linux/arch/ia64/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  arch/ia64/kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 * Copyright (C) Intel Corporation, 2005
   8 *
   9 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
  10 *              <anil.s.keshavamurthy@intel.com> adapted from i386
  11 */
  12
  13#include <linux/kprobes.h>
  14#include <linux/ptrace.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/preempt.h>
  18#include <linux/extable.h>
  19#include <linux/kdebug.h>
  20
  21#include <asm/pgtable.h>
  22#include <asm/sections.h>
  23#include <asm/exception.h>
  24
  25DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  27
  28struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  29
  30enum instruction_type {A, I, M, F, B, L, X, u};
  31static enum instruction_type bundle_encoding[32][3] = {
  32  { M, I, I },                          /* 00 */
  33  { M, I, I },                          /* 01 */
  34  { M, I, I },                          /* 02 */
  35  { M, I, I },                          /* 03 */
  36  { M, L, X },                          /* 04 */
  37  { M, L, X },                          /* 05 */
  38  { u, u, u },                          /* 06 */
  39  { u, u, u },                          /* 07 */
  40  { M, M, I },                          /* 08 */
  41  { M, M, I },                          /* 09 */
  42  { M, M, I },                          /* 0A */
  43  { M, M, I },                          /* 0B */
  44  { M, F, I },                          /* 0C */
  45  { M, F, I },                          /* 0D */
  46  { M, M, F },                          /* 0E */
  47  { M, M, F },                          /* 0F */
  48  { M, I, B },                          /* 10 */
  49  { M, I, B },                          /* 11 */
  50  { M, B, B },                          /* 12 */
  51  { M, B, B },                          /* 13 */
  52  { u, u, u },                          /* 14 */
  53  { u, u, u },                          /* 15 */
  54  { B, B, B },                          /* 16 */
  55  { B, B, B },                          /* 17 */
  56  { M, M, B },                          /* 18 */
  57  { M, M, B },                          /* 19 */
  58  { u, u, u },                          /* 1A */
  59  { u, u, u },                          /* 1B */
  60  { M, F, B },                          /* 1C */
  61  { M, F, B },                          /* 1D */
  62  { u, u, u },                          /* 1E */
  63  { u, u, u },                          /* 1F */
  64};
  65
  66/* Insert a long branch code */
  67static void __kprobes set_brl_inst(void *from, void *to)
  68{
  69        s64 rel = ((s64) to - (s64) from) >> 4;
  70        bundle_t *brl;
  71        brl = (bundle_t *) ((u64) from & ~0xf);
  72        brl->quad0.template = 0x05;     /* [MLX](stop) */
  73        brl->quad0.slot0 = NOP_M_INST;  /* nop.m 0x0 */
  74        brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
  75        brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
  76        /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
  77        brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
  78}
  79
  80/*
  81 * In this function we check to see if the instruction
  82 * is IP relative instruction and update the kprobe
  83 * inst flag accordingly
  84 */
  85static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
  86                                              uint major_opcode,
  87                                              unsigned long kprobe_inst,
  88                                              struct kprobe *p)
  89{
  90        p->ainsn.inst_flag = 0;
  91        p->ainsn.target_br_reg = 0;
  92        p->ainsn.slot = slot;
  93
  94        /* Check for Break instruction
  95         * Bits 37:40 Major opcode to be zero
  96         * Bits 27:32 X6 to be zero
  97         * Bits 32:35 X3 to be zero
  98         */
  99        if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
 100                /* is a break instruction */
 101                p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
 102                return;
 103        }
 104
 105        if (bundle_encoding[template][slot] == B) {
 106                switch (major_opcode) {
 107                  case INDIRECT_CALL_OPCODE:
 108                        p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 109                        p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 110                        break;
 111                  case IP_RELATIVE_PREDICT_OPCODE:
 112                  case IP_RELATIVE_BRANCH_OPCODE:
 113                        p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 114                        break;
 115                  case IP_RELATIVE_CALL_OPCODE:
 116                        p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 117                        p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 118                        p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 119                        break;
 120                }
 121        } else if (bundle_encoding[template][slot] == X) {
 122                switch (major_opcode) {
 123                  case LONG_CALL_OPCODE:
 124                        p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 125                        p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 126                  break;
 127                }
 128        }
 129        return;
 130}
 131
 132/*
 133 * In this function we check to see if the instruction
 134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 135 * on which we are inserting kprobe is cmp instruction
 136 * with ctype as unc.
 137 */
 138static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
 139                                            uint major_opcode,
 140                                            unsigned long kprobe_inst)
 141{
 142        cmp_inst_t cmp_inst;
 143        uint ctype_unc = 0;
 144
 145        if (!((bundle_encoding[template][slot] == I) ||
 146                (bundle_encoding[template][slot] == M)))
 147                goto out;
 148
 149        if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
 150                (major_opcode == 0xE)))
 151                goto out;
 152
 153        cmp_inst.l = kprobe_inst;
 154        if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
 155                /* Integer compare - Register Register (A6 type)*/
 156                if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
 157                                &&(cmp_inst.f.c == 1))
 158                        ctype_unc = 1;
 159        } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
 160                /* Integer compare - Immediate Register (A8 type)*/
 161                if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
 162                        ctype_unc = 1;
 163        }
 164out:
 165        return ctype_unc;
 166}
 167
 168/*
 169 * In this function we check to see if the instruction
 170 * on which we are inserting kprobe is supported.
 171 * Returns qp value if supported
 172 * Returns -EINVAL if unsupported
 173 */
 174static int __kprobes unsupported_inst(uint template, uint  slot,
 175                                      uint major_opcode,
 176                                      unsigned long kprobe_inst,
 177                                      unsigned long addr)
 178{
 179        int qp;
 180
 181        qp = kprobe_inst & 0x3f;
 182        if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
 183                if (slot == 1 && qp)  {
 184                        printk(KERN_WARNING "Kprobes on cmp unc "
 185                                        "instruction on slot 1 at <0x%lx> "
 186                                        "is not supported\n", addr);
 187                        return -EINVAL;
 188
 189                }
 190                qp = 0;
 191        }
 192        else if (bundle_encoding[template][slot] == I) {
 193                if (major_opcode == 0) {
 194                        /*
 195                         * Check for Integer speculation instruction
 196                         * - Bit 33-35 to be equal to 0x1
 197                         */
 198                        if (((kprobe_inst >> 33) & 0x7) == 1) {
 199                                printk(KERN_WARNING
 200                                        "Kprobes on speculation inst at <0x%lx> not supported\n",
 201                                                addr);
 202                                return -EINVAL;
 203                        }
 204                        /*
 205                         * IP relative mov instruction
 206                         *  - Bit 27-35 to be equal to 0x30
 207                         */
 208                        if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
 209                                printk(KERN_WARNING
 210                                        "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
 211                                                addr);
 212                                return -EINVAL;
 213
 214                        }
 215                }
 216                else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
 217                                (kprobe_inst & (0x1UL << 12))) {
 218                        /* test bit instructions, tbit,tnat,tf
 219                         * bit 33-36 to be equal to 0
 220                         * bit 12 to be equal to 1
 221                         */
 222                        if (slot == 1 && qp) {
 223                                printk(KERN_WARNING "Kprobes on test bit "
 224                                                "instruction on slot at <0x%lx> "
 225                                                "is not supported\n", addr);
 226                                return -EINVAL;
 227                        }
 228                        qp = 0;
 229                }
 230        }
 231        else if (bundle_encoding[template][slot] == B) {
 232                if (major_opcode == 7) {
 233                        /* IP-Relative Predict major code is 7 */
 234                        printk(KERN_WARNING "Kprobes on IP-Relative"
 235                                        "Predict is not supported\n");
 236                        return -EINVAL;
 237                }
 238                else if (major_opcode == 2) {
 239                        /* Indirect Predict, major code is 2
 240                         * bit 27-32 to be equal to 10 or 11
 241                         */
 242                        int x6=(kprobe_inst >> 27) & 0x3F;
 243                        if ((x6 == 0x10) || (x6 == 0x11)) {
 244                                printk(KERN_WARNING "Kprobes on "
 245                                        "Indirect Predict is not supported\n");
 246                                return -EINVAL;
 247                        }
 248                }
 249        }
 250        /* kernel does not use float instruction, here for safety kprobe
 251         * will judge whether it is fcmp/flass/float approximation instruction
 252         */
 253        else if (unlikely(bundle_encoding[template][slot] == F)) {
 254                if ((major_opcode == 4 || major_opcode == 5) &&
 255                                (kprobe_inst  & (0x1 << 12))) {
 256                        /* fcmp/fclass unc instruction */
 257                        if (slot == 1 && qp) {
 258                                printk(KERN_WARNING "Kprobes on fcmp/fclass "
 259                                        "instruction on slot at <0x%lx> "
 260                                        "is not supported\n", addr);
 261                                return -EINVAL;
 262
 263                        }
 264                        qp = 0;
 265                }
 266                if ((major_opcode == 0 || major_opcode == 1) &&
 267                        (kprobe_inst & (0x1UL << 33))) {
 268                        /* float Approximation instruction */
 269                        if (slot == 1 && qp) {
 270                                printk(KERN_WARNING "Kprobes on float Approx "
 271                                        "instr at <0x%lx> is not supported\n",
 272                                                addr);
 273                                return -EINVAL;
 274                        }
 275                        qp = 0;
 276                }
 277        }
 278        return qp;
 279}
 280
 281/*
 282 * In this function we override the bundle with
 283 * the break instruction at the given slot.
 284 */
 285static void __kprobes prepare_break_inst(uint template, uint  slot,
 286                                         uint major_opcode,
 287                                         unsigned long kprobe_inst,
 288                                         struct kprobe *p,
 289                                         int qp)
 290{
 291        unsigned long break_inst = BREAK_INST;
 292        bundle_t *bundle = &p->opcode.bundle;
 293
 294        /*
 295         * Copy the original kprobe_inst qualifying predicate(qp)
 296         * to the break instruction
 297         */
 298        break_inst |= qp;
 299
 300        switch (slot) {
 301          case 0:
 302                bundle->quad0.slot0 = break_inst;
 303                break;
 304          case 1:
 305                bundle->quad0.slot1_p0 = break_inst;
 306                bundle->quad1.slot1_p1 = break_inst >> (64-46);
 307                break;
 308          case 2:
 309                bundle->quad1.slot2 = break_inst;
 310                break;
 311        }
 312
 313        /*
 314         * Update the instruction flag, so that we can
 315         * emulate the instruction properly after we
 316         * single step on original instruction
 317         */
 318        update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
 319}
 320
 321static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
 322                unsigned long *kprobe_inst, uint *major_opcode)
 323{
 324        unsigned long kprobe_inst_p0, kprobe_inst_p1;
 325        unsigned int template;
 326
 327        template = bundle->quad0.template;
 328
 329        switch (slot) {
 330          case 0:
 331                *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 332                *kprobe_inst = bundle->quad0.slot0;
 333                  break;
 334          case 1:
 335                *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
 336                kprobe_inst_p0 = bundle->quad0.slot1_p0;
 337                kprobe_inst_p1 = bundle->quad1.slot1_p1;
 338                *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
 339                break;
 340          case 2:
 341                *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 342                *kprobe_inst = bundle->quad1.slot2;
 343                break;
 344        }
 345}
 346
 347/* Returns non-zero if the addr is in the Interrupt Vector Table */
 348static int __kprobes in_ivt_functions(unsigned long addr)
 349{
 350        return (addr >= (unsigned long)__start_ivt_text
 351                && addr < (unsigned long)__end_ivt_text);
 352}
 353
 354static int __kprobes valid_kprobe_addr(int template, int slot,
 355                                       unsigned long addr)
 356{
 357        if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
 358                printk(KERN_WARNING "Attempting to insert unaligned kprobe "
 359                                "at 0x%lx\n", addr);
 360                return -EINVAL;
 361        }
 362
 363        if (in_ivt_functions(addr)) {
 364                printk(KERN_WARNING "Kprobes can't be inserted inside "
 365                                "IVT functions at 0x%lx\n", addr);
 366                return -EINVAL;
 367        }
 368
 369        return 0;
 370}
 371
 372static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 373{
 374        unsigned int i;
 375        i = atomic_add_return(1, &kcb->prev_kprobe_index);
 376        kcb->prev_kprobe[i-1].kp = kprobe_running();
 377        kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
 378}
 379
 380static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 381{
 382        unsigned int i;
 383        i = atomic_read(&kcb->prev_kprobe_index);
 384        __this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
 385        kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
 386        atomic_sub(1, &kcb->prev_kprobe_index);
 387}
 388
 389static void __kprobes set_current_kprobe(struct kprobe *p,
 390                        struct kprobe_ctlblk *kcb)
 391{
 392        __this_cpu_write(current_kprobe, p);
 393}
 394
 395static void kretprobe_trampoline(void)
 396{
 397}
 398
 399/*
 400 * At this point the target function has been tricked into
 401 * returning into our trampoline.  Lookup the associated instance
 402 * and then:
 403 *    - call the handler function
 404 *    - cleanup by marking the instance as unused
 405 *    - long jump back to the original return address
 406 */
 407int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 408{
 409        struct kretprobe_instance *ri = NULL;
 410        struct hlist_head *head, empty_rp;
 411        struct hlist_node *tmp;
 412        unsigned long flags, orig_ret_address = 0;
 413        unsigned long trampoline_address =
 414                ((struct fnptr *)kretprobe_trampoline)->ip;
 415
 416        INIT_HLIST_HEAD(&empty_rp);
 417        kretprobe_hash_lock(current, &head, &flags);
 418
 419        /*
 420         * It is possible to have multiple instances associated with a given
 421         * task either because an multiple functions in the call path
 422         * have a return probe installed on them, and/or more than one return
 423         * return probe was registered for a target function.
 424         *
 425         * We can handle this because:
 426         *     - instances are always inserted at the head of the list
 427         *     - when multiple return probes are registered for the same
 428         *       function, the first instance's ret_addr will point to the
 429         *       real return address, and all the rest will point to
 430         *       kretprobe_trampoline
 431         */
 432        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 433                if (ri->task != current)
 434                        /* another task is sharing our hash bucket */
 435                        continue;
 436
 437                orig_ret_address = (unsigned long)ri->ret_addr;
 438                if (orig_ret_address != trampoline_address)
 439                        /*
 440                         * This is the real return address. Any other
 441                         * instances associated with this task are for
 442                         * other calls deeper on the call stack
 443                         */
 444                        break;
 445        }
 446
 447        regs->cr_iip = orig_ret_address;
 448
 449        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 450                if (ri->task != current)
 451                        /* another task is sharing our hash bucket */
 452                        continue;
 453
 454                if (ri->rp && ri->rp->handler)
 455                        ri->rp->handler(ri, regs);
 456
 457                orig_ret_address = (unsigned long)ri->ret_addr;
 458                recycle_rp_inst(ri, &empty_rp);
 459
 460                if (orig_ret_address != trampoline_address)
 461                        /*
 462                         * This is the real return address. Any other
 463                         * instances associated with this task are for
 464                         * other calls deeper on the call stack
 465                         */
 466                        break;
 467        }
 468        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 469
 470        kretprobe_hash_unlock(current, &flags);
 471
 472        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 473                hlist_del(&ri->hlist);
 474                kfree(ri);
 475        }
 476        /*
 477         * By returning a non-zero value, we are telling
 478         * kprobe_handler() that we don't want the post_handler
 479         * to run (and have re-enabled preemption)
 480         */
 481        return 1;
 482}
 483
 484void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 485                                      struct pt_regs *regs)
 486{
 487        ri->ret_addr = (kprobe_opcode_t *)regs->b0;
 488
 489        /* Replace the return addr with trampoline addr */
 490        regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
 491}
 492
 493/* Check the instruction in the slot is break */
 494static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
 495{
 496        unsigned int major_opcode;
 497        unsigned int template = bundle->quad0.template;
 498        unsigned long kprobe_inst;
 499
 500        /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 501        if (slot == 1 && bundle_encoding[template][1] == L)
 502                slot++;
 503
 504        /* Get Kprobe probe instruction at given slot*/
 505        get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 506
 507        /* For break instruction,
 508         * Bits 37:40 Major opcode to be zero
 509         * Bits 27:32 X6 to be zero
 510         * Bits 32:35 X3 to be zero
 511         */
 512        if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
 513                /* Not a break instruction */
 514                return 0;
 515        }
 516
 517        /* Is a break instruction */
 518        return 1;
 519}
 520
 521/*
 522 * In this function, we check whether the target bundle modifies IP or
 523 * it triggers an exception. If so, it cannot be boostable.
 524 */
 525static int __kprobes can_boost(bundle_t *bundle, uint slot,
 526                               unsigned long bundle_addr)
 527{
 528        unsigned int template = bundle->quad0.template;
 529
 530        do {
 531                if (search_exception_tables(bundle_addr + slot) ||
 532                    __is_ia64_break_inst(bundle, slot))
 533                        return 0;       /* exception may occur in this bundle*/
 534        } while ((++slot) < 3);
 535        template &= 0x1e;
 536        if (template >= 0x10 /* including B unit */ ||
 537            template == 0x04 /* including X unit */ ||
 538            template == 0x06) /* undefined */
 539                return 0;
 540
 541        return 1;
 542}
 543
 544/* Prepare long jump bundle and disables other boosters if need */
 545static void __kprobes prepare_booster(struct kprobe *p)
 546{
 547        unsigned long addr = (unsigned long)p->addr & ~0xFULL;
 548        unsigned int slot = (unsigned long)p->addr & 0xf;
 549        struct kprobe *other_kp;
 550
 551        if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
 552                set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
 553                p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
 554        }
 555
 556        /* disables boosters in previous slots */
 557        for (; addr < (unsigned long)p->addr; addr++) {
 558                other_kp = get_kprobe((void *)addr);
 559                if (other_kp)
 560                        other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
 561        }
 562}
 563
 564int __kprobes arch_prepare_kprobe(struct kprobe *p)
 565{
 566        unsigned long addr = (unsigned long) p->addr;
 567        unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
 568        unsigned long kprobe_inst=0;
 569        unsigned int slot = addr & 0xf, template, major_opcode = 0;
 570        bundle_t *bundle;
 571        int qp;
 572
 573        bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
 574        template = bundle->quad0.template;
 575
 576        if(valid_kprobe_addr(template, slot, addr))
 577                return -EINVAL;
 578
 579        /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 580        if (slot == 1 && bundle_encoding[template][1] == L)
 581                slot++;
 582
 583        /* Get kprobe_inst and major_opcode from the bundle */
 584        get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 585
 586        qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
 587        if (qp < 0)
 588                return -EINVAL;
 589
 590        p->ainsn.insn = get_insn_slot();
 591        if (!p->ainsn.insn)
 592                return -ENOMEM;
 593        memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
 594        memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
 595
 596        prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
 597
 598        prepare_booster(p);
 599
 600        return 0;
 601}
 602
 603void __kprobes arch_arm_kprobe(struct kprobe *p)
 604{
 605        unsigned long arm_addr;
 606        bundle_t *src, *dest;
 607
 608        arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 609        dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 610        src = &p->opcode.bundle;
 611
 612        flush_icache_range((unsigned long)p->ainsn.insn,
 613                           (unsigned long)p->ainsn.insn +
 614                           sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
 615
 616        switch (p->ainsn.slot) {
 617                case 0:
 618                        dest->quad0.slot0 = src->quad0.slot0;
 619                        break;
 620                case 1:
 621                        dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 622                        break;
 623                case 2:
 624                        dest->quad1.slot2 = src->quad1.slot2;
 625                        break;
 626        }
 627        flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 628}
 629
 630void __kprobes arch_disarm_kprobe(struct kprobe *p)
 631{
 632        unsigned long arm_addr;
 633        bundle_t *src, *dest;
 634
 635        arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 636        dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 637        /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
 638        src = &p->ainsn.insn->bundle;
 639        switch (p->ainsn.slot) {
 640                case 0:
 641                        dest->quad0.slot0 = src->quad0.slot0;
 642                        break;
 643                case 1:
 644                        dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 645                        break;
 646                case 2:
 647                        dest->quad1.slot2 = src->quad1.slot2;
 648                        break;
 649        }
 650        flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 651}
 652
 653void __kprobes arch_remove_kprobe(struct kprobe *p)
 654{
 655        if (p->ainsn.insn) {
 656                free_insn_slot(p->ainsn.insn,
 657                               p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
 658                p->ainsn.insn = NULL;
 659        }
 660}
 661/*
 662 * We are resuming execution after a single step fault, so the pt_regs
 663 * structure reflects the register state after we executed the instruction
 664 * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
 665 * the ip to point back to the original stack address. To set the IP address
 666 * to original stack address, handle the case where we need to fixup the
 667 * relative IP address and/or fixup branch register.
 668 */
 669static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 670{
 671        unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
 672        unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 673        unsigned long template;
 674        int slot = ((unsigned long)p->addr & 0xf);
 675
 676        template = p->ainsn.insn->bundle.quad0.template;
 677
 678        if (slot == 1 && bundle_encoding[template][1] == L)
 679                slot = 2;
 680
 681        if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
 682
 683                if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
 684                        /* Fix relative IP address */
 685                        regs->cr_iip = (regs->cr_iip - bundle_addr) +
 686                                        resume_addr;
 687                }
 688
 689                if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
 690                /*
 691                 * Fix target branch register, software convention is
 692                 * to use either b0 or b6 or b7, so just checking
 693                 * only those registers
 694                 */
 695                        switch (p->ainsn.target_br_reg) {
 696                        case 0:
 697                                if ((regs->b0 == bundle_addr) ||
 698                                        (regs->b0 == bundle_addr + 0x10)) {
 699                                        regs->b0 = (regs->b0 - bundle_addr) +
 700                                                resume_addr;
 701                                }
 702                                break;
 703                        case 6:
 704                                if ((regs->b6 == bundle_addr) ||
 705                                        (regs->b6 == bundle_addr + 0x10)) {
 706                                        regs->b6 = (regs->b6 - bundle_addr) +
 707                                                resume_addr;
 708                                }
 709                                break;
 710                        case 7:
 711                                if ((regs->b7 == bundle_addr) ||
 712                                        (regs->b7 == bundle_addr + 0x10)) {
 713                                        regs->b7 = (regs->b7 - bundle_addr) +
 714                                                resume_addr;
 715                                }
 716                                break;
 717                        } /* end switch */
 718                }
 719                goto turn_ss_off;
 720        }
 721
 722        if (slot == 2) {
 723                if (regs->cr_iip == bundle_addr + 0x10) {
 724                        regs->cr_iip = resume_addr + 0x10;
 725                }
 726        } else {
 727                if (regs->cr_iip == bundle_addr) {
 728                        regs->cr_iip = resume_addr;
 729                }
 730        }
 731
 732turn_ss_off:
 733        /* Turn off Single Step bit */
 734        ia64_psr(regs)->ss = 0;
 735}
 736
 737static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
 738{
 739        unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
 740        unsigned long slot = (unsigned long)p->addr & 0xf;
 741
 742        /* single step inline if break instruction */
 743        if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
 744                regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
 745        else
 746                regs->cr_iip = bundle_addr & ~0xFULL;
 747
 748        if (slot > 2)
 749                slot = 0;
 750
 751        ia64_psr(regs)->ri = slot;
 752
 753        /* turn on single stepping */
 754        ia64_psr(regs)->ss = 1;
 755}
 756
 757static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
 758{
 759        unsigned int slot = ia64_psr(regs)->ri;
 760        unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
 761        bundle_t bundle;
 762
 763        memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
 764
 765        return __is_ia64_break_inst(&bundle, slot);
 766}
 767
 768static int __kprobes pre_kprobes_handler(struct die_args *args)
 769{
 770        struct kprobe *p;
 771        int ret = 0;
 772        struct pt_regs *regs = args->regs;
 773        kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
 774        struct kprobe_ctlblk *kcb;
 775
 776        /*
 777         * We don't want to be preempted for the entire
 778         * duration of kprobe processing
 779         */
 780        preempt_disable();
 781        kcb = get_kprobe_ctlblk();
 782
 783        /* Handle recursion cases */
 784        if (kprobe_running()) {
 785                p = get_kprobe(addr);
 786                if (p) {
 787                        if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
 788                             (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
 789                                ia64_psr(regs)->ss = 0;
 790                                goto no_kprobe;
 791                        }
 792                        /* We have reentered the pre_kprobe_handler(), since
 793                         * another probe was hit while within the handler.
 794                         * We here save the original kprobes variables and
 795                         * just single step on the instruction of the new probe
 796                         * without calling any user handlers.
 797                         */
 798                        save_previous_kprobe(kcb);
 799                        set_current_kprobe(p, kcb);
 800                        kprobes_inc_nmissed_count(p);
 801                        prepare_ss(p, regs);
 802                        kcb->kprobe_status = KPROBE_REENTER;
 803                        return 1;
 804                } else if (!is_ia64_break_inst(regs)) {
 805                        /* The breakpoint instruction was removed by
 806                         * another cpu right after we hit, no further
 807                         * handling of this interrupt is appropriate
 808                         */
 809                        ret = 1;
 810                        goto no_kprobe;
 811                } else {
 812                        /* Not our break */
 813                        goto no_kprobe;
 814                }
 815        }
 816
 817        p = get_kprobe(addr);
 818        if (!p) {
 819                if (!is_ia64_break_inst(regs)) {
 820                        /*
 821                         * The breakpoint instruction was removed right
 822                         * after we hit it.  Another cpu has removed
 823                         * either a probepoint or a debugger breakpoint
 824                         * at this address.  In either case, no further
 825                         * handling of this interrupt is appropriate.
 826                         */
 827                        ret = 1;
 828
 829                }
 830
 831                /* Not one of our break, let kernel handle it */
 832                goto no_kprobe;
 833        }
 834
 835        set_current_kprobe(p, kcb);
 836        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 837
 838        if (p->pre_handler && p->pre_handler(p, regs)) {
 839                reset_current_kprobe();
 840                preempt_enable_no_resched();
 841                return 1;
 842        }
 843
 844#if !defined(CONFIG_PREEMPT)
 845        if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
 846                /* Boost up -- we can execute copied instructions directly */
 847                ia64_psr(regs)->ri = p->ainsn.slot;
 848                regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
 849                /* turn single stepping off */
 850                ia64_psr(regs)->ss = 0;
 851
 852                reset_current_kprobe();
 853                preempt_enable_no_resched();
 854                return 1;
 855        }
 856#endif
 857        prepare_ss(p, regs);
 858        kcb->kprobe_status = KPROBE_HIT_SS;
 859        return 1;
 860
 861no_kprobe:
 862        preempt_enable_no_resched();
 863        return ret;
 864}
 865
 866static int __kprobes post_kprobes_handler(struct pt_regs *regs)
 867{
 868        struct kprobe *cur = kprobe_running();
 869        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 870
 871        if (!cur)
 872                return 0;
 873
 874        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 875                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 876                cur->post_handler(cur, regs, 0);
 877        }
 878
 879        resume_execution(cur, regs);
 880
 881        /*Restore back the original saved kprobes variables and continue. */
 882        if (kcb->kprobe_status == KPROBE_REENTER) {
 883                restore_previous_kprobe(kcb);
 884                goto out;
 885        }
 886        reset_current_kprobe();
 887
 888out:
 889        preempt_enable_no_resched();
 890        return 1;
 891}
 892
 893int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 894{
 895        struct kprobe *cur = kprobe_running();
 896        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 897
 898
 899        switch(kcb->kprobe_status) {
 900        case KPROBE_HIT_SS:
 901        case KPROBE_REENTER:
 902                /*
 903                 * We are here because the instruction being single
 904                 * stepped caused a page fault. We reset the current
 905                 * kprobe and the instruction pointer points back to
 906                 * the probe address and allow the page fault handler
 907                 * to continue as a normal page fault.
 908                 */
 909                regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
 910                ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
 911                if (kcb->kprobe_status == KPROBE_REENTER)
 912                        restore_previous_kprobe(kcb);
 913                else
 914                        reset_current_kprobe();
 915                preempt_enable_no_resched();
 916                break;
 917        case KPROBE_HIT_ACTIVE:
 918        case KPROBE_HIT_SSDONE:
 919                /*
 920                 * We increment the nmissed count for accounting,
 921                 * we can also use npre/npostfault count for accounting
 922                 * these specific fault cases.
 923                 */
 924                kprobes_inc_nmissed_count(cur);
 925
 926                /*
 927                 * We come here because instructions in the pre/post
 928                 * handler caused the page_fault, this could happen
 929                 * if handler tries to access user space by
 930                 * copy_from_user(), get_user() etc. Let the
 931                 * user-specified handler try to fix it first.
 932                 */
 933                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 934                        return 1;
 935                /*
 936                 * In case the user-specified fault handler returned
 937                 * zero, try to fix up.
 938                 */
 939                if (ia64_done_with_exception(regs))
 940                        return 1;
 941
 942                /*
 943                 * Let ia64_do_page_fault() fix it.
 944                 */
 945                break;
 946        default:
 947                break;
 948        }
 949
 950        return 0;
 951}
 952
 953int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 954                                       unsigned long val, void *data)
 955{
 956        struct die_args *args = (struct die_args *)data;
 957        int ret = NOTIFY_DONE;
 958
 959        if (args->regs && user_mode(args->regs))
 960                return ret;
 961
 962        switch(val) {
 963        case DIE_BREAK:
 964                /* err is break number from ia64_bad_break() */
 965                if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
 966                        || args->err == 0)
 967                        if (pre_kprobes_handler(args))
 968                                ret = NOTIFY_STOP;
 969                break;
 970        case DIE_FAULT:
 971                /* err is vector number from ia64_fault() */
 972                if (args->err == 36)
 973                        if (post_kprobes_handler(args->regs))
 974                                ret = NOTIFY_STOP;
 975                break;
 976        default:
 977                break;
 978        }
 979        return ret;
 980}
 981
 982struct param_bsp_cfm {
 983        unsigned long ip;
 984        unsigned long *bsp;
 985        unsigned long cfm;
 986};
 987
 988static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
 989{
 990        unsigned long ip;
 991        struct param_bsp_cfm *lp = arg;
 992
 993        do {
 994                unw_get_ip(info, &ip);
 995                if (ip == 0)
 996                        break;
 997                if (ip == lp->ip) {
 998                        unw_get_bsp(info, (unsigned long*)&lp->bsp);
 999                        unw_get_cfm(info, (unsigned long*)&lp->cfm);
1000                        return;
1001                }
1002        } while (unw_unwind(info) >= 0);
1003        lp->bsp = NULL;
1004        lp->cfm = 0;
1005        return;
1006}
1007
1008unsigned long arch_deref_entry_point(void *entry)
1009{
1010        return ((struct fnptr *)entry)->ip;
1011}
1012
1013static struct kprobe trampoline_p = {
1014        .pre_handler = trampoline_probe_handler
1015};
1016
1017int __init arch_init_kprobes(void)
1018{
1019        trampoline_p.addr =
1020                (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1021        return register_kprobe(&trampoline_p);
1022}
1023
1024int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1025{
1026        if (p->addr ==
1027                (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1028                return 1;
1029
1030        return 0;
1031}
1032