linux/arch/arm64/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/kernel/process.c
   4 *
   5 * Original Copyright (C) 1995  Linus Torvalds
   6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
   7 * Copyright (C) 2012 ARM Ltd.
   8 */
   9
  10#include <stdarg.h>
  11
  12#include <linux/compat.h>
  13#include <linux/efi.h>
  14#include <linux/export.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/sched/task.h>
  18#include <linux/sched/task_stack.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/user.h>
  24#include <linux/delay.h>
  25#include <linux/reboot.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/cpu.h>
  29#include <linux/elfcore.h>
  30#include <linux/pm.h>
  31#include <linux/tick.h>
  32#include <linux/utsname.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include <linux/hw_breakpoint.h>
  36#include <linux/personality.h>
  37#include <linux/notifier.h>
  38#include <trace/events/power.h>
  39#include <linux/percpu.h>
  40#include <linux/thread_info.h>
  41
  42#include <asm/alternative.h>
  43#include <asm/arch_gicv3.h>
  44#include <asm/compat.h>
  45#include <asm/cacheflush.h>
  46#include <asm/exec.h>
  47#include <asm/fpsimd.h>
  48#include <asm/mmu_context.h>
  49#include <asm/processor.h>
  50#include <asm/pointer_auth.h>
  51#include <asm/stacktrace.h>
  52
  53#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
  54#include <linux/stackprotector.h>
  55unsigned long __stack_chk_guard __read_mostly;
  56EXPORT_SYMBOL(__stack_chk_guard);
  57#endif
  58
  59/*
  60 * Function pointers to optional machine specific functions
  61 */
  62void (*pm_power_off)(void);
  63EXPORT_SYMBOL_GPL(pm_power_off);
  64
  65void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  66
  67static void __cpu_do_idle(void)
  68{
  69        dsb(sy);
  70        wfi();
  71}
  72
  73static void __cpu_do_idle_irqprio(void)
  74{
  75        unsigned long pmr;
  76        unsigned long daif_bits;
  77
  78        daif_bits = read_sysreg(daif);
  79        write_sysreg(daif_bits | PSR_I_BIT, daif);
  80
  81        /*
  82         * Unmask PMR before going idle to make sure interrupts can
  83         * be raised.
  84         */
  85        pmr = gic_read_pmr();
  86        gic_write_pmr(GIC_PRIO_IRQON);
  87
  88        __cpu_do_idle();
  89
  90        gic_write_pmr(pmr);
  91        write_sysreg(daif_bits, daif);
  92}
  93
  94/*
  95 *      cpu_do_idle()
  96 *
  97 *      Idle the processor (wait for interrupt).
  98 *
  99 *      If the CPU supports priority masking we must do additional work to
 100 *      ensure that interrupts are not masked at the PMR (because the core will
 101 *      not wake up if we block the wake up signal in the interrupt controller).
 102 */
 103void cpu_do_idle(void)
 104{
 105        if (system_uses_irq_prio_masking())
 106                __cpu_do_idle_irqprio();
 107        else
 108                __cpu_do_idle();
 109}
 110
 111/*
 112 * This is our default idle handler.
 113 */
 114void arch_cpu_idle(void)
 115{
 116        /*
 117         * This should do all the clock switching and wait for interrupt
 118         * tricks
 119         */
 120        trace_cpu_idle_rcuidle(1, smp_processor_id());
 121        cpu_do_idle();
 122        local_irq_enable();
 123        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 124}
 125
 126#ifdef CONFIG_HOTPLUG_CPU
 127void arch_cpu_idle_dead(void)
 128{
 129       cpu_die();
 130}
 131#endif
 132
 133/*
 134 * Called by kexec, immediately prior to machine_kexec().
 135 *
 136 * This must completely disable all secondary CPUs; simply causing those CPUs
 137 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 138 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 139 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 140 * functionality embodied in disable_nonboot_cpus() to achieve this.
 141 */
 142void machine_shutdown(void)
 143{
 144        disable_nonboot_cpus();
 145}
 146
 147/*
 148 * Halting simply requires that the secondary CPUs stop performing any
 149 * activity (executing tasks, handling interrupts). smp_send_stop()
 150 * achieves this.
 151 */
 152void machine_halt(void)
 153{
 154        local_irq_disable();
 155        smp_send_stop();
 156        while (1);
 157}
 158
 159/*
 160 * Power-off simply requires that the secondary CPUs stop performing any
 161 * activity (executing tasks, handling interrupts). smp_send_stop()
 162 * achieves this. When the system power is turned off, it will take all CPUs
 163 * with it.
 164 */
 165void machine_power_off(void)
 166{
 167        local_irq_disable();
 168        smp_send_stop();
 169        if (pm_power_off)
 170                pm_power_off();
 171}
 172
 173/*
 174 * Restart requires that the secondary CPUs stop performing any activity
 175 * while the primary CPU resets the system. Systems with multiple CPUs must
 176 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 177 * This is required so that any code running after reset on the primary CPU
 178 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 179 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 180 * to use. Implementing such co-ordination would be essentially impossible.
 181 */
 182void machine_restart(char *cmd)
 183{
 184        /* Disable interrupts first */
 185        local_irq_disable();
 186        smp_send_stop();
 187
 188        /*
 189         * UpdateCapsule() depends on the system being reset via
 190         * ResetSystem().
 191         */
 192        if (efi_enabled(EFI_RUNTIME_SERVICES))
 193                efi_reboot(reboot_mode, NULL);
 194
 195        /* Now call the architecture specific reboot code. */
 196        if (arm_pm_restart)
 197                arm_pm_restart(reboot_mode, cmd);
 198        else
 199                do_kernel_restart(cmd);
 200
 201        /*
 202         * Whoops - the architecture was unable to reboot.
 203         */
 204        printk("Reboot failed -- System halted\n");
 205        while (1);
 206}
 207
 208static void print_pstate(struct pt_regs *regs)
 209{
 210        u64 pstate = regs->pstate;
 211
 212        if (compat_user_mode(regs)) {
 213                printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
 214                        pstate,
 215                        pstate & PSR_AA32_N_BIT ? 'N' : 'n',
 216                        pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
 217                        pstate & PSR_AA32_C_BIT ? 'C' : 'c',
 218                        pstate & PSR_AA32_V_BIT ? 'V' : 'v',
 219                        pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
 220                        pstate & PSR_AA32_T_BIT ? "T32" : "A32",
 221                        pstate & PSR_AA32_E_BIT ? "BE" : "LE",
 222                        pstate & PSR_AA32_A_BIT ? 'A' : 'a',
 223                        pstate & PSR_AA32_I_BIT ? 'I' : 'i',
 224                        pstate & PSR_AA32_F_BIT ? 'F' : 'f');
 225        } else {
 226                printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
 227                        pstate,
 228                        pstate & PSR_N_BIT ? 'N' : 'n',
 229                        pstate & PSR_Z_BIT ? 'Z' : 'z',
 230                        pstate & PSR_C_BIT ? 'C' : 'c',
 231                        pstate & PSR_V_BIT ? 'V' : 'v',
 232                        pstate & PSR_D_BIT ? 'D' : 'd',
 233                        pstate & PSR_A_BIT ? 'A' : 'a',
 234                        pstate & PSR_I_BIT ? 'I' : 'i',
 235                        pstate & PSR_F_BIT ? 'F' : 'f',
 236                        pstate & PSR_PAN_BIT ? '+' : '-',
 237                        pstate & PSR_UAO_BIT ? '+' : '-');
 238        }
 239}
 240
 241void __show_regs(struct pt_regs *regs)
 242{
 243        int i, top_reg;
 244        u64 lr, sp;
 245
 246        if (compat_user_mode(regs)) {
 247                lr = regs->compat_lr;
 248                sp = regs->compat_sp;
 249                top_reg = 12;
 250        } else {
 251                lr = regs->regs[30];
 252                sp = regs->sp;
 253                top_reg = 29;
 254        }
 255
 256        show_regs_print_info(KERN_DEFAULT);
 257        print_pstate(regs);
 258
 259        if (!user_mode(regs)) {
 260                printk("pc : %pS\n", (void *)regs->pc);
 261                printk("lr : %pS\n", (void *)lr);
 262        } else {
 263                printk("pc : %016llx\n", regs->pc);
 264                printk("lr : %016llx\n", lr);
 265        }
 266
 267        printk("sp : %016llx\n", sp);
 268
 269        if (system_uses_irq_prio_masking())
 270                printk("pmr_save: %08llx\n", regs->pmr_save);
 271
 272        i = top_reg;
 273
 274        while (i >= 0) {
 275                printk("x%-2d: %016llx ", i, regs->regs[i]);
 276                i--;
 277
 278                if (i % 2 == 0) {
 279                        pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
 280                        i--;
 281                }
 282
 283                pr_cont("\n");
 284        }
 285}
 286
 287void show_regs(struct pt_regs * regs)
 288{
 289        __show_regs(regs);
 290        dump_backtrace(regs, NULL);
 291}
 292
 293static void tls_thread_flush(void)
 294{
 295        write_sysreg(0, tpidr_el0);
 296
 297        if (is_compat_task()) {
 298                current->thread.uw.tp_value = 0;
 299
 300                /*
 301                 * We need to ensure ordering between the shadow state and the
 302                 * hardware state, so that we don't corrupt the hardware state
 303                 * with a stale shadow state during context switch.
 304                 */
 305                barrier();
 306                write_sysreg(0, tpidrro_el0);
 307        }
 308}
 309
 310void flush_thread(void)
 311{
 312        fpsimd_flush_thread();
 313        tls_thread_flush();
 314        flush_ptrace_hw_breakpoint(current);
 315}
 316
 317void release_thread(struct task_struct *dead_task)
 318{
 319}
 320
 321void arch_release_task_struct(struct task_struct *tsk)
 322{
 323        fpsimd_release_task(tsk);
 324}
 325
 326/*
 327 * src and dst may temporarily have aliased sve_state after task_struct
 328 * is copied.  We cannot fix this properly here, because src may have
 329 * live SVE state and dst's thread_info may not exist yet, so tweaking
 330 * either src's or dst's TIF_SVE is not safe.
 331 *
 332 * The unaliasing is done in copy_thread() instead.  This works because
 333 * dst is not schedulable or traceable until both of these functions
 334 * have been called.
 335 */
 336int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 337{
 338        if (current->mm)
 339                fpsimd_preserve_current_state();
 340        *dst = *src;
 341
 342        return 0;
 343}
 344
 345asmlinkage void ret_from_fork(void) asm("ret_from_fork");
 346
 347int copy_thread(unsigned long clone_flags, unsigned long stack_start,
 348                unsigned long stk_sz, struct task_struct *p)
 349{
 350        struct pt_regs *childregs = task_pt_regs(p);
 351
 352        memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
 353
 354        /*
 355         * Unalias p->thread.sve_state (if any) from the parent task
 356         * and disable discard SVE state for p:
 357         */
 358        clear_tsk_thread_flag(p, TIF_SVE);
 359        p->thread.sve_state = NULL;
 360
 361        /*
 362         * In case p was allocated the same task_struct pointer as some
 363         * other recently-exited task, make sure p is disassociated from
 364         * any cpu that may have run that now-exited task recently.
 365         * Otherwise we could erroneously skip reloading the FPSIMD
 366         * registers for p.
 367         */
 368        fpsimd_flush_task_state(p);
 369
 370        if (likely(!(p->flags & PF_KTHREAD))) {
 371                *childregs = *current_pt_regs();
 372                childregs->regs[0] = 0;
 373
 374                /*
 375                 * Read the current TLS pointer from tpidr_el0 as it may be
 376                 * out-of-sync with the saved value.
 377                 */
 378                *task_user_tls(p) = read_sysreg(tpidr_el0);
 379
 380                if (stack_start) {
 381                        if (is_compat_thread(task_thread_info(p)))
 382                                childregs->compat_sp = stack_start;
 383                        else
 384                                childregs->sp = stack_start;
 385                }
 386
 387                /*
 388                 * If a TLS pointer was passed to clone (4th argument), use it
 389                 * for the new thread.
 390                 */
 391                if (clone_flags & CLONE_SETTLS)
 392                        p->thread.uw.tp_value = childregs->regs[3];
 393        } else {
 394                memset(childregs, 0, sizeof(struct pt_regs));
 395                childregs->pstate = PSR_MODE_EL1h;
 396                if (IS_ENABLED(CONFIG_ARM64_UAO) &&
 397                    cpus_have_const_cap(ARM64_HAS_UAO))
 398                        childregs->pstate |= PSR_UAO_BIT;
 399
 400                if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
 401                        childregs->pstate |= PSR_SSBS_BIT;
 402
 403                if (system_uses_irq_prio_masking())
 404                        childregs->pmr_save = GIC_PRIO_IRQON;
 405
 406                p->thread.cpu_context.x19 = stack_start;
 407                p->thread.cpu_context.x20 = stk_sz;
 408        }
 409        p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
 410        p->thread.cpu_context.sp = (unsigned long)childregs;
 411
 412        ptrace_hw_copy_thread(p);
 413
 414        return 0;
 415}
 416
 417void tls_preserve_current_state(void)
 418{
 419        *task_user_tls(current) = read_sysreg(tpidr_el0);
 420}
 421
 422static void tls_thread_switch(struct task_struct *next)
 423{
 424        tls_preserve_current_state();
 425
 426        if (is_compat_thread(task_thread_info(next)))
 427                write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
 428        else if (!arm64_kernel_unmapped_at_el0())
 429                write_sysreg(0, tpidrro_el0);
 430
 431        write_sysreg(*task_user_tls(next), tpidr_el0);
 432}
 433
 434/* Restore the UAO state depending on next's addr_limit */
 435void uao_thread_switch(struct task_struct *next)
 436{
 437        if (IS_ENABLED(CONFIG_ARM64_UAO)) {
 438                if (task_thread_info(next)->addr_limit == KERNEL_DS)
 439                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
 440                else
 441                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
 442        }
 443}
 444
 445/*
 446 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 447 * shadow copy so that we can restore this upon entry from userspace.
 448 *
 449 * This is *only* for exception entry from EL0, and is not valid until we
 450 * __switch_to() a user task.
 451 */
 452DEFINE_PER_CPU(struct task_struct *, __entry_task);
 453
 454static void entry_task_switch(struct task_struct *next)
 455{
 456        __this_cpu_write(__entry_task, next);
 457}
 458
 459/*
 460 * Thread switching.
 461 */
 462__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 463                                struct task_struct *next)
 464{
 465        struct task_struct *last;
 466
 467        fpsimd_thread_switch(next);
 468        tls_thread_switch(next);
 469        hw_breakpoint_thread_switch(next);
 470        contextidr_thread_switch(next);
 471        entry_task_switch(next);
 472        uao_thread_switch(next);
 473        ptrauth_thread_switch(next);
 474
 475        /*
 476         * Complete any pending TLB or cache maintenance on this CPU in case
 477         * the thread migrates to a different CPU.
 478         * This full barrier is also required by the membarrier system
 479         * call.
 480         */
 481        dsb(ish);
 482
 483        /* the actual thread switch */
 484        last = cpu_switch_to(prev, next);
 485
 486        return last;
 487}
 488
 489unsigned long get_wchan(struct task_struct *p)
 490{
 491        struct stackframe frame;
 492        unsigned long stack_page, ret = 0;
 493        int count = 0;
 494        if (!p || p == current || p->state == TASK_RUNNING)
 495                return 0;
 496
 497        stack_page = (unsigned long)try_get_task_stack(p);
 498        if (!stack_page)
 499                return 0;
 500
 501        frame.fp = thread_saved_fp(p);
 502        frame.pc = thread_saved_pc(p);
 503#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 504        frame.graph = 0;
 505#endif
 506        do {
 507                if (unwind_frame(p, &frame))
 508                        goto out;
 509                if (!in_sched_functions(frame.pc)) {
 510                        ret = frame.pc;
 511                        goto out;
 512                }
 513        } while (count ++ < 16);
 514
 515out:
 516        put_task_stack(p);
 517        return ret;
 518}
 519
 520unsigned long arch_align_stack(unsigned long sp)
 521{
 522        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 523                sp -= get_random_int() & ~PAGE_MASK;
 524        return sp & ~0xf;
 525}
 526
 527unsigned long arch_randomize_brk(struct mm_struct *mm)
 528{
 529        if (is_compat_task())
 530                return randomize_page(mm->brk, SZ_32M);
 531        else
 532                return randomize_page(mm->brk, SZ_1G);
 533}
 534
 535/*
 536 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 537 */
 538void arch_setup_new_exec(void)
 539{
 540        current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 541
 542        ptrauth_thread_init_user(current);
 543}
 544