        long h = btf_hash_common(t);
3578
3579        h = hash_combine(h, info->type);
3580        h = hash_combine(h, info->index_type);
3581        h = hash_combine(h, info->nelems);
3582        return h;
3583}
3584
3585/*
3586 * Check exact equality of two ARRAYs, taking into account referenced
3587 * type IDs, under assumption that they were already resolved to canonical
3588 * type IDs and are not going to change.
3589 * This function is called during reference types deduplication to compare
3590 * ARRAY to potential canonical representative.
3591 */
3592static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3593{
3594        const struct btf_array *info1, *info2;
3595
3596        if (!btf_equal_common(t1, t2))
3597                return false;
3598
3599        info1 = btf_array(t1);
3600        info2 = btf_array(t2);
3601        return info1->type == info2->type &&
3602               info1->index_type == info2->index_type &&
3603               info1->nelems == info2->nelems;
3604}
3605
3606/*
3607 * Check structural compatibility of two ARRAYs, ignoring referenced type
3608 * IDs. This check is performed during type graph equivalence check and
3609 * referenced types equivalence is checked separately.
3610 */
3611static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3612{
3613        if (!btf_equal_common(t1, t2))
3614                return false;
3615
3616        return btf_array(t1)->nelems == btf_array(t2)->nelems;
3617}
3618
3619/*
3620 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3621 * under assumption that they were already resolved to canonical type IDs and
3622 * are not going to change.
3623 */
3624static long btf_hash_fnproto(struct btf_type *t)
3625{
3626        const struct btf_param *member = btf_params(t);
3627        __u16 vlen = btf_vlen(t);
3628        long h = btf_hash_common(t);
3629        int i;
3630
3631        for (i = 0; i < vlen; i++) {
3632                h = hash_combine(h, member->name_off);
3633                h = hash_combine(h, member->type);
3634                member++;
3635        }
3636        return h;
3637}
3638
3639/*
3640 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3641 * type IDs, under assumption that they were already resolved to canonical
3642 * type IDs and are not going to change.
3643 * This function is called during reference types deduplication to compare
3644 * FUNC_PROTO to potential canonical representative.
3645 */
3646static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3647{
3648        const struct btf_param *m1, *m2;
3649        __u16 vlen;
3650        int i;
3651
3652        if (!btf_equal_common(t1, t2))
3653                return false;
3654
3655        vlen = btf_vlen(t1);
3656        m1 = btf_params(t1);
3657        m2 = btf_params(t2);
3658        for (i = 0; i < vlen; i++) {
3659                if (m1->name_off != m2->name_off || m1->type != m2->type)
3660                        return false;
3661                m1++;
3662                m2++;
3663        }
3664        return true;
3665}
3666
3667/*
3668 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3669 * IDs. This check is performed during type graph equivalence check and
3670 * referenced types equivalence is checked separately.
3671 */
3672static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3673{
3674        const struct btf_param *m1, *m2;
3675        __u16 vlen;
3676        int i;
3677
3678        /* skip return type ID */
3679        if (t1->name_off != t2->name_off || t1->info != t2->info)
3680                return false;
3681
3682        vlen = btf_vlen(t1);
3683        m1 = btf_params(t1);
3684        m2 = btf_params(t2);
3685        for (i = 0; i < vlen; i++) {
3686                if (m1->name_off != m2->name_off)
3687                        return false;
3688                m1++;
3689                m2++;
3690        }
3691        return true;
3692}
3693
3694/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3695 * types and initializing the rest of the state (canonical type mapping) for
3696 * the fixed base BTF part.
3697 */
3698static int btf_dedup_prep(struct btf_dedup *d)
3699{
3700        struct btf_type *t;
3701        int type_id;
3702        long h;
3703
3704        if (!d->btf->base_btf)
3705                return 0;
3706
3707        for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3708                t = btf_type_by_id(d->btf, type_id);
3709
3710                /* all base BTF types are self-canonical by definition */
3711                d->map[type_id] = type_id;
3712
3713                switch (btf_kind(t)) {
3714                case BTF_KIND_VAR:
3715                case BTF_KIND_DATASEC:
3716                        /* VAR and DATASEC are never hash/deduplicated */
3717                        continue;
3718                case BTF_KIND_CONST:
3719                case BTF_KIND_VOLATILE:
3720                case BTF_KIND_RESTRICT:
3721                case BTF_KIND_PTR:
3722                case BTF_KIND_FWD:
3723                case BTF_KIND_TYPEDEF:
3724                case BTF_KIND_FUNC:
3725                case BTF_KIND_FLOAT:
3726                case BTF_KIND_TYPE_TAG:
3727                        h = btf_hash_common(t);
3728                        break;
3729                case BTF_KIND_INT:
3730                case BTF_KIND_DECL_TAG:
3731                        h = btf_hash_int_decl_tag(t);
3732                        break;
3733                case BTF_KIND_ENUM:
3734                        h = btf_hash_enum(t);
3735                        break;
3736                case BTF_KIND_STRUCT:
3737                case BTF_KIND_UNION:
3738                        h = btf_hash_struct(t);
3739                        break;
3740                case BTF_KIND_ARRAY:
3741                        h = btf_hash_array(t);
3742                        break;
3743                case BTF_KIND_FUNC_PROTO:
3744                        h = btf_hash_fnproto(t);
3745                        break;
3746                default:
3747                        pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3748                        return -EINVAL;
3749                }
3750                if (btf_dedup_table_add(d, h, type_id))
3751                        return -ENOMEM;
3752        }
3753
3754        return 0;
3755}
3756
3757/*
3758 * Deduplicate primitive types, that can't reference other types, by calculating
3759 * their type signature hash and comparing them with any possible canonical
3760 * candidate. If no canonical candidate matches, type itself is marked as
3761 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3762 */
3763static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3764{
3765        struct btf_type *t = btf_type_by_id(d->btf, type_id);
3766        struct hashmap_entry *hash_entry;
3767        struct btf_type *cand;
3768        /* if we don't find equivalent type, then we are canonical */
3769        __u32 new_id = type_id;
3770        __u32 cand_id;
3771        long h;
3772
3773        switch (btf_kind(t)) {
3774        case BTF_KIND_CONST:
3775        case BTF_KIND_VOLATILE:
3776        case BTF_KIND_RESTRICT:
3777        case BTF_KIND_PTR:
3778        case BTF_KIND_TYPEDEF:
3779        case BTF_KIND_ARRAY:
3780        case BTF_KIND_STRUCT:
3781        case BTF_KIND_UNION:
3782        case BTF_KIND_FUNC:
3783        case BTF_KIND_FUNC_PROTO:
3784        case BTF_KIND_VAR:
3785        case BTF_KIND_DATASEC:
3786        case BTF_KIND_DECL_TAG:
3787        case BTF_KIND_TYPE_TAG:
3788                return 0;
3789
3790        case BTF_KIND_INT:
3791                h = btf_hash_int_decl_tag(t);
3792                for_each_dedup_cand(d, hash_entry, h) {
3793                        cand_id = (__u32)(long)hash_entry->value;
3794                        cand = btf_type_by_id(d->btf, cand_id);
3795                        if (btf_equal_int_tag(t, cand)) {
3796                                new_id = cand_id;
3797                                break;
3798                        }
3799                }
3800                break;
3801
3802        case BTF_KIND_ENUM:
3803                h = btf_hash_enum(t);
3804                for_each_dedup_cand(d, hash_entry, h) {
3805                        cand_id = (__u32)(long)hash_entry->value;
3806                        cand = btf_type_by_id(d->btf, cand_id);
3807                        if (btf_equal_enum(t, cand)) {
3808                                new_id = cand_id;
3809                                break;
3810                        }
3811                        if (btf_compat_enum(t, cand)) {
3812                                if (btf_is_enum_fwd(t)) {
3813                                        /* resolve fwd to full enum */
3814                                        new_id = cand_id;
3815                                        break;
3816                                }
3817                                /* resolve canonical enum fwd to full enum */
3818                                d->map[cand_id] = type_id;
3819                        }
3820                }
3821                break;
3822
3823        case BTF_KIND_FWD:
3824        case BTF_KIND_FLOAT:
3825                h = btf_hash_common(t);
3826                for_each_dedup_cand(d, hash_entry, h) {
3827                        cand_id = (__u32)(long)hash_entry->value;
3828                        cand = btf_type_by_id(d->btf, cand_id);
3829                        if (btf_equal_common(t, cand)) {
3830                                new_id = cand_id;
3831                                break;
3832                        }
3833                }
3834                break;
3835
3836        default:
3837                return -EINVAL;
3838        }
3839
3840        d->map[type_id] = new_id;
3841        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3842                return -ENOMEM;
3843
3844        return 0;
3845}
3846
3847static int btf_dedup_prim_types(struct btf_dedup *d)
3848{
3849        int i, err;
3850
3851        for (i = 0; i < d->btf->nr_types; i++) {
3852                err = btf_dedup_prim_type(d, d->btf->start_id + i);
3853                if (err)
3854                        return err;
3855        }
3856        return 0;
3857}
3858
3859/*
3860 * Check whether type is already mapped into canonical one (could be to itself).
3861 */
3862static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3863{
3864        return d->map[type_id] <= BTF_MAX_NR_TYPES;
3865}
3866
3867/*
3868 * Resolve type ID into its canonical type ID, if any; otherwise return original
3869 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3870 * STRUCT/UNION link and resolve it into canonical type ID as well.
3871 */
3872static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3873{
3874        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3875                type_id = d->map[type_id];
3876        return type_id;
3877}
3878
3879/*
3880 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3881 * type ID.
3882 */
3883static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3884{
3885        __u32 orig_type_id = type_id;
3886
3887        if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3888                return type_id;
3889
3890        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3891                type_id = d->map[type_id];
3892
3893        if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3894                return type_id;
3895
3896        return orig_type_id;
3897}
3898
3899
3900static inline __u16 btf_fwd_kind(struct btf_type *t)
3901{
3902        return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3903}
3904
3905/* Check if given two types are identical ARRAY definitions */
3906static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3907{
3908        struct btf_type *t1, *t2;
3909
3910        t1 = btf_type_by_id(d->btf, id1);
3911        t2 = btf_type_by_id(d->btf, id2);
3912        if (!btf_is_array(t1) || !btf_is_array(t2))
3913                return 0;
3914
3915        return btf_equal_array(t1, t2);
3916}
3917
3918/* Check if given two types are identical STRUCT/UNION definitions */
3919static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3920{
3921        const struct btf_member *m1, *m2;
3922        struct btf_type *t1, *t2;
3923        int n, i;
3924
3925        t1 = btf_type_by_id(d->btf, id1);
3926        t2 = btf_type_by_id(d->btf, id2);
3927
3928        if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3929                return false;
3930
3931        if (!btf_shallow_equal_struct(t1, t2))
3932                return false;
3933
3934        m1 = btf_members(t1);
3935        m2 = btf_members(t2);
3936        for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3937                if (m1->type != m2->type)
3938                        return false;
3939        }
3940        return true;
3941}
3942
3943/*
3944 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3945 * call it "candidate graph" in this description for brevity) to a type graph
3946 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3947 * here, though keep in mind that not all types in canonical graph are
3948 * necessarily canonical representatives themselves, some of them might be
3949 * duplicates or its uniqueness might not have been established yet).
3950 * Returns:
3951 *  - >0, if type graphs are equivalent;
3952 *  -  0, if not equivalent;
3953 *  - <0, on error.
3954 *
3955 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3956 * equivalence of BTF types at each step. If at any point BTF types in candidate
3957 * and canonical graphs are not compatible structurally, whole graphs are
3958 * incompatible. If types are structurally equivalent (i.e., all information
3959 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3960 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3961 * If a type references other types, then those referenced types are checked
3962 * for equivalence recursively.
3963 *
3964 * During DFS traversal, if we find that for current `canon_id` type we
3965 * already have some mapping in hypothetical map, we check for two possible
3966 * situations:
3967 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3968 *     happen when type graphs have cycles. In this case we assume those two
3969 *     types are equivalent.
3970 *   - `canon_id` is mapped to different type. This is contradiction in our
3971 *     hypothetical mapping, because same graph in canonical graph corresponds
3972 *     to two different types in candidate graph, which for equivalent type
3973 *     graphs shouldn't happen. This condition terminates equivalence check
3974 *     with negative result.
3975 *
3976 * If type graphs traversal exhausts types to check and find no contradiction,
3977 * then type graphs are equivalent.
3978 *
3979 * When checking types for equivalence, there is one special case: FWD types.
3980 * If FWD type resolution is allowed and one of the types (either from canonical
3981 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3982 * flag) and their names match, hypothetical mapping is updated to point from
3983 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3984 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3985 *
3986 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3987 * if there are two exactly named (or anonymous) structs/unions that are
3988 * compatible structurally, one of which has FWD field, while other is concrete
3989 * STRUCT/UNION, but according to C sources they are different structs/unions
3990 * that are referencing different types with the same name. This is extremely
3991 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3992 * this logic is causing problems.
3993 *
3994 * Doing FWD resolution means that both candidate and/or canonical graphs can
3995 * consists of portions of the graph that come from multiple compilation units.
3996 * This is due to the fact that types within single compilation unit are always
3997 * deduplicated and FWDs are already resolved, if referenced struct/union
3998 * definiton is available. So, if we had unresolved FWD and found corresponding
3999 * STRUCT/UNION, they will be from different compilation units. This
4000 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4001 * type graph will likely have at least two different BTF types that describe
4002 * same type (e.g., most probably there will be two different BTF types for the
4003 * same 'int' primitive type) and could even have "overlapping" parts of type
4004 * graph that describe same subset of types.
4005 *
4006 * This in turn means that our assumption that each type in canonical graph
4007 * must correspond to exactly one type in candidate graph might not hold
4008 * anymore and will make it harder to detect contradictions using hypothetical
4009 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4010 * resolution only in canonical graph. FWDs in candidate graphs are never
4011 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4012 * that can occur:
4013 *   - Both types in canonical and candidate graphs are FWDs. If they are
4014 *     structurally equivalent, then they can either be both resolved to the
4015 *     same STRUCT/UNION or not resolved at all. In both cases they are
4016 *     equivalent and there is no need to resolve FWD on candidate side.
4017 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4018 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4019 *   - Type in canonical graph is FWD, while type in candidate is concrete
4020 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4021 *     unit, so there is exactly one BTF type for each unique C type. After
4022 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4023 *     in canonical graph mapping to single BTF type in candidate graph, but
4024 *     because hypothetical mapping maps from canonical to candidate types, it's
4025 *     alright, and we still maintain the property of having single `canon_id`
4026 *     mapping to single `cand_id` (there could be two different `canon_id`
4027 *     mapped to the same `cand_id`, but it's not contradictory).
4028 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4029 *     graph is FWD. In this case we are just going to check compatibility of
4030 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4031 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4032 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4033 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4034 *     canonical graph.
4035 */
4036static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4037                              __u32 canon_id)
4038{
4039        struct btf_type *cand_type;
4040        struct btf_type *canon_type;
4041        __u32 hypot_type_id;
4042        __u16 cand_kind;
4043        __u16 canon_kind;
4044        int i, eq;
4045
4046        /* if both resolve to the same canonical, they must be equivalent */
4047        if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4048                return 1;
4049
4050        canon_id = resolve_fwd_id(d, canon_id);
4051
4052        hypot_type_id = d->hypot_map[canon_id];
4053        if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4054                if (hypot_type_id == cand_id)
4055                        return 1;
4056                /* In some cases compiler will generate different DWARF types
4057                 * for *identical* array type definitions and use them for
4058                 * different fields within the *same* struct. This breaks type
4059                 * equivalence check, which makes an assumption that candidate
4060                 * types sub-graph has a consistent and deduped-by-compiler
4061                 * types within a single CU. So work around that by explicitly
4062                 * allowing identical array types here.
4063                 */
4064                if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4065                        return 1;
4066                /* It turns out that similar situation can happen with
4067                 * struct/union sometimes, sigh... Handle the case where
4068                 * structs/unions are exactly the same, down to the referenced
4069                 * type IDs. Anything more complicated (e.g., if referenced
4070                 * types are different, but equivalent) is *way more*
4071                 * complicated and requires a many-to-many equivalence mapping.
4072                 */
4073                if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4074                        return 1;
4075                return 0;
4076        }
4077
4078        if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4079                return -ENOMEM;
4080
4081        cand_type = btf_type_by_id(d->btf, cand_id);
4082        canon_type = btf_type_by_id(d->btf, canon_id);
4083        cand_kind = btf_kind(cand_type);
4084        canon_kind = btf_kind(canon_type);
4085
4086        if (cand_type->name_off != canon_type->name_off)
4087                return 0;
4088
4089        /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4090        if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4091            && cand_kind != canon_kind) {
4092                __u16 real_kind;
4093                __u16 fwd_kind;
4094
4095                if (cand_kind == BTF_KIND_FWD) {
4096                        real_kind = canon_kind;
4097                        fwd_kind = btf_fwd_kind(cand_type);
4098                } else {
4099                        real_kind = cand_kind;
4100                        fwd_kind = btf_fwd_kind(canon_type);
4101                        /* we'd need to resolve base FWD to STRUCT/UNION */
4102                        if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4103                                d->hypot_adjust_canon = true;
4104                }
4105                return fwd_kind == real_kind;
4106        }
4107
4108        if (cand_kind != canon_kind)
4109                return 0;
4110
4111        switch (cand_kind) {
4112        case BTF_KIND_INT:
4113                return btf_equal_int_tag(cand_type, canon_type);
4114
4115        case BTF_KIND_ENUM:
4116                return btf_compat_enum(cand_type, canon_type);
4117
4118        case BTF_KIND_FWD:
4119        case BTF_KIND_FLOAT:
4120                return btf_equal_common(cand_type, canon_type);
4121
4122        case BTF_KIND_CONST:
4123        case BTF_KIND_VOLATILE:
4124        case BTF_KIND_RESTRICT:
4125        case BTF_KIND_PTR:
4126        case BTF_KIND_TYPEDEF:
4127        case BTF_KIND_FUNC:
4128        case BTF_KIND_TYPE_TAG:
4129                if (cand_type->info != canon_type->info)
4130                        return 0;
4131                return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4132
4133        case BTF_KIND_ARRAY: {
4134                const struct btf_array *cand_arr, *canon_arr;
4135
4136                if (!btf_compat_array(cand_type, canon_type))
4137                        return 0;
4138                cand_arr = btf_array(cand_type);
4139                canon_arr = btf_array(canon_type);
4140                eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4141                if (eq <= 0)
4142                        return eq;
4143                return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4144        }
4145
4146        case BTF_KIND_STRUCT:
4147        case BTF_KIND_UNION: {
4148                const struct btf_member *cand_m, *canon_m;
4149                __u16 vlen;
4150
4151                if (!btf_shallow_equal_struct(cand_type, canon_type))
4152                        return 0;
4153                vlen = btf_vlen(cand_type);
4154                cand_m = btf_members(cand_type);
4155                canon_m = btf_members(canon_type);
4156                for (i = 0; i < vlen; i++) {
4157                        eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4158                        if (eq <= 0)
4159                                return eq;
4160                        cand_m++;
4161                        canon_m++;
4162                }
4163
4164                return 1;
4165        }
4166
4167        case BTF_KIND_FUNC_PROTO: {
4168                const struct btf_param *cand_p, *canon_p;
4169                __u16 vlen;
4170
4171                if (!btf_compat_fnproto(cand_type, canon_type))
4172                        return 0;
4173                eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4174                if (eq <= 0)
4175                        return eq;
4176                vlen = btf_vlen(cand_type);
4177                cand_p = btf_params(cand_type);
4178                canon_p = btf_params(canon_type);
4179                for (i = 0; i < vlen; i++) {
4180                        eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4181                        if (eq <= 0)
4182                                return eq;
4183                        cand_p++;
4184                        canon_p++;
4185                }
4186                return 1;
4187        }
4188
4189        default:
4190                return -EINVAL;
4191        }
4192        return 0;
4193}
4194
4195/*
4196 * Use hypothetical mapping, produced by successful type graph equivalence
4197 * check, to augment existing struct/union canonical mapping, where possible.
4198 *
4199 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4200 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4201 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4202 * we are recording the mapping anyway. As opposed to carefulness required
4203 * for struct/union correspondence mapping (described below), for FWD resolution
4204 * it's not important, as by the time that FWD type (reference type) will be
4205 * deduplicated all structs/unions will be deduped already anyway.
4206 *
4207 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4208 * not required for correctness. It needs to be done carefully to ensure that
4209 * struct/union from candidate's type graph is not mapped into corresponding
4210 * struct/union from canonical type graph that itself hasn't been resolved into
4211 * canonical representative. The only guarantee we have is that canonical
4212 * struct/union was determined as canonical and that won't change. But any
4213 * types referenced through that struct/union fields could have been not yet
4214 * resolved, so in case like that it's too early to establish any kind of
4215 * correspondence between structs/unions.
4216 *
4217 * No canonical correspondence is derived for primitive types (they are already
4218 * deduplicated completely already anyway) or reference types (they rely on
4219 * stability of struct/union canonical relationship for equivalence checks).
4220 */
4221static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4222{
4223        __u32 canon_type_id, targ_type_id;
4224        __u16 t_kind, c_kind;
4225        __u32 t_id, c_id;
4226        int i;
4227
4228        for (i = 0; i < d->hypot_cnt; i++) {
4229                canon_type_id = d->hypot_list[i];
4230                targ_type_id = d->hypot_map[canon_type_id];
4231                t_id = resolve_type_id(d, targ_type_id);
4232                c_id = resolve_type_id(d, canon_type_id);
4233                t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4234                c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4235                /*
4236                 * Resolve FWD into STRUCT/UNION.
4237                 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4238                 * mapped to canonical representative (as opposed to
4239                 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4240                 * eventually that struct is going to be mapped and all resolved
4241                 * FWDs will automatically resolve to correct canonical
4242                 * representative. This will happen before ref type deduping,
4243                 * which critically depends on stability of these mapping. This
4244                 * stability is not a requirement for STRUCT/UNION equivalence
4245                 * checks, though.
4246                 */
4247
4248                /* if it's the split BTF case, we still need to point base FWD
4249                 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4250                 * will be resolved against base FWD. If we don't point base
4251                 * canonical FWD to the resolved STRUCT/UNION, then all the
4252                 * FWDs in split BTF won't be correctly resolved to a proper
4253                 * STRUCT/UNION.
4254                 */
4255                if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4256                        d->map[c_id] = t_id;
4257
4258                /* if graph equivalence determined that we'd need to adjust
4259                 * base canonical types, then we need to only point base FWDs
4260                 * to STRUCTs/UNIONs and do no more modifications. For all
4261                 * other purposes the type graphs were not equivalent.
4262                 */
4263                if (d->hypot_adjust_canon)
4264                        continue;
4265
4266                if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4267                        d->map[t_id] = c_id;
4268
4269                if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4270                    c_kind != BTF_KIND_FWD &&
4271                    is_type_mapped(d, c_id) &&
4272                    !is_type_mapped(d, t_id)) {
4273                        /*
4274                         * as a perf optimization, we can map struct/union
4275                         * that's part of type graph we just verified for
4276                         * equivalence. We can do that for struct/union that has
4277                         * canonical representative only, though.
4278                         */
4279                        d->map[t_id] = c_id;
4280                }
4281        }
4282}
4283
4284/*
4285 * Deduplicate struct/union types.
4286 *
4287 * For each struct/union type its type signature hash is calculated, taking
4288 * into account type's name, size, number, order and names of fields, but
4289 * ignoring type ID's referenced from fields, because they might not be deduped
4290 * completely until after reference types deduplication phase. This type hash
4291 * is used to iterate over all potential canonical types, sharing same hash.
4292 * For each canonical candidate we check whether type graphs that they form
4293 * (through referenced types in fields and so on) are equivalent using algorithm
4294 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4295 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4296 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4297 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4298 * potentially map other structs/unions to their canonical representatives,
4299 * if such relationship hasn't yet been established. This speeds up algorithm
4300 * by eliminating some of the duplicate work.
4301 *
4302 * If no matching canonical representative was found, struct/union is marked
4303 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4304 * for further look ups.
4305 */
4306static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4307{
4308        struct btf_type *cand_type, *t;
4309        struct hashmap_entry *hash_entry;
4310        /* if we don't find equivalent type, then we are canonical */
4311        __u32 new_id = type_id;
4312        __u16 kind;
4313        long h;
4314
4315        /* already deduped or is in process of deduping (loop detected) */
4316        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4317                return 0;
4318
4319        t = btf_type_by_id(d->btf, type_id);
4320        kind = btf_kind(t);
4321
4322        if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4323                return 0;
4324
4325        h = btf_hash_struct(t);
4326        for_each_dedup_cand(d, hash_entry, h) {
4327                __u32 cand_id = (__u32)(long)hash_entry->value;
4328                int eq;
4329
4330                /*
4331                 * Even though btf_dedup_is_equiv() checks for
4332                 * btf_shallow_equal_struct() internally when checking two
4333                 * structs (unions) for equivalence, we need to guard here
4334                 * from picking matching FWD type as a dedup candidate.
4335                 * This can happen due to hash collision. In such case just
4336                 * relying on btf_dedup_is_equiv() would lead to potentially
4337                 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4338                 * FWD and compatible STRUCT/UNION are considered equivalent.
4339                 */
4340                cand_type = btf_type_by_id(d->btf, cand_id);
4341                if (!btf_shallow_equal_struct(t, cand_type))
4342                        continue;
4343
4344                btf_dedup_clear_hypot_map(d);
4345                eq = btf_dedup_is_equiv(d, type_id, cand_id);
4346                if (eq < 0)
4347                        return eq;
4348                if (!eq)
4349                        continue;
4350                btf_dedup_merge_hypot_map(d);
4351                if (d->hypot_adjust_canon) /* not really equivalent */
4352                        continue;
4353                new_id = cand_id;
4354                break;
4355        }
4356
4357        d->map[type_id] = new_id;
4358        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4359                return -ENOMEM;
4360
4361        return 0;
4362}
4363
4364static int btf_dedup_struct_types(struct btf_dedup *d)
4365{
4366        int i, err;
4367
4368        for (i = 0; i < d->btf->nr_types; i++) {
4369                err = btf_dedup_struct_type(d, d->btf->start_id + i);
4370                if (err)
4371                        return err;
4372        }
4373        return 0;
4374}
4375
4376/*
4377 * Deduplicate reference type.
4378 *
4379 * Once all primitive and struct/union types got deduplicated, we can easily
4380 * deduplicate all other (reference) BTF types. This is done in two steps:
4381 *
4382 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4383 * resolution can be done either immediately for primitive or struct/union types
4384 * (because they were deduped in previous two phases) or recursively for
4385 * reference types. Recursion will always terminate at either primitive or
4386 * struct/union type, at which point we can "unwind" chain of reference types
4387 * one by one. There is no danger of encountering cycles because in C type
4388 * system the only way to form type cycle is through struct/union, so any chain
4389 * of reference types, even those taking part in a type cycle, will inevitably
4390 * reach struct/union at some point.
4391 *
4392 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4393 * becomes "stable", in the sense that no further deduplication will cause
4394 * any changes to it. With that, it's now possible to calculate type's signature
4395 * hash (this time taking into account referenced type IDs) and loop over all
4396 * potential canonical representatives. If no match was found, current type
4397 * will become canonical representative of itself and will be added into
4398 * btf_dedup->dedup_table as another possible canonical representative.
4399 */
4400static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4401{
4402        struct hashmap_entry *hash_entry;
4403        __u32 new_id = type_id, cand_id;
4404        struct btf_type *t, *cand;
4405        /* if we don't find equivalent type, then we are representative type */
4406        int ref_type_id;
4407        long h;
4408
4409        if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4410                return -ELOOP;
4411        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4412                return resolve_type_id(d, type_id);
4413
4414        t = btf_type_by_id(d->btf, type_id);
4415        d->map[type_id] = BTF_IN_PROGRESS_ID;
4416
4417        switch (btf_kind(t)) {
4418        case BTF_KIND_CONST:
4419        case BTF_KIND_VOLATILE:
4420        case BTF_KIND_RESTRICT:
4421        case BTF_KIND_PTR:
4422        case BTF_KIND_TYPEDEF:
4423        case BTF_KIND_FUNC:
4424        case BTF_KIND_TYPE_TAG:
4425                ref_type_id = btf_dedup_ref_type(d, t->type);
4426                if (ref_type_id < 0)
4427                        return ref_type_id;
4428                t->type = ref_type_id;
4429
4430                h = btf_hash_common(t);
4431                for_each_dedup_cand(d, hash_entry, h) {
4432                        cand_id = (__u32)(long)hash_entry->value;
4433                        cand = btf_type_by_id(d->btf, cand_id);
4434                        if (btf_equal_common(t, cand)) {
4435                                new_id = cand_id;
4436                                break;
4437                        }
4438                }
4439                break;
4440
4441        case BTF_KIND_DECL_TAG:
4442                ref_type_id = btf_dedup_ref_type(d, t->type);
4443                if (ref_type_id < 0)
4444                        return ref_type_id;
4445                t->type = ref_type_id;
4446
4447                h = btf_hash_int_decl_tag(t);
4448                for_each_dedup_cand(d, hash_entry, h) {
4449                        cand_id = (__u32)(long)hash_entry->value;
4450                        cand = btf_type_by_id(d->btf, cand_id);
4451                        if (btf_equal_int_tag(t, cand)) {
4452                                new_id = cand_id;
4453                                break;
4454                        }
4455                }
4456                break;
4457
4458        case BTF_KIND_ARRAY: {
4459                struct btf_array *info = btf_array(t);
4460
4461                ref_type_id = btf_dedup_ref_type(d, info->type);
4462                if (ref_type_id < 0)
4463                        return ref_type_id;
4464                info->type = ref_type_id;
4465
4466                ref_type_id = btf_dedup_ref_type(d, info->index_type);
4467                if (ref_type_id < 0)
4468                        return ref_type_id;
4469                info->index_type = ref_type_id;
4470
4471                h = btf_hash_array(t);
4472                for_each_dedup_cand(d, hash_entry, h) {
4473                        cand_id = (__u32)(long)hash_entry->value;
4474                        cand = btf_type_by_id(d->btf, cand_id);
4475                        if (btf_equal_array(t, cand)) {
4476                                new_id = cand_id;
4477                                break;
4478                        }
4479                }
4480                break;
4481        }
4482
4483        case BTF_KIND_FUNC_PROTO: {
4484                struct btf_param *param;
4485                __u16 vlen;
4486                int i;
4487
4488                ref_type_id = btf_dedup_ref_type(d, t->type);
4489                if (ref_type_id < 0)
4490                        return ref_type_id;
4491                t->type = ref_type_id;
4492
4493                vlen = btf_vlen(t);
4494                param = btf_params(t);
4495                for (i = 0; i < vlen; i++) {
4496                        ref_type_id = btf_dedup_ref_type(d, param->type);
4497                        if (ref_type_id < 0)
4498                                return ref_type_id;
4499                        param->type = ref_type_id;
4500                        param++;
4501                }
4502
4503                h = btf_hash_fnproto(t);
4504                for_each_dedup_cand(d, hash_entry, h) {
4505                        cand_id = (__u32)(long)hash_entry->value;
4506                        cand = btf_type_by_id(d->btf, cand_id);
4507                        if (btf_equal_fnproto(t, cand)) {
4508                                new_id = cand_id;
4509                                break;
4510                        }
4511                }
4512                break;
4513        }
4514
4515        default:
4516                return -EINVAL;
4517        }
4518
4519        d->map[type_id] = new_id;
4520        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4521                return -ENOMEM;
4522
4523        return new_id;
4524}
4525
4526static int btf_dedup_ref_types(struct btf_dedup *d)
4527{
4528        int i, err;
4529
4530        for (i = 0; i < d->btf->nr_types; i++) {
4531                err = btf_dedup_ref_type(d, d->btf->start_id + i);
4532                if (err < 0)
4533                        return err;
4534        }
4535        /* we won't need d->dedup_table anymore */
4536        hashmap__free(d->dedup_table);
4537        d->dedup_table = NULL;
4538        return 0;
4539}
4540
4541/*
4542 * Compact types.
4543 *
4544 * After we established for each type its corresponding canonical representative
4545 * type, we now can eliminate types that are not canonical and leave only
4546 * canonical ones layed out sequentially in memory by copying them over
4547 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4548 * a map from original type ID to a new compacted type ID, which will be used
4549 * during next phase to "fix up" type IDs, referenced from struct/union and
4550 * reference types.
4551 */
4552static int btf_dedup_compact_types(struct btf_dedup *d)
4553{
4554        __u32 *new_offs;
4555        __u32 next_type_id = d->btf->start_id;
4556        const struct btf_type *t;
4557        void *p;
4558        int i, id, len;
4559
4560        /* we are going to reuse hypot_map to store compaction remapping */
4561        d->hypot_map[0] = 0;
4562        /* base BTF types are not renumbered */
4563        for (id = 1; id < d->btf->start_id; id++)
4564                d->hypot_map[id] = id;
4565        for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4566                d->hypot_map[id] = BTF_UNPROCESSED_ID;
4567
4568        p = d->btf->types_data;
4569
4570        for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4571                if (d->map[id] != id)
4572                        continue;
4573
4574                t = btf__type_by_id(d->btf, id);
4575                len = btf_type_size(t);
4576                if (len < 0)
4577                        return len;
4578
4579                memmove(p, t, len);
4580                d->hypot_map[id] = next_type_id;
4581                d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4582                p += len;
4583                next_type_id++;
4584        }
4585
4586        /* shrink struct btf's internal types index and update btf_header */
4587        d->btf->nr_types = next_type_id - d->btf->start_id;
4588        d->btf->type_offs_cap = d->btf->nr_types;
4589        d->btf->hdr->type_len = p - d->btf->types_data;
4590        new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4591                                       sizeof(*new_offs));
4592        if (d->btf->type_offs_cap && !new_offs)
4593                return -ENOMEM;
4594        d->btf->type_offs = new_offs;
4595        d->btf->hdr->str_off = d->btf->hdr->type_len;
4596        d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4597        return 0;
4598}
4599
4600/*
4601 * Figure out final (deduplicated and compacted) type ID for provided original
4602 * `type_id` by first resolving it into corresponding canonical type ID and
4603 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4604 * which is populated during compaction phase.
4605 */
4606static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4607{
4608        struct btf_dedup *d = ctx;
4609        __u32 resolved_type_id, new_type_id;
4610
4611        resolved_type_id = resolve_type_id(d, *type_id);
4612        new_type_id = d->hypot_map[resolved_type_id];
4613        if (new_type_id > BTF_MAX_NR_TYPES)
4614                return -EINVAL;
4615
4616        *type_id = new_type_id;
4617        return 0;
4618}
4619
4620/*
4621 * Remap referenced type IDs into deduped type IDs.
4622 *
4623 * After BTF types are deduplicated and compacted, their final type IDs may
4624 * differ from original ones. The map from original to a corresponding
4625 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4626 * compaction phase. During remapping phase we are rewriting all type IDs
4627 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4628 * their final deduped type IDs.
4629 */
4630static int btf_dedup_remap_types(struct btf_dedup *d)
4631{
4632        int i, r;
4633
4634        for (i = 0; i < d->btf->nr_types; i++) {
4635                struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4636
4637                r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4638                if (r)
4639                        return r;
4640        }
4641
4642        if (!d->btf_ext)
4643                return 0;
4644
4645        r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4646        if (r)
4647                return r;
4648
4649        return 0;
4650}
4651
4652/*
4653 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4654 * data out of it to use for target BTF.
4655 */
4656struct btf *btf__load_vmlinux_btf(void)
4657{
4658        struct {
4659                const char *path_fmt;
4660                bool raw_btf;
4661        } locations[] = {
4662                /* try canonical vmlinux BTF through sysfs first */
4663                { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4664                /* fall back to trying to find vmlinux ELF on disk otherwise */
4665                { "/boot/vmlinux-%1$s" },
4666                { "/lib/modules/%1$s/vmlinux-%1$s" },
4667                { "/lib/modules/%1$s/build/vmlinux" },
4668                { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4669                { "/usr/lib/debug/boot/vmlinux-%1$s" },
4670                { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4671                { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4672        };
4673        char path[PATH_MAX + 1];
4674        struct utsname buf;
4675        struct btf *btf;
4676        int i, err;
4677
4678        uname(&buf);
4679
4680        for (i = 0; i < ARRAY_SIZE(locations); i++) {
4681                snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4682
4683                if (access(path, R_OK))
4684                        continue;
4685
4686                if (locations[i].raw_btf)
4687                        btf = btf__parse_raw(path);
4688                else
4689                        btf = btf__parse_elf(path, NULL);
4690                err = libbpf_get_error(btf);
4691                pr_debug("loading kernel BTF '%s': %d\n", path, err);
4692                if (err)
4693                        continue;
4694
4695                return btf;
4696        }
4697
4698        pr_warn("failed to find valid kernel BTF\n");
4699        return libbpf_err_ptr(-ESRCH);
4700}
4701
4702struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4703
4704struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4705{
4706        char path[80];
4707
4708        snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4709        return btf__parse_split(path, vmlinux_btf);
4710}
4711
4712int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4713{
4714        int i, n, err;
4715
4716        switch (btf_kind(t)) {
4717        case BTF_KIND_INT:
4718        case BTF_KIND_FLOAT:
4719        case BTF_KIND_ENUM:
4720                return 0;
4721
4722        case BTF_KIND_FWD:
4723        case BTF_KIND_CONST:
4724        case BTF_KIND_VOLATILE:
4725        case BTF_KIND_RESTRICT:
4726        case BTF_KIND_PTR:
4727        case BTF_KIND_TYPEDEF:
4728        case BTF_KIND_FUNC:
4729        case BTF_KIND_VAR:
4730        case BTF_KIND_DECL_TAG:
4731        case BTF_KIND_TYPE_TAG:
4732                return visit(&t->type, ctx);
4733
4734        case BTF_KIND_ARRAY: {
4735                struct btf_array *a = btf_array(t);
4736
4737                err = visit(&a->type, ctx);
4738                err = err ?: visit(&a->index_type, ctx);
4739                return err;
4740        }
4741
4742        case BTF_KIND_STRUCT:
4743        case BTF_KIND_UNION: {
4744                struct btf_member *m = btf_members(t);
4745
4746                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4747                        err = visit(&m->type, ctx);
4748                        if (err)
4749                                return err;
4750                }
4751                return 0;
4752        }
4753
4754        case BTF_KIND_FUNC_PROTO: {
4755                struct btf_param *m = btf_params(t);
4756
4757                err = visit(&t->type, ctx);
4758                if (err)
4759                        return err;
4760                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4761                        err = visit(&m->type, ctx);
4762                        if (err)
4763                                return err;
4764                }
4765                return 0;
4766        }
4767
4768        case BTF_KIND_DATASEC: {
4769                struct btf_var_secinfo *m = btf_var_secinfos(t);
4770
4771                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4772                        err = visit(&m->type, ctx);
4773                        if (err)
4774                                return err;
4775                }
4776                return 0;
4777        }
4778
4779        default:
4780                return -EINVAL;
4781        }
4782}
4783
4784int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4785{
4786        int i, n, err;
4787
4788        err = visit(&t->name_off, ctx);
4789        if (err)
4790                return err;
4791
4792        switch (btf_kind(t)) {
4793        case BTF_KIND_STRUCT:
4794        case BTF_KIND_UNION: {
4795                struct btf_member *m = btf_members(t);
4796
4797                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4798                        err = visit(&m->name_off, ctx);
4799                        if (err)
4800                                return err;
4801                }
4802                break;
4803        }
4804        case BTF_KIND_ENUM: {
4805                struct btf_enum *m = btf_enum(t);
4806
4807                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4808                        err = visit(&m->name_off, ctx);
4809                        if (err)
4810                                return err;
4811                }
4812                break;
4813        }
4814        case BTF_KIND_FUNC_PROTO: {
4815                struct btf_param *m = btf_params(t);
4816
4817                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4818                        err = visit(&m->name_off, ctx);
4819                        if (err)
4820                                return err;
4821                }
4822                break;
4823        }
4824        default:
4825                break;
4826        }
4827
4828        return 0;
4829}
4830
4831int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4832{
4833        const struct btf_ext_info *seg;
4834        struct btf_ext_info_sec *sec;
4835        int i, err;
4836
4837        seg = &btf_ext->func_info;
4838        for_each_btf_ext_sec(seg, sec) {
4839                struct bpf_func_info_min *rec;
4840
4841                for_each_btf_ext_rec(seg, sec, i, rec) {
4842                        err = visit(&rec->type_id, ctx);
4843                        if (err < 0)
4844                                return err;
4845                }
4846        }
4847
4848        seg = &btf_ext->core_relo_info;
4849        for_each_btf_ext_sec(seg, sec) {
4850                struct bpf_core_relo *rec;
4851
4852                for_each_btf_ext_rec(seg, sec, i, rec) {
4853                        err = visit(&rec->type_id, ctx);
4854                        if (err < 0)
4855                                return err;
4856                }
4857        }
4858
4859        return 0;
4860}
4861
4862int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4863{
4864        const struct btf_ext_info *seg;
4865        struct btf_ext_info_sec *sec;
4866        int i, err;
4867
4868        seg = &btf_ext->func_info;
4869        for_each_btf_ext_sec(seg, sec) {
4870                err = visit(&sec->sec_name_off, ctx);
4871                if (err)
4872                        return err;
4873        }
4874
4875        seg = &btf_ext->line_info;
4876        for_each_btf_ext_sec(seg, sec) {
4877                struct bpf_line_info_min *rec;
4878
4879                err = visit(&sec->sec_name_off, ctx);
4880                if (err)
4881                        return err;
4882
4883                for_each_btf_ext_rec(seg, sec, i, rec) {
4884                        err = visit(&rec->file_name_off, ctx);
4885                        if (err)
4886                                return err;
4887                        err = visit(&rec->line_off, ctx);
4888                        if (err)
4889                                return err;
4890                }
4891        }
4892
4893        seg = &btf_ext->core_relo_info;
4894        for_each_btf_ext_sec(seg, sec) {
4895                struct bpf_core_relo *rec;
4896
4897                err = visit(&sec->sec_name_off, ctx);
4898                if (err)
4899                        return err;
4900
4901                for_each_btf_ext_rec(seg, sec, i, rec) {
4902                        err = visit(&rec->access_str_off, ctx);
4903                        if (err)
4904                                return err;
4905                }
4906        }
4907
4908        return 0;
4909}
4910