linux/Documentation/kref.txt
<<
>>
Prefs
   1===================================================
   2Adding reference counters (krefs) to kernel objects
   3===================================================
   4
   5:Author: Corey Minyard <minyard@acm.org>
   6:Author: Thomas Hellstrom <thellstrom@vmware.com>
   7
   8A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
   9presentation on krefs, which can be found at:
  10
  11  - http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
  12  - http://www.kroah.com/linux/talks/ols_2004_kref_talk/
  13
  14Introduction
  15============
  16
  17krefs allow you to add reference counters to your objects.  If you
  18have objects that are used in multiple places and passed around, and
  19you don't have refcounts, your code is almost certainly broken.  If
  20you want refcounts, krefs are the way to go.
  21
  22To use a kref, add one to your data structures like::
  23
  24    struct my_data
  25    {
  26        .
  27        .
  28        struct kref refcount;
  29        .
  30        .
  31    };
  32
  33The kref can occur anywhere within the data structure.
  34
  35Initialization
  36==============
  37
  38You must initialize the kref after you allocate it.  To do this, call
  39kref_init as so::
  40
  41     struct my_data *data;
  42
  43     data = kmalloc(sizeof(*data), GFP_KERNEL);
  44     if (!data)
  45            return -ENOMEM;
  46     kref_init(&data->refcount);
  47
  48This sets the refcount in the kref to 1.
  49
  50Kref rules
  51==========
  52
  53Once you have an initialized kref, you must follow the following
  54rules:
  55
  561) If you make a non-temporary copy of a pointer, especially if
  57   it can be passed to another thread of execution, you must
  58   increment the refcount with kref_get() before passing it off::
  59
  60       kref_get(&data->refcount);
  61
  62   If you already have a valid pointer to a kref-ed structure (the
  63   refcount cannot go to zero) you may do this without a lock.
  64
  652) When you are done with a pointer, you must call kref_put()::
  66
  67       kref_put(&data->refcount, data_release);
  68
  69   If this is the last reference to the pointer, the release
  70   routine will be called.  If the code never tries to get
  71   a valid pointer to a kref-ed structure without already
  72   holding a valid pointer, it is safe to do this without
  73   a lock.
  74
  753) If the code attempts to gain a reference to a kref-ed structure
  76   without already holding a valid pointer, it must serialize access
  77   where a kref_put() cannot occur during the kref_get(), and the
  78   structure must remain valid during the kref_get().
  79
  80For example, if you allocate some data and then pass it to another
  81thread to process::
  82
  83    void data_release(struct kref *ref)
  84    {
  85        struct my_data *data = container_of(ref, struct my_data, refcount);
  86        kfree(data);
  87    }
  88
  89    void more_data_handling(void *cb_data)
  90    {
  91        struct my_data *data = cb_data;
  92        .
  93        . do stuff with data here
  94        .
  95        kref_put(&data->refcount, data_release);
  96    }
  97
  98    int my_data_handler(void)
  99    {
 100        int rv = 0;
 101        struct my_data *data;
 102        struct task_struct *task;
 103        data = kmalloc(sizeof(*data), GFP_KERNEL);
 104        if (!data)
 105                return -ENOMEM;
 106        kref_init(&data->refcount);
 107
 108        kref_get(&data->refcount);
 109        task = kthread_run(more_data_handling, data, "more_data_handling");
 110        if (task == ERR_PTR(-ENOMEM)) {
 111                rv = -ENOMEM;
 112                kref_put(&data->refcount, data_release);
 113                goto out;
 114        }
 115
 116        .
 117        . do stuff with data here
 118        .
 119    out:
 120        kref_put(&data->refcount, data_release);
 121        return rv;
 122    }
 123
 124This way, it doesn't matter what order the two threads handle the
 125data, the kref_put() handles knowing when the data is not referenced
 126any more and releasing it.  The kref_get() does not require a lock,
 127since we already have a valid pointer that we own a refcount for.  The
 128put needs no lock because nothing tries to get the data without
 129already holding a pointer.
 130
 131Note that the "before" in rule 1 is very important.  You should never
 132do something like::
 133
 134        task = kthread_run(more_data_handling, data, "more_data_handling");
 135        if (task == ERR_PTR(-ENOMEM)) {
 136                rv = -ENOMEM;
 137                goto out;
 138        } else
 139                /* BAD BAD BAD - get is after the handoff */
 140                kref_get(&data->refcount);
 141
 142Don't assume you know what you are doing and use the above construct.
 143First of all, you may not know what you are doing.  Second, you may
 144know what you are doing (there are some situations where locking is
 145involved where the above may be legal) but someone else who doesn't
 146know what they are doing may change the code or copy the code.  It's
 147bad style.  Don't do it.
 148
 149There are some situations where you can optimize the gets and puts.
 150For instance, if you are done with an object and enqueuing it for
 151something else or passing it off to something else, there is no reason
 152to do a get then a put::
 153
 154        /* Silly extra get and put */
 155        kref_get(&obj->ref);
 156        enqueue(obj);
 157        kref_put(&obj->ref, obj_cleanup);
 158
 159Just do the enqueue.  A comment about this is always welcome::
 160
 161        enqueue(obj);
 162        /* We are done with obj, so we pass our refcount off
 163           to the queue.  DON'T TOUCH obj AFTER HERE! */
 164
 165The last rule (rule 3) is the nastiest one to handle.  Say, for
 166instance, you have a list of items that are each kref-ed, and you wish
 167to get the first one.  You can't just pull the first item off the list
 168and kref_get() it.  That violates rule 3 because you are not already
 169holding a valid pointer.  You must add a mutex (or some other lock).
 170For instance::
 171
 172        static DEFINE_MUTEX(mutex);
 173        static LIST_HEAD(q);
 174        struct my_data
 175        {
 176                struct kref      refcount;
 177                struct list_head link;
 178        };
 179
 180        static struct my_data *get_entry()
 181        {
 182                struct my_data *entry = NULL;
 183                mutex_lock(&mutex);
 184                if (!list_empty(&q)) {
 185                        entry = container_of(q.next, struct my_data, link);
 186                        kref_get(&entry->refcount);
 187                }
 188                mutex_unlock(&mutex);
 189                return entry;
 190        }
 191
 192        static void release_entry(struct kref *ref)
 193        {
 194                struct my_data *entry = container_of(ref, struct my_data, refcount);
 195
 196                list_del(&entry->link);
 197                kfree(entry);
 198        }
 199
 200        static void put_entry(struct my_data *entry)
 201        {
 202                mutex_lock(&mutex);
 203                kref_put(&entry->refcount, release_entry);
 204                mutex_unlock(&mutex);
 205        }
 206
 207The kref_put() return value is useful if you do not want to hold the
 208lock during the whole release operation.  Say you didn't want to call
 209kfree() with the lock held in the example above (since it is kind of
 210pointless to do so).  You could use kref_put() as follows::
 211
 212        static void release_entry(struct kref *ref)
 213        {
 214                /* All work is done after the return from kref_put(). */
 215        }
 216
 217        static void put_entry(struct my_data *entry)
 218        {
 219                mutex_lock(&mutex);
 220                if (kref_put(&entry->refcount, release_entry)) {
 221                        list_del(&entry->link);
 222                        mutex_unlock(&mutex);
 223                        kfree(entry);
 224                } else
 225                        mutex_unlock(&mutex);
 226        }
 227
 228This is really more useful if you have to call other routines as part
 229of the free operations that could take a long time or might claim the
 230same lock.  Note that doing everything in the release routine is still
 231preferred as it is a little neater.
 232
 233The above example could also be optimized using kref_get_unless_zero() in
 234the following way::
 235
 236        static struct my_data *get_entry()
 237        {
 238                struct my_data *entry = NULL;
 239                mutex_lock(&mutex);
 240                if (!list_empty(&q)) {
 241                        entry = container_of(q.next, struct my_data, link);
 242                        if (!kref_get_unless_zero(&entry->refcount))
 243                                entry = NULL;
 244                }
 245                mutex_unlock(&mutex);
 246                return entry;
 247        }
 248
 249        static void release_entry(struct kref *ref)
 250        {
 251                struct my_data *entry = container_of(ref, struct my_data, refcount);
 252
 253                mutex_lock(&mutex);
 254                list_del(&entry->link);
 255                mutex_unlock(&mutex);
 256                kfree(entry);
 257        }
 258
 259        static void put_entry(struct my_data *entry)
 260        {
 261                kref_put(&entry->refcount, release_entry);
 262        }
 263
 264Which is useful to remove the mutex lock around kref_put() in put_entry(), but
 265it's important that kref_get_unless_zero is enclosed in the same critical
 266section that finds the entry in the lookup table,
 267otherwise kref_get_unless_zero may reference already freed memory.
 268Note that it is illegal to use kref_get_unless_zero without checking its
 269return value. If you are sure (by already having a valid pointer) that
 270kref_get_unless_zero() will return true, then use kref_get() instead.
 271
 272Krefs and RCU
 273=============
 274
 275The function kref_get_unless_zero also makes it possible to use rcu
 276locking for lookups in the above example::
 277
 278        struct my_data
 279        {
 280                struct rcu_head rhead;
 281                .
 282                struct kref refcount;
 283                .
 284                .
 285        };
 286
 287        static struct my_data *get_entry_rcu()
 288        {
 289                struct my_data *entry = NULL;
 290                rcu_read_lock();
 291                if (!list_empty(&q)) {
 292                        entry = container_of(q.next, struct my_data, link);
 293                        if (!kref_get_unless_zero(&entry->refcount))
 294                                entry = NULL;
 295                }
 296                rcu_read_unlock();
 297                return entry;
 298        }
 299
 300        static void release_entry_rcu(struct kref *ref)
 301        {
 302                struct my_data *entry = container_of(ref, struct my_data, refcount);
 303
 304                mutex_lock(&mutex);
 305                list_del_rcu(&entry->link);
 306                mutex_unlock(&mutex);
 307                kfree_rcu(entry, rhead);
 308        }
 309
 310        static void put_entry(struct my_data *entry)
 311        {
 312                kref_put(&entry->refcount, release_entry_rcu);
 313        }
 314
 315But note that the struct kref member needs to remain in valid memory for a
 316rcu grace period after release_entry_rcu was called. That can be accomplished
 317by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
 318before using kfree, but note that synchronize_rcu() may sleep for a
 319substantial amount of time.
 320