linux/tools/testing/selftests/kvm/lib/kvm_util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/kvm_util.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#define _GNU_SOURCE /* for program_invocation_name */
   9#include "test_util.h"
  10#include "kvm_util.h"
  11#include "kvm_util_internal.h"
  12#include "processor.h"
  13
  14#include <assert.h>
  15#include <sys/mman.h>
  16#include <sys/types.h>
  17#include <sys/stat.h>
  18#include <unistd.h>
  19#include <linux/kernel.h>
  20
  21#define KVM_UTIL_MIN_PFN        2
  22
  23static int vcpu_mmap_sz(void);
  24
  25int open_path_or_exit(const char *path, int flags)
  26{
  27        int fd;
  28
  29        fd = open(path, flags);
  30        if (fd < 0) {
  31                print_skip("%s not available (errno: %d)", path, errno);
  32                exit(KSFT_SKIP);
  33        }
  34
  35        return fd;
  36}
  37
  38/*
  39 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
  40 *
  41 * Input Args:
  42 *   flags - The flags to pass when opening KVM_DEV_PATH.
  43 *
  44 * Return:
  45 *   The opened file descriptor of /dev/kvm.
  46 */
  47static int _open_kvm_dev_path_or_exit(int flags)
  48{
  49        return open_path_or_exit(KVM_DEV_PATH, flags);
  50}
  51
  52int open_kvm_dev_path_or_exit(void)
  53{
  54        return _open_kvm_dev_path_or_exit(O_RDONLY);
  55}
  56
  57/*
  58 * Capability
  59 *
  60 * Input Args:
  61 *   cap - Capability
  62 *
  63 * Output Args: None
  64 *
  65 * Return:
  66 *   On success, the Value corresponding to the capability (KVM_CAP_*)
  67 *   specified by the value of cap.  On failure a TEST_ASSERT failure
  68 *   is produced.
  69 *
  70 * Looks up and returns the value corresponding to the capability
  71 * (KVM_CAP_*) given by cap.
  72 */
  73int kvm_check_cap(long cap)
  74{
  75        int ret;
  76        int kvm_fd;
  77
  78        kvm_fd = open_kvm_dev_path_or_exit();
  79        ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
  80        TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
  81                "  rc: %i errno: %i", ret, errno);
  82
  83        close(kvm_fd);
  84
  85        return ret;
  86}
  87
  88/* VM Check Capability
  89 *
  90 * Input Args:
  91 *   vm - Virtual Machine
  92 *   cap - Capability
  93 *
  94 * Output Args: None
  95 *
  96 * Return:
  97 *   On success, the Value corresponding to the capability (KVM_CAP_*)
  98 *   specified by the value of cap.  On failure a TEST_ASSERT failure
  99 *   is produced.
 100 *
 101 * Looks up and returns the value corresponding to the capability
 102 * (KVM_CAP_*) given by cap.
 103 */
 104int vm_check_cap(struct kvm_vm *vm, long cap)
 105{
 106        int ret;
 107
 108        ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
 109        TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
 110                "  rc: %i errno: %i", ret, errno);
 111
 112        return ret;
 113}
 114
 115/* VM Enable Capability
 116 *
 117 * Input Args:
 118 *   vm - Virtual Machine
 119 *   cap - Capability
 120 *
 121 * Output Args: None
 122 *
 123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
 124 *
 125 * Enables a capability (KVM_CAP_*) on the VM.
 126 */
 127int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
 128{
 129        int ret;
 130
 131        ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
 132        TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
 133                "  rc: %i errno: %i", ret, errno);
 134
 135        return ret;
 136}
 137
 138/* VCPU Enable Capability
 139 *
 140 * Input Args:
 141 *   vm - Virtual Machine
 142 *   vcpu_id - VCPU
 143 *   cap - Capability
 144 *
 145 * Output Args: None
 146 *
 147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
 148 *
 149 * Enables a capability (KVM_CAP_*) on the VCPU.
 150 */
 151int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
 152                    struct kvm_enable_cap *cap)
 153{
 154        struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
 155        int r;
 156
 157        TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
 158
 159        r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
 160        TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
 161                        "  rc: %i, errno: %i", r, errno);
 162
 163        return r;
 164}
 165
 166void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
 167{
 168        struct kvm_enable_cap cap = { 0 };
 169
 170        cap.cap = KVM_CAP_DIRTY_LOG_RING;
 171        cap.args[0] = ring_size;
 172        vm_enable_cap(vm, &cap);
 173        vm->dirty_ring_size = ring_size;
 174}
 175
 176static void vm_open(struct kvm_vm *vm, int perm)
 177{
 178        vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
 179
 180        if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
 181                print_skip("immediate_exit not available");
 182                exit(KSFT_SKIP);
 183        }
 184
 185        vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
 186        TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
 187                "rc: %i errno: %i", vm->fd, errno);
 188}
 189
 190const char *vm_guest_mode_string(uint32_t i)
 191{
 192        static const char * const strings[] = {
 193                [VM_MODE_P52V48_4K]     = "PA-bits:52,  VA-bits:48,  4K pages",
 194                [VM_MODE_P52V48_64K]    = "PA-bits:52,  VA-bits:48, 64K pages",
 195                [VM_MODE_P48V48_4K]     = "PA-bits:48,  VA-bits:48,  4K pages",
 196                [VM_MODE_P48V48_16K]    = "PA-bits:48,  VA-bits:48, 16K pages",
 197                [VM_MODE_P48V48_64K]    = "PA-bits:48,  VA-bits:48, 64K pages",
 198                [VM_MODE_P40V48_4K]     = "PA-bits:40,  VA-bits:48,  4K pages",
 199                [VM_MODE_P40V48_16K]    = "PA-bits:40,  VA-bits:48, 16K pages",
 200                [VM_MODE_P40V48_64K]    = "PA-bits:40,  VA-bits:48, 64K pages",
 201                [VM_MODE_PXXV48_4K]     = "PA-bits:ANY, VA-bits:48,  4K pages",
 202                [VM_MODE_P47V64_4K]     = "PA-bits:47,  VA-bits:64,  4K pages",
 203                [VM_MODE_P44V64_4K]     = "PA-bits:44,  VA-bits:64,  4K pages",
 204                [VM_MODE_P36V48_4K]     = "PA-bits:36,  VA-bits:48,  4K pages",
 205                [VM_MODE_P36V48_16K]    = "PA-bits:36,  VA-bits:48, 16K pages",
 206                [VM_MODE_P36V48_64K]    = "PA-bits:36,  VA-bits:48, 64K pages",
 207                [VM_MODE_P36V47_16K]    = "PA-bits:36,  VA-bits:47, 16K pages",
 208        };
 209        _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
 210                       "Missing new mode strings?");
 211
 212        TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
 213
 214        return strings[i];
 215}
 216
 217const struct vm_guest_mode_params vm_guest_mode_params[] = {
 218        [VM_MODE_P52V48_4K]     = { 52, 48,  0x1000, 12 },
 219        [VM_MODE_P52V48_64K]    = { 52, 48, 0x10000, 16 },
 220        [VM_MODE_P48V48_4K]     = { 48, 48,  0x1000, 12 },
 221        [VM_MODE_P48V48_16K]    = { 48, 48,  0x4000, 14 },
 222        [VM_MODE_P48V48_64K]    = { 48, 48, 0x10000, 16 },
 223        [VM_MODE_P40V48_4K]     = { 40, 48,  0x1000, 12 },
 224        [VM_MODE_P40V48_16K]    = { 40, 48,  0x4000, 14 },
 225        [VM_MODE_P40V48_64K]    = { 40, 48, 0x10000, 16 },
 226        [VM_MODE_PXXV48_4K]     = {  0,  0,  0x1000, 12 },
 227        [VM_MODE_P47V64_4K]     = { 47, 64,  0x1000, 12 },
 228        [VM_MODE_P44V64_4K]     = { 44, 64,  0x1000, 12 },
 229        [VM_MODE_P36V48_4K]     = { 36, 48,  0x1000, 12 },
 230        [VM_MODE_P36V48_16K]    = { 36, 48,  0x4000, 14 },
 231        [VM_MODE_P36V48_64K]    = { 36, 48, 0x10000, 16 },
 232        [VM_MODE_P36V47_16K]    = { 36, 47,  0x4000, 14 },
 233};
 234_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
 235               "Missing new mode params?");
 236
 237/*
 238 * VM Create
 239 *
 240 * Input Args:
 241 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 242 *   phy_pages - Physical memory pages
 243 *   perm - permission
 244 *
 245 * Output Args: None
 246 *
 247 * Return:
 248 *   Pointer to opaque structure that describes the created VM.
 249 *
 250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
 251 * When phy_pages is non-zero, a memory region of phy_pages physical pages
 252 * is created and mapped starting at guest physical address 0.  The file
 253 * descriptor to control the created VM is created with the permissions
 254 * given by perm (e.g. O_RDWR).
 255 */
 256struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
 257{
 258        struct kvm_vm *vm;
 259
 260        pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
 261                 vm_guest_mode_string(mode), phy_pages, perm);
 262
 263        vm = calloc(1, sizeof(*vm));
 264        TEST_ASSERT(vm != NULL, "Insufficient Memory");
 265
 266        INIT_LIST_HEAD(&vm->vcpus);
 267        vm->regions.gpa_tree = RB_ROOT;
 268        vm->regions.hva_tree = RB_ROOT;
 269        hash_init(vm->regions.slot_hash);
 270
 271        vm->mode = mode;
 272        vm->type = 0;
 273
 274        vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
 275        vm->va_bits = vm_guest_mode_params[mode].va_bits;
 276        vm->page_size = vm_guest_mode_params[mode].page_size;
 277        vm->page_shift = vm_guest_mode_params[mode].page_shift;
 278
 279        /* Setup mode specific traits. */
 280        switch (vm->mode) {
 281        case VM_MODE_P52V48_4K:
 282                vm->pgtable_levels = 4;
 283                break;
 284        case VM_MODE_P52V48_64K:
 285                vm->pgtable_levels = 3;
 286                break;
 287        case VM_MODE_P48V48_4K:
 288                vm->pgtable_levels = 4;
 289                break;
 290        case VM_MODE_P48V48_64K:
 291                vm->pgtable_levels = 3;
 292                break;
 293        case VM_MODE_P40V48_4K:
 294        case VM_MODE_P36V48_4K:
 295                vm->pgtable_levels = 4;
 296                break;
 297        case VM_MODE_P40V48_64K:
 298        case VM_MODE_P36V48_64K:
 299                vm->pgtable_levels = 3;
 300                break;
 301        case VM_MODE_P48V48_16K:
 302        case VM_MODE_P40V48_16K:
 303        case VM_MODE_P36V48_16K:
 304                vm->pgtable_levels = 4;
 305                break;
 306        case VM_MODE_P36V47_16K:
 307                vm->pgtable_levels = 3;
 308                break;
 309        case VM_MODE_PXXV48_4K:
 310#ifdef __x86_64__
 311                kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
 312                /*
 313                 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
 314                 * it doesn't take effect unless a CR4.LA57 is set, which it
 315                 * isn't for this VM_MODE.
 316                 */
 317                TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
 318                            "Linear address width (%d bits) not supported",
 319                            vm->va_bits);
 320                pr_debug("Guest physical address width detected: %d\n",
 321                         vm->pa_bits);
 322                vm->pgtable_levels = 4;
 323                vm->va_bits = 48;
 324#else
 325                TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
 326#endif
 327                break;
 328        case VM_MODE_P47V64_4K:
 329                vm->pgtable_levels = 5;
 330                break;
 331        case VM_MODE_P44V64_4K:
 332                vm->pgtable_levels = 5;
 333                break;
 334        default:
 335                TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
 336        }
 337
 338#ifdef __aarch64__
 339        if (vm->pa_bits != 40)
 340                vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
 341#endif
 342
 343        vm_open(vm, perm);
 344
 345        /* Limit to VA-bit canonical virtual addresses. */
 346        vm->vpages_valid = sparsebit_alloc();
 347        sparsebit_set_num(vm->vpages_valid,
 348                0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 349        sparsebit_set_num(vm->vpages_valid,
 350                (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
 351                (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 352
 353        /* Limit physical addresses to PA-bits. */
 354        vm->max_gfn = vm_compute_max_gfn(vm);
 355
 356        /* Allocate and setup memory for guest. */
 357        vm->vpages_mapped = sparsebit_alloc();
 358        if (phy_pages != 0)
 359                vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
 360                                            0, 0, phy_pages, 0);
 361
 362        return vm;
 363}
 364
 365struct kvm_vm *vm_create_without_vcpus(enum vm_guest_mode mode, uint64_t pages)
 366{
 367        struct kvm_vm *vm;
 368
 369        vm = vm_create(mode, pages, O_RDWR);
 370
 371        kvm_vm_elf_load(vm, program_invocation_name);
 372
 373#ifdef __x86_64__
 374        vm_create_irqchip(vm);
 375#endif
 376        return vm;
 377}
 378
 379/*
 380 * VM Create with customized parameters
 381 *
 382 * Input Args:
 383 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 384 *   nr_vcpus - VCPU count
 385 *   slot0_mem_pages - Slot0 physical memory size
 386 *   extra_mem_pages - Non-slot0 physical memory total size
 387 *   num_percpu_pages - Per-cpu physical memory pages
 388 *   guest_code - Guest entry point
 389 *   vcpuids - VCPU IDs
 390 *
 391 * Output Args: None
 392 *
 393 * Return:
 394 *   Pointer to opaque structure that describes the created VM.
 395 *
 396 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
 397 * with customized slot0 memory size, at least 512 pages currently.
 398 * extra_mem_pages is only used to calculate the maximum page table size,
 399 * no real memory allocation for non-slot0 memory in this function.
 400 */
 401struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
 402                                    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
 403                                    uint32_t num_percpu_pages, void *guest_code,
 404                                    uint32_t vcpuids[])
 405{
 406        uint64_t vcpu_pages, extra_pg_pages, pages;
 407        struct kvm_vm *vm;
 408        int i;
 409
 410        /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
 411        if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
 412                slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
 413
 414        /* The maximum page table size for a memory region will be when the
 415         * smallest pages are used. Considering each page contains x page
 416         * table descriptors, the total extra size for page tables (for extra
 417         * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
 418         * than N/x*2.
 419         */
 420        vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
 421        extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
 422        pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
 423
 424        TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
 425                    "nr_vcpus = %d too large for host, max-vcpus = %d",
 426                    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
 427
 428        pages = vm_adjust_num_guest_pages(mode, pages);
 429
 430        vm = vm_create_without_vcpus(mode, pages);
 431
 432        for (i = 0; i < nr_vcpus; ++i) {
 433                uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
 434
 435                vm_vcpu_add_default(vm, vcpuid, guest_code);
 436        }
 437
 438        return vm;
 439}
 440
 441struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
 442                                            uint32_t num_percpu_pages, void *guest_code,
 443                                            uint32_t vcpuids[])
 444{
 445        return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
 446                                    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
 447}
 448
 449struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
 450                                 void *guest_code)
 451{
 452        return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
 453                                            (uint32_t []){ vcpuid });
 454}
 455
 456/*
 457 * VM Restart
 458 *
 459 * Input Args:
 460 *   vm - VM that has been released before
 461 *   perm - permission
 462 *
 463 * Output Args: None
 464 *
 465 * Reopens the file descriptors associated to the VM and reinstates the
 466 * global state, such as the irqchip and the memory regions that are mapped
 467 * into the guest.
 468 */
 469void kvm_vm_restart(struct kvm_vm *vmp, int perm)
 470{
 471        int ctr;
 472        struct userspace_mem_region *region;
 473
 474        vm_open(vmp, perm);
 475        if (vmp->has_irqchip)
 476                vm_create_irqchip(vmp);
 477
 478        hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
 479                int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 480                TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 481                            "  rc: %i errno: %i\n"
 482                            "  slot: %u flags: 0x%x\n"
 483                            "  guest_phys_addr: 0x%llx size: 0x%llx",
 484                            ret, errno, region->region.slot,
 485                            region->region.flags,
 486                            region->region.guest_phys_addr,
 487                            region->region.memory_size);
 488        }
 489}
 490
 491void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
 492{
 493        struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
 494        int ret;
 495
 496        ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
 497        TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
 498                    __func__, strerror(-ret));
 499}
 500
 501void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
 502                            uint64_t first_page, uint32_t num_pages)
 503{
 504        struct kvm_clear_dirty_log args = {
 505                .dirty_bitmap = log, .slot = slot,
 506                .first_page = first_page,
 507                .num_pages = num_pages
 508        };
 509        int ret;
 510
 511        ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
 512        TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
 513                    __func__, strerror(-ret));
 514}
 515
 516uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
 517{
 518        return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
 519}
 520
 521/*
 522 * Userspace Memory Region Find
 523 *
 524 * Input Args:
 525 *   vm - Virtual Machine
 526 *   start - Starting VM physical address
 527 *   end - Ending VM physical address, inclusive.
 528 *
 529 * Output Args: None
 530 *
 531 * Return:
 532 *   Pointer to overlapping region, NULL if no such region.
 533 *
 534 * Searches for a region with any physical memory that overlaps with
 535 * any portion of the guest physical addresses from start to end
 536 * inclusive.  If multiple overlapping regions exist, a pointer to any
 537 * of the regions is returned.  Null is returned only when no overlapping
 538 * region exists.
 539 */
 540static struct userspace_mem_region *
 541userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
 542{
 543        struct rb_node *node;
 544
 545        for (node = vm->regions.gpa_tree.rb_node; node; ) {
 546                struct userspace_mem_region *region =
 547                        container_of(node, struct userspace_mem_region, gpa_node);
 548                uint64_t existing_start = region->region.guest_phys_addr;
 549                uint64_t existing_end = region->region.guest_phys_addr
 550                        + region->region.memory_size - 1;
 551                if (start <= existing_end && end >= existing_start)
 552                        return region;
 553
 554                if (start < existing_start)
 555                        node = node->rb_left;
 556                else
 557                        node = node->rb_right;
 558        }
 559
 560        return NULL;
 561}
 562
 563/*
 564 * KVM Userspace Memory Region Find
 565 *
 566 * Input Args:
 567 *   vm - Virtual Machine
 568 *   start - Starting VM physical address
 569 *   end - Ending VM physical address, inclusive.
 570 *
 571 * Output Args: None
 572 *
 573 * Return:
 574 *   Pointer to overlapping region, NULL if no such region.
 575 *
 576 * Public interface to userspace_mem_region_find. Allows tests to look up
 577 * the memslot datastructure for a given range of guest physical memory.
 578 */
 579struct kvm_userspace_memory_region *
 580kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
 581                                 uint64_t end)
 582{
 583        struct userspace_mem_region *region;
 584
 585        region = userspace_mem_region_find(vm, start, end);
 586        if (!region)
 587                return NULL;
 588
 589        return &region->region;
 590}
 591
 592/*
 593 * VCPU Find
 594 *
 595 * Input Args:
 596 *   vm - Virtual Machine
 597 *   vcpuid - VCPU ID
 598 *
 599 * Output Args: None
 600 *
 601 * Return:
 602 *   Pointer to VCPU structure
 603 *
 604 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
 605 * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
 606 * for the specified vcpuid.
 607 */
 608struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
 609{
 610        struct vcpu *vcpu;
 611
 612        list_for_each_entry(vcpu, &vm->vcpus, list) {
 613                if (vcpu->id == vcpuid)
 614                        return vcpu;
 615        }
 616
 617        return NULL;
 618}
 619
 620/*
 621 * VM VCPU Remove
 622 *
 623 * Input Args:
 624 *   vcpu - VCPU to remove
 625 *
 626 * Output Args: None
 627 *
 628 * Return: None, TEST_ASSERT failures for all error conditions
 629 *
 630 * Removes a vCPU from a VM and frees its resources.
 631 */
 632static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
 633{
 634        int ret;
 635
 636        if (vcpu->dirty_gfns) {
 637                ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
 638                TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
 639                            "rc: %i errno: %i", ret, errno);
 640                vcpu->dirty_gfns = NULL;
 641        }
 642
 643        ret = munmap(vcpu->state, vcpu_mmap_sz());
 644        TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
 645                "errno: %i", ret, errno);
 646        ret = close(vcpu->fd);
 647        TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
 648                "errno: %i", ret, errno);
 649
 650        list_del(&vcpu->list);
 651        free(vcpu);
 652}
 653
 654void kvm_vm_release(struct kvm_vm *vmp)
 655{
 656        struct vcpu *vcpu, *tmp;
 657        int ret;
 658
 659        list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
 660                vm_vcpu_rm(vmp, vcpu);
 661
 662        ret = close(vmp->fd);
 663        TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
 664                "  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
 665
 666        ret = close(vmp->kvm_fd);
 667        TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
 668                "  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
 669}
 670
 671static void __vm_mem_region_delete(struct kvm_vm *vm,
 672                                   struct userspace_mem_region *region,
 673                                   bool unlink)
 674{
 675        int ret;
 676
 677        if (unlink) {
 678                rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
 679                rb_erase(&region->hva_node, &vm->regions.hva_tree);
 680                hash_del(&region->slot_node);
 681        }
 682
 683        region->region.memory_size = 0;
 684        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 685        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
 686                    "rc: %i errno: %i", ret, errno);
 687
 688        sparsebit_free(&region->unused_phy_pages);
 689        ret = munmap(region->mmap_start, region->mmap_size);
 690        TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
 691
 692        free(region);
 693}
 694
 695/*
 696 * Destroys and frees the VM pointed to by vmp.
 697 */
 698void kvm_vm_free(struct kvm_vm *vmp)
 699{
 700        int ctr;
 701        struct hlist_node *node;
 702        struct userspace_mem_region *region;
 703
 704        if (vmp == NULL)
 705                return;
 706
 707        /* Free userspace_mem_regions. */
 708        hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
 709                __vm_mem_region_delete(vmp, region, false);
 710
 711        /* Free sparsebit arrays. */
 712        sparsebit_free(&vmp->vpages_valid);
 713        sparsebit_free(&vmp->vpages_mapped);
 714
 715        kvm_vm_release(vmp);
 716
 717        /* Free the structure describing the VM. */
 718        free(vmp);
 719}
 720
 721int kvm_memfd_alloc(size_t size, bool hugepages)
 722{
 723        int memfd_flags = MFD_CLOEXEC;
 724        int fd, r;
 725
 726        if (hugepages)
 727                memfd_flags |= MFD_HUGETLB;
 728
 729        fd = memfd_create("kvm_selftest", memfd_flags);
 730        TEST_ASSERT(fd != -1, "memfd_create() failed, errno: %i (%s)",
 731                    errno, strerror(errno));
 732
 733        r = ftruncate(fd, size);
 734        TEST_ASSERT(!r, "ftruncate() failed, errno: %i (%s)", errno, strerror(errno));
 735
 736        r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
 737        TEST_ASSERT(!r, "fallocate() failed, errno: %i (%s)", errno, strerror(errno));
 738
 739        return fd;
 740}
 741
 742/*
 743 * Memory Compare, host virtual to guest virtual
 744 *
 745 * Input Args:
 746 *   hva - Starting host virtual address
 747 *   vm - Virtual Machine
 748 *   gva - Starting guest virtual address
 749 *   len - number of bytes to compare
 750 *
 751 * Output Args: None
 752 *
 753 * Input/Output Args: None
 754 *
 755 * Return:
 756 *   Returns 0 if the bytes starting at hva for a length of len
 757 *   are equal the guest virtual bytes starting at gva.  Returns
 758 *   a value < 0, if bytes at hva are less than those at gva.
 759 *   Otherwise a value > 0 is returned.
 760 *
 761 * Compares the bytes starting at the host virtual address hva, for
 762 * a length of len, to the guest bytes starting at the guest virtual
 763 * address given by gva.
 764 */
 765int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
 766{
 767        size_t amt;
 768
 769        /*
 770         * Compare a batch of bytes until either a match is found
 771         * or all the bytes have been compared.
 772         */
 773        for (uintptr_t offset = 0; offset < len; offset += amt) {
 774                uintptr_t ptr1 = (uintptr_t)hva + offset;
 775
 776                /*
 777                 * Determine host address for guest virtual address
 778                 * at offset.
 779                 */
 780                uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
 781
 782                /*
 783                 * Determine amount to compare on this pass.
 784                 * Don't allow the comparsion to cross a page boundary.
 785                 */
 786                amt = len - offset;
 787                if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
 788                        amt = vm->page_size - (ptr1 % vm->page_size);
 789                if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
 790                        amt = vm->page_size - (ptr2 % vm->page_size);
 791
 792                assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
 793                assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
 794
 795                /*
 796                 * Perform the comparison.  If there is a difference
 797                 * return that result to the caller, otherwise need
 798                 * to continue on looking for a mismatch.
 799                 */
 800                int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
 801                if (ret != 0)
 802                        return ret;
 803        }
 804
 805        /*
 806         * No mismatch found.  Let the caller know the two memory
 807         * areas are equal.
 808         */
 809        return 0;
 810}
 811
 812static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
 813                                               struct userspace_mem_region *region)
 814{
 815        struct rb_node **cur, *parent;
 816
 817        for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
 818                struct userspace_mem_region *cregion;
 819
 820                cregion = container_of(*cur, typeof(*cregion), gpa_node);
 821                parent = *cur;
 822                if (region->region.guest_phys_addr <
 823                    cregion->region.guest_phys_addr)
 824                        cur = &(*cur)->rb_left;
 825                else {
 826                        TEST_ASSERT(region->region.guest_phys_addr !=
 827                                    cregion->region.guest_phys_addr,
 828                                    "Duplicate GPA in region tree");
 829
 830                        cur = &(*cur)->rb_right;
 831                }
 832        }
 833
 834        rb_link_node(&region->gpa_node, parent, cur);
 835        rb_insert_color(&region->gpa_node, gpa_tree);
 836}
 837
 838static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
 839                                               struct userspace_mem_region *region)
 840{
 841        struct rb_node **cur, *parent;
 842
 843        for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
 844                struct userspace_mem_region *cregion;
 845
 846                cregion = container_of(*cur, typeof(*cregion), hva_node);
 847                parent = *cur;
 848                if (region->host_mem < cregion->host_mem)
 849                        cur = &(*cur)->rb_left;
 850                else {
 851                        TEST_ASSERT(region->host_mem !=
 852                                    cregion->host_mem,
 853                                    "Duplicate HVA in region tree");
 854
 855                        cur = &(*cur)->rb_right;
 856                }
 857        }
 858
 859        rb_link_node(&region->hva_node, parent, cur);
 860        rb_insert_color(&region->hva_node, hva_tree);
 861}
 862
 863
 864int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 865                                uint64_t gpa, uint64_t size, void *hva)
 866{
 867        struct kvm_userspace_memory_region region = {
 868                .slot = slot,
 869                .flags = flags,
 870                .guest_phys_addr = gpa,
 871                .memory_size = size,
 872                .userspace_addr = (uintptr_t)hva,
 873        };
 874
 875        return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
 876}
 877
 878void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 879                               uint64_t gpa, uint64_t size, void *hva)
 880{
 881        int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
 882
 883        TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
 884                    errno, strerror(errno));
 885}
 886
 887/*
 888 * VM Userspace Memory Region Add
 889 *
 890 * Input Args:
 891 *   vm - Virtual Machine
 892 *   src_type - Storage source for this region.
 893 *              NULL to use anonymous memory.
 894 *   guest_paddr - Starting guest physical address
 895 *   slot - KVM region slot
 896 *   npages - Number of physical pages
 897 *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
 898 *
 899 * Output Args: None
 900 *
 901 * Return: None
 902 *
 903 * Allocates a memory area of the number of pages specified by npages
 904 * and maps it to the VM specified by vm, at a starting physical address
 905 * given by guest_paddr.  The region is created with a KVM region slot
 906 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
 907 * region is created with the flags given by flags.
 908 */
 909void vm_userspace_mem_region_add(struct kvm_vm *vm,
 910        enum vm_mem_backing_src_type src_type,
 911        uint64_t guest_paddr, uint32_t slot, uint64_t npages,
 912        uint32_t flags)
 913{
 914        int ret;
 915        struct userspace_mem_region *region;
 916        size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
 917        size_t alignment;
 918
 919        TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
 920                "Number of guest pages is not compatible with the host. "
 921                "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
 922
 923        TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
 924                "address not on a page boundary.\n"
 925                "  guest_paddr: 0x%lx vm->page_size: 0x%x",
 926                guest_paddr, vm->page_size);
 927        TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
 928                <= vm->max_gfn, "Physical range beyond maximum "
 929                "supported physical address,\n"
 930                "  guest_paddr: 0x%lx npages: 0x%lx\n"
 931                "  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 932                guest_paddr, npages, vm->max_gfn, vm->page_size);
 933
 934        /*
 935         * Confirm a mem region with an overlapping address doesn't
 936         * already exist.
 937         */
 938        region = (struct userspace_mem_region *) userspace_mem_region_find(
 939                vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
 940        if (region != NULL)
 941                TEST_FAIL("overlapping userspace_mem_region already "
 942                        "exists\n"
 943                        "  requested guest_paddr: 0x%lx npages: 0x%lx "
 944                        "page_size: 0x%x\n"
 945                        "  existing guest_paddr: 0x%lx size: 0x%lx",
 946                        guest_paddr, npages, vm->page_size,
 947                        (uint64_t) region->region.guest_phys_addr,
 948                        (uint64_t) region->region.memory_size);
 949
 950        /* Confirm no region with the requested slot already exists. */
 951        hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
 952                               slot) {
 953                if (region->region.slot != slot)
 954                        continue;
 955
 956                TEST_FAIL("A mem region with the requested slot "
 957                        "already exists.\n"
 958                        "  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
 959                        "  existing slot: %u paddr: 0x%lx size: 0x%lx",
 960                        slot, guest_paddr, npages,
 961                        region->region.slot,
 962                        (uint64_t) region->region.guest_phys_addr,
 963                        (uint64_t) region->region.memory_size);
 964        }
 965
 966        /* Allocate and initialize new mem region structure. */
 967        region = calloc(1, sizeof(*region));
 968        TEST_ASSERT(region != NULL, "Insufficient Memory");
 969        region->mmap_size = npages * vm->page_size;
 970
 971#ifdef __s390x__
 972        /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
 973        alignment = 0x100000;
 974#else
 975        alignment = 1;
 976#endif
 977
 978        /*
 979         * When using THP mmap is not guaranteed to returned a hugepage aligned
 980         * address so we have to pad the mmap. Padding is not needed for HugeTLB
 981         * because mmap will always return an address aligned to the HugeTLB
 982         * page size.
 983         */
 984        if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
 985                alignment = max(backing_src_pagesz, alignment);
 986
 987        ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
 988
 989        /* Add enough memory to align up if necessary */
 990        if (alignment > 1)
 991                region->mmap_size += alignment;
 992
 993        region->fd = -1;
 994        if (backing_src_is_shared(src_type))
 995                region->fd = kvm_memfd_alloc(region->mmap_size,
 996                                             src_type == VM_MEM_SRC_SHARED_HUGETLB);
 997
 998        region->mmap_start = mmap(NULL, region->mmap_size,
 999                                  PROT_READ | PROT_WRITE,
1000                                  vm_mem_backing_src_alias(src_type)->flag,
1001                                  region->fd, 0);
1002        TEST_ASSERT(region->mmap_start != MAP_FAILED,
1003                    "test_malloc failed, mmap_start: %p errno: %i",
1004                    region->mmap_start, errno);
1005
1006        TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1007                    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1008                    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1009                    region->mmap_start, backing_src_pagesz);
1010
1011        /* Align host address */
1012        region->host_mem = align_ptr_up(region->mmap_start, alignment);
1013
1014        /* As needed perform madvise */
1015        if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1016             src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1017                ret = madvise(region->host_mem, npages * vm->page_size,
1018                              src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1019                TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1020                            region->host_mem, npages * vm->page_size,
1021                            vm_mem_backing_src_alias(src_type)->name);
1022        }
1023
1024        region->unused_phy_pages = sparsebit_alloc();
1025        sparsebit_set_num(region->unused_phy_pages,
1026                guest_paddr >> vm->page_shift, npages);
1027        region->region.slot = slot;
1028        region->region.flags = flags;
1029        region->region.guest_phys_addr = guest_paddr;
1030        region->region.memory_size = npages * vm->page_size;
1031        region->region.userspace_addr = (uintptr_t) region->host_mem;
1032        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1033        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1034                "  rc: %i errno: %i\n"
1035                "  slot: %u flags: 0x%x\n"
1036                "  guest_phys_addr: 0x%lx size: 0x%lx",
1037                ret, errno, slot, flags,
1038                guest_paddr, (uint64_t) region->region.memory_size);
1039
1040        /* Add to quick lookup data structures */
1041        vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1042        vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1043        hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1044
1045        /* If shared memory, create an alias. */
1046        if (region->fd >= 0) {
1047                region->mmap_alias = mmap(NULL, region->mmap_size,
1048                                          PROT_READ | PROT_WRITE,
1049                                          vm_mem_backing_src_alias(src_type)->flag,
1050                                          region->fd, 0);
1051                TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1052                            "mmap of alias failed, errno: %i", errno);
1053
1054                /* Align host alias address */
1055                region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1056        }
1057}
1058
1059/*
1060 * Memslot to region
1061 *
1062 * Input Args:
1063 *   vm - Virtual Machine
1064 *   memslot - KVM memory slot ID
1065 *
1066 * Output Args: None
1067 *
1068 * Return:
1069 *   Pointer to memory region structure that describe memory region
1070 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1071 *   on error (e.g. currently no memory region using memslot as a KVM
1072 *   memory slot ID).
1073 */
1074struct userspace_mem_region *
1075memslot2region(struct kvm_vm *vm, uint32_t memslot)
1076{
1077        struct userspace_mem_region *region;
1078
1079        hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1080                               memslot)
1081                if (region->region.slot == memslot)
1082                        return region;
1083
1084        fprintf(stderr, "No mem region with the requested slot found,\n"
1085                "  requested slot: %u\n", memslot);
1086        fputs("---- vm dump ----\n", stderr);
1087        vm_dump(stderr, vm, 2);
1088        TEST_FAIL("Mem region not found");
1089        return NULL;
1090}
1091
1092/*
1093 * VM Memory Region Flags Set
1094 *
1095 * Input Args:
1096 *   vm - Virtual Machine
1097 *   flags - Starting guest physical address
1098 *
1099 * Output Args: None
1100 *
1101 * Return: None
1102 *
1103 * Sets the flags of the memory region specified by the value of slot,
1104 * to the values given by flags.
1105 */
1106void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1107{
1108        int ret;
1109        struct userspace_mem_region *region;
1110
1111        region = memslot2region(vm, slot);
1112
1113        region->region.flags = flags;
1114
1115        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1116
1117        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1118                "  rc: %i errno: %i slot: %u flags: 0x%x",
1119                ret, errno, slot, flags);
1120}
1121
1122/*
1123 * VM Memory Region Move
1124 *
1125 * Input Args:
1126 *   vm - Virtual Machine
1127 *   slot - Slot of the memory region to move
1128 *   new_gpa - Starting guest physical address
1129 *
1130 * Output Args: None
1131 *
1132 * Return: None
1133 *
1134 * Change the gpa of a memory region.
1135 */
1136void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1137{
1138        struct userspace_mem_region *region;
1139        int ret;
1140
1141        region = memslot2region(vm, slot);
1142
1143        region->region.guest_phys_addr = new_gpa;
1144
1145        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1146
1147        TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1148                    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1149                    ret, errno, slot, new_gpa);
1150}
1151
1152/*
1153 * VM Memory Region Delete
1154 *
1155 * Input Args:
1156 *   vm - Virtual Machine
1157 *   slot - Slot of the memory region to delete
1158 *
1159 * Output Args: None
1160 *
1161 * Return: None
1162 *
1163 * Delete a memory region.
1164 */
1165void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1166{
1167        __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1168}
1169
1170/*
1171 * VCPU mmap Size
1172 *
1173 * Input Args: None
1174 *
1175 * Output Args: None
1176 *
1177 * Return:
1178 *   Size of VCPU state
1179 *
1180 * Returns the size of the structure pointed to by the return value
1181 * of vcpu_state().
1182 */
1183static int vcpu_mmap_sz(void)
1184{
1185        int dev_fd, ret;
1186
1187        dev_fd = open_kvm_dev_path_or_exit();
1188
1189        ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1190        TEST_ASSERT(ret >= sizeof(struct kvm_run),
1191                "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1192                __func__, ret, errno);
1193
1194        close(dev_fd);
1195
1196        return ret;
1197}
1198
1199/*
1200 * VM VCPU Add
1201 *
1202 * Input Args:
1203 *   vm - Virtual Machine
1204 *   vcpuid - VCPU ID
1205 *
1206 * Output Args: None
1207 *
1208 * Return: None
1209 *
1210 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1211 * No additional VCPU setup is done.
1212 */
1213void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1214{
1215        struct vcpu *vcpu;
1216
1217        /* Confirm a vcpu with the specified id doesn't already exist. */
1218        vcpu = vcpu_find(vm, vcpuid);
1219        if (vcpu != NULL)
1220                TEST_FAIL("vcpu with the specified id "
1221                        "already exists,\n"
1222                        "  requested vcpuid: %u\n"
1223                        "  existing vcpuid: %u state: %p",
1224                        vcpuid, vcpu->id, vcpu->state);
1225
1226        /* Allocate and initialize new vcpu structure. */
1227        vcpu = calloc(1, sizeof(*vcpu));
1228        TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1229        vcpu->id = vcpuid;
1230        vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1231        TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1232                vcpu->fd, errno);
1233
1234        TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1235                "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1236                vcpu_mmap_sz(), sizeof(*vcpu->state));
1237        vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1238                PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1239        TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1240                "vcpu id: %u errno: %i", vcpuid, errno);
1241
1242        /* Add to linked-list of VCPUs. */
1243        list_add(&vcpu->list, &vm->vcpus);
1244}
1245
1246/*
1247 * VM Virtual Address Unused Gap
1248 *
1249 * Input Args:
1250 *   vm - Virtual Machine
1251 *   sz - Size (bytes)
1252 *   vaddr_min - Minimum Virtual Address
1253 *
1254 * Output Args: None
1255 *
1256 * Return:
1257 *   Lowest virtual address at or below vaddr_min, with at least
1258 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1259 *   size sz is available.
1260 *
1261 * Within the VM specified by vm, locates the lowest starting virtual
1262 * address >= vaddr_min, that has at least sz unallocated bytes.  A
1263 * TEST_ASSERT failure occurs for invalid input or no area of at least
1264 * sz unallocated bytes >= vaddr_min is available.
1265 */
1266static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1267                                      vm_vaddr_t vaddr_min)
1268{
1269        uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1270
1271        /* Determine lowest permitted virtual page index. */
1272        uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1273        if ((pgidx_start * vm->page_size) < vaddr_min)
1274                goto no_va_found;
1275
1276        /* Loop over section with enough valid virtual page indexes. */
1277        if (!sparsebit_is_set_num(vm->vpages_valid,
1278                pgidx_start, pages))
1279                pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1280                        pgidx_start, pages);
1281        do {
1282                /*
1283                 * Are there enough unused virtual pages available at
1284                 * the currently proposed starting virtual page index.
1285                 * If not, adjust proposed starting index to next
1286                 * possible.
1287                 */
1288                if (sparsebit_is_clear_num(vm->vpages_mapped,
1289                        pgidx_start, pages))
1290                        goto va_found;
1291                pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1292                        pgidx_start, pages);
1293                if (pgidx_start == 0)
1294                        goto no_va_found;
1295
1296                /*
1297                 * If needed, adjust proposed starting virtual address,
1298                 * to next range of valid virtual addresses.
1299                 */
1300                if (!sparsebit_is_set_num(vm->vpages_valid,
1301                        pgidx_start, pages)) {
1302                        pgidx_start = sparsebit_next_set_num(
1303                                vm->vpages_valid, pgidx_start, pages);
1304                        if (pgidx_start == 0)
1305                                goto no_va_found;
1306                }
1307        } while (pgidx_start != 0);
1308
1309no_va_found:
1310        TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1311
1312        /* NOT REACHED */
1313        return -1;
1314
1315va_found:
1316        TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1317                pgidx_start, pages),
1318                "Unexpected, invalid virtual page index range,\n"
1319                "  pgidx_start: 0x%lx\n"
1320                "  pages: 0x%lx",
1321                pgidx_start, pages);
1322        TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1323                pgidx_start, pages),
1324                "Unexpected, pages already mapped,\n"
1325                "  pgidx_start: 0x%lx\n"
1326                "  pages: 0x%lx",
1327                pgidx_start, pages);
1328
1329        return pgidx_start * vm->page_size;
1330}
1331
1332/*
1333 * VM Virtual Address Allocate
1334 *
1335 * Input Args:
1336 *   vm - Virtual Machine
1337 *   sz - Size in bytes
1338 *   vaddr_min - Minimum starting virtual address
1339 *   data_memslot - Memory region slot for data pages
1340 *   pgd_memslot - Memory region slot for new virtual translation tables
1341 *
1342 * Output Args: None
1343 *
1344 * Return:
1345 *   Starting guest virtual address
1346 *
1347 * Allocates at least sz bytes within the virtual address space of the vm
1348 * given by vm.  The allocated bytes are mapped to a virtual address >=
1349 * the address given by vaddr_min.  Note that each allocation uses a
1350 * a unique set of pages, with the minimum real allocation being at least
1351 * a page.
1352 */
1353vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354{
1355        uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1356
1357        virt_pgd_alloc(vm);
1358        vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1359                                              KVM_UTIL_MIN_PFN * vm->page_size, 0);
1360
1361        /*
1362         * Find an unused range of virtual page addresses of at least
1363         * pages in length.
1364         */
1365        vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1366
1367        /* Map the virtual pages. */
1368        for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1369                pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1370
1371                virt_pg_map(vm, vaddr, paddr);
1372
1373                sparsebit_set(vm->vpages_mapped,
1374                        vaddr >> vm->page_shift);
1375        }
1376
1377        return vaddr_start;
1378}
1379
1380/*
1381 * VM Virtual Address Allocate Pages
1382 *
1383 * Input Args:
1384 *   vm - Virtual Machine
1385 *
1386 * Output Args: None
1387 *
1388 * Return:
1389 *   Starting guest virtual address
1390 *
1391 * Allocates at least N system pages worth of bytes within the virtual address
1392 * space of the vm.
1393 */
1394vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1395{
1396        return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1397}
1398
1399/*
1400 * VM Virtual Address Allocate Page
1401 *
1402 * Input Args:
1403 *   vm - Virtual Machine
1404 *
1405 * Output Args: None
1406 *
1407 * Return:
1408 *   Starting guest virtual address
1409 *
1410 * Allocates at least one system page worth of bytes within the virtual address
1411 * space of the vm.
1412 */
1413vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1414{
1415        return vm_vaddr_alloc_pages(vm, 1);
1416}
1417
1418/*
1419 * Map a range of VM virtual address to the VM's physical address
1420 *
1421 * Input Args:
1422 *   vm - Virtual Machine
1423 *   vaddr - Virtuall address to map
1424 *   paddr - VM Physical Address
1425 *   npages - The number of pages to map
1426 *   pgd_memslot - Memory region slot for new virtual translation tables
1427 *
1428 * Output Args: None
1429 *
1430 * Return: None
1431 *
1432 * Within the VM given by @vm, creates a virtual translation for
1433 * @npages starting at @vaddr to the page range starting at @paddr.
1434 */
1435void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1436              unsigned int npages)
1437{
1438        size_t page_size = vm->page_size;
1439        size_t size = npages * page_size;
1440
1441        TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1442        TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1443
1444        while (npages--) {
1445                virt_pg_map(vm, vaddr, paddr);
1446                vaddr += page_size;
1447                paddr += page_size;
1448        }
1449}
1450
1451/*
1452 * Address VM Physical to Host Virtual
1453 *
1454 * Input Args:
1455 *   vm - Virtual Machine
1456 *   gpa - VM physical address
1457 *
1458 * Output Args: None
1459 *
1460 * Return:
1461 *   Equivalent host virtual address
1462 *
1463 * Locates the memory region containing the VM physical address given
1464 * by gpa, within the VM given by vm.  When found, the host virtual
1465 * address providing the memory to the vm physical address is returned.
1466 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1467 */
1468void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1469{
1470        struct userspace_mem_region *region;
1471
1472        region = userspace_mem_region_find(vm, gpa, gpa);
1473        if (!region) {
1474                TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1475                return NULL;
1476        }
1477
1478        return (void *)((uintptr_t)region->host_mem
1479                + (gpa - region->region.guest_phys_addr));
1480}
1481
1482/*
1483 * Address Host Virtual to VM Physical
1484 *
1485 * Input Args:
1486 *   vm - Virtual Machine
1487 *   hva - Host virtual address
1488 *
1489 * Output Args: None
1490 *
1491 * Return:
1492 *   Equivalent VM physical address
1493 *
1494 * Locates the memory region containing the host virtual address given
1495 * by hva, within the VM given by vm.  When found, the equivalent
1496 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1497 * region containing hva exists.
1498 */
1499vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1500{
1501        struct rb_node *node;
1502
1503        for (node = vm->regions.hva_tree.rb_node; node; ) {
1504                struct userspace_mem_region *region =
1505                        container_of(node, struct userspace_mem_region, hva_node);
1506
1507                if (hva >= region->host_mem) {
1508                        if (hva <= (region->host_mem
1509                                + region->region.memory_size - 1))
1510                                return (vm_paddr_t)((uintptr_t)
1511                                        region->region.guest_phys_addr
1512                                        + (hva - (uintptr_t)region->host_mem));
1513
1514                        node = node->rb_right;
1515                } else
1516                        node = node->rb_left;
1517        }
1518
1519        TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1520        return -1;
1521}
1522
1523/*
1524 * Address VM physical to Host Virtual *alias*.
1525 *
1526 * Input Args:
1527 *   vm - Virtual Machine
1528 *   gpa - VM physical address
1529 *
1530 * Output Args: None
1531 *
1532 * Return:
1533 *   Equivalent address within the host virtual *alias* area, or NULL
1534 *   (without failing the test) if the guest memory is not shared (so
1535 *   no alias exists).
1536 *
1537 * When vm_create() and related functions are called with a shared memory
1538 * src_type, we also create a writable, shared alias mapping of the
1539 * underlying guest memory. This allows the host to manipulate guest memory
1540 * without mapping that memory in the guest's address space. And, for
1541 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1542 */
1543void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1544{
1545        struct userspace_mem_region *region;
1546        uintptr_t offset;
1547
1548        region = userspace_mem_region_find(vm, gpa, gpa);
1549        if (!region)
1550                return NULL;
1551
1552        if (!region->host_alias)
1553                return NULL;
1554
1555        offset = gpa - region->region.guest_phys_addr;
1556        return (void *) ((uintptr_t) region->host_alias + offset);
1557}
1558
1559/*
1560 * VM Create IRQ Chip
1561 *
1562 * Input Args:
1563 *   vm - Virtual Machine
1564 *
1565 * Output Args: None
1566 *
1567 * Return: None
1568 *
1569 * Creates an interrupt controller chip for the VM specified by vm.
1570 */
1571void vm_create_irqchip(struct kvm_vm *vm)
1572{
1573        int ret;
1574
1575        ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1576        TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1577                "rc: %i errno: %i", ret, errno);
1578
1579        vm->has_irqchip = true;
1580}
1581
1582/*
1583 * VM VCPU State
1584 *
1585 * Input Args:
1586 *   vm - Virtual Machine
1587 *   vcpuid - VCPU ID
1588 *
1589 * Output Args: None
1590 *
1591 * Return:
1592 *   Pointer to structure that describes the state of the VCPU.
1593 *
1594 * Locates and returns a pointer to a structure that describes the
1595 * state of the VCPU with the given vcpuid.
1596 */
1597struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1598{
1599        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1600        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1601
1602        return vcpu->state;
1603}
1604
1605/*
1606 * VM VCPU Run
1607 *
1608 * Input Args:
1609 *   vm - Virtual Machine
1610 *   vcpuid - VCPU ID
1611 *
1612 * Output Args: None
1613 *
1614 * Return: None
1615 *
1616 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1617 * given by vm.
1618 */
1619void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1620{
1621        int ret = _vcpu_run(vm, vcpuid);
1622        TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1623                "rc: %i errno: %i", ret, errno);
1624}
1625
1626int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1627{
1628        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1629        int rc;
1630
1631        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1632        do {
1633                rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1634        } while (rc == -1 && errno == EINTR);
1635
1636        assert_on_unhandled_exception(vm, vcpuid);
1637
1638        return rc;
1639}
1640
1641int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1642{
1643        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1644
1645        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1646
1647        return vcpu->fd;
1648}
1649
1650void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1651{
1652        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1653        int ret;
1654
1655        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1656
1657        vcpu->state->immediate_exit = 1;
1658        ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1659        vcpu->state->immediate_exit = 0;
1660
1661        TEST_ASSERT(ret == -1 && errno == EINTR,
1662                    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1663                    ret, errno);
1664}
1665
1666void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1667                          struct kvm_guest_debug *debug)
1668{
1669        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1670        int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1671
1672        TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1673}
1674
1675/*
1676 * VM VCPU Set MP State
1677 *
1678 * Input Args:
1679 *   vm - Virtual Machine
1680 *   vcpuid - VCPU ID
1681 *   mp_state - mp_state to be set
1682 *
1683 * Output Args: None
1684 *
1685 * Return: None
1686 *
1687 * Sets the MP state of the VCPU given by vcpuid, to the state given
1688 * by mp_state.
1689 */
1690void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1691                       struct kvm_mp_state *mp_state)
1692{
1693        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1694        int ret;
1695
1696        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1697
1698        ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1699        TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1700                "rc: %i errno: %i", ret, errno);
1701}
1702
1703/*
1704 * VM VCPU Get Reg List
1705 *
1706 * Input Args:
1707 *   vm - Virtual Machine
1708 *   vcpuid - VCPU ID
1709 *
1710 * Output Args:
1711 *   None
1712 *
1713 * Return:
1714 *   A pointer to an allocated struct kvm_reg_list
1715 *
1716 * Get the list of guest registers which are supported for
1717 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1718 */
1719struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1720{
1721        struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1722        int ret;
1723
1724        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1725        TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1726        reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1727        reg_list->n = reg_list_n.n;
1728        vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1729        return reg_list;
1730}
1731
1732/*
1733 * VM VCPU Regs Get
1734 *
1735 * Input Args:
1736 *   vm - Virtual Machine
1737 *   vcpuid - VCPU ID
1738 *
1739 * Output Args:
1740 *   regs - current state of VCPU regs
1741 *
1742 * Return: None
1743 *
1744 * Obtains the current register state for the VCPU specified by vcpuid
1745 * and stores it at the location given by regs.
1746 */
1747void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1748{
1749        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1750        int ret;
1751
1752        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1753
1754        ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1755        TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1756                ret, errno);
1757}
1758
1759/*
1760 * VM VCPU Regs Set
1761 *
1762 * Input Args:
1763 *   vm - Virtual Machine
1764 *   vcpuid - VCPU ID
1765 *   regs - Values to set VCPU regs to
1766 *
1767 * Output Args: None
1768 *
1769 * Return: None
1770 *
1771 * Sets the regs of the VCPU specified by vcpuid to the values
1772 * given by regs.
1773 */
1774void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1775{
1776        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1777        int ret;
1778
1779        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1780
1781        ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1782        TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1783                ret, errno);
1784}
1785
1786#ifdef __KVM_HAVE_VCPU_EVENTS
1787void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1788                     struct kvm_vcpu_events *events)
1789{
1790        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1791        int ret;
1792
1793        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1794
1795        ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1796        TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1797                ret, errno);
1798}
1799
1800void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1801                     struct kvm_vcpu_events *events)
1802{
1803        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1804        int ret;
1805
1806        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1807
1808        ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1809        TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1810                ret, errno);
1811}
1812#endif
1813
1814#ifdef __x86_64__
1815void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1816                           struct kvm_nested_state *state)
1817{
1818        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1819        int ret;
1820
1821        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1822
1823        ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1824        TEST_ASSERT(ret == 0,
1825                "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1826                ret, errno);
1827}
1828
1829int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1830                          struct kvm_nested_state *state, bool ignore_error)
1831{
1832        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1833        int ret;
1834
1835        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1836
1837        ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1838        if (!ignore_error) {
1839                TEST_ASSERT(ret == 0,
1840                        "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1841                        ret, errno);
1842        }
1843
1844        return ret;
1845}
1846#endif
1847
1848/*
1849 * VM VCPU System Regs Get
1850 *
1851 * Input Args:
1852 *   vm - Virtual Machine
1853 *   vcpuid - VCPU ID
1854 *
1855 * Output Args:
1856 *   sregs - current state of VCPU system regs
1857 *
1858 * Return: None
1859 *
1860 * Obtains the current system register state for the VCPU specified by
1861 * vcpuid and stores it at the location given by sregs.
1862 */
1863void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1864{
1865        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1866        int ret;
1867
1868        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1869
1870        ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1871        TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1872                ret, errno);
1873}
1874
1875/*
1876 * VM VCPU System Regs Set
1877 *
1878 * Input Args:
1879 *   vm - Virtual Machine
1880 *   vcpuid - VCPU ID
1881 *   sregs - Values to set VCPU system regs to
1882 *
1883 * Output Args: None
1884 *
1885 * Return: None
1886 *
1887 * Sets the system regs of the VCPU specified by vcpuid to the values
1888 * given by sregs.
1889 */
1890void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1891{
1892        int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1893        TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1894                "rc: %i errno: %i", ret, errno);
1895}
1896
1897int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1898{
1899        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1900
1901        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1902
1903        return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1904}
1905
1906void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1907{
1908        int ret;
1909
1910        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1911        TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1912                    ret, errno, strerror(errno));
1913}
1914
1915void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1916{
1917        int ret;
1918
1919        ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1920        TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1921                    ret, errno, strerror(errno));
1922}
1923
1924void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1925{
1926        int ret;
1927
1928        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1929        TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1930                    ret, errno, strerror(errno));
1931}
1932
1933void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1934{
1935        int ret;
1936
1937        ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1938        TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1939                    ret, errno, strerror(errno));
1940}
1941
1942/*
1943 * VCPU Ioctl
1944 *
1945 * Input Args:
1946 *   vm - Virtual Machine
1947 *   vcpuid - VCPU ID
1948 *   cmd - Ioctl number
1949 *   arg - Argument to pass to the ioctl
1950 *
1951 * Return: None
1952 *
1953 * Issues an arbitrary ioctl on a VCPU fd.
1954 */
1955void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1956                unsigned long cmd, void *arg)
1957{
1958        int ret;
1959
1960        ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1961        TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1962                cmd, ret, errno, strerror(errno));
1963}
1964
1965int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1966                unsigned long cmd, void *arg)
1967{
1968        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1969        int ret;
1970
1971        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1972
1973        ret = ioctl(vcpu->fd, cmd, arg);
1974
1975        return ret;
1976}
1977
1978void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1979{
1980        struct vcpu *vcpu;
1981        uint32_t size = vm->dirty_ring_size;
1982
1983        TEST_ASSERT(size > 0, "Should enable dirty ring first");
1984
1985        vcpu = vcpu_find(vm, vcpuid);
1986
1987        TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1988
1989        if (!vcpu->dirty_gfns) {
1990                void *addr;
1991
1992                addr = mmap(NULL, size, PROT_READ,
1993                            MAP_PRIVATE, vcpu->fd,
1994                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1995                TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1996
1997                addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1998                            MAP_PRIVATE, vcpu->fd,
1999                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2000                TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
2001
2002                addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
2003                            MAP_SHARED, vcpu->fd,
2004                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2005                TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
2006
2007                vcpu->dirty_gfns = addr;
2008                vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
2009        }
2010
2011        return vcpu->dirty_gfns;
2012}
2013
2014/*
2015 * VM Ioctl
2016 *
2017 * Input Args:
2018 *   vm - Virtual Machine
2019 *   cmd - Ioctl number
2020 *   arg - Argument to pass to the ioctl
2021 *
2022 * Return: None
2023 *
2024 * Issues an arbitrary ioctl on a VM fd.
2025 */
2026void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2027{
2028        int ret;
2029
2030        ret = _vm_ioctl(vm, cmd, arg);
2031        TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
2032                cmd, ret, errno, strerror(errno));
2033}
2034
2035int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2036{
2037        return ioctl(vm->fd, cmd, arg);
2038}
2039
2040/*
2041 * KVM system ioctl
2042 *
2043 * Input Args:
2044 *   vm - Virtual Machine
2045 *   cmd - Ioctl number
2046 *   arg - Argument to pass to the ioctl
2047 *
2048 * Return: None
2049 *
2050 * Issues an arbitrary ioctl on a KVM fd.
2051 */
2052void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2053{
2054        int ret;
2055
2056        ret = ioctl(vm->kvm_fd, cmd, arg);
2057        TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2058                cmd, ret, errno, strerror(errno));
2059}
2060
2061int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2062{
2063        return ioctl(vm->kvm_fd, cmd, arg);
2064}
2065
2066/*
2067 * Device Ioctl
2068 */
2069
2070int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2071{
2072        struct kvm_device_attr attribute = {
2073                .group = group,
2074                .attr = attr,
2075                .flags = 0,
2076        };
2077
2078        return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2079}
2080
2081int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2082{
2083        int ret = _kvm_device_check_attr(dev_fd, group, attr);
2084
2085        TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2086        return ret;
2087}
2088
2089int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2090{
2091        struct kvm_create_device create_dev;
2092        int ret;
2093
2094        create_dev.type = type;
2095        create_dev.fd = -1;
2096        create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2097        ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2098        *fd = create_dev.fd;
2099        return ret;
2100}
2101
2102int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2103{
2104        int fd, ret;
2105
2106        ret = _kvm_create_device(vm, type, test, &fd);
2107
2108        if (!test) {
2109                TEST_ASSERT(!ret,
2110                            "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2111                return fd;
2112        }
2113        return ret;
2114}
2115
2116int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2117                      void *val, bool write)
2118{
2119        struct kvm_device_attr kvmattr = {
2120                .group = group,
2121                .attr = attr,
2122                .flags = 0,
2123                .addr = (uintptr_t)val,
2124        };
2125        int ret;
2126
2127        ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2128                    &kvmattr);
2129        return ret;
2130}
2131
2132int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2133                      void *val, bool write)
2134{
2135        int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2136
2137        TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2138        return ret;
2139}
2140
2141int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2142                          uint64_t attr)
2143{
2144        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2145
2146        TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2147
2148        return _kvm_device_check_attr(vcpu->fd, group, attr);
2149}
2150
2151int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2152                                 uint64_t attr)
2153{
2154        int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2155
2156        TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2157        return ret;
2158}
2159
2160int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2161                             uint64_t attr, void *val, bool write)
2162{
2163        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2164
2165        TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2166
2167        return _kvm_device_access(vcpu->fd, group, attr, val, write);
2168}
2169
2170int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2171                            uint64_t attr, void *val, bool write)
2172{
2173        int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2174
2175        TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2176        return ret;
2177}
2178
2179/*
2180 * IRQ related functions.
2181 */
2182
2183int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2184{
2185        struct kvm_irq_level irq_level = {
2186                .irq    = irq,
2187                .level  = level,
2188        };
2189
2190        return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2191}
2192
2193void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2194{
2195        int ret = _kvm_irq_line(vm, irq, level);
2196
2197        TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2198}
2199
2200struct kvm_irq_routing *kvm_gsi_routing_create(void)
2201{
2202        struct kvm_irq_routing *routing;
2203        size_t size;
2204
2205        size = sizeof(struct kvm_irq_routing);
2206        /* Allocate space for the max number of entries: this wastes 196 KBs. */
2207        size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2208        routing = calloc(1, size);
2209        assert(routing);
2210
2211        return routing;
2212}
2213
2214void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2215                uint32_t gsi, uint32_t pin)
2216{
2217        int i;
2218
2219        assert(routing);
2220        assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2221
2222        i = routing->nr;
2223        routing->entries[i].gsi = gsi;
2224        routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2225        routing->entries[i].flags = 0;
2226        routing->entries[i].u.irqchip.irqchip = 0;
2227        routing->entries[i].u.irqchip.pin = pin;
2228        routing->nr++;
2229}
2230
2231int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2232{
2233        int ret;
2234
2235        assert(routing);
2236        ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2237        free(routing);
2238
2239        return ret;
2240}
2241
2242void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2243{
2244        int ret;
2245
2246        ret = _kvm_gsi_routing_write(vm, routing);
2247        TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2248                                ret, errno);
2249}
2250
2251/*
2252 * VM Dump
2253 *
2254 * Input Args:
2255 *   vm - Virtual Machine
2256 *   indent - Left margin indent amount
2257 *
2258 * Output Args:
2259 *   stream - Output FILE stream
2260 *
2261 * Return: None
2262 *
2263 * Dumps the current state of the VM given by vm, to the FILE stream
2264 * given by stream.
2265 */
2266void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2267{
2268        int ctr;
2269        struct userspace_mem_region *region;
2270        struct vcpu *vcpu;
2271
2272        fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2273        fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2274        fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2275        fprintf(stream, "%*sMem Regions:\n", indent, "");
2276        hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2277                fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2278                        "host_virt: %p\n", indent + 2, "",
2279                        (uint64_t) region->region.guest_phys_addr,
2280                        (uint64_t) region->region.memory_size,
2281                        region->host_mem);
2282                fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2283                sparsebit_dump(stream, region->unused_phy_pages, 0);
2284        }
2285        fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2286        sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2287        fprintf(stream, "%*spgd_created: %u\n", indent, "",
2288                vm->pgd_created);
2289        if (vm->pgd_created) {
2290                fprintf(stream, "%*sVirtual Translation Tables:\n",
2291                        indent + 2, "");
2292                virt_dump(stream, vm, indent + 4);
2293        }
2294        fprintf(stream, "%*sVCPUs:\n", indent, "");
2295        list_for_each_entry(vcpu, &vm->vcpus, list)
2296                vcpu_dump(stream, vm, vcpu->id, indent + 2);
2297}
2298
2299/* Known KVM exit reasons */
2300static struct exit_reason {
2301        unsigned int reason;
2302        const char *name;
2303} exit_reasons_known[] = {
2304        {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2305        {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2306        {KVM_EXIT_IO, "IO"},
2307        {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2308        {KVM_EXIT_DEBUG, "DEBUG"},
2309        {KVM_EXIT_HLT, "HLT"},
2310        {KVM_EXIT_MMIO, "MMIO"},
2311        {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2312        {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2313        {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2314        {KVM_EXIT_INTR, "INTR"},
2315        {KVM_EXIT_SET_TPR, "SET_TPR"},
2316        {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2317        {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2318        {KVM_EXIT_S390_RESET, "S390_RESET"},
2319        {KVM_EXIT_DCR, "DCR"},
2320        {KVM_EXIT_NMI, "NMI"},
2321        {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2322        {KVM_EXIT_OSI, "OSI"},
2323        {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2324        {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2325        {KVM_EXIT_X86_RDMSR, "RDMSR"},
2326        {KVM_EXIT_X86_WRMSR, "WRMSR"},
2327        {KVM_EXIT_XEN, "XEN"},
2328#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2329        {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2330#endif
2331};
2332
2333/*
2334 * Exit Reason String
2335 *
2336 * Input Args:
2337 *   exit_reason - Exit reason
2338 *
2339 * Output Args: None
2340 *
2341 * Return:
2342 *   Constant string pointer describing the exit reason.
2343 *
2344 * Locates and returns a constant string that describes the KVM exit
2345 * reason given by exit_reason.  If no such string is found, a constant
2346 * string of "Unknown" is returned.
2347 */
2348const char *exit_reason_str(unsigned int exit_reason)
2349{
2350        unsigned int n1;
2351
2352        for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2353                if (exit_reason == exit_reasons_known[n1].reason)
2354                        return exit_reasons_known[n1].name;
2355        }
2356
2357        return "Unknown";
2358}
2359
2360/*
2361 * Physical Contiguous Page Allocator
2362 *
2363 * Input Args:
2364 *   vm - Virtual Machine
2365 *   num - number of pages
2366 *   paddr_min - Physical address minimum
2367 *   memslot - Memory region to allocate page from
2368 *
2369 * Output Args: None
2370 *
2371 * Return:
2372 *   Starting physical address
2373 *
2374 * Within the VM specified by vm, locates a range of available physical
2375 * pages at or above paddr_min. If found, the pages are marked as in use
2376 * and their base address is returned. A TEST_ASSERT failure occurs if
2377 * not enough pages are available at or above paddr_min.
2378 */
2379vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2380                              vm_paddr_t paddr_min, uint32_t memslot)
2381{
2382        struct userspace_mem_region *region;
2383        sparsebit_idx_t pg, base;
2384
2385        TEST_ASSERT(num > 0, "Must allocate at least one page");
2386
2387        TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2388                "not divisible by page size.\n"
2389                "  paddr_min: 0x%lx page_size: 0x%x",
2390                paddr_min, vm->page_size);
2391
2392        region = memslot2region(vm, memslot);
2393        base = pg = paddr_min >> vm->page_shift;
2394
2395        do {
2396                for (; pg < base + num; ++pg) {
2397                        if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2398                                base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2399                                break;
2400                        }
2401                }
2402        } while (pg && pg != base + num);
2403
2404        if (pg == 0) {
2405                fprintf(stderr, "No guest physical page available, "
2406                        "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2407                        paddr_min, vm->page_size, memslot);
2408                fputs("---- vm dump ----\n", stderr);
2409                vm_dump(stderr, vm, 2);
2410                abort();
2411        }
2412
2413        for (pg = base; pg < base + num; ++pg)
2414                sparsebit_clear(region->unused_phy_pages, pg);
2415
2416        return base * vm->page_size;
2417}
2418
2419vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2420                             uint32_t memslot)
2421{
2422        return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2423}
2424
2425/* Arbitrary minimum physical address used for virtual translation tables. */
2426#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2427
2428vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2429{
2430        return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2431}
2432
2433/*
2434 * Address Guest Virtual to Host Virtual
2435 *
2436 * Input Args:
2437 *   vm - Virtual Machine
2438 *   gva - VM virtual address
2439 *
2440 * Output Args: None
2441 *
2442 * Return:
2443 *   Equivalent host virtual address
2444 */
2445void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2446{
2447        return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2448}
2449
2450/*
2451 * Is Unrestricted Guest
2452 *
2453 * Input Args:
2454 *   vm - Virtual Machine
2455 *
2456 * Output Args: None
2457 *
2458 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2459 *
2460 * Check if the unrestricted guest flag is enabled.
2461 */
2462bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2463{
2464        char val = 'N';
2465        size_t count;
2466        FILE *f;
2467
2468        if (vm == NULL) {
2469                /* Ensure that the KVM vendor-specific module is loaded. */
2470                close(open_kvm_dev_path_or_exit());
2471        }
2472
2473        f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2474        if (f) {
2475                count = fread(&val, sizeof(char), 1, f);
2476                TEST_ASSERT(count == 1, "Unable to read from param file.");
2477                fclose(f);
2478        }
2479
2480        return val == 'Y';
2481}
2482
2483unsigned int vm_get_page_size(struct kvm_vm *vm)
2484{
2485        return vm->page_size;
2486}
2487
2488unsigned int vm_get_page_shift(struct kvm_vm *vm)
2489{
2490        return vm->page_shift;
2491}
2492
2493unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2494{
2495        return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2496}
2497
2498uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2499{
2500        return vm->max_gfn;
2501}
2502
2503int vm_get_fd(struct kvm_vm *vm)
2504{
2505        return vm->fd;
2506}
2507
2508static unsigned int vm_calc_num_pages(unsigned int num_pages,
2509                                      unsigned int page_shift,
2510                                      unsigned int new_page_shift,
2511                                      bool ceil)
2512{
2513        unsigned int n = 1 << (new_page_shift - page_shift);
2514
2515        if (page_shift >= new_page_shift)
2516                return num_pages * (1 << (page_shift - new_page_shift));
2517
2518        return num_pages / n + !!(ceil && num_pages % n);
2519}
2520
2521static inline int getpageshift(void)
2522{
2523        return __builtin_ffs(getpagesize()) - 1;
2524}
2525
2526unsigned int
2527vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2528{
2529        return vm_calc_num_pages(num_guest_pages,
2530                                 vm_guest_mode_params[mode].page_shift,
2531                                 getpageshift(), true);
2532}
2533
2534unsigned int
2535vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2536{
2537        return vm_calc_num_pages(num_host_pages, getpageshift(),
2538                                 vm_guest_mode_params[mode].page_shift, false);
2539}
2540
2541unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2542{
2543        unsigned int n;
2544        n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2545        return vm_adjust_num_guest_pages(mode, n);
2546}
2547
2548int vm_get_stats_fd(struct kvm_vm *vm)
2549{
2550        return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2551}
2552
2553int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2554{
2555        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2556
2557        return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2558}
2559