1
2
3
4
5
6
7
8#define _GNU_SOURCE
9#include "test_util.h"
10#include "kvm_util.h"
11#include "kvm_util_internal.h"
12#include "processor.h"
13
14#include <assert.h>
15#include <sys/mman.h>
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <unistd.h>
19#include <linux/kernel.h>
20
21#define KVM_UTIL_MIN_PFN 2
22
23static int vcpu_mmap_sz(void);
24
25int open_path_or_exit(const char *path, int flags)
26{
27 int fd;
28
29 fd = open(path, flags);
30 if (fd < 0) {
31 print_skip("%s not available (errno: %d)", path, errno);
32 exit(KSFT_SKIP);
33 }
34
35 return fd;
36}
37
38
39
40
41
42
43
44
45
46
47static int _open_kvm_dev_path_or_exit(int flags)
48{
49 return open_path_or_exit(KVM_DEV_PATH, flags);
50}
51
52int open_kvm_dev_path_or_exit(void)
53{
54 return _open_kvm_dev_path_or_exit(O_RDONLY);
55}
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73int kvm_check_cap(long cap)
74{
75 int ret;
76 int kvm_fd;
77
78 kvm_fd = open_kvm_dev_path_or_exit();
79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 " rc: %i errno: %i", ret, errno);
82
83 close(kvm_fd);
84
85 return ret;
86}
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104int vm_check_cap(struct kvm_vm *vm, long cap)
105{
106 int ret;
107
108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
110 " rc: %i errno: %i", ret, errno);
111
112 return ret;
113}
114
115
116
117
118
119
120
121
122
123
124
125
126
127int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
128{
129 int ret;
130
131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
133 " rc: %i errno: %i", ret, errno);
134
135 return ret;
136}
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
152 struct kvm_enable_cap *cap)
153{
154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
155 int r;
156
157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
158
159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
161 " rc: %i, errno: %i", r, errno);
162
163 return r;
164}
165
166void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
167{
168 struct kvm_enable_cap cap = { 0 };
169
170 cap.cap = KVM_CAP_DIRTY_LOG_RING;
171 cap.args[0] = ring_size;
172 vm_enable_cap(vm, &cap);
173 vm->dirty_ring_size = ring_size;
174}
175
176static void vm_open(struct kvm_vm *vm, int perm)
177{
178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
179
180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
181 print_skip("immediate_exit not available");
182 exit(KSFT_SKIP);
183 }
184
185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
187 "rc: %i errno: %i", vm->fd, errno);
188}
189
190const char *vm_guest_mode_string(uint32_t i)
191{
192 static const char * const strings[] = {
193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
208 };
209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
210 "Missing new mode strings?");
211
212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
213
214 return strings[i];
215}
216
217const struct vm_guest_mode_params vm_guest_mode_params[] = {
218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
233};
234_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
235 "Missing new mode params?");
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
257{
258 struct kvm_vm *vm;
259
260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
261 vm_guest_mode_string(mode), phy_pages, perm);
262
263 vm = calloc(1, sizeof(*vm));
264 TEST_ASSERT(vm != NULL, "Insufficient Memory");
265
266 INIT_LIST_HEAD(&vm->vcpus);
267 vm->regions.gpa_tree = RB_ROOT;
268 vm->regions.hva_tree = RB_ROOT;
269 hash_init(vm->regions.slot_hash);
270
271 vm->mode = mode;
272 vm->type = 0;
273
274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
275 vm->va_bits = vm_guest_mode_params[mode].va_bits;
276 vm->page_size = vm_guest_mode_params[mode].page_size;
277 vm->page_shift = vm_guest_mode_params[mode].page_shift;
278
279
280 switch (vm->mode) {
281 case VM_MODE_P52V48_4K:
282 vm->pgtable_levels = 4;
283 break;
284 case VM_MODE_P52V48_64K:
285 vm->pgtable_levels = 3;
286 break;
287 case VM_MODE_P48V48_4K:
288 vm->pgtable_levels = 4;
289 break;
290 case VM_MODE_P48V48_64K:
291 vm->pgtable_levels = 3;
292 break;
293 case VM_MODE_P40V48_4K:
294 case VM_MODE_P36V48_4K:
295 vm->pgtable_levels = 4;
296 break;
297 case VM_MODE_P40V48_64K:
298 case VM_MODE_P36V48_64K:
299 vm->pgtable_levels = 3;
300 break;
301 case VM_MODE_P48V48_16K:
302 case VM_MODE_P40V48_16K:
303 case VM_MODE_P36V48_16K:
304 vm->pgtable_levels = 4;
305 break;
306 case VM_MODE_P36V47_16K:
307 vm->pgtable_levels = 3;
308 break;
309 case VM_MODE_PXXV48_4K:
310#ifdef __x86_64__
311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
312
313
314
315
316
317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
318 "Linear address width (%d bits) not supported",
319 vm->va_bits);
320 pr_debug("Guest physical address width detected: %d\n",
321 vm->pa_bits);
322 vm->pgtable_levels = 4;
323 vm->va_bits = 48;
324#else
325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
326#endif
327 break;
328 case VM_MODE_P47V64_4K:
329 vm->pgtable_levels = 5;
330 break;
331 case VM_MODE_P44V64_4K:
332 vm->pgtable_levels = 5;
333 break;
334 default:
335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
336 }
337
338#ifdef __aarch64__
339 if (vm->pa_bits != 40)
340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
341#endif
342
343 vm_open(vm, perm);
344
345
346 vm->vpages_valid = sparsebit_alloc();
347 sparsebit_set_num(vm->vpages_valid,
348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
349 sparsebit_set_num(vm->vpages_valid,
350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
352
353
354 vm->max_gfn = vm_compute_max_gfn(vm);
355
356
357 vm->vpages_mapped = sparsebit_alloc();
358 if (phy_pages != 0)
359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
360 0, 0, phy_pages, 0);
361
362 return vm;
363}
364
365struct kvm_vm *vm_create_without_vcpus(enum vm_guest_mode mode, uint64_t pages)
366{
367 struct kvm_vm *vm;
368
369 vm = vm_create(mode, pages, O_RDWR);
370
371 kvm_vm_elf_load(vm, program_invocation_name);
372
373#ifdef __x86_64__
374 vm_create_irqchip(vm);
375#endif
376 return vm;
377}
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
402 uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
403 uint32_t num_percpu_pages, void *guest_code,
404 uint32_t vcpuids[])
405{
406 uint64_t vcpu_pages, extra_pg_pages, pages;
407 struct kvm_vm *vm;
408 int i;
409
410
411 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
412 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
413
414
415
416
417
418
419
420 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
421 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
422 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
423
424 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
425 "nr_vcpus = %d too large for host, max-vcpus = %d",
426 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
427
428 pages = vm_adjust_num_guest_pages(mode, pages);
429
430 vm = vm_create_without_vcpus(mode, pages);
431
432 for (i = 0; i < nr_vcpus; ++i) {
433 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
434
435 vm_vcpu_add_default(vm, vcpuid, guest_code);
436 }
437
438 return vm;
439}
440
441struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
442 uint32_t num_percpu_pages, void *guest_code,
443 uint32_t vcpuids[])
444{
445 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
446 extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
447}
448
449struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
450 void *guest_code)
451{
452 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
453 (uint32_t []){ vcpuid });
454}
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469void kvm_vm_restart(struct kvm_vm *vmp, int perm)
470{
471 int ctr;
472 struct userspace_mem_region *region;
473
474 vm_open(vmp, perm);
475 if (vmp->has_irqchip)
476 vm_create_irqchip(vmp);
477
478 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
479 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
480 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
481 " rc: %i errno: %i\n"
482 " slot: %u flags: 0x%x\n"
483 " guest_phys_addr: 0x%llx size: 0x%llx",
484 ret, errno, region->region.slot,
485 region->region.flags,
486 region->region.guest_phys_addr,
487 region->region.memory_size);
488 }
489}
490
491void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
492{
493 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
494 int ret;
495
496 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
497 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
498 __func__, strerror(-ret));
499}
500
501void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
502 uint64_t first_page, uint32_t num_pages)
503{
504 struct kvm_clear_dirty_log args = {
505 .dirty_bitmap = log, .slot = slot,
506 .first_page = first_page,
507 .num_pages = num_pages
508 };
509 int ret;
510
511 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
512 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
513 __func__, strerror(-ret));
514}
515
516uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
517{
518 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
519}
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540static struct userspace_mem_region *
541userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
542{
543 struct rb_node *node;
544
545 for (node = vm->regions.gpa_tree.rb_node; node; ) {
546 struct userspace_mem_region *region =
547 container_of(node, struct userspace_mem_region, gpa_node);
548 uint64_t existing_start = region->region.guest_phys_addr;
549 uint64_t existing_end = region->region.guest_phys_addr
550 + region->region.memory_size - 1;
551 if (start <= existing_end && end >= existing_start)
552 return region;
553
554 if (start < existing_start)
555 node = node->rb_left;
556 else
557 node = node->rb_right;
558 }
559
560 return NULL;
561}
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579struct kvm_userspace_memory_region *
580kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
581 uint64_t end)
582{
583 struct userspace_mem_region *region;
584
585 region = userspace_mem_region_find(vm, start, end);
586 if (!region)
587 return NULL;
588
589 return ®ion->region;
590}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
609{
610 struct vcpu *vcpu;
611
612 list_for_each_entry(vcpu, &vm->vcpus, list) {
613 if (vcpu->id == vcpuid)
614 return vcpu;
615 }
616
617 return NULL;
618}
619
620
621
622
623
624
625
626
627
628
629
630
631
632static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
633{
634 int ret;
635
636 if (vcpu->dirty_gfns) {
637 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
638 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
639 "rc: %i errno: %i", ret, errno);
640 vcpu->dirty_gfns = NULL;
641 }
642
643 ret = munmap(vcpu->state, vcpu_mmap_sz());
644 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
645 "errno: %i", ret, errno);
646 ret = close(vcpu->fd);
647 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
648 "errno: %i", ret, errno);
649
650 list_del(&vcpu->list);
651 free(vcpu);
652}
653
654void kvm_vm_release(struct kvm_vm *vmp)
655{
656 struct vcpu *vcpu, *tmp;
657 int ret;
658
659 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
660 vm_vcpu_rm(vmp, vcpu);
661
662 ret = close(vmp->fd);
663 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
664 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
665
666 ret = close(vmp->kvm_fd);
667 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
668 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
669}
670
671static void __vm_mem_region_delete(struct kvm_vm *vm,
672 struct userspace_mem_region *region,
673 bool unlink)
674{
675 int ret;
676
677 if (unlink) {
678 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
679 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
680 hash_del(®ion->slot_node);
681 }
682
683 region->region.memory_size = 0;
684 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
685 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
686 "rc: %i errno: %i", ret, errno);
687
688 sparsebit_free(®ion->unused_phy_pages);
689 ret = munmap(region->mmap_start, region->mmap_size);
690 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
691
692 free(region);
693}
694
695
696
697
698void kvm_vm_free(struct kvm_vm *vmp)
699{
700 int ctr;
701 struct hlist_node *node;
702 struct userspace_mem_region *region;
703
704 if (vmp == NULL)
705 return;
706
707
708 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
709 __vm_mem_region_delete(vmp, region, false);
710
711
712 sparsebit_free(&vmp->vpages_valid);
713 sparsebit_free(&vmp->vpages_mapped);
714
715 kvm_vm_release(vmp);
716
717
718 free(vmp);
719}
720
721int kvm_memfd_alloc(size_t size, bool hugepages)
722{
723 int memfd_flags = MFD_CLOEXEC;
724 int fd, r;
725
726 if (hugepages)
727 memfd_flags |= MFD_HUGETLB;
728
729 fd = memfd_create("kvm_selftest", memfd_flags);
730 TEST_ASSERT(fd != -1, "memfd_create() failed, errno: %i (%s)",
731 errno, strerror(errno));
732
733 r = ftruncate(fd, size);
734 TEST_ASSERT(!r, "ftruncate() failed, errno: %i (%s)", errno, strerror(errno));
735
736 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
737 TEST_ASSERT(!r, "fallocate() failed, errno: %i (%s)", errno, strerror(errno));
738
739 return fd;
740}
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
766{
767 size_t amt;
768
769
770
771
772
773 for (uintptr_t offset = 0; offset < len; offset += amt) {
774 uintptr_t ptr1 = (uintptr_t)hva + offset;
775
776
777
778
779
780 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
781
782
783
784
785
786 amt = len - offset;
787 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
788 amt = vm->page_size - (ptr1 % vm->page_size);
789 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
790 amt = vm->page_size - (ptr2 % vm->page_size);
791
792 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
793 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
794
795
796
797
798
799
800 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
801 if (ret != 0)
802 return ret;
803 }
804
805
806
807
808
809 return 0;
810}
811
812static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
813 struct userspace_mem_region *region)
814{
815 struct rb_node **cur, *parent;
816
817 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
818 struct userspace_mem_region *cregion;
819
820 cregion = container_of(*cur, typeof(*cregion), gpa_node);
821 parent = *cur;
822 if (region->region.guest_phys_addr <
823 cregion->region.guest_phys_addr)
824 cur = &(*cur)->rb_left;
825 else {
826 TEST_ASSERT(region->region.guest_phys_addr !=
827 cregion->region.guest_phys_addr,
828 "Duplicate GPA in region tree");
829
830 cur = &(*cur)->rb_right;
831 }
832 }
833
834 rb_link_node(®ion->gpa_node, parent, cur);
835 rb_insert_color(®ion->gpa_node, gpa_tree);
836}
837
838static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
839 struct userspace_mem_region *region)
840{
841 struct rb_node **cur, *parent;
842
843 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
844 struct userspace_mem_region *cregion;
845
846 cregion = container_of(*cur, typeof(*cregion), hva_node);
847 parent = *cur;
848 if (region->host_mem < cregion->host_mem)
849 cur = &(*cur)->rb_left;
850 else {
851 TEST_ASSERT(region->host_mem !=
852 cregion->host_mem,
853 "Duplicate HVA in region tree");
854
855 cur = &(*cur)->rb_right;
856 }
857 }
858
859 rb_link_node(®ion->hva_node, parent, cur);
860 rb_insert_color(®ion->hva_node, hva_tree);
861}
862
863
864int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
865 uint64_t gpa, uint64_t size, void *hva)
866{
867 struct kvm_userspace_memory_region region = {
868 .slot = slot,
869 .flags = flags,
870 .guest_phys_addr = gpa,
871 .memory_size = size,
872 .userspace_addr = (uintptr_t)hva,
873 };
874
875 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
876}
877
878void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
879 uint64_t gpa, uint64_t size, void *hva)
880{
881 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
882
883 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
884 errno, strerror(errno));
885}
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909void vm_userspace_mem_region_add(struct kvm_vm *vm,
910 enum vm_mem_backing_src_type src_type,
911 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
912 uint32_t flags)
913{
914 int ret;
915 struct userspace_mem_region *region;
916 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
917 size_t alignment;
918
919 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
920 "Number of guest pages is not compatible with the host. "
921 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
922
923 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
924 "address not on a page boundary.\n"
925 " guest_paddr: 0x%lx vm->page_size: 0x%x",
926 guest_paddr, vm->page_size);
927 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
928 <= vm->max_gfn, "Physical range beyond maximum "
929 "supported physical address,\n"
930 " guest_paddr: 0x%lx npages: 0x%lx\n"
931 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
932 guest_paddr, npages, vm->max_gfn, vm->page_size);
933
934
935
936
937
938 region = (struct userspace_mem_region *) userspace_mem_region_find(
939 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
940 if (region != NULL)
941 TEST_FAIL("overlapping userspace_mem_region already "
942 "exists\n"
943 " requested guest_paddr: 0x%lx npages: 0x%lx "
944 "page_size: 0x%x\n"
945 " existing guest_paddr: 0x%lx size: 0x%lx",
946 guest_paddr, npages, vm->page_size,
947 (uint64_t) region->region.guest_phys_addr,
948 (uint64_t) region->region.memory_size);
949
950
951 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
952 slot) {
953 if (region->region.slot != slot)
954 continue;
955
956 TEST_FAIL("A mem region with the requested slot "
957 "already exists.\n"
958 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
959 " existing slot: %u paddr: 0x%lx size: 0x%lx",
960 slot, guest_paddr, npages,
961 region->region.slot,
962 (uint64_t) region->region.guest_phys_addr,
963 (uint64_t) region->region.memory_size);
964 }
965
966
967 region = calloc(1, sizeof(*region));
968 TEST_ASSERT(region != NULL, "Insufficient Memory");
969 region->mmap_size = npages * vm->page_size;
970
971#ifdef __s390x__
972
973 alignment = 0x100000;
974#else
975 alignment = 1;
976#endif
977
978
979
980
981
982
983
984 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
985 alignment = max(backing_src_pagesz, alignment);
986
987 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
988
989
990 if (alignment > 1)
991 region->mmap_size += alignment;
992
993 region->fd = -1;
994 if (backing_src_is_shared(src_type))
995 region->fd = kvm_memfd_alloc(region->mmap_size,
996 src_type == VM_MEM_SRC_SHARED_HUGETLB);
997
998 region->mmap_start = mmap(NULL, region->mmap_size,
999 PROT_READ | PROT_WRITE,
1000 vm_mem_backing_src_alias(src_type)->flag,
1001 region->fd, 0);
1002 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1003 "test_malloc failed, mmap_start: %p errno: %i",
1004 region->mmap_start, errno);
1005
1006 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1007 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1008 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1009 region->mmap_start, backing_src_pagesz);
1010
1011
1012 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1013
1014
1015 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1016 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1017 ret = madvise(region->host_mem, npages * vm->page_size,
1018 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1019 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1020 region->host_mem, npages * vm->page_size,
1021 vm_mem_backing_src_alias(src_type)->name);
1022 }
1023
1024 region->unused_phy_pages = sparsebit_alloc();
1025 sparsebit_set_num(region->unused_phy_pages,
1026 guest_paddr >> vm->page_shift, npages);
1027 region->region.slot = slot;
1028 region->region.flags = flags;
1029 region->region.guest_phys_addr = guest_paddr;
1030 region->region.memory_size = npages * vm->page_size;
1031 region->region.userspace_addr = (uintptr_t) region->host_mem;
1032 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1033 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1034 " rc: %i errno: %i\n"
1035 " slot: %u flags: 0x%x\n"
1036 " guest_phys_addr: 0x%lx size: 0x%lx",
1037 ret, errno, slot, flags,
1038 guest_paddr, (uint64_t) region->region.memory_size);
1039
1040
1041 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1042 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1043 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1044
1045
1046 if (region->fd >= 0) {
1047 region->mmap_alias = mmap(NULL, region->mmap_size,
1048 PROT_READ | PROT_WRITE,
1049 vm_mem_backing_src_alias(src_type)->flag,
1050 region->fd, 0);
1051 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1052 "mmap of alias failed, errno: %i", errno);
1053
1054
1055 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1056 }
1057}
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074struct userspace_mem_region *
1075memslot2region(struct kvm_vm *vm, uint32_t memslot)
1076{
1077 struct userspace_mem_region *region;
1078
1079 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1080 memslot)
1081 if (region->region.slot == memslot)
1082 return region;
1083
1084 fprintf(stderr, "No mem region with the requested slot found,\n"
1085 " requested slot: %u\n", memslot);
1086 fputs("---- vm dump ----\n", stderr);
1087 vm_dump(stderr, vm, 2);
1088 TEST_FAIL("Mem region not found");
1089 return NULL;
1090}
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1107{
1108 int ret;
1109 struct userspace_mem_region *region;
1110
1111 region = memslot2region(vm, slot);
1112
1113 region->region.flags = flags;
1114
1115 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1116
1117 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1118 " rc: %i errno: %i slot: %u flags: 0x%x",
1119 ret, errno, slot, flags);
1120}
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1137{
1138 struct userspace_mem_region *region;
1139 int ret;
1140
1141 region = memslot2region(vm, slot);
1142
1143 region->region.guest_phys_addr = new_gpa;
1144
1145 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1146
1147 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1148 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1149 ret, errno, slot, new_gpa);
1150}
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1166{
1167 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1168}
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183static int vcpu_mmap_sz(void)
1184{
1185 int dev_fd, ret;
1186
1187 dev_fd = open_kvm_dev_path_or_exit();
1188
1189 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1190 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1191 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1192 __func__, ret, errno);
1193
1194 close(dev_fd);
1195
1196 return ret;
1197}
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1214{
1215 struct vcpu *vcpu;
1216
1217
1218 vcpu = vcpu_find(vm, vcpuid);
1219 if (vcpu != NULL)
1220 TEST_FAIL("vcpu with the specified id "
1221 "already exists,\n"
1222 " requested vcpuid: %u\n"
1223 " existing vcpuid: %u state: %p",
1224 vcpuid, vcpu->id, vcpu->state);
1225
1226
1227 vcpu = calloc(1, sizeof(*vcpu));
1228 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1229 vcpu->id = vcpuid;
1230 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1231 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1232 vcpu->fd, errno);
1233
1234 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1235 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1236 vcpu_mmap_sz(), sizeof(*vcpu->state));
1237 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1238 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1239 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1240 "vcpu id: %u errno: %i", vcpuid, errno);
1241
1242
1243 list_add(&vcpu->list, &vm->vcpus);
1244}
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1267 vm_vaddr_t vaddr_min)
1268{
1269 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1270
1271
1272 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1273 if ((pgidx_start * vm->page_size) < vaddr_min)
1274 goto no_va_found;
1275
1276
1277 if (!sparsebit_is_set_num(vm->vpages_valid,
1278 pgidx_start, pages))
1279 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1280 pgidx_start, pages);
1281 do {
1282
1283
1284
1285
1286
1287
1288 if (sparsebit_is_clear_num(vm->vpages_mapped,
1289 pgidx_start, pages))
1290 goto va_found;
1291 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1292 pgidx_start, pages);
1293 if (pgidx_start == 0)
1294 goto no_va_found;
1295
1296
1297
1298
1299
1300 if (!sparsebit_is_set_num(vm->vpages_valid,
1301 pgidx_start, pages)) {
1302 pgidx_start = sparsebit_next_set_num(
1303 vm->vpages_valid, pgidx_start, pages);
1304 if (pgidx_start == 0)
1305 goto no_va_found;
1306 }
1307 } while (pgidx_start != 0);
1308
1309no_va_found:
1310 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1311
1312
1313 return -1;
1314
1315va_found:
1316 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1317 pgidx_start, pages),
1318 "Unexpected, invalid virtual page index range,\n"
1319 " pgidx_start: 0x%lx\n"
1320 " pages: 0x%lx",
1321 pgidx_start, pages);
1322 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1323 pgidx_start, pages),
1324 "Unexpected, pages already mapped,\n"
1325 " pgidx_start: 0x%lx\n"
1326 " pages: 0x%lx",
1327 pgidx_start, pages);
1328
1329 return pgidx_start * vm->page_size;
1330}
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354{
1355 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1356
1357 virt_pgd_alloc(vm);
1358 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1359 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1360
1361
1362
1363
1364
1365 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1366
1367
1368 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1369 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1370
1371 virt_pg_map(vm, vaddr, paddr);
1372
1373 sparsebit_set(vm->vpages_mapped,
1374 vaddr >> vm->page_shift);
1375 }
1376
1377 return vaddr_start;
1378}
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1395{
1396 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1397}
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1414{
1415 return vm_vaddr_alloc_pages(vm, 1);
1416}
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1436 unsigned int npages)
1437{
1438 size_t page_size = vm->page_size;
1439 size_t size = npages * page_size;
1440
1441 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1442 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1443
1444 while (npages--) {
1445 virt_pg_map(vm, vaddr, paddr);
1446 vaddr += page_size;
1447 paddr += page_size;
1448 }
1449}
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1469{
1470 struct userspace_mem_region *region;
1471
1472 region = userspace_mem_region_find(vm, gpa, gpa);
1473 if (!region) {
1474 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1475 return NULL;
1476 }
1477
1478 return (void *)((uintptr_t)region->host_mem
1479 + (gpa - region->region.guest_phys_addr));
1480}
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1500{
1501 struct rb_node *node;
1502
1503 for (node = vm->regions.hva_tree.rb_node; node; ) {
1504 struct userspace_mem_region *region =
1505 container_of(node, struct userspace_mem_region, hva_node);
1506
1507 if (hva >= region->host_mem) {
1508 if (hva <= (region->host_mem
1509 + region->region.memory_size - 1))
1510 return (vm_paddr_t)((uintptr_t)
1511 region->region.guest_phys_addr
1512 + (hva - (uintptr_t)region->host_mem));
1513
1514 node = node->rb_right;
1515 } else
1516 node = node->rb_left;
1517 }
1518
1519 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1520 return -1;
1521}
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1544{
1545 struct userspace_mem_region *region;
1546 uintptr_t offset;
1547
1548 region = userspace_mem_region_find(vm, gpa, gpa);
1549 if (!region)
1550 return NULL;
1551
1552 if (!region->host_alias)
1553 return NULL;
1554
1555 offset = gpa - region->region.guest_phys_addr;
1556 return (void *) ((uintptr_t) region->host_alias + offset);
1557}
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571void vm_create_irqchip(struct kvm_vm *vm)
1572{
1573 int ret;
1574
1575 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1576 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1577 "rc: %i errno: %i", ret, errno);
1578
1579 vm->has_irqchip = true;
1580}
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1598{
1599 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1600 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1601
1602 return vcpu->state;
1603}
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1620{
1621 int ret = _vcpu_run(vm, vcpuid);
1622 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1623 "rc: %i errno: %i", ret, errno);
1624}
1625
1626int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1627{
1628 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1629 int rc;
1630
1631 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1632 do {
1633 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1634 } while (rc == -1 && errno == EINTR);
1635
1636 assert_on_unhandled_exception(vm, vcpuid);
1637
1638 return rc;
1639}
1640
1641int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1642{
1643 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1644
1645 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1646
1647 return vcpu->fd;
1648}
1649
1650void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1651{
1652 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1653 int ret;
1654
1655 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1656
1657 vcpu->state->immediate_exit = 1;
1658 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1659 vcpu->state->immediate_exit = 0;
1660
1661 TEST_ASSERT(ret == -1 && errno == EINTR,
1662 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1663 ret, errno);
1664}
1665
1666void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1667 struct kvm_guest_debug *debug)
1668{
1669 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1670 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1671
1672 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1673}
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1691 struct kvm_mp_state *mp_state)
1692{
1693 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1694 int ret;
1695
1696 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1697
1698 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1699 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1700 "rc: %i errno: %i", ret, errno);
1701}
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1720{
1721 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1722 int ret;
1723
1724 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n);
1725 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1726 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1727 reg_list->n = reg_list_n.n;
1728 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1729 return reg_list;
1730}
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1748{
1749 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1750 int ret;
1751
1752 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1753
1754 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1755 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1756 ret, errno);
1757}
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1775{
1776 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1777 int ret;
1778
1779 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1780
1781 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1782 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1783 ret, errno);
1784}
1785
1786#ifdef __KVM_HAVE_VCPU_EVENTS
1787void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1788 struct kvm_vcpu_events *events)
1789{
1790 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1791 int ret;
1792
1793 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1794
1795 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1796 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1797 ret, errno);
1798}
1799
1800void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1801 struct kvm_vcpu_events *events)
1802{
1803 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1804 int ret;
1805
1806 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1807
1808 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1809 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1810 ret, errno);
1811}
1812#endif
1813
1814#ifdef __x86_64__
1815void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1816 struct kvm_nested_state *state)
1817{
1818 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1819 int ret;
1820
1821 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1822
1823 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1824 TEST_ASSERT(ret == 0,
1825 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1826 ret, errno);
1827}
1828
1829int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1830 struct kvm_nested_state *state, bool ignore_error)
1831{
1832 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1833 int ret;
1834
1835 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1836
1837 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1838 if (!ignore_error) {
1839 TEST_ASSERT(ret == 0,
1840 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1841 ret, errno);
1842 }
1843
1844 return ret;
1845}
1846#endif
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1864{
1865 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1866 int ret;
1867
1868 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1869
1870 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1871 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1872 ret, errno);
1873}
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1891{
1892 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1893 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1894 "rc: %i errno: %i", ret, errno);
1895}
1896
1897int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1898{
1899 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1900
1901 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1902
1903 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1904}
1905
1906void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1907{
1908 int ret;
1909
1910 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1911 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1912 ret, errno, strerror(errno));
1913}
1914
1915void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1916{
1917 int ret;
1918
1919 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1920 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1921 ret, errno, strerror(errno));
1922}
1923
1924void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1925{
1926 int ret;
1927
1928 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1929 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1930 ret, errno, strerror(errno));
1931}
1932
1933void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1934{
1935 int ret;
1936
1937 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1938 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1939 ret, errno, strerror(errno));
1940}
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1956 unsigned long cmd, void *arg)
1957{
1958 int ret;
1959
1960 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1961 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1962 cmd, ret, errno, strerror(errno));
1963}
1964
1965int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1966 unsigned long cmd, void *arg)
1967{
1968 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1969 int ret;
1970
1971 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1972
1973 ret = ioctl(vcpu->fd, cmd, arg);
1974
1975 return ret;
1976}
1977
1978void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1979{
1980 struct vcpu *vcpu;
1981 uint32_t size = vm->dirty_ring_size;
1982
1983 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1984
1985 vcpu = vcpu_find(vm, vcpuid);
1986
1987 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1988
1989 if (!vcpu->dirty_gfns) {
1990 void *addr;
1991
1992 addr = mmap(NULL, size, PROT_READ,
1993 MAP_PRIVATE, vcpu->fd,
1994 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1995 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1996
1997 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1998 MAP_PRIVATE, vcpu->fd,
1999 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2000 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
2001
2002 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
2003 MAP_SHARED, vcpu->fd,
2004 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2005 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
2006
2007 vcpu->dirty_gfns = addr;
2008 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
2009 }
2010
2011 return vcpu->dirty_gfns;
2012}
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2027{
2028 int ret;
2029
2030 ret = _vm_ioctl(vm, cmd, arg);
2031 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
2032 cmd, ret, errno, strerror(errno));
2033}
2034
2035int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2036{
2037 return ioctl(vm->fd, cmd, arg);
2038}
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2053{
2054 int ret;
2055
2056 ret = ioctl(vm->kvm_fd, cmd, arg);
2057 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2058 cmd, ret, errno, strerror(errno));
2059}
2060
2061int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2062{
2063 return ioctl(vm->kvm_fd, cmd, arg);
2064}
2065
2066
2067
2068
2069
2070int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2071{
2072 struct kvm_device_attr attribute = {
2073 .group = group,
2074 .attr = attr,
2075 .flags = 0,
2076 };
2077
2078 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2079}
2080
2081int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2082{
2083 int ret = _kvm_device_check_attr(dev_fd, group, attr);
2084
2085 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2086 return ret;
2087}
2088
2089int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2090{
2091 struct kvm_create_device create_dev;
2092 int ret;
2093
2094 create_dev.type = type;
2095 create_dev.fd = -1;
2096 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2097 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2098 *fd = create_dev.fd;
2099 return ret;
2100}
2101
2102int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2103{
2104 int fd, ret;
2105
2106 ret = _kvm_create_device(vm, type, test, &fd);
2107
2108 if (!test) {
2109 TEST_ASSERT(!ret,
2110 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2111 return fd;
2112 }
2113 return ret;
2114}
2115
2116int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2117 void *val, bool write)
2118{
2119 struct kvm_device_attr kvmattr = {
2120 .group = group,
2121 .attr = attr,
2122 .flags = 0,
2123 .addr = (uintptr_t)val,
2124 };
2125 int ret;
2126
2127 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2128 &kvmattr);
2129 return ret;
2130}
2131
2132int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2133 void *val, bool write)
2134{
2135 int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2136
2137 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2138 return ret;
2139}
2140
2141int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2142 uint64_t attr)
2143{
2144 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2145
2146 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2147
2148 return _kvm_device_check_attr(vcpu->fd, group, attr);
2149}
2150
2151int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2152 uint64_t attr)
2153{
2154 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2155
2156 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2157 return ret;
2158}
2159
2160int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2161 uint64_t attr, void *val, bool write)
2162{
2163 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2164
2165 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2166
2167 return _kvm_device_access(vcpu->fd, group, attr, val, write);
2168}
2169
2170int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2171 uint64_t attr, void *val, bool write)
2172{
2173 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2174
2175 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2176 return ret;
2177}
2178
2179
2180
2181
2182
2183int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2184{
2185 struct kvm_irq_level irq_level = {
2186 .irq = irq,
2187 .level = level,
2188 };
2189
2190 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2191}
2192
2193void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2194{
2195 int ret = _kvm_irq_line(vm, irq, level);
2196
2197 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2198}
2199
2200struct kvm_irq_routing *kvm_gsi_routing_create(void)
2201{
2202 struct kvm_irq_routing *routing;
2203 size_t size;
2204
2205 size = sizeof(struct kvm_irq_routing);
2206
2207 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2208 routing = calloc(1, size);
2209 assert(routing);
2210
2211 return routing;
2212}
2213
2214void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2215 uint32_t gsi, uint32_t pin)
2216{
2217 int i;
2218
2219 assert(routing);
2220 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2221
2222 i = routing->nr;
2223 routing->entries[i].gsi = gsi;
2224 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2225 routing->entries[i].flags = 0;
2226 routing->entries[i].u.irqchip.irqchip = 0;
2227 routing->entries[i].u.irqchip.pin = pin;
2228 routing->nr++;
2229}
2230
2231int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2232{
2233 int ret;
2234
2235 assert(routing);
2236 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2237 free(routing);
2238
2239 return ret;
2240}
2241
2242void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2243{
2244 int ret;
2245
2246 ret = _kvm_gsi_routing_write(vm, routing);
2247 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2248 ret, errno);
2249}
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2267{
2268 int ctr;
2269 struct userspace_mem_region *region;
2270 struct vcpu *vcpu;
2271
2272 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2273 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2274 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2275 fprintf(stream, "%*sMem Regions:\n", indent, "");
2276 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2277 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2278 "host_virt: %p\n", indent + 2, "",
2279 (uint64_t) region->region.guest_phys_addr,
2280 (uint64_t) region->region.memory_size,
2281 region->host_mem);
2282 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2283 sparsebit_dump(stream, region->unused_phy_pages, 0);
2284 }
2285 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2286 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2287 fprintf(stream, "%*spgd_created: %u\n", indent, "",
2288 vm->pgd_created);
2289 if (vm->pgd_created) {
2290 fprintf(stream, "%*sVirtual Translation Tables:\n",
2291 indent + 2, "");
2292 virt_dump(stream, vm, indent + 4);
2293 }
2294 fprintf(stream, "%*sVCPUs:\n", indent, "");
2295 list_for_each_entry(vcpu, &vm->vcpus, list)
2296 vcpu_dump(stream, vm, vcpu->id, indent + 2);
2297}
2298
2299
2300static struct exit_reason {
2301 unsigned int reason;
2302 const char *name;
2303} exit_reasons_known[] = {
2304 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2305 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2306 {KVM_EXIT_IO, "IO"},
2307 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2308 {KVM_EXIT_DEBUG, "DEBUG"},
2309 {KVM_EXIT_HLT, "HLT"},
2310 {KVM_EXIT_MMIO, "MMIO"},
2311 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2312 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2313 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2314 {KVM_EXIT_INTR, "INTR"},
2315 {KVM_EXIT_SET_TPR, "SET_TPR"},
2316 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2317 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2318 {KVM_EXIT_S390_RESET, "S390_RESET"},
2319 {KVM_EXIT_DCR, "DCR"},
2320 {KVM_EXIT_NMI, "NMI"},
2321 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2322 {KVM_EXIT_OSI, "OSI"},
2323 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2324 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2325 {KVM_EXIT_X86_RDMSR, "RDMSR"},
2326 {KVM_EXIT_X86_WRMSR, "WRMSR"},
2327 {KVM_EXIT_XEN, "XEN"},
2328#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2329 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2330#endif
2331};
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348const char *exit_reason_str(unsigned int exit_reason)
2349{
2350 unsigned int n1;
2351
2352 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2353 if (exit_reason == exit_reasons_known[n1].reason)
2354 return exit_reasons_known[n1].name;
2355 }
2356
2357 return "Unknown";
2358}
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2380 vm_paddr_t paddr_min, uint32_t memslot)
2381{
2382 struct userspace_mem_region *region;
2383 sparsebit_idx_t pg, base;
2384
2385 TEST_ASSERT(num > 0, "Must allocate at least one page");
2386
2387 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2388 "not divisible by page size.\n"
2389 " paddr_min: 0x%lx page_size: 0x%x",
2390 paddr_min, vm->page_size);
2391
2392 region = memslot2region(vm, memslot);
2393 base = pg = paddr_min >> vm->page_shift;
2394
2395 do {
2396 for (; pg < base + num; ++pg) {
2397 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2398 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2399 break;
2400 }
2401 }
2402 } while (pg && pg != base + num);
2403
2404 if (pg == 0) {
2405 fprintf(stderr, "No guest physical page available, "
2406 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2407 paddr_min, vm->page_size, memslot);
2408 fputs("---- vm dump ----\n", stderr);
2409 vm_dump(stderr, vm, 2);
2410 abort();
2411 }
2412
2413 for (pg = base; pg < base + num; ++pg)
2414 sparsebit_clear(region->unused_phy_pages, pg);
2415
2416 return base * vm->page_size;
2417}
2418
2419vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2420 uint32_t memslot)
2421{
2422 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2423}
2424
2425
2426#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2427
2428vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2429{
2430 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2431}
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2446{
2447 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2448}
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2463{
2464 char val = 'N';
2465 size_t count;
2466 FILE *f;
2467
2468 if (vm == NULL) {
2469
2470 close(open_kvm_dev_path_or_exit());
2471 }
2472
2473 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2474 if (f) {
2475 count = fread(&val, sizeof(char), 1, f);
2476 TEST_ASSERT(count == 1, "Unable to read from param file.");
2477 fclose(f);
2478 }
2479
2480 return val == 'Y';
2481}
2482
2483unsigned int vm_get_page_size(struct kvm_vm *vm)
2484{
2485 return vm->page_size;
2486}
2487
2488unsigned int vm_get_page_shift(struct kvm_vm *vm)
2489{
2490 return vm->page_shift;
2491}
2492
2493unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2494{
2495 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2496}
2497
2498uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2499{
2500 return vm->max_gfn;
2501}
2502
2503int vm_get_fd(struct kvm_vm *vm)
2504{
2505 return vm->fd;
2506}
2507
2508static unsigned int vm_calc_num_pages(unsigned int num_pages,
2509 unsigned int page_shift,
2510 unsigned int new_page_shift,
2511 bool ceil)
2512{
2513 unsigned int n = 1 << (new_page_shift - page_shift);
2514
2515 if (page_shift >= new_page_shift)
2516 return num_pages * (1 << (page_shift - new_page_shift));
2517
2518 return num_pages / n + !!(ceil && num_pages % n);
2519}
2520
2521static inline int getpageshift(void)
2522{
2523 return __builtin_ffs(getpagesize()) - 1;
2524}
2525
2526unsigned int
2527vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2528{
2529 return vm_calc_num_pages(num_guest_pages,
2530 vm_guest_mode_params[mode].page_shift,
2531 getpageshift(), true);
2532}
2533
2534unsigned int
2535vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2536{
2537 return vm_calc_num_pages(num_host_pages, getpageshift(),
2538 vm_guest_mode_params[mode].page_shift, false);
2539}
2540
2541unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2542{
2543 unsigned int n;
2544 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2545 return vm_adjust_num_guest_pages(mode, n);
2546}
2547
2548int vm_get_stats_fd(struct kvm_vm *vm)
2549{
2550 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2551}
2552
2553int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2554{
2555 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2556
2557 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2558}
2559