1
2
3
4
5
6
7
8
9
10
11#include <errno.h>
12#include <inttypes.h>
13
14#include "builtin.h"
15#include "util/color.h"
16#include <linux/list.h>
17#include "util/evlist.h"
18#include "util/evsel.h"
19#include <linux/kernel.h>
20#include <linux/rbtree.h>
21#include <linux/time64.h>
22#include <linux/zalloc.h>
23#include "util/symbol.h"
24#include "util/thread.h"
25#include "util/callchain.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include <subcmd/pager.h>
30#include <subcmd/parse-options.h>
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36#include "util/data.h"
37#include "util/debug.h"
38#include "util/string2.h"
39#include <linux/err.h>
40
41#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
42FILE *open_memstream(char **ptr, size_t *sizeloc);
43#endif
44
45#define SUPPORT_OLD_POWER_EVENTS 1
46#define PWR_EVENT_EXIT -1
47
48struct per_pid;
49struct power_event;
50struct wake_event;
51
52struct timechart {
53 struct perf_tool tool;
54 struct per_pid *all_data;
55 struct power_event *power_events;
56 struct wake_event *wake_events;
57 int proc_num;
58 unsigned int numcpus;
59 u64 min_freq,
60 max_freq,
61 turbo_frequency,
62 first_time, last_time;
63 bool power_only,
64 tasks_only,
65 with_backtrace,
66 topology;
67 bool force;
68
69 bool io_only,
70 skip_eagain;
71 u64 io_events;
72 u64 min_time,
73 merge_dist;
74};
75
76struct per_pidcomm;
77struct cpu_sample;
78struct io_sample;
79
80
81
82
83
84
85
86
87
88
89
90struct per_pid {
91 struct per_pid *next;
92
93 int pid;
94 int ppid;
95
96 u64 start_time;
97 u64 end_time;
98 u64 total_time;
99 u64 total_bytes;
100 int display;
101
102 struct per_pidcomm *all;
103 struct per_pidcomm *current;
104};
105
106
107struct per_pidcomm {
108 struct per_pidcomm *next;
109
110 u64 start_time;
111 u64 end_time;
112 u64 total_time;
113 u64 max_bytes;
114 u64 total_bytes;
115
116 int Y;
117 int display;
118
119 long state;
120 u64 state_since;
121
122 char *comm;
123
124 struct cpu_sample *samples;
125 struct io_sample *io_samples;
126};
127
128struct sample_wrapper {
129 struct sample_wrapper *next;
130
131 u64 timestamp;
132 unsigned char data[];
133};
134
135#define TYPE_NONE 0
136#define TYPE_RUNNING 1
137#define TYPE_WAITING 2
138#define TYPE_BLOCKED 3
139
140struct cpu_sample {
141 struct cpu_sample *next;
142
143 u64 start_time;
144 u64 end_time;
145 int type;
146 int cpu;
147 const char *backtrace;
148};
149
150enum {
151 IOTYPE_READ,
152 IOTYPE_WRITE,
153 IOTYPE_SYNC,
154 IOTYPE_TX,
155 IOTYPE_RX,
156 IOTYPE_POLL,
157};
158
159struct io_sample {
160 struct io_sample *next;
161
162 u64 start_time;
163 u64 end_time;
164 u64 bytes;
165 int type;
166 int fd;
167 int err;
168 int merges;
169};
170
171#define CSTATE 1
172#define PSTATE 2
173
174struct power_event {
175 struct power_event *next;
176 int type;
177 int state;
178 u64 start_time;
179 u64 end_time;
180 int cpu;
181};
182
183struct wake_event {
184 struct wake_event *next;
185 int waker;
186 int wakee;
187 u64 time;
188 const char *backtrace;
189};
190
191struct process_filter {
192 char *name;
193 int pid;
194 struct process_filter *next;
195};
196
197static struct process_filter *process_filter;
198
199
200static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
201{
202 struct per_pid *cursor = tchart->all_data;
203
204 while (cursor) {
205 if (cursor->pid == pid)
206 return cursor;
207 cursor = cursor->next;
208 }
209 cursor = zalloc(sizeof(*cursor));
210 assert(cursor != NULL);
211 cursor->pid = pid;
212 cursor->next = tchart->all_data;
213 tchart->all_data = cursor;
214 return cursor;
215}
216
217static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
218{
219 struct per_pid *p;
220 struct per_pidcomm *c;
221 p = find_create_pid(tchart, pid);
222 c = p->all;
223 while (c) {
224 if (c->comm && strcmp(c->comm, comm) == 0) {
225 p->current = c;
226 return;
227 }
228 if (!c->comm) {
229 c->comm = strdup(comm);
230 p->current = c;
231 return;
232 }
233 c = c->next;
234 }
235 c = zalloc(sizeof(*c));
236 assert(c != NULL);
237 c->comm = strdup(comm);
238 p->current = c;
239 c->next = p->all;
240 p->all = c;
241}
242
243static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
244{
245 struct per_pid *p, *pp;
246 p = find_create_pid(tchart, pid);
247 pp = find_create_pid(tchart, ppid);
248 p->ppid = ppid;
249 if (pp->current && pp->current->comm && !p->current)
250 pid_set_comm(tchart, pid, pp->current->comm);
251
252 p->start_time = timestamp;
253 if (p->current && !p->current->start_time) {
254 p->current->start_time = timestamp;
255 p->current->state_since = timestamp;
256 }
257}
258
259static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
260{
261 struct per_pid *p;
262 p = find_create_pid(tchart, pid);
263 p->end_time = timestamp;
264 if (p->current)
265 p->current->end_time = timestamp;
266}
267
268static void pid_put_sample(struct timechart *tchart, int pid, int type,
269 unsigned int cpu, u64 start, u64 end,
270 const char *backtrace)
271{
272 struct per_pid *p;
273 struct per_pidcomm *c;
274 struct cpu_sample *sample;
275
276 p = find_create_pid(tchart, pid);
277 c = p->current;
278 if (!c) {
279 c = zalloc(sizeof(*c));
280 assert(c != NULL);
281 p->current = c;
282 c->next = p->all;
283 p->all = c;
284 }
285
286 sample = zalloc(sizeof(*sample));
287 assert(sample != NULL);
288 sample->start_time = start;
289 sample->end_time = end;
290 sample->type = type;
291 sample->next = c->samples;
292 sample->cpu = cpu;
293 sample->backtrace = backtrace;
294 c->samples = sample;
295
296 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
297 c->total_time += (end-start);
298 p->total_time += (end-start);
299 }
300
301 if (c->start_time == 0 || c->start_time > start)
302 c->start_time = start;
303 if (p->start_time == 0 || p->start_time > start)
304 p->start_time = start;
305}
306
307#define MAX_CPUS 4096
308
309static u64 cpus_cstate_start_times[MAX_CPUS];
310static int cpus_cstate_state[MAX_CPUS];
311static u64 cpus_pstate_start_times[MAX_CPUS];
312static u64 cpus_pstate_state[MAX_CPUS];
313
314static int process_comm_event(struct perf_tool *tool,
315 union perf_event *event,
316 struct perf_sample *sample __maybe_unused,
317 struct machine *machine __maybe_unused)
318{
319 struct timechart *tchart = container_of(tool, struct timechart, tool);
320 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
321 return 0;
322}
323
324static int process_fork_event(struct perf_tool *tool,
325 union perf_event *event,
326 struct perf_sample *sample __maybe_unused,
327 struct machine *machine __maybe_unused)
328{
329 struct timechart *tchart = container_of(tool, struct timechart, tool);
330 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
331 return 0;
332}
333
334static int process_exit_event(struct perf_tool *tool,
335 union perf_event *event,
336 struct perf_sample *sample __maybe_unused,
337 struct machine *machine __maybe_unused)
338{
339 struct timechart *tchart = container_of(tool, struct timechart, tool);
340 pid_exit(tchart, event->fork.pid, event->fork.time);
341 return 0;
342}
343
344#ifdef SUPPORT_OLD_POWER_EVENTS
345static int use_old_power_events;
346#endif
347
348static void c_state_start(int cpu, u64 timestamp, int state)
349{
350 cpus_cstate_start_times[cpu] = timestamp;
351 cpus_cstate_state[cpu] = state;
352}
353
354static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
355{
356 struct power_event *pwr = zalloc(sizeof(*pwr));
357
358 if (!pwr)
359 return;
360
361 pwr->state = cpus_cstate_state[cpu];
362 pwr->start_time = cpus_cstate_start_times[cpu];
363 pwr->end_time = timestamp;
364 pwr->cpu = cpu;
365 pwr->type = CSTATE;
366 pwr->next = tchart->power_events;
367
368 tchart->power_events = pwr;
369}
370
371static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
372{
373 struct power_event *pwr;
374
375 if (new_freq > 8000000)
376 return;
377
378 pwr = zalloc(sizeof(*pwr));
379 if (!pwr)
380 return;
381
382 pwr->state = cpus_pstate_state[cpu];
383 pwr->start_time = cpus_pstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = PSTATE;
387 pwr->next = tchart->power_events;
388
389 if (!pwr->start_time)
390 pwr->start_time = tchart->first_time;
391
392 tchart->power_events = pwr;
393
394 cpus_pstate_state[cpu] = new_freq;
395 cpus_pstate_start_times[cpu] = timestamp;
396
397 if ((u64)new_freq > tchart->max_freq)
398 tchart->max_freq = new_freq;
399
400 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
401 tchart->min_freq = new_freq;
402
403 if (new_freq == tchart->max_freq - 1000)
404 tchart->turbo_frequency = tchart->max_freq;
405}
406
407static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
408 int waker, int wakee, u8 flags, const char *backtrace)
409{
410 struct per_pid *p;
411 struct wake_event *we = zalloc(sizeof(*we));
412
413 if (!we)
414 return;
415
416 we->time = timestamp;
417 we->waker = waker;
418 we->backtrace = backtrace;
419
420 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
421 we->waker = -1;
422
423 we->wakee = wakee;
424 we->next = tchart->wake_events;
425 tchart->wake_events = we;
426 p = find_create_pid(tchart, we->wakee);
427
428 if (p && p->current && p->current->state == TYPE_NONE) {
429 p->current->state_since = timestamp;
430 p->current->state = TYPE_WAITING;
431 }
432 if (p && p->current && p->current->state == TYPE_BLOCKED) {
433 pid_put_sample(tchart, p->pid, p->current->state, cpu,
434 p->current->state_since, timestamp, NULL);
435 p->current->state_since = timestamp;
436 p->current->state = TYPE_WAITING;
437 }
438}
439
440static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
441 int prev_pid, int next_pid, u64 prev_state,
442 const char *backtrace)
443{
444 struct per_pid *p = NULL, *prev_p;
445
446 prev_p = find_create_pid(tchart, prev_pid);
447
448 p = find_create_pid(tchart, next_pid);
449
450 if (prev_p->current && prev_p->current->state != TYPE_NONE)
451 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
452 prev_p->current->state_since, timestamp,
453 backtrace);
454 if (p && p->current) {
455 if (p->current->state != TYPE_NONE)
456 pid_put_sample(tchart, next_pid, p->current->state, cpu,
457 p->current->state_since, timestamp,
458 backtrace);
459
460 p->current->state_since = timestamp;
461 p->current->state = TYPE_RUNNING;
462 }
463
464 if (prev_p->current) {
465 prev_p->current->state = TYPE_NONE;
466 prev_p->current->state_since = timestamp;
467 if (prev_state & 2)
468 prev_p->current->state = TYPE_BLOCKED;
469 if (prev_state == 0)
470 prev_p->current->state = TYPE_WAITING;
471 }
472}
473
474static const char *cat_backtrace(union perf_event *event,
475 struct perf_sample *sample,
476 struct machine *machine)
477{
478 struct addr_location al;
479 unsigned int i;
480 char *p = NULL;
481 size_t p_len;
482 u8 cpumode = PERF_RECORD_MISC_USER;
483 struct addr_location tal;
484 struct ip_callchain *chain = sample->callchain;
485 FILE *f = open_memstream(&p, &p_len);
486
487 if (!f) {
488 perror("open_memstream error");
489 return NULL;
490 }
491
492 if (!chain)
493 goto exit;
494
495 if (machine__resolve(machine, &al, sample) < 0) {
496 fprintf(stderr, "problem processing %d event, skipping it.\n",
497 event->header.type);
498 goto exit;
499 }
500
501 for (i = 0; i < chain->nr; i++) {
502 u64 ip;
503
504 if (callchain_param.order == ORDER_CALLEE)
505 ip = chain->ips[i];
506 else
507 ip = chain->ips[chain->nr - i - 1];
508
509 if (ip >= PERF_CONTEXT_MAX) {
510 switch (ip) {
511 case PERF_CONTEXT_HV:
512 cpumode = PERF_RECORD_MISC_HYPERVISOR;
513 break;
514 case PERF_CONTEXT_KERNEL:
515 cpumode = PERF_RECORD_MISC_KERNEL;
516 break;
517 case PERF_CONTEXT_USER:
518 cpumode = PERF_RECORD_MISC_USER;
519 break;
520 default:
521 pr_debug("invalid callchain context: "
522 "%"PRId64"\n", (s64) ip);
523
524
525
526
527
528 zfree(&p);
529 goto exit_put;
530 }
531 continue;
532 }
533
534 tal.filtered = 0;
535 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
536 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
537 else
538 fprintf(f, "..... %016" PRIx64 "\n", ip);
539 }
540exit_put:
541 addr_location__put(&al);
542exit:
543 fclose(f);
544
545 return p;
546}
547
548typedef int (*tracepoint_handler)(struct timechart *tchart,
549 struct evsel *evsel,
550 struct perf_sample *sample,
551 const char *backtrace);
552
553static int process_sample_event(struct perf_tool *tool,
554 union perf_event *event,
555 struct perf_sample *sample,
556 struct evsel *evsel,
557 struct machine *machine)
558{
559 struct timechart *tchart = container_of(tool, struct timechart, tool);
560
561 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
562 if (!tchart->first_time || tchart->first_time > sample->time)
563 tchart->first_time = sample->time;
564 if (tchart->last_time < sample->time)
565 tchart->last_time = sample->time;
566 }
567
568 if (evsel->handler != NULL) {
569 tracepoint_handler f = evsel->handler;
570 return f(tchart, evsel, sample,
571 cat_backtrace(event, sample, machine));
572 }
573
574 return 0;
575}
576
577static int
578process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579 struct evsel *evsel,
580 struct perf_sample *sample,
581 const char *backtrace __maybe_unused)
582{
583 u32 state = evsel__intval(evsel, sample, "state");
584 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
585
586 if (state == (u32)PWR_EVENT_EXIT)
587 c_state_end(tchart, cpu_id, sample->time);
588 else
589 c_state_start(cpu_id, sample->time, state);
590 return 0;
591}
592
593static int
594process_sample_cpu_frequency(struct timechart *tchart,
595 struct evsel *evsel,
596 struct perf_sample *sample,
597 const char *backtrace __maybe_unused)
598{
599 u32 state = evsel__intval(evsel, sample, "state");
600 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
601
602 p_state_change(tchart, cpu_id, sample->time, state);
603 return 0;
604}
605
606static int
607process_sample_sched_wakeup(struct timechart *tchart,
608 struct evsel *evsel,
609 struct perf_sample *sample,
610 const char *backtrace)
611{
612 u8 flags = evsel__intval(evsel, sample, "common_flags");
613 int waker = evsel__intval(evsel, sample, "common_pid");
614 int wakee = evsel__intval(evsel, sample, "pid");
615
616 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
617 return 0;
618}
619
620static int
621process_sample_sched_switch(struct timechart *tchart,
622 struct evsel *evsel,
623 struct perf_sample *sample,
624 const char *backtrace)
625{
626 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
627 int next_pid = evsel__intval(evsel, sample, "next_pid");
628 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
629
630 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
631 prev_state, backtrace);
632 return 0;
633}
634
635#ifdef SUPPORT_OLD_POWER_EVENTS
636static int
637process_sample_power_start(struct timechart *tchart __maybe_unused,
638 struct evsel *evsel,
639 struct perf_sample *sample,
640 const char *backtrace __maybe_unused)
641{
642 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
643 u64 value = evsel__intval(evsel, sample, "value");
644
645 c_state_start(cpu_id, sample->time, value);
646 return 0;
647}
648
649static int
650process_sample_power_end(struct timechart *tchart,
651 struct evsel *evsel __maybe_unused,
652 struct perf_sample *sample,
653 const char *backtrace __maybe_unused)
654{
655 c_state_end(tchart, sample->cpu, sample->time);
656 return 0;
657}
658
659static int
660process_sample_power_frequency(struct timechart *tchart,
661 struct evsel *evsel,
662 struct perf_sample *sample,
663 const char *backtrace __maybe_unused)
664{
665 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
666 u64 value = evsel__intval(evsel, sample, "value");
667
668 p_state_change(tchart, cpu_id, sample->time, value);
669 return 0;
670}
671#endif
672
673
674
675
676
677static void end_sample_processing(struct timechart *tchart)
678{
679 u64 cpu;
680 struct power_event *pwr;
681
682 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
683
684#if 0
685 pwr = zalloc(sizeof(*pwr));
686 if (!pwr)
687 return;
688
689 pwr->state = cpus_cstate_state[cpu];
690 pwr->start_time = cpus_cstate_start_times[cpu];
691 pwr->end_time = tchart->last_time;
692 pwr->cpu = cpu;
693 pwr->type = CSTATE;
694 pwr->next = tchart->power_events;
695
696 tchart->power_events = pwr;
697#endif
698
699
700 pwr = zalloc(sizeof(*pwr));
701 if (!pwr)
702 return;
703
704 pwr->state = cpus_pstate_state[cpu];
705 pwr->start_time = cpus_pstate_start_times[cpu];
706 pwr->end_time = tchart->last_time;
707 pwr->cpu = cpu;
708 pwr->type = PSTATE;
709 pwr->next = tchart->power_events;
710
711 if (!pwr->start_time)
712 pwr->start_time = tchart->first_time;
713 if (!pwr->state)
714 pwr->state = tchart->min_freq;
715 tchart->power_events = pwr;
716 }
717}
718
719static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
720 u64 start, int fd)
721{
722 struct per_pid *p = find_create_pid(tchart, pid);
723 struct per_pidcomm *c = p->current;
724 struct io_sample *sample;
725 struct io_sample *prev;
726
727 if (!c) {
728 c = zalloc(sizeof(*c));
729 if (!c)
730 return -ENOMEM;
731 p->current = c;
732 c->next = p->all;
733 p->all = c;
734 }
735
736 prev = c->io_samples;
737
738 if (prev && prev->start_time && !prev->end_time) {
739 pr_warning("Skip invalid start event: "
740 "previous event already started!\n");
741
742
743
744 c->io_samples = prev->next;
745 free(prev);
746 return 0;
747 }
748
749 sample = zalloc(sizeof(*sample));
750 if (!sample)
751 return -ENOMEM;
752 sample->start_time = start;
753 sample->type = type;
754 sample->fd = fd;
755 sample->next = c->io_samples;
756 c->io_samples = sample;
757
758 if (c->start_time == 0 || c->start_time > start)
759 c->start_time = start;
760
761 return 0;
762}
763
764static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
765 u64 end, long ret)
766{
767 struct per_pid *p = find_create_pid(tchart, pid);
768 struct per_pidcomm *c = p->current;
769 struct io_sample *sample, *prev;
770
771 if (!c) {
772 pr_warning("Invalid pidcomm!\n");
773 return -1;
774 }
775
776 sample = c->io_samples;
777
778 if (!sample)
779 return 0;
780
781 if (sample->end_time) {
782 pr_warning("Skip invalid end event: "
783 "previous event already ended!\n");
784 return 0;
785 }
786
787 if (sample->type != type) {
788 pr_warning("Skip invalid end event: invalid event type!\n");
789 return 0;
790 }
791
792 sample->end_time = end;
793 prev = sample->next;
794
795
796
797 if (sample->end_time - sample->start_time < tchart->min_time)
798 sample->end_time = sample->start_time + tchart->min_time;
799 if (prev && sample->start_time < prev->end_time) {
800 if (prev->err)
801 sample->start_time = prev->end_time;
802 else
803 prev->end_time = sample->start_time;
804 }
805
806 if (ret < 0) {
807 sample->err = ret;
808 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
809 type == IOTYPE_TX || type == IOTYPE_RX) {
810
811 if ((u64)ret > c->max_bytes)
812 c->max_bytes = ret;
813
814 c->total_bytes += ret;
815 p->total_bytes += ret;
816 sample->bytes = ret;
817 }
818
819
820 if (prev &&
821 prev->type == sample->type &&
822 prev->err == sample->err &&
823 prev->fd == sample->fd &&
824 prev->end_time + tchart->merge_dist >= sample->start_time) {
825
826 sample->bytes += prev->bytes;
827 sample->merges += prev->merges + 1;
828
829 sample->start_time = prev->start_time;
830 sample->next = prev->next;
831 free(prev);
832
833 if (!sample->err && sample->bytes > c->max_bytes)
834 c->max_bytes = sample->bytes;
835 }
836
837 tchart->io_events++;
838
839 return 0;
840}
841
842static int
843process_enter_read(struct timechart *tchart,
844 struct evsel *evsel,
845 struct perf_sample *sample)
846{
847 long fd = evsel__intval(evsel, sample, "fd");
848 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
849 sample->time, fd);
850}
851
852static int
853process_exit_read(struct timechart *tchart,
854 struct evsel *evsel,
855 struct perf_sample *sample)
856{
857 long ret = evsel__intval(evsel, sample, "ret");
858 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
859 sample->time, ret);
860}
861
862static int
863process_enter_write(struct timechart *tchart,
864 struct evsel *evsel,
865 struct perf_sample *sample)
866{
867 long fd = evsel__intval(evsel, sample, "fd");
868 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
869 sample->time, fd);
870}
871
872static int
873process_exit_write(struct timechart *tchart,
874 struct evsel *evsel,
875 struct perf_sample *sample)
876{
877 long ret = evsel__intval(evsel, sample, "ret");
878 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
879 sample->time, ret);
880}
881
882static int
883process_enter_sync(struct timechart *tchart,
884 struct evsel *evsel,
885 struct perf_sample *sample)
886{
887 long fd = evsel__intval(evsel, sample, "fd");
888 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
889 sample->time, fd);
890}
891
892static int
893process_exit_sync(struct timechart *tchart,
894 struct evsel *evsel,
895 struct perf_sample *sample)
896{
897 long ret = evsel__intval(evsel, sample, "ret");
898 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
899 sample->time, ret);
900}
901
902static int
903process_enter_tx(struct timechart *tchart,
904 struct evsel *evsel,
905 struct perf_sample *sample)
906{
907 long fd = evsel__intval(evsel, sample, "fd");
908 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
909 sample->time, fd);
910}
911
912static int
913process_exit_tx(struct timechart *tchart,
914 struct evsel *evsel,
915 struct perf_sample *sample)
916{
917 long ret = evsel__intval(evsel, sample, "ret");
918 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
919 sample->time, ret);
920}
921
922static int
923process_enter_rx(struct timechart *tchart,
924 struct evsel *evsel,
925 struct perf_sample *sample)
926{
927 long fd = evsel__intval(evsel, sample, "fd");
928 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
929 sample->time, fd);
930}
931
932static int
933process_exit_rx(struct timechart *tchart,
934 struct evsel *evsel,
935 struct perf_sample *sample)
936{
937 long ret = evsel__intval(evsel, sample, "ret");
938 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
939 sample->time, ret);
940}
941
942static int
943process_enter_poll(struct timechart *tchart,
944 struct evsel *evsel,
945 struct perf_sample *sample)
946{
947 long fd = evsel__intval(evsel, sample, "fd");
948 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
949 sample->time, fd);
950}
951
952static int
953process_exit_poll(struct timechart *tchart,
954 struct evsel *evsel,
955 struct perf_sample *sample)
956{
957 long ret = evsel__intval(evsel, sample, "ret");
958 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
959 sample->time, ret);
960}
961
962
963
964
965static void sort_pids(struct timechart *tchart)
966{
967 struct per_pid *new_list, *p, *cursor, *prev;
968
969
970 new_list = NULL;
971
972 while (tchart->all_data) {
973 p = tchart->all_data;
974 tchart->all_data = p->next;
975 p->next = NULL;
976
977 if (new_list == NULL) {
978 new_list = p;
979 p->next = NULL;
980 continue;
981 }
982 prev = NULL;
983 cursor = new_list;
984 while (cursor) {
985 if (cursor->ppid > p->ppid ||
986 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
987
988 if (prev) {
989 p->next = prev->next;
990 prev->next = p;
991 cursor = NULL;
992 continue;
993 } else {
994 p->next = new_list;
995 new_list = p;
996 cursor = NULL;
997 continue;
998 }
999 }
1000
1001 prev = cursor;
1002 cursor = cursor->next;
1003 if (!cursor)
1004 prev->next = p;
1005 }
1006 }
1007 tchart->all_data = new_list;
1008}
1009
1010
1011static void draw_c_p_states(struct timechart *tchart)
1012{
1013 struct power_event *pwr;
1014 pwr = tchart->power_events;
1015
1016
1017
1018
1019 while (pwr) {
1020 if (pwr->type == CSTATE)
1021 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1022 pwr = pwr->next;
1023 }
1024
1025 pwr = tchart->power_events;
1026 while (pwr) {
1027 if (pwr->type == PSTATE) {
1028 if (!pwr->state)
1029 pwr->state = tchart->min_freq;
1030 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031 }
1032 pwr = pwr->next;
1033 }
1034}
1035
1036static void draw_wakeups(struct timechart *tchart)
1037{
1038 struct wake_event *we;
1039 struct per_pid *p;
1040 struct per_pidcomm *c;
1041
1042 we = tchart->wake_events;
1043 while (we) {
1044 int from = 0, to = 0;
1045 char *task_from = NULL, *task_to = NULL;
1046
1047
1048 p = tchart->all_data;
1049 while (p) {
1050 if (p->pid == we->waker || p->pid == we->wakee) {
1051 c = p->all;
1052 while (c) {
1053 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1054 if (p->pid == we->waker && !from) {
1055 from = c->Y;
1056 task_from = strdup(c->comm);
1057 }
1058 if (p->pid == we->wakee && !to) {
1059 to = c->Y;
1060 task_to = strdup(c->comm);
1061 }
1062 }
1063 c = c->next;
1064 }
1065 c = p->all;
1066 while (c) {
1067 if (p->pid == we->waker && !from) {
1068 from = c->Y;
1069 task_from = strdup(c->comm);
1070 }
1071 if (p->pid == we->wakee && !to) {
1072 to = c->Y;
1073 task_to = strdup(c->comm);
1074 }
1075 c = c->next;
1076 }
1077 }
1078 p = p->next;
1079 }
1080
1081 if (!task_from) {
1082 task_from = malloc(40);
1083 sprintf(task_from, "[%i]", we->waker);
1084 }
1085 if (!task_to) {
1086 task_to = malloc(40);
1087 sprintf(task_to, "[%i]", we->wakee);
1088 }
1089
1090 if (we->waker == -1)
1091 svg_interrupt(we->time, to, we->backtrace);
1092 else if (from && to && abs(from - to) == 1)
1093 svg_wakeline(we->time, from, to, we->backtrace);
1094 else
1095 svg_partial_wakeline(we->time, from, task_from, to,
1096 task_to, we->backtrace);
1097 we = we->next;
1098
1099 free(task_from);
1100 free(task_to);
1101 }
1102}
1103
1104static void draw_cpu_usage(struct timechart *tchart)
1105{
1106 struct per_pid *p;
1107 struct per_pidcomm *c;
1108 struct cpu_sample *sample;
1109 p = tchart->all_data;
1110 while (p) {
1111 c = p->all;
1112 while (c) {
1113 sample = c->samples;
1114 while (sample) {
1115 if (sample->type == TYPE_RUNNING) {
1116 svg_process(sample->cpu,
1117 sample->start_time,
1118 sample->end_time,
1119 p->pid,
1120 c->comm,
1121 sample->backtrace);
1122 }
1123
1124 sample = sample->next;
1125 }
1126 c = c->next;
1127 }
1128 p = p->next;
1129 }
1130}
1131
1132static void draw_io_bars(struct timechart *tchart)
1133{
1134 const char *suf;
1135 double bytes;
1136 char comm[256];
1137 struct per_pid *p;
1138 struct per_pidcomm *c;
1139 struct io_sample *sample;
1140 int Y = 1;
1141
1142 p = tchart->all_data;
1143 while (p) {
1144 c = p->all;
1145 while (c) {
1146 if (!c->display) {
1147 c->Y = 0;
1148 c = c->next;
1149 continue;
1150 }
1151
1152 svg_box(Y, c->start_time, c->end_time, "process3");
1153 sample = c->io_samples;
1154 for (sample = c->io_samples; sample; sample = sample->next) {
1155 double h = (double)sample->bytes / c->max_bytes;
1156
1157 if (tchart->skip_eagain &&
1158 sample->err == -EAGAIN)
1159 continue;
1160
1161 if (sample->err)
1162 h = 1;
1163
1164 if (sample->type == IOTYPE_SYNC)
1165 svg_fbox(Y,
1166 sample->start_time,
1167 sample->end_time,
1168 1,
1169 sample->err ? "error" : "sync",
1170 sample->fd,
1171 sample->err,
1172 sample->merges);
1173 else if (sample->type == IOTYPE_POLL)
1174 svg_fbox(Y,
1175 sample->start_time,
1176 sample->end_time,
1177 1,
1178 sample->err ? "error" : "poll",
1179 sample->fd,
1180 sample->err,
1181 sample->merges);
1182 else if (sample->type == IOTYPE_READ)
1183 svg_ubox(Y,
1184 sample->start_time,
1185 sample->end_time,
1186 h,
1187 sample->err ? "error" : "disk",
1188 sample->fd,
1189 sample->err,
1190 sample->merges);
1191 else if (sample->type == IOTYPE_WRITE)
1192 svg_lbox(Y,
1193 sample->start_time,
1194 sample->end_time,
1195 h,
1196 sample->err ? "error" : "disk",
1197 sample->fd,
1198 sample->err,
1199 sample->merges);
1200 else if (sample->type == IOTYPE_RX)
1201 svg_ubox(Y,
1202 sample->start_time,
1203 sample->end_time,
1204 h,
1205 sample->err ? "error" : "net",
1206 sample->fd,
1207 sample->err,
1208 sample->merges);
1209 else if (sample->type == IOTYPE_TX)
1210 svg_lbox(Y,
1211 sample->start_time,
1212 sample->end_time,
1213 h,
1214 sample->err ? "error" : "net",
1215 sample->fd,
1216 sample->err,
1217 sample->merges);
1218 }
1219
1220 suf = "";
1221 bytes = c->total_bytes;
1222 if (bytes > 1024) {
1223 bytes = bytes / 1024;
1224 suf = "K";
1225 }
1226 if (bytes > 1024) {
1227 bytes = bytes / 1024;
1228 suf = "M";
1229 }
1230 if (bytes > 1024) {
1231 bytes = bytes / 1024;
1232 suf = "G";
1233 }
1234
1235
1236 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1237 svg_text(Y, c->start_time, comm);
1238
1239 c->Y = Y;
1240 Y++;
1241 c = c->next;
1242 }
1243 p = p->next;
1244 }
1245}
1246
1247static void draw_process_bars(struct timechart *tchart)
1248{
1249 struct per_pid *p;
1250 struct per_pidcomm *c;
1251 struct cpu_sample *sample;
1252 int Y = 0;
1253
1254 Y = 2 * tchart->numcpus + 2;
1255
1256 p = tchart->all_data;
1257 while (p) {
1258 c = p->all;
1259 while (c) {
1260 if (!c->display) {
1261 c->Y = 0;
1262 c = c->next;
1263 continue;
1264 }
1265
1266 svg_box(Y, c->start_time, c->end_time, "process");
1267 sample = c->samples;
1268 while (sample) {
1269 if (sample->type == TYPE_RUNNING)
1270 svg_running(Y, sample->cpu,
1271 sample->start_time,
1272 sample->end_time,
1273 sample->backtrace);
1274 if (sample->type == TYPE_BLOCKED)
1275 svg_blocked(Y, sample->cpu,
1276 sample->start_time,
1277 sample->end_time,
1278 sample->backtrace);
1279 if (sample->type == TYPE_WAITING)
1280 svg_waiting(Y, sample->cpu,
1281 sample->start_time,
1282 sample->end_time,
1283 sample->backtrace);
1284 sample = sample->next;
1285 }
1286
1287 if (c->comm) {
1288 char comm[256];
1289 if (c->total_time > 5000000000)
1290 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1291 else
1292 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1293
1294 svg_text(Y, c->start_time, comm);
1295 }
1296 c->Y = Y;
1297 Y++;
1298 c = c->next;
1299 }
1300 p = p->next;
1301 }
1302}
1303
1304static void add_process_filter(const char *string)
1305{
1306 int pid = strtoull(string, NULL, 10);
1307 struct process_filter *filt = malloc(sizeof(*filt));
1308
1309 if (!filt)
1310 return;
1311
1312 filt->name = strdup(string);
1313 filt->pid = pid;
1314 filt->next = process_filter;
1315
1316 process_filter = filt;
1317}
1318
1319static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320{
1321 struct process_filter *filt;
1322 if (!process_filter)
1323 return 1;
1324
1325 filt = process_filter;
1326 while (filt) {
1327 if (filt->pid && p->pid == filt->pid)
1328 return 1;
1329 if (strcmp(filt->name, c->comm) == 0)
1330 return 1;
1331 filt = filt->next;
1332 }
1333 return 0;
1334}
1335
1336static int determine_display_tasks_filtered(struct timechart *tchart)
1337{
1338 struct per_pid *p;
1339 struct per_pidcomm *c;
1340 int count = 0;
1341
1342 p = tchart->all_data;
1343 while (p) {
1344 p->display = 0;
1345 if (p->start_time == 1)
1346 p->start_time = tchart->first_time;
1347
1348
1349 if (p->end_time == 0)
1350 p->end_time = tchart->last_time;
1351
1352 c = p->all;
1353
1354 while (c) {
1355 c->display = 0;
1356
1357 if (c->start_time == 1)
1358 c->start_time = tchart->first_time;
1359
1360 if (passes_filter(p, c)) {
1361 c->display = 1;
1362 p->display = 1;
1363 count++;
1364 }
1365
1366 if (c->end_time == 0)
1367 c->end_time = tchart->last_time;
1368
1369 c = c->next;
1370 }
1371 p = p->next;
1372 }
1373 return count;
1374}
1375
1376static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1377{
1378 struct per_pid *p;
1379 struct per_pidcomm *c;
1380 int count = 0;
1381
1382 p = tchart->all_data;
1383 while (p) {
1384 p->display = 0;
1385 if (p->start_time == 1)
1386 p->start_time = tchart->first_time;
1387
1388
1389 if (p->end_time == 0)
1390 p->end_time = tchart->last_time;
1391 if (p->total_time >= threshold)
1392 p->display = 1;
1393
1394 c = p->all;
1395
1396 while (c) {
1397 c->display = 0;
1398
1399 if (c->start_time == 1)
1400 c->start_time = tchart->first_time;
1401
1402 if (c->total_time >= threshold) {
1403 c->display = 1;
1404 count++;
1405 }
1406
1407 if (c->end_time == 0)
1408 c->end_time = tchart->last_time;
1409
1410 c = c->next;
1411 }
1412 p = p->next;
1413 }
1414 return count;
1415}
1416
1417static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1418{
1419 struct per_pid *p;
1420 struct per_pidcomm *c;
1421 int count = 0;
1422
1423 p = timechart->all_data;
1424 while (p) {
1425
1426 if (p->end_time == 0)
1427 p->end_time = timechart->last_time;
1428
1429 c = p->all;
1430
1431 while (c) {
1432 c->display = 0;
1433
1434 if (c->total_bytes >= threshold) {
1435 c->display = 1;
1436 count++;
1437 }
1438
1439 if (c->end_time == 0)
1440 c->end_time = timechart->last_time;
1441
1442 c = c->next;
1443 }
1444 p = p->next;
1445 }
1446 return count;
1447}
1448
1449#define BYTES_THRESH (1 * 1024 * 1024)
1450#define TIME_THRESH 10000000
1451
1452static void write_svg_file(struct timechart *tchart, const char *filename)
1453{
1454 u64 i;
1455 int count;
1456 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457
1458 if (tchart->power_only)
1459 tchart->proc_num = 0;
1460
1461
1462
1463 do {
1464 if (process_filter)
1465 count = determine_display_tasks_filtered(tchart);
1466 else if (tchart->io_events)
1467 count = determine_display_io_tasks(tchart, thresh);
1468 else
1469 count = determine_display_tasks(tchart, thresh);
1470 thresh /= 10;
1471 } while (!process_filter && thresh && count < tchart->proc_num);
1472
1473 if (!tchart->proc_num)
1474 count = 0;
1475
1476 if (tchart->io_events) {
1477 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1478
1479 svg_time_grid(0.5);
1480 svg_io_legenda();
1481
1482 draw_io_bars(tchart);
1483 } else {
1484 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1485
1486 svg_time_grid(0);
1487
1488 svg_legenda();
1489
1490 for (i = 0; i < tchart->numcpus; i++)
1491 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492
1493 draw_cpu_usage(tchart);
1494 if (tchart->proc_num)
1495 draw_process_bars(tchart);
1496 if (!tchart->tasks_only)
1497 draw_c_p_states(tchart);
1498 if (tchart->proc_num)
1499 draw_wakeups(tchart);
1500 }
1501
1502 svg_close();
1503}
1504
1505static int process_header(struct perf_file_section *section __maybe_unused,
1506 struct perf_header *ph,
1507 int feat,
1508 int fd __maybe_unused,
1509 void *data)
1510{
1511 struct timechart *tchart = data;
1512
1513 switch (feat) {
1514 case HEADER_NRCPUS:
1515 tchart->numcpus = ph->env.nr_cpus_avail;
1516 break;
1517
1518 case HEADER_CPU_TOPOLOGY:
1519 if (!tchart->topology)
1520 break;
1521
1522 if (svg_build_topology_map(&ph->env))
1523 fprintf(stderr, "problem building topology\n");
1524 break;
1525
1526 default:
1527 break;
1528 }
1529
1530 return 0;
1531}
1532
1533static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1534{
1535 const struct evsel_str_handler power_tracepoints[] = {
1536 { "power:cpu_idle", process_sample_cpu_idle },
1537 { "power:cpu_frequency", process_sample_cpu_frequency },
1538 { "sched:sched_wakeup", process_sample_sched_wakeup },
1539 { "sched:sched_switch", process_sample_sched_switch },
1540#ifdef SUPPORT_OLD_POWER_EVENTS
1541 { "power:power_start", process_sample_power_start },
1542 { "power:power_end", process_sample_power_end },
1543 { "power:power_frequency", process_sample_power_frequency },
1544#endif
1545
1546 { "syscalls:sys_enter_read", process_enter_read },
1547 { "syscalls:sys_enter_pread64", process_enter_read },
1548 { "syscalls:sys_enter_readv", process_enter_read },
1549 { "syscalls:sys_enter_preadv", process_enter_read },
1550 { "syscalls:sys_enter_write", process_enter_write },
1551 { "syscalls:sys_enter_pwrite64", process_enter_write },
1552 { "syscalls:sys_enter_writev", process_enter_write },
1553 { "syscalls:sys_enter_pwritev", process_enter_write },
1554 { "syscalls:sys_enter_sync", process_enter_sync },
1555 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1556 { "syscalls:sys_enter_fsync", process_enter_sync },
1557 { "syscalls:sys_enter_msync", process_enter_sync },
1558 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1559 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1560 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1561 { "syscalls:sys_enter_sendto", process_enter_tx },
1562 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1563 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1564 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1565 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1566 { "syscalls:sys_enter_poll", process_enter_poll },
1567 { "syscalls:sys_enter_ppoll", process_enter_poll },
1568 { "syscalls:sys_enter_pselect6", process_enter_poll },
1569 { "syscalls:sys_enter_select", process_enter_poll },
1570
1571 { "syscalls:sys_exit_read", process_exit_read },
1572 { "syscalls:sys_exit_pread64", process_exit_read },
1573 { "syscalls:sys_exit_readv", process_exit_read },
1574 { "syscalls:sys_exit_preadv", process_exit_read },
1575 { "syscalls:sys_exit_write", process_exit_write },
1576 { "syscalls:sys_exit_pwrite64", process_exit_write },
1577 { "syscalls:sys_exit_writev", process_exit_write },
1578 { "syscalls:sys_exit_pwritev", process_exit_write },
1579 { "syscalls:sys_exit_sync", process_exit_sync },
1580 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1581 { "syscalls:sys_exit_fsync", process_exit_sync },
1582 { "syscalls:sys_exit_msync", process_exit_sync },
1583 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1584 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1585 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1586 { "syscalls:sys_exit_sendto", process_exit_tx },
1587 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1588 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1589 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1590 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1591 { "syscalls:sys_exit_poll", process_exit_poll },
1592 { "syscalls:sys_exit_ppoll", process_exit_poll },
1593 { "syscalls:sys_exit_pselect6", process_exit_poll },
1594 { "syscalls:sys_exit_select", process_exit_poll },
1595 };
1596 struct perf_data data = {
1597 .path = input_name,
1598 .mode = PERF_DATA_MODE_READ,
1599 .force = tchart->force,
1600 };
1601
1602 struct perf_session *session = perf_session__new(&data, &tchart->tool);
1603 int ret = -EINVAL;
1604
1605 if (IS_ERR(session))
1606 return PTR_ERR(session);
1607
1608 symbol__init(&session->header.env);
1609
1610 (void)perf_header__process_sections(&session->header,
1611 perf_data__fd(session->data),
1612 tchart,
1613 process_header);
1614
1615 if (!perf_session__has_traces(session, "timechart record"))
1616 goto out_delete;
1617
1618 if (perf_session__set_tracepoints_handlers(session,
1619 power_tracepoints)) {
1620 pr_err("Initializing session tracepoint handlers failed\n");
1621 goto out_delete;
1622 }
1623
1624 ret = perf_session__process_events(session);
1625 if (ret)
1626 goto out_delete;
1627
1628 end_sample_processing(tchart);
1629
1630 sort_pids(tchart);
1631
1632 write_svg_file(tchart, output_name);
1633
1634 pr_info("Written %2.1f seconds of trace to %s.\n",
1635 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636out_delete:
1637 perf_session__delete(session);
1638 return ret;
1639}
1640
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643 unsigned int rec_argc, i;
1644 const char **rec_argv;
1645 const char **p;
1646 char *filter = NULL;
1647
1648 const char * const common_args[] = {
1649 "record", "-a", "-R", "-c", "1",
1650 };
1651 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653 const char * const disk_events[] = {
1654 "syscalls:sys_enter_read",
1655 "syscalls:sys_enter_pread64",
1656 "syscalls:sys_enter_readv",
1657 "syscalls:sys_enter_preadv",
1658 "syscalls:sys_enter_write",
1659 "syscalls:sys_enter_pwrite64",
1660 "syscalls:sys_enter_writev",
1661 "syscalls:sys_enter_pwritev",
1662 "syscalls:sys_enter_sync",
1663 "syscalls:sys_enter_sync_file_range",
1664 "syscalls:sys_enter_fsync",
1665 "syscalls:sys_enter_msync",
1666
1667 "syscalls:sys_exit_read",
1668 "syscalls:sys_exit_pread64",
1669 "syscalls:sys_exit_readv",
1670 "syscalls:sys_exit_preadv",
1671 "syscalls:sys_exit_write",
1672 "syscalls:sys_exit_pwrite64",
1673 "syscalls:sys_exit_writev",
1674 "syscalls:sys_exit_pwritev",
1675 "syscalls:sys_exit_sync",
1676 "syscalls:sys_exit_sync_file_range",
1677 "syscalls:sys_exit_fsync",
1678 "syscalls:sys_exit_msync",
1679 };
1680 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682 const char * const net_events[] = {
1683 "syscalls:sys_enter_recvfrom",
1684 "syscalls:sys_enter_recvmmsg",
1685 "syscalls:sys_enter_recvmsg",
1686 "syscalls:sys_enter_sendto",
1687 "syscalls:sys_enter_sendmsg",
1688 "syscalls:sys_enter_sendmmsg",
1689
1690 "syscalls:sys_exit_recvfrom",
1691 "syscalls:sys_exit_recvmmsg",
1692 "syscalls:sys_exit_recvmsg",
1693 "syscalls:sys_exit_sendto",
1694 "syscalls:sys_exit_sendmsg",
1695 "syscalls:sys_exit_sendmmsg",
1696 };
1697 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699 const char * const poll_events[] = {
1700 "syscalls:sys_enter_epoll_pwait",
1701 "syscalls:sys_enter_epoll_wait",
1702 "syscalls:sys_enter_poll",
1703 "syscalls:sys_enter_ppoll",
1704 "syscalls:sys_enter_pselect6",
1705 "syscalls:sys_enter_select",
1706
1707 "syscalls:sys_exit_epoll_pwait",
1708 "syscalls:sys_exit_epoll_wait",
1709 "syscalls:sys_exit_poll",
1710 "syscalls:sys_exit_ppoll",
1711 "syscalls:sys_exit_pselect6",
1712 "syscalls:sys_exit_select",
1713 };
1714 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716 rec_argc = common_args_nr +
1717 disk_events_nr * 4 +
1718 net_events_nr * 4 +
1719 poll_events_nr * 4 +
1720 argc;
1721 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723 if (rec_argv == NULL)
1724 return -ENOMEM;
1725
1726 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727 free(rec_argv);
1728 return -ENOMEM;
1729 }
1730
1731 p = rec_argv;
1732 for (i = 0; i < common_args_nr; i++)
1733 *p++ = strdup(common_args[i]);
1734
1735 for (i = 0; i < disk_events_nr; i++) {
1736 if (!is_valid_tracepoint(disk_events[i])) {
1737 rec_argc -= 4;
1738 continue;
1739 }
1740
1741 *p++ = "-e";
1742 *p++ = strdup(disk_events[i]);
1743 *p++ = "--filter";
1744 *p++ = filter;
1745 }
1746 for (i = 0; i < net_events_nr; i++) {
1747 if (!is_valid_tracepoint(net_events[i])) {
1748 rec_argc -= 4;
1749 continue;
1750 }
1751
1752 *p++ = "-e";
1753 *p++ = strdup(net_events[i]);
1754 *p++ = "--filter";
1755 *p++ = filter;
1756 }
1757 for (i = 0; i < poll_events_nr; i++) {
1758 if (!is_valid_tracepoint(poll_events[i])) {
1759 rec_argc -= 4;
1760 continue;
1761 }
1762
1763 *p++ = "-e";
1764 *p++ = strdup(poll_events[i]);
1765 *p++ = "--filter";
1766 *p++ = filter;
1767 }
1768
1769 for (i = 0; i < (unsigned int)argc; i++)
1770 *p++ = argv[i];
1771
1772 return cmd_record(rec_argc, rec_argv);
1773}
1774
1775
1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777{
1778 unsigned int rec_argc, i, j;
1779 const char **rec_argv;
1780 const char **p;
1781 unsigned int record_elems;
1782
1783 const char * const common_args[] = {
1784 "record", "-a", "-R", "-c", "1",
1785 };
1786 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788 const char * const backtrace_args[] = {
1789 "-g",
1790 };
1791 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793 const char * const power_args[] = {
1794 "-e", "power:cpu_frequency",
1795 "-e", "power:cpu_idle",
1796 };
1797 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799 const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
1801 "-e", "power:power_start",
1802 "-e", "power:power_end",
1803 "-e", "power:power_frequency",
1804#endif
1805 };
1806 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808 const char * const tasks_args[] = {
1809 "-e", "sched:sched_wakeup",
1810 "-e", "sched:sched_switch",
1811 };
1812 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815 if (!is_valid_tracepoint("power:cpu_idle") &&
1816 is_valid_tracepoint("power:power_start")) {
1817 use_old_power_events = 1;
1818 power_args_nr = 0;
1819 } else {
1820 old_power_args_nr = 0;
1821 }
1822#endif
1823
1824 if (tchart->power_only)
1825 tasks_args_nr = 0;
1826
1827 if (tchart->tasks_only) {
1828 power_args_nr = 0;
1829 old_power_args_nr = 0;
1830 }
1831
1832 if (!tchart->with_backtrace)
1833 backtrace_args_no = 0;
1834
1835 record_elems = common_args_nr + tasks_args_nr +
1836 power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838 rec_argc = record_elems + argc;
1839 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841 if (rec_argv == NULL)
1842 return -ENOMEM;
1843
1844 p = rec_argv;
1845 for (i = 0; i < common_args_nr; i++)
1846 *p++ = strdup(common_args[i]);
1847
1848 for (i = 0; i < backtrace_args_no; i++)
1849 *p++ = strdup(backtrace_args[i]);
1850
1851 for (i = 0; i < tasks_args_nr; i++)
1852 *p++ = strdup(tasks_args[i]);
1853
1854 for (i = 0; i < power_args_nr; i++)
1855 *p++ = strdup(power_args[i]);
1856
1857 for (i = 0; i < old_power_args_nr; i++)
1858 *p++ = strdup(old_power_args[i]);
1859
1860 for (j = 0; j < (unsigned int)argc; j++)
1861 *p++ = argv[j];
1862
1863 return cmd_record(rec_argc, rec_argv);
1864}
1865
1866static int
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868 int __maybe_unused unset)
1869{
1870 if (arg)
1871 add_process_filter(arg);
1872 return 0;
1873}
1874
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877 int __maybe_unused unset)
1878{
1879 unsigned long duration = strtoul(arg, NULL, 0);
1880
1881 if (svg_highlight || svg_highlight_name)
1882 return -1;
1883
1884 if (duration)
1885 svg_highlight = duration;
1886 else
1887 svg_highlight_name = strdup(arg);
1888
1889 return 0;
1890}
1891
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895 char unit = 'n';
1896 u64 *value = opt->value;
1897
1898 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899 switch (unit) {
1900 case 'm':
1901 *value *= NSEC_PER_MSEC;
1902 break;
1903 case 'u':
1904 *value *= NSEC_PER_USEC;
1905 break;
1906 case 'n':
1907 break;
1908 default:
1909 return -1;
1910 }
1911 }
1912
1913 return 0;
1914}
1915
1916int cmd_timechart(int argc, const char **argv)
1917{
1918 struct timechart tchart = {
1919 .tool = {
1920 .comm = process_comm_event,
1921 .fork = process_fork_event,
1922 .exit = process_exit_event,
1923 .sample = process_sample_event,
1924 .ordered_events = true,
1925 },
1926 .proc_num = 15,
1927 .min_time = NSEC_PER_MSEC,
1928 .merge_dist = 1000,
1929 };
1930 const char *output_name = "output.svg";
1931 const struct option timechart_common_options[] = {
1932 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934 OPT_END()
1935 };
1936 const struct option timechart_options[] = {
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1942 parse_highlight),
1943 OPT_CALLBACK('p', "process", NULL, "process",
1944 "process selector. Pass a pid or process name.",
1945 parse_process),
1946 OPT_CALLBACK(0, "symfs", NULL, "directory",
1947 "Look for files with symbols relative to this directory",
1948 symbol__config_symfs),
1949 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950 "min. number of tasks to print"),
1951 OPT_BOOLEAN('t', "topology", &tchart.topology,
1952 "sort CPUs according to topology"),
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956 "all IO faster than min-time will visually appear longer",
1957 parse_time),
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959 "merge events that are merge-dist us apart",
1960 parse_time),
1961 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962 OPT_PARENT(timechart_common_options),
1963 };
1964 const char * const timechart_subcommands[] = { "record", NULL };
1965 const char *timechart_usage[] = {
1966 "perf timechart [<options>] {record}",
1967 NULL
1968 };
1969 const struct option timechart_record_options[] = {
1970 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971 "record only IO data"),
1972 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973 OPT_PARENT(timechart_common_options),
1974 };
1975 const char * const timechart_record_usage[] = {
1976 "perf timechart record [<options>]",
1977 NULL
1978 };
1979 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982 if (tchart.power_only && tchart.tasks_only) {
1983 pr_err("-P and -T options cannot be used at the same time.\n");
1984 return -1;
1985 }
1986
1987 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1988 argc = parse_options(argc, argv, timechart_record_options,
1989 timechart_record_usage,
1990 PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992 if (tchart.power_only && tchart.tasks_only) {
1993 pr_err("-P and -T options cannot be used at the same time.\n");
1994 return -1;
1995 }
1996
1997 if (tchart.io_only)
1998 return timechart__io_record(argc, argv);
1999 else
2000 return timechart__record(&tchart, argc, argv);
2001 } else if (argc)
2002 usage_with_options(timechart_usage, timechart_options);
2003
2004 setup_pager();
2005
2006 return __cmd_timechart(&tchart, output_name);
2007}
2008