linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file implements the perfmon-2 subsystem which is used
   4 * to program the IA-64 Performance Monitoring Unit (PMU).
   5 *
   6 * The initial version of perfmon.c was written by
   7 * Ganesh Venkitachalam, IBM Corp.
   8 *
   9 * Then it was modified for perfmon-1.x by Stephane Eranian and
  10 * David Mosberger, Hewlett Packard Co.
  11 *
  12 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  13 * by Stephane Eranian, Hewlett Packard Co.
  14 *
  15 * Copyright (C) 1999-2005  Hewlett Packard Co
  16 *               Stephane Eranian <eranian@hpl.hp.com>
  17 *               David Mosberger-Tang <davidm@hpl.hp.com>
  18 *
  19 * More information about perfmon available at:
  20 *      http://www.hpl.hp.com/research/linux/perfmon
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/sched.h>
  26#include <linux/sched/task.h>
  27#include <linux/sched/task_stack.h>
  28#include <linux/interrupt.h>
  29#include <linux/proc_fs.h>
  30#include <linux/seq_file.h>
  31#include <linux/init.h>
  32#include <linux/vmalloc.h>
  33#include <linux/mm.h>
  34#include <linux/sysctl.h>
  35#include <linux/list.h>
  36#include <linux/file.h>
  37#include <linux/poll.h>
  38#include <linux/vfs.h>
  39#include <linux/smp.h>
  40#include <linux/pagemap.h>
  41#include <linux/mount.h>
  42#include <linux/bitops.h>
  43#include <linux/capability.h>
  44#include <linux/rcupdate.h>
  45#include <linux/completion.h>
  46#include <linux/tracehook.h>
  47#include <linux/slab.h>
  48#include <linux/cpu.h>
  49
  50#include <asm/errno.h>
  51#include <asm/intrinsics.h>
  52#include <asm/page.h>
  53#include <asm/perfmon.h>
  54#include <asm/processor.h>
  55#include <asm/signal.h>
  56#include <linux/uaccess.h>
  57#include <asm/delay.h>
  58
  59#ifdef CONFIG_PERFMON
  60/*
  61 * perfmon context state
  62 */
  63#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  64#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  65#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  66#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  67
  68#define PFM_INVALID_ACTIVATION  (~0UL)
  69
  70#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  71#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  72
  73/*
  74 * depth of message queue
  75 */
  76#define PFM_MAX_MSGS            32
  77#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  78
  79/*
  80 * type of a PMU register (bitmask).
  81 * bitmask structure:
  82 *      bit0   : register implemented
  83 *      bit1   : end marker
  84 *      bit2-3 : reserved
  85 *      bit4   : pmc has pmc.pm
  86 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  87 *      bit6-7 : register type
  88 *      bit8-31: reserved
  89 */
  90#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  91#define PFM_REG_IMPL            0x1 /* register implemented */
  92#define PFM_REG_END             0x2 /* end marker */
  93#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  94#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  95#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  96#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  97#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  98
  99#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
 100#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
 101
 102#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 103
 104/* i assumed unsigned */
 105#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 106#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 107
 108/* XXX: these assume that register i is implemented */
 109#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 110#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 111#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 112#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 113
 114#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 115#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 116#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 117#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 118
 119#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 120#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 121
 122#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 123#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 124#define PFM_CTX_TASK(h)         (h)->ctx_task
 125
 126#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 127
 128/* XXX: does not support more than 64 PMDs */
 129#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 130#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 131
 132#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 133
 134#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 135#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 136#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 137#define PFM_CODE_RR     0       /* requesting code range restriction */
 138#define PFM_DATA_RR     1       /* requestion data range restriction */
 139
 140#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 141#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 142#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 143
 144#define RDEP(x) (1UL<<(x))
 145
 146/*
 147 * context protection macros
 148 * in SMP:
 149 *      - we need to protect against CPU concurrency (spin_lock)
 150 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 151 * in UP:
 152 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 153 *
 154 * spin_lock_irqsave()/spin_unlock_irqrestore():
 155 *      in SMP: local_irq_disable + spin_lock
 156 *      in UP : local_irq_disable
 157 *
 158 * spin_lock()/spin_lock():
 159 *      in UP : removed automatically
 160 *      in SMP: protect against context accesses from other CPU. interrupts
 161 *              are not masked. This is useful for the PMU interrupt handler
 162 *              because we know we will not get PMU concurrency in that code.
 163 */
 164#define PROTECT_CTX(c, f) \
 165        do {  \
 166                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 167                spin_lock_irqsave(&(c)->ctx_lock, f); \
 168                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 169        } while(0)
 170
 171#define UNPROTECT_CTX(c, f) \
 172        do { \
 173                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 174                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 175        } while(0)
 176
 177#define PROTECT_CTX_NOPRINT(c, f) \
 178        do {  \
 179                spin_lock_irqsave(&(c)->ctx_lock, f); \
 180        } while(0)
 181
 182
 183#define UNPROTECT_CTX_NOPRINT(c, f) \
 184        do { \
 185                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 186        } while(0)
 187
 188
 189#define PROTECT_CTX_NOIRQ(c) \
 190        do {  \
 191                spin_lock(&(c)->ctx_lock); \
 192        } while(0)
 193
 194#define UNPROTECT_CTX_NOIRQ(c) \
 195        do { \
 196                spin_unlock(&(c)->ctx_lock); \
 197        } while(0)
 198
 199
 200#ifdef CONFIG_SMP
 201
 202#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 203#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 204#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 205
 206#else /* !CONFIG_SMP */
 207#define SET_ACTIVATION(t)       do {} while(0)
 208#define GET_ACTIVATION(t)       do {} while(0)
 209#define INC_ACTIVATION(t)       do {} while(0)
 210#endif /* CONFIG_SMP */
 211
 212#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 213#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 214#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 215
 216#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 217#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 218
 219#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 220
 221/*
 222 * cmp0 must be the value of pmc0
 223 */
 224#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 225
 226#define PFMFS_MAGIC 0xa0b4d889
 227
 228/*
 229 * debugging
 230 */
 231#define PFM_DEBUGGING 1
 232#ifdef PFM_DEBUGGING
 233#define DPRINT(a) \
 234        do { \
 235                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 236        } while (0)
 237
 238#define DPRINT_ovfl(a) \
 239        do { \
 240                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 241        } while (0)
 242#endif
 243
 244/*
 245 * 64-bit software counter structure
 246 *
 247 * the next_reset_type is applied to the next call to pfm_reset_regs()
 248 */
 249typedef struct {
 250        unsigned long   val;            /* virtual 64bit counter value */
 251        unsigned long   lval;           /* last reset value */
 252        unsigned long   long_reset;     /* reset value on sampling overflow */
 253        unsigned long   short_reset;    /* reset value on overflow */
 254        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 255        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 256        unsigned long   seed;           /* seed for random-number generator */
 257        unsigned long   mask;           /* mask for random-number generator */
 258        unsigned int    flags;          /* notify/do not notify */
 259        unsigned long   eventid;        /* overflow event identifier */
 260} pfm_counter_t;
 261
 262/*
 263 * context flags
 264 */
 265typedef struct {
 266        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 267        unsigned int system:1;          /* do system wide monitoring */
 268        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 269        unsigned int is_sampling:1;     /* true if using a custom format */
 270        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 271        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 272        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 273        unsigned int no_msg:1;          /* no message sent on overflow */
 274        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 275        unsigned int reserved:22;
 276} pfm_context_flags_t;
 277
 278#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 279#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 280#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 281
 282
 283/*
 284 * perfmon context: encapsulates all the state of a monitoring session
 285 */
 286
 287typedef struct pfm_context {
 288        spinlock_t              ctx_lock;               /* context protection */
 289
 290        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 291        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 292
 293        struct task_struct      *ctx_task;              /* task to which context is attached */
 294
 295        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 296
 297        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 298
 299        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 300        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 301        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 302
 303        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 304        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 305        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 306
 307        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 308
 309        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 310        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 311        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 312        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 313
 314        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 315
 316        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 317        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 318
 319        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 320
 321        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 322        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 323        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 324
 325        int                     ctx_fd;                 /* file descriptor used my this context */
 326        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 327
 328        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 329        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 330        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 331        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 332
 333        wait_queue_head_t       ctx_msgq_wait;
 334        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 335        int                     ctx_msgq_head;
 336        int                     ctx_msgq_tail;
 337        struct fasync_struct    *ctx_async_queue;
 338
 339        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 340} pfm_context_t;
 341
 342/*
 343 * magic number used to verify that structure is really
 344 * a perfmon context
 345 */
 346#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 347
 348#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 349
 350#ifdef CONFIG_SMP
 351#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 352#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 353#else
 354#define SET_LAST_CPU(ctx, v)    do {} while(0)
 355#define GET_LAST_CPU(ctx)       do {} while(0)
 356#endif
 357
 358
 359#define ctx_fl_block            ctx_flags.block
 360#define ctx_fl_system           ctx_flags.system
 361#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 362#define ctx_fl_is_sampling      ctx_flags.is_sampling
 363#define ctx_fl_excl_idle        ctx_flags.excl_idle
 364#define ctx_fl_going_zombie     ctx_flags.going_zombie
 365#define ctx_fl_trap_reason      ctx_flags.trap_reason
 366#define ctx_fl_no_msg           ctx_flags.no_msg
 367#define ctx_fl_can_restart      ctx_flags.can_restart
 368
 369#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 370#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 371
 372/*
 373 * global information about all sessions
 374 * mostly used to synchronize between system wide and per-process
 375 */
 376typedef struct {
 377        spinlock_t              pfs_lock;                  /* lock the structure */
 378
 379        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 380        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 381        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 382        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 383        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 384} pfm_session_t;
 385
 386/*
 387 * information about a PMC or PMD.
 388 * dep_pmd[]: a bitmask of dependent PMD registers
 389 * dep_pmc[]: a bitmask of dependent PMC registers
 390 */
 391typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 392typedef struct {
 393        unsigned int            type;
 394        int                     pm_pos;
 395        unsigned long           default_value;  /* power-on default value */
 396        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 397        pfm_reg_check_t         read_check;
 398        pfm_reg_check_t         write_check;
 399        unsigned long           dep_pmd[4];
 400        unsigned long           dep_pmc[4];
 401} pfm_reg_desc_t;
 402
 403/* assume cnum is a valid monitor */
 404#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 405
 406/*
 407 * This structure is initialized at boot time and contains
 408 * a description of the PMU main characteristics.
 409 *
 410 * If the probe function is defined, detection is based
 411 * on its return value: 
 412 *      - 0 means recognized PMU
 413 *      - anything else means not supported
 414 * When the probe function is not defined, then the pmu_family field
 415 * is used and it must match the host CPU family such that:
 416 *      - cpu->family & config->pmu_family != 0
 417 */
 418typedef struct {
 419        unsigned long  ovfl_val;        /* overflow value for counters */
 420
 421        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 422        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 423
 424        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 425        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 426        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 427        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 428
 429        char          *pmu_name;        /* PMU family name */
 430        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 431        unsigned int  flags;            /* pmu specific flags */
 432        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 433        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 434        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 435        int           (*probe)(void);   /* customized probe routine */
 436        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 437} pmu_config_t;
 438/*
 439 * PMU specific flags
 440 */
 441#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 442
 443/*
 444 * debug register related type definitions
 445 */
 446typedef struct {
 447        unsigned long ibr_mask:56;
 448        unsigned long ibr_plm:4;
 449        unsigned long ibr_ig:3;
 450        unsigned long ibr_x:1;
 451} ibr_mask_reg_t;
 452
 453typedef struct {
 454        unsigned long dbr_mask:56;
 455        unsigned long dbr_plm:4;
 456        unsigned long dbr_ig:2;
 457        unsigned long dbr_w:1;
 458        unsigned long dbr_r:1;
 459} dbr_mask_reg_t;
 460
 461typedef union {
 462        unsigned long  val;
 463        ibr_mask_reg_t ibr;
 464        dbr_mask_reg_t dbr;
 465} dbreg_t;
 466
 467
 468/*
 469 * perfmon command descriptions
 470 */
 471typedef struct {
 472        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 473        char            *cmd_name;
 474        int             cmd_flags;
 475        unsigned int    cmd_narg;
 476        size_t          cmd_argsize;
 477        int             (*cmd_getsize)(void *arg, size_t *sz);
 478} pfm_cmd_desc_t;
 479
 480#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 481#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 482#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 483#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 484
 485
 486#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 487#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 488#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 489#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 490#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 491
 492#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 493
 494typedef struct {
 495        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 496        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 498        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 499        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 500        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 501        unsigned long pfm_smpl_handler_calls;
 502        unsigned long pfm_smpl_handler_cycles;
 503        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 504} pfm_stats_t;
 505
 506/*
 507 * perfmon internal variables
 508 */
 509static pfm_stats_t              pfm_stats[NR_CPUS];
 510static pfm_session_t            pfm_sessions;   /* global sessions information */
 511
 512static DEFINE_SPINLOCK(pfm_alt_install_check);
 513static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 514
 515static struct proc_dir_entry    *perfmon_dir;
 516static pfm_uuid_t               pfm_null_uuid = {0,};
 517
 518static spinlock_t               pfm_buffer_fmt_lock;
 519static LIST_HEAD(pfm_buffer_fmt_list);
 520
 521static pmu_config_t             *pmu_conf;
 522
 523/* sysctl() controls */
 524pfm_sysctl_t pfm_sysctl;
 525EXPORT_SYMBOL(pfm_sysctl);
 526
 527static struct ctl_table pfm_ctl_table[] = {
 528        {
 529                .procname       = "debug",
 530                .data           = &pfm_sysctl.debug,
 531                .maxlen         = sizeof(int),
 532                .mode           = 0666,
 533                .proc_handler   = proc_dointvec,
 534        },
 535        {
 536                .procname       = "debug_ovfl",
 537                .data           = &pfm_sysctl.debug_ovfl,
 538                .maxlen         = sizeof(int),
 539                .mode           = 0666,
 540                .proc_handler   = proc_dointvec,
 541        },
 542        {
 543                .procname       = "fastctxsw",
 544                .data           = &pfm_sysctl.fastctxsw,
 545                .maxlen         = sizeof(int),
 546                .mode           = 0600,
 547                .proc_handler   = proc_dointvec,
 548        },
 549        {
 550                .procname       = "expert_mode",
 551                .data           = &pfm_sysctl.expert_mode,
 552                .maxlen         = sizeof(int),
 553                .mode           = 0600,
 554                .proc_handler   = proc_dointvec,
 555        },
 556        {}
 557};
 558static struct ctl_table pfm_sysctl_dir[] = {
 559        {
 560                .procname       = "perfmon",
 561                .mode           = 0555,
 562                .child          = pfm_ctl_table,
 563        },
 564        {}
 565};
 566static struct ctl_table pfm_sysctl_root[] = {
 567        {
 568                .procname       = "kernel",
 569                .mode           = 0555,
 570                .child          = pfm_sysctl_dir,
 571        },
 572        {}
 573};
 574static struct ctl_table_header *pfm_sysctl_header;
 575
 576static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 577
 578#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 579#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 580
 581static inline void
 582pfm_put_task(struct task_struct *task)
 583{
 584        if (task != current) put_task_struct(task);
 585}
 586
 587static inline unsigned long
 588pfm_protect_ctx_ctxsw(pfm_context_t *x)
 589{
 590        spin_lock(&(x)->ctx_lock);
 591        return 0UL;
 592}
 593
 594static inline void
 595pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 596{
 597        spin_unlock(&(x)->ctx_lock);
 598}
 599
 600/* forward declaration */
 601static const struct dentry_operations pfmfs_dentry_operations;
 602
 603static struct dentry *
 604pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 605{
 606        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 607                        PFMFS_MAGIC);
 608}
 609
 610static struct file_system_type pfm_fs_type = {
 611        .name     = "pfmfs",
 612        .mount    = pfmfs_mount,
 613        .kill_sb  = kill_anon_super,
 614};
 615MODULE_ALIAS_FS("pfmfs");
 616
 617DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 618DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 619DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 620DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 621EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 622
 623
 624/* forward declaration */
 625static const struct file_operations pfm_file_ops;
 626
 627/*
 628 * forward declarations
 629 */
 630#ifndef CONFIG_SMP
 631static void pfm_lazy_save_regs (struct task_struct *ta);
 632#endif
 633
 634void dump_pmu_state(const char *);
 635static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 636
 637#include "perfmon_itanium.h"
 638#include "perfmon_mckinley.h"
 639#include "perfmon_montecito.h"
 640#include "perfmon_generic.h"
 641
 642static pmu_config_t *pmu_confs[]={
 643        &pmu_conf_mont,
 644        &pmu_conf_mck,
 645        &pmu_conf_ita,
 646        &pmu_conf_gen, /* must be last */
 647        NULL
 648};
 649
 650
 651static int pfm_end_notify_user(pfm_context_t *ctx);
 652
 653static inline void
 654pfm_clear_psr_pp(void)
 655{
 656        ia64_rsm(IA64_PSR_PP);
 657        ia64_srlz_i();
 658}
 659
 660static inline void
 661pfm_set_psr_pp(void)
 662{
 663        ia64_ssm(IA64_PSR_PP);
 664        ia64_srlz_i();
 665}
 666
 667static inline void
 668pfm_clear_psr_up(void)
 669{
 670        ia64_rsm(IA64_PSR_UP);
 671        ia64_srlz_i();
 672}
 673
 674static inline void
 675pfm_set_psr_up(void)
 676{
 677        ia64_ssm(IA64_PSR_UP);
 678        ia64_srlz_i();
 679}
 680
 681static inline unsigned long
 682pfm_get_psr(void)
 683{
 684        unsigned long tmp;
 685        tmp = ia64_getreg(_IA64_REG_PSR);
 686        ia64_srlz_i();
 687        return tmp;
 688}
 689
 690static inline void
 691pfm_set_psr_l(unsigned long val)
 692{
 693        ia64_setreg(_IA64_REG_PSR_L, val);
 694        ia64_srlz_i();
 695}
 696
 697static inline void
 698pfm_freeze_pmu(void)
 699{
 700        ia64_set_pmc(0,1UL);
 701        ia64_srlz_d();
 702}
 703
 704static inline void
 705pfm_unfreeze_pmu(void)
 706{
 707        ia64_set_pmc(0,0UL);
 708        ia64_srlz_d();
 709}
 710
 711static inline void
 712pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 713{
 714        int i;
 715
 716        for (i=0; i < nibrs; i++) {
 717                ia64_set_ibr(i, ibrs[i]);
 718                ia64_dv_serialize_instruction();
 719        }
 720        ia64_srlz_i();
 721}
 722
 723static inline void
 724pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 725{
 726        int i;
 727
 728        for (i=0; i < ndbrs; i++) {
 729                ia64_set_dbr(i, dbrs[i]);
 730                ia64_dv_serialize_data();
 731        }
 732        ia64_srlz_d();
 733}
 734
 735/*
 736 * PMD[i] must be a counter. no check is made
 737 */
 738static inline unsigned long
 739pfm_read_soft_counter(pfm_context_t *ctx, int i)
 740{
 741        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 742}
 743
 744/*
 745 * PMD[i] must be a counter. no check is made
 746 */
 747static inline void
 748pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 749{
 750        unsigned long ovfl_val = pmu_conf->ovfl_val;
 751
 752        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 753        /*
 754         * writing to unimplemented part is ignore, so we do not need to
 755         * mask off top part
 756         */
 757        ia64_set_pmd(i, val & ovfl_val);
 758}
 759
 760static pfm_msg_t *
 761pfm_get_new_msg(pfm_context_t *ctx)
 762{
 763        int idx, next;
 764
 765        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 766
 767        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 768        if (next == ctx->ctx_msgq_head) return NULL;
 769
 770        idx =   ctx->ctx_msgq_tail;
 771        ctx->ctx_msgq_tail = next;
 772
 773        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 774
 775        return ctx->ctx_msgq+idx;
 776}
 777
 778static pfm_msg_t *
 779pfm_get_next_msg(pfm_context_t *ctx)
 780{
 781        pfm_msg_t *msg;
 782
 783        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 784
 785        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 786
 787        /*
 788         * get oldest message
 789         */
 790        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 791
 792        /*
 793         * and move forward
 794         */
 795        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 796
 797        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 798
 799        return msg;
 800}
 801
 802static void
 803pfm_reset_msgq(pfm_context_t *ctx)
 804{
 805        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 806        DPRINT(("ctx=%p msgq reset\n", ctx));
 807}
 808
 809static pfm_context_t *
 810pfm_context_alloc(int ctx_flags)
 811{
 812        pfm_context_t *ctx;
 813
 814        /* 
 815         * allocate context descriptor 
 816         * must be able to free with interrupts disabled
 817         */
 818        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 819        if (ctx) {
 820                DPRINT(("alloc ctx @%p\n", ctx));
 821
 822                /*
 823                 * init context protection lock
 824                 */
 825                spin_lock_init(&ctx->ctx_lock);
 826
 827                /*
 828                 * context is unloaded
 829                 */
 830                ctx->ctx_state = PFM_CTX_UNLOADED;
 831
 832                /*
 833                 * initialization of context's flags
 834                 */
 835                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 836                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 837                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 838                /*
 839                 * will move to set properties
 840                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 841                 */
 842
 843                /*
 844                 * init restart semaphore to locked
 845                 */
 846                init_completion(&ctx->ctx_restart_done);
 847
 848                /*
 849                 * activation is used in SMP only
 850                 */
 851                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 852                SET_LAST_CPU(ctx, -1);
 853
 854                /*
 855                 * initialize notification message queue
 856                 */
 857                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 858                init_waitqueue_head(&ctx->ctx_msgq_wait);
 859                init_waitqueue_head(&ctx->ctx_zombieq);
 860
 861        }
 862        return ctx;
 863}
 864
 865static void
 866pfm_context_free(pfm_context_t *ctx)
 867{
 868        if (ctx) {
 869                DPRINT(("free ctx @%p\n", ctx));
 870                kfree(ctx);
 871        }
 872}
 873
 874static void
 875pfm_mask_monitoring(struct task_struct *task)
 876{
 877        pfm_context_t *ctx = PFM_GET_CTX(task);
 878        unsigned long mask, val, ovfl_mask;
 879        int i;
 880
 881        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 882
 883        ovfl_mask = pmu_conf->ovfl_val;
 884        /*
 885         * monitoring can only be masked as a result of a valid
 886         * counter overflow. In UP, it means that the PMU still
 887         * has an owner. Note that the owner can be different
 888         * from the current task. However the PMU state belongs
 889         * to the owner.
 890         * In SMP, a valid overflow only happens when task is
 891         * current. Therefore if we come here, we know that
 892         * the PMU state belongs to the current task, therefore
 893         * we can access the live registers.
 894         *
 895         * So in both cases, the live register contains the owner's
 896         * state. We can ONLY touch the PMU registers and NOT the PSR.
 897         *
 898         * As a consequence to this call, the ctx->th_pmds[] array
 899         * contains stale information which must be ignored
 900         * when context is reloaded AND monitoring is active (see
 901         * pfm_restart).
 902         */
 903        mask = ctx->ctx_used_pmds[0];
 904        for (i = 0; mask; i++, mask>>=1) {
 905                /* skip non used pmds */
 906                if ((mask & 0x1) == 0) continue;
 907                val = ia64_get_pmd(i);
 908
 909                if (PMD_IS_COUNTING(i)) {
 910                        /*
 911                         * we rebuild the full 64 bit value of the counter
 912                         */
 913                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 914                } else {
 915                        ctx->ctx_pmds[i].val = val;
 916                }
 917                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 918                        i,
 919                        ctx->ctx_pmds[i].val,
 920                        val & ovfl_mask));
 921        }
 922        /*
 923         * mask monitoring by setting the privilege level to 0
 924         * we cannot use psr.pp/psr.up for this, it is controlled by
 925         * the user
 926         *
 927         * if task is current, modify actual registers, otherwise modify
 928         * thread save state, i.e., what will be restored in pfm_load_regs()
 929         */
 930        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 931        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 932                if ((mask & 0x1) == 0UL) continue;
 933                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 934                ctx->th_pmcs[i] &= ~0xfUL;
 935                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 936        }
 937        /*
 938         * make all of this visible
 939         */
 940        ia64_srlz_d();
 941}
 942
 943/*
 944 * must always be done with task == current
 945 *
 946 * context must be in MASKED state when calling
 947 */
 948static void
 949pfm_restore_monitoring(struct task_struct *task)
 950{
 951        pfm_context_t *ctx = PFM_GET_CTX(task);
 952        unsigned long mask, ovfl_mask;
 953        unsigned long psr, val;
 954        int i, is_system;
 955
 956        is_system = ctx->ctx_fl_system;
 957        ovfl_mask = pmu_conf->ovfl_val;
 958
 959        if (task != current) {
 960                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
 961                return;
 962        }
 963        if (ctx->ctx_state != PFM_CTX_MASKED) {
 964                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
 965                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
 966                return;
 967        }
 968        psr = pfm_get_psr();
 969        /*
 970         * monitoring is masked via the PMC.
 971         * As we restore their value, we do not want each counter to
 972         * restart right away. We stop monitoring using the PSR,
 973         * restore the PMC (and PMD) and then re-establish the psr
 974         * as it was. Note that there can be no pending overflow at
 975         * this point, because monitoring was MASKED.
 976         *
 977         * system-wide session are pinned and self-monitoring
 978         */
 979        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
 980                /* disable dcr pp */
 981                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
 982                pfm_clear_psr_pp();
 983        } else {
 984                pfm_clear_psr_up();
 985        }
 986        /*
 987         * first, we restore the PMD
 988         */
 989        mask = ctx->ctx_used_pmds[0];
 990        for (i = 0; mask; i++, mask>>=1) {
 991                /* skip non used pmds */
 992                if ((mask & 0x1) == 0) continue;
 993
 994                if (PMD_IS_COUNTING(i)) {
 995                        /*
 996                         * we split the 64bit value according to
 997                         * counter width
 998                         */
 999                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1000                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1001                } else {
1002                        val = ctx->ctx_pmds[i].val;
1003                }
1004                ia64_set_pmd(i, val);
1005
1006                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1007                        i,
1008                        ctx->ctx_pmds[i].val,
1009                        val));
1010        }
1011        /*
1012         * restore the PMCs
1013         */
1014        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1015        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1016                if ((mask & 0x1) == 0UL) continue;
1017                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1018                ia64_set_pmc(i, ctx->th_pmcs[i]);
1019                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1020                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1021        }
1022        ia64_srlz_d();
1023
1024        /*
1025         * must restore DBR/IBR because could be modified while masked
1026         * XXX: need to optimize 
1027         */
1028        if (ctx->ctx_fl_using_dbreg) {
1029                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1030                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1031        }
1032
1033        /*
1034         * now restore PSR
1035         */
1036        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1037                /* enable dcr pp */
1038                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1039                ia64_srlz_i();
1040        }
1041        pfm_set_psr_l(psr);
1042}
1043
1044static inline void
1045pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1046{
1047        int i;
1048
1049        ia64_srlz_d();
1050
1051        for (i=0; mask; i++, mask>>=1) {
1052                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1053        }
1054}
1055
1056/*
1057 * reload from thread state (used for ctxw only)
1058 */
1059static inline void
1060pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1061{
1062        int i;
1063        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1064
1065        for (i=0; mask; i++, mask>>=1) {
1066                if ((mask & 0x1) == 0) continue;
1067                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1068                ia64_set_pmd(i, val);
1069        }
1070        ia64_srlz_d();
1071}
1072
1073/*
1074 * propagate PMD from context to thread-state
1075 */
1076static inline void
1077pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1078{
1079        unsigned long ovfl_val = pmu_conf->ovfl_val;
1080        unsigned long mask = ctx->ctx_all_pmds[0];
1081        unsigned long val;
1082        int i;
1083
1084        DPRINT(("mask=0x%lx\n", mask));
1085
1086        for (i=0; mask; i++, mask>>=1) {
1087
1088                val = ctx->ctx_pmds[i].val;
1089
1090                /*
1091                 * We break up the 64 bit value into 2 pieces
1092                 * the lower bits go to the machine state in the
1093                 * thread (will be reloaded on ctxsw in).
1094                 * The upper part stays in the soft-counter.
1095                 */
1096                if (PMD_IS_COUNTING(i)) {
1097                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1098                         val &= ovfl_val;
1099                }
1100                ctx->th_pmds[i] = val;
1101
1102                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1103                        i,
1104                        ctx->th_pmds[i],
1105                        ctx->ctx_pmds[i].val));
1106        }
1107}
1108
1109/*
1110 * propagate PMC from context to thread-state
1111 */
1112static inline void
1113pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1114{
1115        unsigned long mask = ctx->ctx_all_pmcs[0];
1116        int i;
1117
1118        DPRINT(("mask=0x%lx\n", mask));
1119
1120        for (i=0; mask; i++, mask>>=1) {
1121                /* masking 0 with ovfl_val yields 0 */
1122                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1123                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1124        }
1125}
1126
1127
1128
1129static inline void
1130pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1131{
1132        int i;
1133
1134        for (i=0; mask; i++, mask>>=1) {
1135                if ((mask & 0x1) == 0) continue;
1136                ia64_set_pmc(i, pmcs[i]);
1137        }
1138        ia64_srlz_d();
1139}
1140
1141static inline int
1142pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1143{
1144        return memcmp(a, b, sizeof(pfm_uuid_t));
1145}
1146
1147static inline int
1148pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1149{
1150        int ret = 0;
1151        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1152        return ret;
1153}
1154
1155static inline int
1156pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1157{
1158        int ret = 0;
1159        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1160        return ret;
1161}
1162
1163
1164static inline int
1165pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1166                     int cpu, void *arg)
1167{
1168        int ret = 0;
1169        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1170        return ret;
1171}
1172
1173static inline int
1174pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1175                     int cpu, void *arg)
1176{
1177        int ret = 0;
1178        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1179        return ret;
1180}
1181
1182static inline int
1183pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1184{
1185        int ret = 0;
1186        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1187        return ret;
1188}
1189
1190static inline int
1191pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1192{
1193        int ret = 0;
1194        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1195        return ret;
1196}
1197
1198static pfm_buffer_fmt_t *
1199__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1200{
1201        struct list_head * pos;
1202        pfm_buffer_fmt_t * entry;
1203
1204        list_for_each(pos, &pfm_buffer_fmt_list) {
1205                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1206                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1207                        return entry;
1208        }
1209        return NULL;
1210}
1211 
1212/*
1213 * find a buffer format based on its uuid
1214 */
1215static pfm_buffer_fmt_t *
1216pfm_find_buffer_fmt(pfm_uuid_t uuid)
1217{
1218        pfm_buffer_fmt_t * fmt;
1219        spin_lock(&pfm_buffer_fmt_lock);
1220        fmt = __pfm_find_buffer_fmt(uuid);
1221        spin_unlock(&pfm_buffer_fmt_lock);
1222        return fmt;
1223}
1224 
1225int
1226pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1227{
1228        int ret = 0;
1229
1230        /* some sanity checks */
1231        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1232
1233        /* we need at least a handler */
1234        if (fmt->fmt_handler == NULL) return -EINVAL;
1235
1236        /*
1237         * XXX: need check validity of fmt_arg_size
1238         */
1239
1240        spin_lock(&pfm_buffer_fmt_lock);
1241
1242        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1243                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1244                ret = -EBUSY;
1245                goto out;
1246        } 
1247        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1248        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1249
1250out:
1251        spin_unlock(&pfm_buffer_fmt_lock);
1252        return ret;
1253}
1254EXPORT_SYMBOL(pfm_register_buffer_fmt);
1255
1256int
1257pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1258{
1259        pfm_buffer_fmt_t *fmt;
1260        int ret = 0;
1261
1262        spin_lock(&pfm_buffer_fmt_lock);
1263
1264        fmt = __pfm_find_buffer_fmt(uuid);
1265        if (!fmt) {
1266                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1267                ret = -EINVAL;
1268                goto out;
1269        }
1270        list_del_init(&fmt->fmt_list);
1271        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1272
1273out:
1274        spin_unlock(&pfm_buffer_fmt_lock);
1275        return ret;
1276
1277}
1278EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1279
1280static int
1281pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1282{
1283        unsigned long flags;
1284        /*
1285         * validity checks on cpu_mask have been done upstream
1286         */
1287        LOCK_PFS(flags);
1288
1289        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1290                pfm_sessions.pfs_sys_sessions,
1291                pfm_sessions.pfs_task_sessions,
1292                pfm_sessions.pfs_sys_use_dbregs,
1293                is_syswide,
1294                cpu));
1295
1296        if (is_syswide) {
1297                /*
1298                 * cannot mix system wide and per-task sessions
1299                 */
1300                if (pfm_sessions.pfs_task_sessions > 0UL) {
1301                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1302                                pfm_sessions.pfs_task_sessions));
1303                        goto abort;
1304                }
1305
1306                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1307
1308                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1309
1310                pfm_sessions.pfs_sys_session[cpu] = task;
1311
1312                pfm_sessions.pfs_sys_sessions++ ;
1313
1314        } else {
1315                if (pfm_sessions.pfs_sys_sessions) goto abort;
1316                pfm_sessions.pfs_task_sessions++;
1317        }
1318
1319        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1320                pfm_sessions.pfs_sys_sessions,
1321                pfm_sessions.pfs_task_sessions,
1322                pfm_sessions.pfs_sys_use_dbregs,
1323                is_syswide,
1324                cpu));
1325
1326        /*
1327         * Force idle() into poll mode
1328         */
1329        cpu_idle_poll_ctrl(true);
1330
1331        UNLOCK_PFS(flags);
1332
1333        return 0;
1334
1335error_conflict:
1336        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1337                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1338                cpu));
1339abort:
1340        UNLOCK_PFS(flags);
1341
1342        return -EBUSY;
1343
1344}
1345
1346static int
1347pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1348{
1349        unsigned long flags;
1350        /*
1351         * validity checks on cpu_mask have been done upstream
1352         */
1353        LOCK_PFS(flags);
1354
1355        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1356                pfm_sessions.pfs_sys_sessions,
1357                pfm_sessions.pfs_task_sessions,
1358                pfm_sessions.pfs_sys_use_dbregs,
1359                is_syswide,
1360                cpu));
1361
1362
1363        if (is_syswide) {
1364                pfm_sessions.pfs_sys_session[cpu] = NULL;
1365                /*
1366                 * would not work with perfmon+more than one bit in cpu_mask
1367                 */
1368                if (ctx && ctx->ctx_fl_using_dbreg) {
1369                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1370                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1371                        } else {
1372                                pfm_sessions.pfs_sys_use_dbregs--;
1373                        }
1374                }
1375                pfm_sessions.pfs_sys_sessions--;
1376        } else {
1377                pfm_sessions.pfs_task_sessions--;
1378        }
1379        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1380                pfm_sessions.pfs_sys_sessions,
1381                pfm_sessions.pfs_task_sessions,
1382                pfm_sessions.pfs_sys_use_dbregs,
1383                is_syswide,
1384                cpu));
1385
1386        /* Undo forced polling. Last session reenables pal_halt */
1387        cpu_idle_poll_ctrl(false);
1388
1389        UNLOCK_PFS(flags);
1390
1391        return 0;
1392}
1393
1394/*
1395 * removes virtual mapping of the sampling buffer.
1396 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1397 * a PROTECT_CTX() section.
1398 */
1399static int
1400pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1401{
1402        struct task_struct *task = current;
1403        int r;
1404
1405        /* sanity checks */
1406        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1407                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1408                return -EINVAL;
1409        }
1410
1411        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1412
1413        /*
1414         * does the actual unmapping
1415         */
1416        r = vm_munmap((unsigned long)vaddr, size);
1417
1418        if (r !=0) {
1419                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1420        }
1421
1422        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1423
1424        return 0;
1425}
1426
1427/*
1428 * free actual physical storage used by sampling buffer
1429 */
1430#if 0
1431static int
1432pfm_free_smpl_buffer(pfm_context_t *ctx)
1433{
1434        pfm_buffer_fmt_t *fmt;
1435
1436        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1437
1438        /*
1439         * we won't use the buffer format anymore
1440         */
1441        fmt = ctx->ctx_buf_fmt;
1442
1443        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1444                ctx->ctx_smpl_hdr,
1445                ctx->ctx_smpl_size,
1446                ctx->ctx_smpl_vaddr));
1447
1448        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1449
1450        /*
1451         * free the buffer
1452         */
1453        vfree(ctx->ctx_smpl_hdr);
1454
1455        ctx->ctx_smpl_hdr  = NULL;
1456        ctx->ctx_smpl_size = 0UL;
1457
1458        return 0;
1459
1460invalid_free:
1461        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1462        return -EINVAL;
1463}
1464#endif
1465
1466static inline void
1467pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1468{
1469        if (fmt == NULL) return;
1470
1471        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1472
1473}
1474
1475/*
1476 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1477 * no real gain from having the whole whorehouse mounted. So we don't need
1478 * any operations on the root directory. However, we need a non-trivial
1479 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1480 */
1481static struct vfsmount *pfmfs_mnt __read_mostly;
1482
1483static int __init
1484init_pfm_fs(void)
1485{
1486        int err = register_filesystem(&pfm_fs_type);
1487        if (!err) {
1488                pfmfs_mnt = kern_mount(&pfm_fs_type);
1489                err = PTR_ERR(pfmfs_mnt);
1490                if (IS_ERR(pfmfs_mnt))
1491                        unregister_filesystem(&pfm_fs_type);
1492                else
1493                        err = 0;
1494        }
1495        return err;
1496}
1497
1498static ssize_t
1499pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1500{
1501        pfm_context_t *ctx;
1502        pfm_msg_t *msg;
1503        ssize_t ret;
1504        unsigned long flags;
1505        DECLARE_WAITQUEUE(wait, current);
1506        if (PFM_IS_FILE(filp) == 0) {
1507                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1508                return -EINVAL;
1509        }
1510
1511        ctx = filp->private_data;
1512        if (ctx == NULL) {
1513                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1514                return -EINVAL;
1515        }
1516
1517        /*
1518         * check even when there is no message
1519         */
1520        if (size < sizeof(pfm_msg_t)) {
1521                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1522                return -EINVAL;
1523        }
1524
1525        PROTECT_CTX(ctx, flags);
1526
1527        /*
1528         * put ourselves on the wait queue
1529         */
1530        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1531
1532
1533        for(;;) {
1534                /*
1535                 * check wait queue
1536                 */
1537
1538                set_current_state(TASK_INTERRUPTIBLE);
1539
1540                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1541
1542                ret = 0;
1543                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1544
1545                UNPROTECT_CTX(ctx, flags);
1546
1547                /*
1548                 * check non-blocking read
1549                 */
1550                ret = -EAGAIN;
1551                if(filp->f_flags & O_NONBLOCK) break;
1552
1553                /*
1554                 * check pending signals
1555                 */
1556                if(signal_pending(current)) {
1557                        ret = -EINTR;
1558                        break;
1559                }
1560                /*
1561                 * no message, so wait
1562                 */
1563                schedule();
1564
1565                PROTECT_CTX(ctx, flags);
1566        }
1567        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1568        set_current_state(TASK_RUNNING);
1569        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1570
1571        if (ret < 0) goto abort;
1572
1573        ret = -EINVAL;
1574        msg = pfm_get_next_msg(ctx);
1575        if (msg == NULL) {
1576                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1577                goto abort_locked;
1578        }
1579
1580        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1581
1582        ret = -EFAULT;
1583        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1584
1585abort_locked:
1586        UNPROTECT_CTX(ctx, flags);
1587abort:
1588        return ret;
1589}
1590
1591static ssize_t
1592pfm_write(struct file *file, const char __user *ubuf,
1593                          size_t size, loff_t *ppos)
1594{
1595        DPRINT(("pfm_write called\n"));
1596        return -EINVAL;
1597}
1598
1599static __poll_t
1600pfm_poll(struct file *filp, poll_table * wait)
1601{
1602        pfm_context_t *ctx;
1603        unsigned long flags;
1604        __poll_t mask = 0;
1605
1606        if (PFM_IS_FILE(filp) == 0) {
1607                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1608                return 0;
1609        }
1610
1611        ctx = filp->private_data;
1612        if (ctx == NULL) {
1613                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1614                return 0;
1615        }
1616
1617
1618        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1619
1620        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1621
1622        PROTECT_CTX(ctx, flags);
1623
1624        if (PFM_CTXQ_EMPTY(ctx) == 0)
1625                mask =  EPOLLIN | EPOLLRDNORM;
1626
1627        UNPROTECT_CTX(ctx, flags);
1628
1629        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1630
1631        return mask;
1632}
1633
1634static long
1635pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1636{
1637        DPRINT(("pfm_ioctl called\n"));
1638        return -EINVAL;
1639}
1640
1641/*
1642 * interrupt cannot be masked when coming here
1643 */
1644static inline int
1645pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1646{
1647        int ret;
1648
1649        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1650
1651        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1652                task_pid_nr(current),
1653                fd,
1654                on,
1655                ctx->ctx_async_queue, ret));
1656
1657        return ret;
1658}
1659
1660static int
1661pfm_fasync(int fd, struct file *filp, int on)
1662{
1663        pfm_context_t *ctx;
1664        int ret;
1665
1666        if (PFM_IS_FILE(filp) == 0) {
1667                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1668                return -EBADF;
1669        }
1670
1671        ctx = filp->private_data;
1672        if (ctx == NULL) {
1673                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1674                return -EBADF;
1675        }
1676        /*
1677         * we cannot mask interrupts during this call because this may
1678         * may go to sleep if memory is not readily avalaible.
1679         *
1680         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1681         * done in caller. Serialization of this function is ensured by caller.
1682         */
1683        ret = pfm_do_fasync(fd, filp, ctx, on);
1684
1685
1686        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1687                fd,
1688                on,
1689                ctx->ctx_async_queue, ret));
1690
1691        return ret;
1692}
1693
1694#ifdef CONFIG_SMP
1695/*
1696 * this function is exclusively called from pfm_close().
1697 * The context is not protected at that time, nor are interrupts
1698 * on the remote CPU. That's necessary to avoid deadlocks.
1699 */
1700static void
1701pfm_syswide_force_stop(void *info)
1702{
1703        pfm_context_t   *ctx = (pfm_context_t *)info;
1704        struct pt_regs *regs = task_pt_regs(current);
1705        struct task_struct *owner;
1706        unsigned long flags;
1707        int ret;
1708
1709        if (ctx->ctx_cpu != smp_processor_id()) {
1710                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1711                        ctx->ctx_cpu,
1712                        smp_processor_id());
1713                return;
1714        }
1715        owner = GET_PMU_OWNER();
1716        if (owner != ctx->ctx_task) {
1717                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1718                        smp_processor_id(),
1719                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1720                return;
1721        }
1722        if (GET_PMU_CTX() != ctx) {
1723                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1724                        smp_processor_id(),
1725                        GET_PMU_CTX(), ctx);
1726                return;
1727        }
1728
1729        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1730        /*
1731         * the context is already protected in pfm_close(), we simply
1732         * need to mask interrupts to avoid a PMU interrupt race on
1733         * this CPU
1734         */
1735        local_irq_save(flags);
1736
1737        ret = pfm_context_unload(ctx, NULL, 0, regs);
1738        if (ret) {
1739                DPRINT(("context_unload returned %d\n", ret));
1740        }
1741
1742        /*
1743         * unmask interrupts, PMU interrupts are now spurious here
1744         */
1745        local_irq_restore(flags);
1746}
1747
1748static void
1749pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1750{
1751        int ret;
1752
1753        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1754        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1755        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1756}
1757#endif /* CONFIG_SMP */
1758
1759/*
1760 * called for each close(). Partially free resources.
1761 * When caller is self-monitoring, the context is unloaded.
1762 */
1763static int
1764pfm_flush(struct file *filp, fl_owner_t id)
1765{
1766        pfm_context_t *ctx;
1767        struct task_struct *task;
1768        struct pt_regs *regs;
1769        unsigned long flags;
1770        unsigned long smpl_buf_size = 0UL;
1771        void *smpl_buf_vaddr = NULL;
1772        int state, is_system;
1773
1774        if (PFM_IS_FILE(filp) == 0) {
1775                DPRINT(("bad magic for\n"));
1776                return -EBADF;
1777        }
1778
1779        ctx = filp->private_data;
1780        if (ctx == NULL) {
1781                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1782                return -EBADF;
1783        }
1784
1785        /*
1786         * remove our file from the async queue, if we use this mode.
1787         * This can be done without the context being protected. We come
1788         * here when the context has become unreachable by other tasks.
1789         *
1790         * We may still have active monitoring at this point and we may
1791         * end up in pfm_overflow_handler(). However, fasync_helper()
1792         * operates with interrupts disabled and it cleans up the
1793         * queue. If the PMU handler is called prior to entering
1794         * fasync_helper() then it will send a signal. If it is
1795         * invoked after, it will find an empty queue and no
1796         * signal will be sent. In both case, we are safe
1797         */
1798        PROTECT_CTX(ctx, flags);
1799
1800        state     = ctx->ctx_state;
1801        is_system = ctx->ctx_fl_system;
1802
1803        task = PFM_CTX_TASK(ctx);
1804        regs = task_pt_regs(task);
1805
1806        DPRINT(("ctx_state=%d is_current=%d\n",
1807                state,
1808                task == current ? 1 : 0));
1809
1810        /*
1811         * if state == UNLOADED, then task is NULL
1812         */
1813
1814        /*
1815         * we must stop and unload because we are losing access to the context.
1816         */
1817        if (task == current) {
1818#ifdef CONFIG_SMP
1819                /*
1820                 * the task IS the owner but it migrated to another CPU: that's bad
1821                 * but we must handle this cleanly. Unfortunately, the kernel does
1822                 * not provide a mechanism to block migration (while the context is loaded).
1823                 *
1824                 * We need to release the resource on the ORIGINAL cpu.
1825                 */
1826                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1827
1828                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1829                        /*
1830                         * keep context protected but unmask interrupt for IPI
1831                         */
1832                        local_irq_restore(flags);
1833
1834                        pfm_syswide_cleanup_other_cpu(ctx);
1835
1836                        /*
1837                         * restore interrupt masking
1838                         */
1839                        local_irq_save(flags);
1840
1841                        /*
1842                         * context is unloaded at this point
1843                         */
1844                } else
1845#endif /* CONFIG_SMP */
1846                {
1847
1848                        DPRINT(("forcing unload\n"));
1849                        /*
1850                        * stop and unload, returning with state UNLOADED
1851                        * and session unreserved.
1852                        */
1853                        pfm_context_unload(ctx, NULL, 0, regs);
1854
1855                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1856                }
1857        }
1858
1859        /*
1860         * remove virtual mapping, if any, for the calling task.
1861         * cannot reset ctx field until last user is calling close().
1862         *
1863         * ctx_smpl_vaddr must never be cleared because it is needed
1864         * by every task with access to the context
1865         *
1866         * When called from do_exit(), the mm context is gone already, therefore
1867         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1868         * do anything here
1869         */
1870        if (ctx->ctx_smpl_vaddr && current->mm) {
1871                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1872                smpl_buf_size  = ctx->ctx_smpl_size;
1873        }
1874
1875        UNPROTECT_CTX(ctx, flags);
1876
1877        /*
1878         * if there was a mapping, then we systematically remove it
1879         * at this point. Cannot be done inside critical section
1880         * because some VM function reenables interrupts.
1881         *
1882         */
1883        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1884
1885        return 0;
1886}
1887/*
1888 * called either on explicit close() or from exit_files(). 
1889 * Only the LAST user of the file gets to this point, i.e., it is
1890 * called only ONCE.
1891 *
1892 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1893 * (fput()),i.e, last task to access the file. Nobody else can access the 
1894 * file at this point.
1895 *
1896 * When called from exit_files(), the VMA has been freed because exit_mm()
1897 * is executed before exit_files().
1898 *
1899 * When called from exit_files(), the current task is not yet ZOMBIE but we
1900 * flush the PMU state to the context. 
1901 */
1902static int
1903pfm_close(struct inode *inode, struct file *filp)
1904{
1905        pfm_context_t *ctx;
1906        struct task_struct *task;
1907        struct pt_regs *regs;
1908        DECLARE_WAITQUEUE(wait, current);
1909        unsigned long flags;
1910        unsigned long smpl_buf_size = 0UL;
1911        void *smpl_buf_addr = NULL;
1912        int free_possible = 1;
1913        int state, is_system;
1914
1915        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1916
1917        if (PFM_IS_FILE(filp) == 0) {
1918                DPRINT(("bad magic\n"));
1919                return -EBADF;
1920        }
1921        
1922        ctx = filp->private_data;
1923        if (ctx == NULL) {
1924                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1925                return -EBADF;
1926        }
1927
1928        PROTECT_CTX(ctx, flags);
1929
1930        state     = ctx->ctx_state;
1931        is_system = ctx->ctx_fl_system;
1932
1933        task = PFM_CTX_TASK(ctx);
1934        regs = task_pt_regs(task);
1935
1936        DPRINT(("ctx_state=%d is_current=%d\n", 
1937                state,
1938                task == current ? 1 : 0));
1939
1940        /*
1941         * if task == current, then pfm_flush() unloaded the context
1942         */
1943        if (state == PFM_CTX_UNLOADED) goto doit;
1944
1945        /*
1946         * context is loaded/masked and task != current, we need to
1947         * either force an unload or go zombie
1948         */
1949
1950        /*
1951         * The task is currently blocked or will block after an overflow.
1952         * we must force it to wakeup to get out of the
1953         * MASKED state and transition to the unloaded state by itself.
1954         *
1955         * This situation is only possible for per-task mode
1956         */
1957        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1958
1959                /*
1960                 * set a "partial" zombie state to be checked
1961                 * upon return from down() in pfm_handle_work().
1962                 *
1963                 * We cannot use the ZOMBIE state, because it is checked
1964                 * by pfm_load_regs() which is called upon wakeup from down().
1965                 * In such case, it would free the context and then we would
1966                 * return to pfm_handle_work() which would access the
1967                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1968                 * but visible to pfm_handle_work().
1969                 *
1970                 * For some window of time, we have a zombie context with
1971                 * ctx_state = MASKED  and not ZOMBIE
1972                 */
1973                ctx->ctx_fl_going_zombie = 1;
1974
1975                /*
1976                 * force task to wake up from MASKED state
1977                 */
1978                complete(&ctx->ctx_restart_done);
1979
1980                DPRINT(("waking up ctx_state=%d\n", state));
1981
1982                /*
1983                 * put ourself to sleep waiting for the other
1984                 * task to report completion
1985                 *
1986                 * the context is protected by mutex, therefore there
1987                 * is no risk of being notified of completion before
1988                 * begin actually on the waitq.
1989                 */
1990                set_current_state(TASK_INTERRUPTIBLE);
1991                add_wait_queue(&ctx->ctx_zombieq, &wait);
1992
1993                UNPROTECT_CTX(ctx, flags);
1994
1995                /*
1996                 * XXX: check for signals :
1997                 *      - ok for explicit close
1998                 *      - not ok when coming from exit_files()
1999                 */
2000                schedule();
2001
2002
2003                PROTECT_CTX(ctx, flags);
2004
2005
2006                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2007                set_current_state(TASK_RUNNING);
2008
2009                /*
2010                 * context is unloaded at this point
2011                 */
2012                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2013        }
2014        else if (task != current) {
2015#ifdef CONFIG_SMP
2016                /*
2017                 * switch context to zombie state
2018                 */
2019                ctx->ctx_state = PFM_CTX_ZOMBIE;
2020
2021                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2022                /*
2023                 * cannot free the context on the spot. deferred until
2024                 * the task notices the ZOMBIE state
2025                 */
2026                free_possible = 0;
2027#else
2028                pfm_context_unload(ctx, NULL, 0, regs);
2029#endif
2030        }
2031
2032doit:
2033        /* reload state, may have changed during  opening of critical section */
2034        state = ctx->ctx_state;
2035
2036        /*
2037         * the context is still attached to a task (possibly current)
2038         * we cannot destroy it right now
2039         */
2040
2041        /*
2042         * we must free the sampling buffer right here because
2043         * we cannot rely on it being cleaned up later by the
2044         * monitored task. It is not possible to free vmalloc'ed
2045         * memory in pfm_load_regs(). Instead, we remove the buffer
2046         * now. should there be subsequent PMU overflow originally
2047         * meant for sampling, the will be converted to spurious
2048         * and that's fine because the monitoring tools is gone anyway.
2049         */
2050        if (ctx->ctx_smpl_hdr) {
2051                smpl_buf_addr = ctx->ctx_smpl_hdr;
2052                smpl_buf_size = ctx->ctx_smpl_size;
2053                /* no more sampling */
2054                ctx->ctx_smpl_hdr = NULL;
2055                ctx->ctx_fl_is_sampling = 0;
2056        }
2057
2058        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2059                state,
2060                free_possible,
2061                smpl_buf_addr,
2062                smpl_buf_size));
2063
2064        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2065
2066        /*
2067         * UNLOADED that the session has already been unreserved.
2068         */
2069        if (state == PFM_CTX_ZOMBIE) {
2070                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2071        }
2072
2073        /*
2074         * disconnect file descriptor from context must be done
2075         * before we unlock.
2076         */
2077        filp->private_data = NULL;
2078
2079        /*
2080         * if we free on the spot, the context is now completely unreachable
2081         * from the callers side. The monitored task side is also cut, so we
2082         * can freely cut.
2083         *
2084         * If we have a deferred free, only the caller side is disconnected.
2085         */
2086        UNPROTECT_CTX(ctx, flags);
2087
2088        /*
2089         * All memory free operations (especially for vmalloc'ed memory)
2090         * MUST be done with interrupts ENABLED.
2091         */
2092        vfree(smpl_buf_addr);
2093
2094        /*
2095         * return the memory used by the context
2096         */
2097        if (free_possible) pfm_context_free(ctx);
2098
2099        return 0;
2100}
2101
2102static const struct file_operations pfm_file_ops = {
2103        .llseek         = no_llseek,
2104        .read           = pfm_read,
2105        .write          = pfm_write,
2106        .poll           = pfm_poll,
2107        .unlocked_ioctl = pfm_ioctl,
2108        .fasync         = pfm_fasync,
2109        .release        = pfm_close,
2110        .flush          = pfm_flush
2111};
2112
2113static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2114{
2115        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2116                             d_inode(dentry)->i_ino);
2117}
2118
2119static const struct dentry_operations pfmfs_dentry_operations = {
2120        .d_delete = always_delete_dentry,
2121        .d_dname = pfmfs_dname,
2122};
2123
2124
2125static struct file *
2126pfm_alloc_file(pfm_context_t *ctx)
2127{
2128        struct file *file;
2129        struct inode *inode;
2130        struct path path;
2131        struct qstr this = { .name = "" };
2132
2133        /*
2134         * allocate a new inode
2135         */
2136        inode = new_inode(pfmfs_mnt->mnt_sb);
2137        if (!inode)
2138                return ERR_PTR(-ENOMEM);
2139
2140        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2141
2142        inode->i_mode = S_IFCHR|S_IRUGO;
2143        inode->i_uid  = current_fsuid();
2144        inode->i_gid  = current_fsgid();
2145
2146        /*
2147         * allocate a new dcache entry
2148         */
2149        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2150        if (!path.dentry) {
2151                iput(inode);
2152                return ERR_PTR(-ENOMEM);
2153        }
2154        path.mnt = mntget(pfmfs_mnt);
2155
2156        d_add(path.dentry, inode);
2157
2158        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2159        if (IS_ERR(file)) {
2160                path_put(&path);
2161                return file;
2162        }
2163
2164        file->f_flags = O_RDONLY;
2165        file->private_data = ctx;
2166
2167        return file;
2168}
2169
2170static int
2171pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2172{
2173        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2174
2175        while (size > 0) {
2176                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2177
2178
2179                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2180                        return -ENOMEM;
2181
2182                addr  += PAGE_SIZE;
2183                buf   += PAGE_SIZE;
2184                size  -= PAGE_SIZE;
2185        }
2186        return 0;
2187}
2188
2189/*
2190 * allocate a sampling buffer and remaps it into the user address space of the task
2191 */
2192static int
2193pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2194{
2195        struct mm_struct *mm = task->mm;
2196        struct vm_area_struct *vma = NULL;
2197        unsigned long size;
2198        void *smpl_buf;
2199
2200
2201        /*
2202         * the fixed header + requested size and align to page boundary
2203         */
2204        size = PAGE_ALIGN(rsize);
2205
2206        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2207
2208        /*
2209         * check requested size to avoid Denial-of-service attacks
2210         * XXX: may have to refine this test
2211         * Check against address space limit.
2212         *
2213         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2214         *      return -ENOMEM;
2215         */
2216        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2217                return -ENOMEM;
2218
2219        /*
2220         * We do the easy to undo allocations first.
2221         */
2222        smpl_buf = vzalloc(size);
2223        if (smpl_buf == NULL) {
2224                DPRINT(("Can't allocate sampling buffer\n"));
2225                return -ENOMEM;
2226        }
2227
2228        DPRINT(("smpl_buf @%p\n", smpl_buf));
2229
2230        /* allocate vma */
2231        vma = vm_area_alloc(mm);
2232        if (!vma) {
2233                DPRINT(("Cannot allocate vma\n"));
2234                goto error_kmem;
2235        }
2236
2237        /*
2238         * partially initialize the vma for the sampling buffer
2239         */
2240        vma->vm_file         = get_file(filp);
2241        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2242        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2243
2244        /*
2245         * Now we have everything we need and we can initialize
2246         * and connect all the data structures
2247         */
2248
2249        ctx->ctx_smpl_hdr   = smpl_buf;
2250        ctx->ctx_smpl_size  = size; /* aligned size */
2251
2252        /*
2253         * Let's do the difficult operations next.
2254         *
2255         * now we atomically find some area in the address space and
2256         * remap the buffer in it.
2257         */
2258        down_write(&task->mm->mmap_sem);
2259
2260        /* find some free area in address space, must have mmap sem held */
2261        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2262        if (IS_ERR_VALUE(vma->vm_start)) {
2263                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2264                up_write(&task->mm->mmap_sem);
2265                goto error;
2266        }
2267        vma->vm_end = vma->vm_start + size;
2268        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2269
2270        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2271
2272        /* can only be applied to current task, need to have the mm semaphore held when called */
2273        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2274                DPRINT(("Can't remap buffer\n"));
2275                up_write(&task->mm->mmap_sem);
2276                goto error;
2277        }
2278
2279        /*
2280         * now insert the vma in the vm list for the process, must be
2281         * done with mmap lock held
2282         */
2283        insert_vm_struct(mm, vma);
2284
2285        vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2286        up_write(&task->mm->mmap_sem);
2287
2288        /*
2289         * keep track of user level virtual address
2290         */
2291        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2292        *(unsigned long *)user_vaddr = vma->vm_start;
2293
2294        return 0;
2295
2296error:
2297        vm_area_free(vma);
2298error_kmem:
2299        vfree(smpl_buf);
2300
2301        return -ENOMEM;
2302}
2303
2304/*
2305 * XXX: do something better here
2306 */
2307static int
2308pfm_bad_permissions(struct task_struct *task)
2309{
2310        const struct cred *tcred;
2311        kuid_t uid = current_uid();
2312        kgid_t gid = current_gid();
2313        int ret;
2314
2315        rcu_read_lock();
2316        tcred = __task_cred(task);
2317
2318        /* inspired by ptrace_attach() */
2319        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2320                from_kuid(&init_user_ns, uid),
2321                from_kgid(&init_user_ns, gid),
2322                from_kuid(&init_user_ns, tcred->euid),
2323                from_kuid(&init_user_ns, tcred->suid),
2324                from_kuid(&init_user_ns, tcred->uid),
2325                from_kgid(&init_user_ns, tcred->egid),
2326                from_kgid(&init_user_ns, tcred->sgid)));
2327
2328        ret = ((!uid_eq(uid, tcred->euid))
2329               || (!uid_eq(uid, tcred->suid))
2330               || (!uid_eq(uid, tcred->uid))
2331               || (!gid_eq(gid, tcred->egid))
2332               || (!gid_eq(gid, tcred->sgid))
2333               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2334
2335        rcu_read_unlock();
2336        return ret;
2337}
2338
2339static int
2340pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2341{
2342        int ctx_flags;
2343
2344        /* valid signal */
2345
2346        ctx_flags = pfx->ctx_flags;
2347
2348        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2349
2350                /*
2351                 * cannot block in this mode
2352                 */
2353                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2354                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2355                        return -EINVAL;
2356                }
2357        } else {
2358        }
2359        /* probably more to add here */
2360
2361        return 0;
2362}
2363
2364static int
2365pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2366                     unsigned int cpu, pfarg_context_t *arg)
2367{
2368        pfm_buffer_fmt_t *fmt = NULL;
2369        unsigned long size = 0UL;
2370        void *uaddr = NULL;
2371        void *fmt_arg = NULL;
2372        int ret = 0;
2373#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2374
2375        /* invoke and lock buffer format, if found */
2376        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2377        if (fmt == NULL) {
2378                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2379                return -EINVAL;
2380        }
2381
2382        /*
2383         * buffer argument MUST be contiguous to pfarg_context_t
2384         */
2385        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2386
2387        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2388
2389        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2390
2391        if (ret) goto error;
2392
2393        /* link buffer format and context */
2394        ctx->ctx_buf_fmt = fmt;
2395        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2396
2397        /*
2398         * check if buffer format wants to use perfmon buffer allocation/mapping service
2399         */
2400        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2401        if (ret) goto error;
2402
2403        if (size) {
2404                /*
2405                 * buffer is always remapped into the caller's address space
2406                 */
2407                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2408                if (ret) goto error;
2409
2410                /* keep track of user address of buffer */
2411                arg->ctx_smpl_vaddr = uaddr;
2412        }
2413        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2414
2415error:
2416        return ret;
2417}
2418
2419static void
2420pfm_reset_pmu_state(pfm_context_t *ctx)
2421{
2422        int i;
2423
2424        /*
2425         * install reset values for PMC.
2426         */
2427        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2428                if (PMC_IS_IMPL(i) == 0) continue;
2429                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2430                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2431        }
2432        /*
2433         * PMD registers are set to 0UL when the context in memset()
2434         */
2435
2436        /*
2437         * On context switched restore, we must restore ALL pmc and ALL pmd even
2438         * when they are not actively used by the task. In UP, the incoming process
2439         * may otherwise pick up left over PMC, PMD state from the previous process.
2440         * As opposed to PMD, stale PMC can cause harm to the incoming
2441         * process because they may change what is being measured.
2442         * Therefore, we must systematically reinstall the entire
2443         * PMC state. In SMP, the same thing is possible on the
2444         * same CPU but also on between 2 CPUs.
2445         *
2446         * The problem with PMD is information leaking especially
2447         * to user level when psr.sp=0
2448         *
2449         * There is unfortunately no easy way to avoid this problem
2450         * on either UP or SMP. This definitively slows down the
2451         * pfm_load_regs() function.
2452         */
2453
2454         /*
2455          * bitmask of all PMCs accessible to this context
2456          *
2457          * PMC0 is treated differently.
2458          */
2459        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2460
2461        /*
2462         * bitmask of all PMDs that are accessible to this context
2463         */
2464        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2465
2466        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2467
2468        /*
2469         * useful in case of re-enable after disable
2470         */
2471        ctx->ctx_used_ibrs[0] = 0UL;
2472        ctx->ctx_used_dbrs[0] = 0UL;
2473}
2474
2475static int
2476pfm_ctx_getsize(void *arg, size_t *sz)
2477{
2478        pfarg_context_t *req = (pfarg_context_t *)arg;
2479        pfm_buffer_fmt_t *fmt;
2480
2481        *sz = 0;
2482
2483        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2484
2485        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2486        if (fmt == NULL) {
2487                DPRINT(("cannot find buffer format\n"));
2488                return -EINVAL;
2489        }
2490        /* get just enough to copy in user parameters */
2491        *sz = fmt->fmt_arg_size;
2492        DPRINT(("arg_size=%lu\n", *sz));
2493
2494        return 0;
2495}
2496
2497
2498
2499/*
2500 * cannot attach if :
2501 *      - kernel task
2502 *      - task not owned by caller
2503 *      - task incompatible with context mode
2504 */
2505static int
2506pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2507{
2508        /*
2509         * no kernel task or task not owner by caller
2510         */
2511        if (task->mm == NULL) {
2512                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2513                return -EPERM;
2514        }
2515        if (pfm_bad_permissions(task)) {
2516                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2517                return -EPERM;
2518        }
2519        /*
2520         * cannot block in self-monitoring mode
2521         */
2522        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2523                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2524                return -EINVAL;
2525        }
2526
2527        if (task->exit_state == EXIT_ZOMBIE) {
2528                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2529                return -EBUSY;
2530        }
2531
2532        /*
2533         * always ok for self
2534         */
2535        if (task == current) return 0;
2536
2537        if (!task_is_stopped_or_traced(task)) {
2538                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2539                return -EBUSY;
2540        }
2541        /*
2542         * make sure the task is off any CPU
2543         */
2544        wait_task_inactive(task, 0);
2545
2546        /* more to come... */
2547
2548        return 0;
2549}
2550
2551static int
2552pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2553{
2554        struct task_struct *p = current;
2555        int ret;
2556
2557        /* XXX: need to add more checks here */
2558        if (pid < 2) return -EPERM;
2559
2560        if (pid != task_pid_vnr(current)) {
2561                /* make sure task cannot go away while we operate on it */
2562                p = find_get_task_by_vpid(pid);
2563                if (!p)
2564                        return -ESRCH;
2565        }
2566
2567        ret = pfm_task_incompatible(ctx, p);
2568        if (ret == 0) {
2569                *task = p;
2570        } else if (p != current) {
2571                pfm_put_task(p);
2572        }
2573        return ret;
2574}
2575
2576
2577
2578static int
2579pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2580{
2581        pfarg_context_t *req = (pfarg_context_t *)arg;
2582        struct file *filp;
2583        struct path path;
2584        int ctx_flags;
2585        int fd;
2586        int ret;
2587
2588        /* let's check the arguments first */
2589        ret = pfarg_is_sane(current, req);
2590        if (ret < 0)
2591                return ret;
2592
2593        ctx_flags = req->ctx_flags;
2594
2595        ret = -ENOMEM;
2596
2597        fd = get_unused_fd_flags(0);
2598        if (fd < 0)
2599                return fd;
2600
2601        ctx = pfm_context_alloc(ctx_flags);
2602        if (!ctx)
2603                goto error;
2604
2605        filp = pfm_alloc_file(ctx);
2606        if (IS_ERR(filp)) {
2607                ret = PTR_ERR(filp);
2608                goto error_file;
2609        }
2610
2611        req->ctx_fd = ctx->ctx_fd = fd;
2612
2613        /*
2614         * does the user want to sample?
2615         */
2616        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2617                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2618                if (ret)
2619                        goto buffer_error;
2620        }
2621
2622        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2623                ctx,
2624                ctx_flags,
2625                ctx->ctx_fl_system,
2626                ctx->ctx_fl_block,
2627                ctx->ctx_fl_excl_idle,
2628                ctx->ctx_fl_no_msg,
2629                ctx->ctx_fd));
2630
2631        /*
2632         * initialize soft PMU state
2633         */
2634        pfm_reset_pmu_state(ctx);
2635
2636        fd_install(fd, filp);
2637
2638        return 0;
2639
2640buffer_error:
2641        path = filp->f_path;
2642        put_filp(filp);
2643        path_put(&path);
2644
2645        if (ctx->ctx_buf_fmt) {
2646                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2647        }
2648error_file:
2649        pfm_context_free(ctx);
2650
2651error:
2652        put_unused_fd(fd);
2653        return ret;
2654}
2655
2656static inline unsigned long
2657pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2658{
2659        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2660        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2661        extern unsigned long carta_random32 (unsigned long seed);
2662
2663        if (reg->flags & PFM_REGFL_RANDOM) {
2664                new_seed = carta_random32(old_seed);
2665                val -= (old_seed & mask);       /* counter values are negative numbers! */
2666                if ((mask >> 32) != 0)
2667                        /* construct a full 64-bit random value: */
2668                        new_seed |= carta_random32(old_seed >> 32) << 32;
2669                reg->seed = new_seed;
2670        }
2671        reg->lval = val;
2672        return val;
2673}
2674
2675static void
2676pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2677{
2678        unsigned long mask = ovfl_regs[0];
2679        unsigned long reset_others = 0UL;
2680        unsigned long val;
2681        int i;
2682
2683        /*
2684         * now restore reset value on sampling overflowed counters
2685         */
2686        mask >>= PMU_FIRST_COUNTER;
2687        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2688
2689                if ((mask & 0x1UL) == 0UL) continue;
2690
2691                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2692                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2693
2694                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2695        }
2696
2697        /*
2698         * Now take care of resetting the other registers
2699         */
2700        for(i = 0; reset_others; i++, reset_others >>= 1) {
2701
2702                if ((reset_others & 0x1) == 0) continue;
2703
2704                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2705
2706                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2707                          is_long_reset ? "long" : "short", i, val));
2708        }
2709}
2710
2711static void
2712pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2713{
2714        unsigned long mask = ovfl_regs[0];
2715        unsigned long reset_others = 0UL;
2716        unsigned long val;
2717        int i;
2718
2719        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2720
2721        if (ctx->ctx_state == PFM_CTX_MASKED) {
2722                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2723                return;
2724        }
2725
2726        /*
2727         * now restore reset value on sampling overflowed counters
2728         */
2729        mask >>= PMU_FIRST_COUNTER;
2730        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2731
2732                if ((mask & 0x1UL) == 0UL) continue;
2733
2734                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2735                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2736
2737                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2738
2739                pfm_write_soft_counter(ctx, i, val);
2740        }
2741
2742        /*
2743         * Now take care of resetting the other registers
2744         */
2745        for(i = 0; reset_others; i++, reset_others >>= 1) {
2746
2747                if ((reset_others & 0x1) == 0) continue;
2748
2749                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2750
2751                if (PMD_IS_COUNTING(i)) {
2752                        pfm_write_soft_counter(ctx, i, val);
2753                } else {
2754                        ia64_set_pmd(i, val);
2755                }
2756                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2757                          is_long_reset ? "long" : "short", i, val));
2758        }
2759        ia64_srlz_d();
2760}
2761
2762static int
2763pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2764{
2765        struct task_struct *task;
2766        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2767        unsigned long value, pmc_pm;
2768        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2769        unsigned int cnum, reg_flags, flags, pmc_type;
2770        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2771        int is_monitor, is_counting, state;
2772        int ret = -EINVAL;
2773        pfm_reg_check_t wr_func;
2774#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2775
2776        state     = ctx->ctx_state;
2777        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2778        is_system = ctx->ctx_fl_system;
2779        task      = ctx->ctx_task;
2780        impl_pmds = pmu_conf->impl_pmds[0];
2781
2782        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2783
2784        if (is_loaded) {
2785                /*
2786                 * In system wide and when the context is loaded, access can only happen
2787                 * when the caller is running on the CPU being monitored by the session.
2788                 * It does not have to be the owner (ctx_task) of the context per se.
2789                 */
2790                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2791                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2792                        return -EBUSY;
2793                }
2794                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2795        }
2796        expert_mode = pfm_sysctl.expert_mode; 
2797
2798        for (i = 0; i < count; i++, req++) {
2799
2800                cnum       = req->reg_num;
2801                reg_flags  = req->reg_flags;
2802                value      = req->reg_value;
2803                smpl_pmds  = req->reg_smpl_pmds[0];
2804                reset_pmds = req->reg_reset_pmds[0];
2805                flags      = 0;
2806
2807
2808                if (cnum >= PMU_MAX_PMCS) {
2809                        DPRINT(("pmc%u is invalid\n", cnum));
2810                        goto error;
2811                }
2812
2813                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2814                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2815                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2816                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2817
2818                /*
2819                 * we reject all non implemented PMC as well
2820                 * as attempts to modify PMC[0-3] which are used
2821                 * as status registers by the PMU
2822                 */
2823                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2824                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2825                        goto error;
2826                }
2827                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2828                /*
2829                 * If the PMC is a monitor, then if the value is not the default:
2830                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2831                 *      - per-task           : PMCx.pm=0 (user monitor)
2832                 */
2833                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2834                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2835                                cnum,
2836                                pmc_pm,
2837                                is_system));
2838                        goto error;
2839                }
2840
2841                if (is_counting) {
2842                        /*
2843                         * enforce generation of overflow interrupt. Necessary on all
2844                         * CPUs.
2845                         */
2846                        value |= 1 << PMU_PMC_OI;
2847
2848                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2849                                flags |= PFM_REGFL_OVFL_NOTIFY;
2850                        }
2851
2852                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2853
2854                        /* verify validity of smpl_pmds */
2855                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2856                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2857                                goto error;
2858                        }
2859
2860                        /* verify validity of reset_pmds */
2861                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2862                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2863                                goto error;
2864                        }
2865                } else {
2866                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2867                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2868                                goto error;
2869                        }
2870                        /* eventid on non-counting monitors are ignored */
2871                }
2872
2873                /*
2874                 * execute write checker, if any
2875                 */
2876                if (likely(expert_mode == 0 && wr_func)) {
2877                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2878                        if (ret) goto error;
2879                        ret = -EINVAL;
2880                }
2881
2882                /*
2883                 * no error on this register
2884                 */
2885                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2886
2887                /*
2888                 * Now we commit the changes to the software state
2889                 */
2890
2891                /*
2892                 * update overflow information
2893                 */
2894                if (is_counting) {
2895                        /*
2896                         * full flag update each time a register is programmed
2897                         */
2898                        ctx->ctx_pmds[cnum].flags = flags;
2899
2900                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2901                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2902                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2903
2904                        /*
2905                         * Mark all PMDS to be accessed as used.
2906                         *
2907                         * We do not keep track of PMC because we have to
2908                         * systematically restore ALL of them.
2909                         *
2910                         * We do not update the used_monitors mask, because
2911                         * if we have not programmed them, then will be in
2912                         * a quiescent state, therefore we will not need to
2913                         * mask/restore then when context is MASKED.
2914                         */
2915                        CTX_USED_PMD(ctx, reset_pmds);
2916                        CTX_USED_PMD(ctx, smpl_pmds);
2917                        /*
2918                         * make sure we do not try to reset on
2919                         * restart because we have established new values
2920                         */
2921                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2922                }
2923                /*
2924                 * Needed in case the user does not initialize the equivalent
2925                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2926                 * possible leak here.
2927                 */
2928                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2929
2930                /*
2931                 * keep track of the monitor PMC that we are using.
2932                 * we save the value of the pmc in ctx_pmcs[] and if
2933                 * the monitoring is not stopped for the context we also
2934                 * place it in the saved state area so that it will be
2935                 * picked up later by the context switch code.
2936                 *
2937                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2938                 *
2939                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2940                 * monitoring needs to be stopped.
2941                 */
2942                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2943
2944                /*
2945                 * update context state
2946                 */
2947                ctx->ctx_pmcs[cnum] = value;
2948
2949                if (is_loaded) {
2950                        /*
2951                         * write thread state
2952                         */
2953                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
2954
2955                        /*
2956                         * write hardware register if we can
2957                         */
2958                        if (can_access_pmu) {
2959                                ia64_set_pmc(cnum, value);
2960                        }
2961#ifdef CONFIG_SMP
2962                        else {
2963                                /*
2964                                 * per-task SMP only here
2965                                 *
2966                                 * we are guaranteed that the task is not running on the other CPU,
2967                                 * we indicate that this PMD will need to be reloaded if the task
2968                                 * is rescheduled on the CPU it ran last on.
2969                                 */
2970                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
2971                        }
2972#endif
2973                }
2974
2975                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
2976                          cnum,
2977                          value,
2978                          is_loaded,
2979                          can_access_pmu,
2980                          flags,
2981                          ctx->ctx_all_pmcs[0],
2982                          ctx->ctx_used_pmds[0],
2983                          ctx->ctx_pmds[cnum].eventid,
2984                          smpl_pmds,
2985                          reset_pmds,
2986                          ctx->ctx_reload_pmcs[0],
2987                          ctx->ctx_used_monitors[0],
2988                          ctx->ctx_ovfl_regs[0]));
2989        }
2990
2991        /*
2992         * make sure the changes are visible
2993         */
2994        if (can_access_pmu) ia64_srlz_d();
2995
2996        return 0;
2997error:
2998        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
2999        return ret;
3000}
3001
3002static int
3003pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3004{
3005        struct task_struct *task;
3006        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3007        unsigned long value, hw_value, ovfl_mask;
3008        unsigned int cnum;
3009        int i, can_access_pmu = 0, state;
3010        int is_counting, is_loaded, is_system, expert_mode;
3011        int ret = -EINVAL;
3012        pfm_reg_check_t wr_func;
3013
3014
3015        state     = ctx->ctx_state;
3016        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3017        is_system = ctx->ctx_fl_system;
3018        ovfl_mask = pmu_conf->ovfl_val;
3019        task      = ctx->ctx_task;
3020
3021        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3022
3023        /*
3024         * on both UP and SMP, we can only write to the PMC when the task is
3025         * the owner of the local PMU.
3026         */
3027        if (likely(is_loaded)) {
3028                /*
3029                 * In system wide and when the context is loaded, access can only happen
3030                 * when the caller is running on the CPU being monitored by the session.
3031                 * It does not have to be the owner (ctx_task) of the context per se.
3032                 */
3033                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3034                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3035                        return -EBUSY;
3036                }
3037                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3038        }
3039        expert_mode = pfm_sysctl.expert_mode; 
3040
3041        for (i = 0; i < count; i++, req++) {
3042
3043                cnum  = req->reg_num;
3044                value = req->reg_value;
3045
3046                if (!PMD_IS_IMPL(cnum)) {
3047                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3048                        goto abort_mission;
3049                }
3050                is_counting = PMD_IS_COUNTING(cnum);
3051                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3052
3053                /*
3054                 * execute write checker, if any
3055                 */
3056                if (unlikely(expert_mode == 0 && wr_func)) {
3057                        unsigned long v = value;
3058
3059                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3060                        if (ret) goto abort_mission;
3061
3062                        value = v;
3063                        ret   = -EINVAL;
3064                }
3065
3066                /*
3067                 * no error on this register
3068                 */
3069                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3070
3071                /*
3072                 * now commit changes to software state
3073                 */
3074                hw_value = value;
3075
3076                /*
3077                 * update virtualized (64bits) counter
3078                 */
3079                if (is_counting) {
3080                        /*
3081                         * write context state
3082                         */
3083                        ctx->ctx_pmds[cnum].lval = value;
3084
3085                        /*
3086                         * when context is load we use the split value
3087                         */
3088                        if (is_loaded) {
3089                                hw_value = value &  ovfl_mask;
3090                                value    = value & ~ovfl_mask;
3091                        }
3092                }
3093                /*
3094                 * update reset values (not just for counters)
3095                 */
3096                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3097                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3098
3099                /*
3100                 * update randomization parameters (not just for counters)
3101                 */
3102                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3103                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3104
3105                /*
3106                 * update context value
3107                 */
3108                ctx->ctx_pmds[cnum].val  = value;
3109
3110                /*
3111                 * Keep track of what we use
3112                 *
3113                 * We do not keep track of PMC because we have to
3114                 * systematically restore ALL of them.
3115                 */
3116                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3117
3118                /*
3119                 * mark this PMD register used as well
3120                 */
3121                CTX_USED_PMD(ctx, RDEP(cnum));
3122
3123                /*
3124                 * make sure we do not try to reset on
3125                 * restart because we have established new values
3126                 */
3127                if (is_counting && state == PFM_CTX_MASKED) {
3128                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3129                }
3130
3131                if (is_loaded) {
3132                        /*
3133                         * write thread state
3134                         */
3135                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3136
3137                        /*
3138                         * write hardware register if we can
3139                         */
3140                        if (can_access_pmu) {
3141                                ia64_set_pmd(cnum, hw_value);
3142                        } else {
3143#ifdef CONFIG_SMP
3144                                /*
3145                                 * we are guaranteed that the task is not running on the other CPU,
3146                                 * we indicate that this PMD will need to be reloaded if the task
3147                                 * is rescheduled on the CPU it ran last on.
3148                                 */
3149                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3150#endif
3151                        }
3152                }
3153
3154                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3155                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3156                        cnum,
3157                        value,
3158                        is_loaded,
3159                        can_access_pmu,
3160                        hw_value,
3161                        ctx->ctx_pmds[cnum].val,
3162                        ctx->ctx_pmds[cnum].short_reset,
3163                        ctx->ctx_pmds[cnum].long_reset,
3164                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3165                        ctx->ctx_pmds[cnum].seed,
3166                        ctx->ctx_pmds[cnum].mask,
3167                        ctx->ctx_used_pmds[0],
3168                        ctx->ctx_pmds[cnum].reset_pmds[0],
3169                        ctx->ctx_reload_pmds[0],
3170                        ctx->ctx_all_pmds[0],
3171                        ctx->ctx_ovfl_regs[0]));
3172        }
3173
3174        /*
3175         * make changes visible
3176         */
3177        if (can_access_pmu) ia64_srlz_d();
3178
3179        return 0;
3180
3181abort_mission:
3182        /*
3183         * for now, we have only one possibility for error
3184         */
3185        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3186        return ret;
3187}
3188
3189/*
3190 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3191 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3192 * interrupt is delivered during the call, it will be kept pending until we leave, making
3193 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3194 * guaranteed to return consistent data to the user, it may simply be old. It is not
3195 * trivial to treat the overflow while inside the call because you may end up in
3196 * some module sampling buffer code causing deadlocks.
3197 */
3198static int
3199pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3200{
3201        struct task_struct *task;
3202        unsigned long val = 0UL, lval, ovfl_mask, sval;
3203        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3204        unsigned int cnum, reg_flags = 0;
3205        int i, can_access_pmu = 0, state;
3206        int is_loaded, is_system, is_counting, expert_mode;
3207        int ret = -EINVAL;
3208        pfm_reg_check_t rd_func;
3209
3210        /*
3211         * access is possible when loaded only for
3212         * self-monitoring tasks or in UP mode
3213         */
3214
3215        state     = ctx->ctx_state;
3216        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3217        is_system = ctx->ctx_fl_system;
3218        ovfl_mask = pmu_conf->ovfl_val;
3219        task      = ctx->ctx_task;
3220
3221        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3222
3223        if (likely(is_loaded)) {
3224                /*
3225                 * In system wide and when the context is loaded, access can only happen
3226                 * when the caller is running on the CPU being monitored by the session.
3227                 * It does not have to be the owner (ctx_task) of the context per se.
3228                 */
3229                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3230                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3231                        return -EBUSY;
3232                }
3233                /*
3234                 * this can be true when not self-monitoring only in UP
3235                 */
3236                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3237
3238                if (can_access_pmu) ia64_srlz_d();
3239        }
3240        expert_mode = pfm_sysctl.expert_mode; 
3241
3242        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3243                is_loaded,
3244                can_access_pmu,
3245                state));
3246
3247        /*
3248         * on both UP and SMP, we can only read the PMD from the hardware register when
3249         * the task is the owner of the local PMU.
3250         */
3251
3252        for (i = 0; i < count; i++, req++) {
3253
3254                cnum        = req->reg_num;
3255                reg_flags   = req->reg_flags;
3256
3257                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3258                /*
3259                 * we can only read the register that we use. That includes
3260                 * the one we explicitly initialize AND the one we want included
3261                 * in the sampling buffer (smpl_regs).
3262                 *
3263                 * Having this restriction allows optimization in the ctxsw routine
3264                 * without compromising security (leaks)
3265                 */
3266                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3267
3268                sval        = ctx->ctx_pmds[cnum].val;
3269                lval        = ctx->ctx_pmds[cnum].lval;
3270                is_counting = PMD_IS_COUNTING(cnum);
3271
3272                /*
3273                 * If the task is not the current one, then we check if the
3274                 * PMU state is still in the local live register due to lazy ctxsw.
3275                 * If true, then we read directly from the registers.
3276                 */
3277                if (can_access_pmu){
3278                        val = ia64_get_pmd(cnum);
3279                } else {
3280                        /*
3281                         * context has been saved
3282                         * if context is zombie, then task does not exist anymore.
3283                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3284                         */
3285                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3286                }
3287                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3288
3289                if (is_counting) {
3290                        /*
3291                         * XXX: need to check for overflow when loaded
3292                         */
3293                        val &= ovfl_mask;
3294                        val += sval;
3295                }
3296
3297                /*
3298                 * execute read checker, if any
3299                 */
3300                if (unlikely(expert_mode == 0 && rd_func)) {
3301                        unsigned long v = val;
3302                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3303                        if (ret) goto error;
3304                        val = v;
3305                        ret = -EINVAL;
3306                }
3307
3308                PFM_REG_RETFLAG_SET(reg_flags, 0);
3309
3310                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3311
3312                /*
3313                 * update register return value, abort all if problem during copy.
3314                 * we only modify the reg_flags field. no check mode is fine because
3315                 * access has been verified upfront in sys_perfmonctl().
3316                 */
3317                req->reg_value            = val;
3318                req->reg_flags            = reg_flags;
3319                req->reg_last_reset_val   = lval;
3320        }
3321
3322        return 0;
3323
3324error:
3325        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3326        return ret;
3327}
3328
3329int
3330pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3331{
3332        pfm_context_t *ctx;
3333
3334        if (req == NULL) return -EINVAL;
3335
3336        ctx = GET_PMU_CTX();
3337
3338        if (ctx == NULL) return -EINVAL;
3339
3340        /*
3341         * for now limit to current task, which is enough when calling
3342         * from overflow handler
3343         */
3344        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3345
3346        return pfm_write_pmcs(ctx, req, nreq, regs);
3347}
3348EXPORT_SYMBOL(pfm_mod_write_pmcs);
3349
3350int
3351pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3352{
3353        pfm_context_t *ctx;
3354
3355        if (req == NULL) return -EINVAL;
3356
3357        ctx = GET_PMU_CTX();
3358
3359        if (ctx == NULL) return -EINVAL;
3360
3361        /*
3362         * for now limit to current task, which is enough when calling
3363         * from overflow handler
3364         */
3365        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3366
3367        return pfm_read_pmds(ctx, req, nreq, regs);
3368}
3369EXPORT_SYMBOL(pfm_mod_read_pmds);
3370
3371/*
3372 * Only call this function when a process it trying to
3373 * write the debug registers (reading is always allowed)
3374 */
3375int
3376pfm_use_debug_registers(struct task_struct *task)
3377{
3378        pfm_context_t *ctx = task->thread.pfm_context;
3379        unsigned long flags;
3380        int ret = 0;
3381
3382        if (pmu_conf->use_rr_dbregs == 0) return 0;
3383
3384        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3385
3386        /*
3387         * do it only once
3388         */
3389        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3390
3391        /*
3392         * Even on SMP, we do not need to use an atomic here because
3393         * the only way in is via ptrace() and this is possible only when the
3394         * process is stopped. Even in the case where the ctxsw out is not totally
3395         * completed by the time we come here, there is no way the 'stopped' process
3396         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3397         * So this is always safe.
3398         */
3399        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3400
3401        LOCK_PFS(flags);
3402
3403        /*
3404         * We cannot allow setting breakpoints when system wide monitoring
3405         * sessions are using the debug registers.
3406         */
3407        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3408                ret = -1;
3409        else
3410                pfm_sessions.pfs_ptrace_use_dbregs++;
3411
3412        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3413                  pfm_sessions.pfs_ptrace_use_dbregs,
3414                  pfm_sessions.pfs_sys_use_dbregs,
3415                  task_pid_nr(task), ret));
3416
3417        UNLOCK_PFS(flags);
3418
3419        return ret;
3420}
3421
3422/*
3423 * This function is called for every task that exits with the
3424 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3425 * able to use the debug registers for debugging purposes via
3426 * ptrace(). Therefore we know it was not using them for
3427 * performance monitoring, so we only decrement the number
3428 * of "ptraced" debug register users to keep the count up to date
3429 */
3430int
3431pfm_release_debug_registers(struct task_struct *task)
3432{
3433        unsigned long flags;
3434        int ret;
3435
3436        if (pmu_conf->use_rr_dbregs == 0) return 0;
3437
3438        LOCK_PFS(flags);
3439        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3440                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3441                ret = -1;
3442        }  else {
3443                pfm_sessions.pfs_ptrace_use_dbregs--;
3444                ret = 0;
3445        }
3446        UNLOCK_PFS(flags);
3447
3448        return ret;
3449}
3450
3451static int
3452pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3453{
3454        struct task_struct *task;
3455        pfm_buffer_fmt_t *fmt;
3456        pfm_ovfl_ctrl_t rst_ctrl;
3457        int state, is_system;
3458        int ret = 0;
3459
3460        state     = ctx->ctx_state;
3461        fmt       = ctx->ctx_buf_fmt;
3462        is_system = ctx->ctx_fl_system;
3463        task      = PFM_CTX_TASK(ctx);
3464
3465        switch(state) {
3466                case PFM_CTX_MASKED:
3467                        break;
3468                case PFM_CTX_LOADED: 
3469                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3470                        /* fall through */
3471                case PFM_CTX_UNLOADED:
3472                case PFM_CTX_ZOMBIE:
3473                        DPRINT(("invalid state=%d\n", state));
3474                        return -EBUSY;
3475                default:
3476                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3477                        return -EINVAL;
3478        }
3479
3480        /*
3481         * In system wide and when the context is loaded, access can only happen
3482         * when the caller is running on the CPU being monitored by the session.
3483         * It does not have to be the owner (ctx_task) of the context per se.
3484         */
3485        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3486                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3487                return -EBUSY;
3488        }
3489
3490        /* sanity check */
3491        if (unlikely(task == NULL)) {
3492                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3493                return -EINVAL;
3494        }
3495
3496        if (task == current || is_system) {
3497
3498                fmt = ctx->ctx_buf_fmt;
3499
3500                DPRINT(("restarting self %d ovfl=0x%lx\n",
3501                        task_pid_nr(task),
3502                        ctx->ctx_ovfl_regs[0]));
3503
3504                if (CTX_HAS_SMPL(ctx)) {
3505
3506                        prefetch(ctx->ctx_smpl_hdr);
3507
3508                        rst_ctrl.bits.mask_monitoring = 0;
3509                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3510
3511                        if (state == PFM_CTX_LOADED)
3512                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3513                        else
3514                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3515                } else {
3516                        rst_ctrl.bits.mask_monitoring = 0;
3517                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3518                }
3519
3520                if (ret == 0) {
3521                        if (rst_ctrl.bits.reset_ovfl_pmds)
3522                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3523
3524                        if (rst_ctrl.bits.mask_monitoring == 0) {
3525                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3526
3527                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3528                        } else {
3529                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3530
3531                                // cannot use pfm_stop_monitoring(task, regs);
3532                        }
3533                }
3534                /*
3535                 * clear overflowed PMD mask to remove any stale information
3536                 */
3537                ctx->ctx_ovfl_regs[0] = 0UL;
3538
3539                /*
3540                 * back to LOADED state
3541                 */
3542                ctx->ctx_state = PFM_CTX_LOADED;
3543
3544                /*
3545                 * XXX: not really useful for self monitoring
3546                 */
3547                ctx->ctx_fl_can_restart = 0;
3548
3549                return 0;
3550        }
3551
3552        /* 
3553         * restart another task
3554         */
3555
3556        /*
3557         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3558         * one is seen by the task.
3559         */
3560        if (state == PFM_CTX_MASKED) {
3561                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3562                /*
3563                 * will prevent subsequent restart before this one is
3564                 * seen by other task
3565                 */
3566                ctx->ctx_fl_can_restart = 0;
3567        }
3568
3569        /*
3570         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3571         * the task is blocked or on its way to block. That's the normal
3572         * restart path. If the monitoring is not masked, then the task
3573         * can be actively monitoring and we cannot directly intervene.
3574         * Therefore we use the trap mechanism to catch the task and
3575         * force it to reset the buffer/reset PMDs.
3576         *
3577         * if non-blocking, then we ensure that the task will go into
3578         * pfm_handle_work() before returning to user mode.
3579         *
3580         * We cannot explicitly reset another task, it MUST always
3581         * be done by the task itself. This works for system wide because
3582         * the tool that is controlling the session is logically doing 
3583         * "self-monitoring".
3584         */
3585        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3586                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3587                complete(&ctx->ctx_restart_done);
3588        } else {
3589                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3590
3591                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3592
3593                PFM_SET_WORK_PENDING(task, 1);
3594
3595                set_notify_resume(task);
3596
3597                /*
3598                 * XXX: send reschedule if task runs on another CPU
3599                 */
3600        }
3601        return 0;
3602}
3603
3604static int
3605pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3606{
3607        unsigned int m = *(unsigned int *)arg;
3608
3609        pfm_sysctl.debug = m == 0 ? 0 : 1;
3610
3611        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3612
3613        if (m == 0) {
3614                memset(pfm_stats, 0, sizeof(pfm_stats));
3615                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3616        }
3617        return 0;
3618}
3619
3620/*
3621 * arg can be NULL and count can be zero for this function
3622 */
3623static int
3624pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3625{
3626        struct thread_struct *thread = NULL;
3627        struct task_struct *task;
3628        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3629        unsigned long flags;
3630        dbreg_t dbreg;
3631        unsigned int rnum;
3632        int first_time;
3633        int ret = 0, state;
3634        int i, can_access_pmu = 0;
3635        int is_system, is_loaded;
3636
3637        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3638
3639        state     = ctx->ctx_state;
3640        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3641        is_system = ctx->ctx_fl_system;
3642        task      = ctx->ctx_task;
3643
3644        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3645
3646        /*
3647         * on both UP and SMP, we can only write to the PMC when the task is
3648         * the owner of the local PMU.
3649         */
3650        if (is_loaded) {
3651                thread = &task->thread;
3652                /*
3653                 * In system wide and when the context is loaded, access can only happen
3654                 * when the caller is running on the CPU being monitored by the session.
3655                 * It does not have to be the owner (ctx_task) of the context per se.
3656                 */
3657                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3658                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3659                        return -EBUSY;
3660                }
3661                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3662        }
3663
3664        /*
3665         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3666         * ensuring that no real breakpoint can be installed via this call.
3667         *
3668         * IMPORTANT: regs can be NULL in this function
3669         */
3670
3671        first_time = ctx->ctx_fl_using_dbreg == 0;
3672
3673        /*
3674         * don't bother if we are loaded and task is being debugged
3675         */
3676        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3677                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3678                return -EBUSY;
3679        }
3680
3681        /*
3682         * check for debug registers in system wide mode
3683         *
3684         * If though a check is done in pfm_context_load(),
3685         * we must repeat it here, in case the registers are
3686         * written after the context is loaded
3687         */
3688        if (is_loaded) {
3689                LOCK_PFS(flags);
3690
3691                if (first_time && is_system) {
3692                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3693                                ret = -EBUSY;
3694                        else
3695                                pfm_sessions.pfs_sys_use_dbregs++;
3696                }
3697                UNLOCK_PFS(flags);
3698        }
3699
3700        if (ret != 0) return ret;
3701
3702        /*
3703         * mark ourself as user of the debug registers for
3704         * perfmon purposes.
3705         */
3706        ctx->ctx_fl_using_dbreg = 1;
3707
3708        /*
3709         * clear hardware registers to make sure we don't
3710         * pick up stale state.
3711         *
3712         * for a system wide session, we do not use
3713         * thread.dbr, thread.ibr because this process
3714         * never leaves the current CPU and the state
3715         * is shared by all processes running on it
3716         */
3717        if (first_time && can_access_pmu) {
3718                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3719                for (i=0; i < pmu_conf->num_ibrs; i++) {
3720                        ia64_set_ibr(i, 0UL);
3721                        ia64_dv_serialize_instruction();
3722                }
3723                ia64_srlz_i();
3724                for (i=0; i < pmu_conf->num_dbrs; i++) {
3725                        ia64_set_dbr(i, 0UL);
3726                        ia64_dv_serialize_data();
3727                }
3728                ia64_srlz_d();
3729        }
3730
3731        /*
3732         * Now install the values into the registers
3733         */
3734        for (i = 0; i < count; i++, req++) {
3735
3736                rnum      = req->dbreg_num;
3737                dbreg.val = req->dbreg_value;
3738
3739                ret = -EINVAL;
3740
3741                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3742                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3743                                  rnum, dbreg.val, mode, i, count));
3744
3745                        goto abort_mission;
3746                }
3747
3748                /*
3749                 * make sure we do not install enabled breakpoint
3750                 */
3751                if (rnum & 0x1) {
3752                        if (mode == PFM_CODE_RR)
3753                                dbreg.ibr.ibr_x = 0;
3754                        else
3755                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3756                }
3757
3758                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3759
3760                /*
3761                 * Debug registers, just like PMC, can only be modified
3762                 * by a kernel call. Moreover, perfmon() access to those
3763                 * registers are centralized in this routine. The hardware
3764                 * does not modify the value of these registers, therefore,
3765                 * if we save them as they are written, we can avoid having
3766                 * to save them on context switch out. This is made possible
3767                 * by the fact that when perfmon uses debug registers, ptrace()
3768                 * won't be able to modify them concurrently.
3769                 */
3770                if (mode == PFM_CODE_RR) {
3771                        CTX_USED_IBR(ctx, rnum);
3772
3773                        if (can_access_pmu) {
3774                                ia64_set_ibr(rnum, dbreg.val);
3775                                ia64_dv_serialize_instruction();
3776                        }
3777
3778                        ctx->ctx_ibrs[rnum] = dbreg.val;
3779
3780                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3781                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3782                } else {
3783                        CTX_USED_DBR(ctx, rnum);
3784
3785                        if (can_access_pmu) {
3786                                ia64_set_dbr(rnum, dbreg.val);
3787                                ia64_dv_serialize_data();
3788                        }
3789                        ctx->ctx_dbrs[rnum] = dbreg.val;
3790
3791                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3792                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3793                }
3794        }
3795
3796        return 0;
3797
3798abort_mission:
3799        /*
3800         * in case it was our first attempt, we undo the global modifications
3801         */
3802        if (first_time) {
3803                LOCK_PFS(flags);
3804                if (ctx->ctx_fl_system) {
3805                        pfm_sessions.pfs_sys_use_dbregs--;
3806                }
3807                UNLOCK_PFS(flags);
3808                ctx->ctx_fl_using_dbreg = 0;
3809        }
3810        /*
3811         * install error return flag
3812         */
3813        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3814
3815        return ret;
3816}
3817
3818static int
3819pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3820{
3821        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3822}
3823
3824static int
3825pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3826{
3827        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3828}
3829
3830int
3831pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3832{
3833        pfm_context_t *ctx;
3834
3835        if (req == NULL) return -EINVAL;
3836
3837        ctx = GET_PMU_CTX();
3838
3839        if (ctx == NULL) return -EINVAL;
3840
3841        /*
3842         * for now limit to current task, which is enough when calling
3843         * from overflow handler
3844         */
3845        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3846
3847        return pfm_write_ibrs(ctx, req, nreq, regs);
3848}
3849EXPORT_SYMBOL(pfm_mod_write_ibrs);
3850
3851int
3852pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3853{
3854        pfm_context_t *ctx;
3855
3856        if (req == NULL) return -EINVAL;
3857
3858        ctx = GET_PMU_CTX();
3859
3860        if (ctx == NULL) return -EINVAL;
3861
3862        /*
3863         * for now limit to current task, which is enough when calling
3864         * from overflow handler
3865         */
3866        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3867
3868        return pfm_write_dbrs(ctx, req, nreq, regs);
3869}
3870EXPORT_SYMBOL(pfm_mod_write_dbrs);
3871
3872
3873static int
3874pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3875{
3876        pfarg_features_t *req = (pfarg_features_t *)arg;
3877
3878        req->ft_version = PFM_VERSION;
3879        return 0;
3880}
3881
3882static int
3883pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3884{
3885        struct pt_regs *tregs;
3886        struct task_struct *task = PFM_CTX_TASK(ctx);
3887        int state, is_system;
3888
3889        state     = ctx->ctx_state;
3890        is_system = ctx->ctx_fl_system;
3891
3892        /*
3893         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3894         */
3895        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3896
3897        /*
3898         * In system wide and when the context is loaded, access can only happen
3899         * when the caller is running on the CPU being monitored by the session.
3900         * It does not have to be the owner (ctx_task) of the context per se.
3901         */
3902        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3903                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3904                return -EBUSY;
3905        }
3906        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3907                task_pid_nr(PFM_CTX_TASK(ctx)),
3908                state,
3909                is_system));
3910        /*
3911         * in system mode, we need to update the PMU directly
3912         * and the user level state of the caller, which may not
3913         * necessarily be the creator of the context.
3914         */
3915        if (is_system) {
3916                /*
3917                 * Update local PMU first
3918                 *
3919                 * disable dcr pp
3920                 */
3921                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3922                ia64_srlz_i();
3923
3924                /*
3925                 * update local cpuinfo
3926                 */
3927                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3928
3929                /*
3930                 * stop monitoring, does srlz.i
3931                 */
3932                pfm_clear_psr_pp();
3933
3934                /*
3935                 * stop monitoring in the caller
3936                 */
3937                ia64_psr(regs)->pp = 0;
3938
3939                return 0;
3940        }
3941        /*
3942         * per-task mode
3943         */
3944
3945        if (task == current) {
3946                /* stop monitoring  at kernel level */
3947                pfm_clear_psr_up();
3948
3949                /*
3950                 * stop monitoring at the user level
3951                 */
3952                ia64_psr(regs)->up = 0;
3953        } else {
3954                tregs = task_pt_regs(task);
3955
3956                /*
3957                 * stop monitoring at the user level
3958                 */
3959                ia64_psr(tregs)->up = 0;
3960
3961                /*
3962                 * monitoring disabled in kernel at next reschedule
3963                 */
3964                ctx->ctx_saved_psr_up = 0;
3965                DPRINT(("task=[%d]\n", task_pid_nr(task)));
3966        }
3967        return 0;
3968}
3969
3970
3971static int
3972pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3973{
3974        struct pt_regs *tregs;
3975        int state, is_system;
3976
3977        state     = ctx->ctx_state;
3978        is_system = ctx->ctx_fl_system;
3979
3980        if (state != PFM_CTX_LOADED) return -EINVAL;
3981
3982        /*
3983         * In system wide and when the context is loaded, access can only happen
3984         * when the caller is running on the CPU being monitored by the session.
3985         * It does not have to be the owner (ctx_task) of the context per se.
3986         */
3987        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3988                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3989                return -EBUSY;
3990        }
3991
3992        /*
3993         * in system mode, we need to update the PMU directly
3994         * and the user level state of the caller, which may not
3995         * necessarily be the creator of the context.
3996         */
3997        if (is_system) {
3998
3999                /*
4000                 * set user level psr.pp for the caller
4001                 */
4002                ia64_psr(regs)->pp = 1;
4003
4004                /*
4005                 * now update the local PMU and cpuinfo
4006                 */
4007                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4008
4009                /*
4010                 * start monitoring at kernel level
4011                 */
4012                pfm_set_psr_pp();
4013
4014                /* enable dcr pp */
4015                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4016                ia64_srlz_i();
4017
4018                return 0;
4019        }
4020
4021        /*
4022         * per-process mode
4023         */
4024
4025        if (ctx->ctx_task == current) {
4026
4027                /* start monitoring at kernel level */
4028                pfm_set_psr_up();
4029
4030                /*
4031                 * activate monitoring at user level
4032                 */
4033                ia64_psr(regs)->up = 1;
4034
4035        } else {
4036                tregs = task_pt_regs(ctx->ctx_task);
4037
4038                /*
4039                 * start monitoring at the kernel level the next
4040                 * time the task is scheduled
4041                 */
4042                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4043
4044                /*
4045                 * activate monitoring at user level
4046                 */
4047                ia64_psr(tregs)->up = 1;
4048        }
4049        return 0;
4050}
4051
4052static int
4053pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4054{
4055        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4056        unsigned int cnum;
4057        int i;
4058        int ret = -EINVAL;
4059
4060        for (i = 0; i < count; i++, req++) {
4061
4062                cnum = req->reg_num;
4063
4064                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4065
4066                req->reg_value = PMC_DFL_VAL(cnum);
4067
4068                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4069
4070                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4071        }
4072        return 0;
4073
4074abort_mission:
4075        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4076        return ret;
4077}
4078
4079static int
4080pfm_check_task_exist(pfm_context_t *ctx)
4081{
4082        struct task_struct *g, *t;
4083        int ret = -ESRCH;
4084
4085        read_lock(&tasklist_lock);
4086
4087        do_each_thread (g, t) {
4088                if (t->thread.pfm_context == ctx) {
4089                        ret = 0;
4090                        goto out;
4091                }
4092        } while_each_thread (g, t);
4093out:
4094        read_unlock(&tasklist_lock);
4095
4096        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4097
4098        return ret;
4099}
4100
4101static int
4102pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4103{
4104        struct task_struct *task;
4105        struct thread_struct *thread;
4106        struct pfm_context_t *old;
4107        unsigned long flags;
4108#ifndef CONFIG_SMP
4109        struct task_struct *owner_task = NULL;
4110#endif
4111        pfarg_load_t *req = (pfarg_load_t *)arg;
4112        unsigned long *pmcs_source, *pmds_source;
4113        int the_cpu;
4114        int ret = 0;
4115        int state, is_system, set_dbregs = 0;
4116
4117        state     = ctx->ctx_state;
4118        is_system = ctx->ctx_fl_system;
4119        /*
4120         * can only load from unloaded or terminated state
4121         */
4122        if (state != PFM_CTX_UNLOADED) {
4123                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4124                        req->load_pid,
4125                        ctx->ctx_state));
4126                return -EBUSY;
4127        }
4128
4129        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4130
4131        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4132                DPRINT(("cannot use blocking mode on self\n"));
4133                return -EINVAL;
4134        }
4135
4136        ret = pfm_get_task(ctx, req->load_pid, &task);
4137        if (ret) {
4138                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4139                return ret;
4140        }
4141
4142        ret = -EINVAL;
4143
4144        /*
4145         * system wide is self monitoring only
4146         */
4147        if (is_system && task != current) {
4148                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4149                        req->load_pid));
4150                goto error;
4151        }
4152
4153        thread = &task->thread;
4154
4155        ret = 0;
4156        /*
4157         * cannot load a context which is using range restrictions,
4158         * into a task that is being debugged.
4159         */
4160        if (ctx->ctx_fl_using_dbreg) {
4161                if (thread->flags & IA64_THREAD_DBG_VALID) {
4162                        ret = -EBUSY;
4163                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4164                        goto error;
4165                }
4166                LOCK_PFS(flags);
4167
4168                if (is_system) {
4169                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4170                                DPRINT(("cannot load [%d] dbregs in use\n",
4171                                                        task_pid_nr(task)));
4172                                ret = -EBUSY;
4173                        } else {
4174                                pfm_sessions.pfs_sys_use_dbregs++;
4175                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4176                                set_dbregs = 1;
4177                        }
4178                }
4179
4180                UNLOCK_PFS(flags);
4181
4182                if (ret) goto error;
4183        }
4184
4185        /*
4186         * SMP system-wide monitoring implies self-monitoring.
4187         *
4188         * The programming model expects the task to
4189         * be pinned on a CPU throughout the session.
4190         * Here we take note of the current CPU at the
4191         * time the context is loaded. No call from
4192         * another CPU will be allowed.
4193         *
4194         * The pinning via shed_setaffinity()
4195         * must be done by the calling task prior
4196         * to this call.
4197         *
4198         * systemwide: keep track of CPU this session is supposed to run on
4199         */
4200        the_cpu = ctx->ctx_cpu = smp_processor_id();
4201
4202        ret = -EBUSY;
4203        /*
4204         * now reserve the session
4205         */
4206        ret = pfm_reserve_session(current, is_system, the_cpu);
4207        if (ret) goto error;
4208
4209        /*
4210         * task is necessarily stopped at this point.
4211         *
4212         * If the previous context was zombie, then it got removed in
4213         * pfm_save_regs(). Therefore we should not see it here.
4214         * If we see a context, then this is an active context
4215         *
4216         * XXX: needs to be atomic
4217         */
4218        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4219                thread->pfm_context, ctx));
4220
4221        ret = -EBUSY;
4222        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4223        if (old != NULL) {
4224                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4225                goto error_unres;
4226        }
4227
4228        pfm_reset_msgq(ctx);
4229
4230        ctx->ctx_state = PFM_CTX_LOADED;
4231
4232        /*
4233         * link context to task
4234         */
4235        ctx->ctx_task = task;
4236
4237        if (is_system) {
4238                /*
4239                 * we load as stopped
4240                 */
4241                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4242                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4243
4244                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4245        } else {
4246                thread->flags |= IA64_THREAD_PM_VALID;
4247        }
4248
4249        /*
4250         * propagate into thread-state
4251         */
4252        pfm_copy_pmds(task, ctx);
4253        pfm_copy_pmcs(task, ctx);
4254
4255        pmcs_source = ctx->th_pmcs;
4256        pmds_source = ctx->th_pmds;
4257
4258        /*
4259         * always the case for system-wide
4260         */
4261        if (task == current) {
4262
4263                if (is_system == 0) {
4264
4265                        /* allow user level control */
4266                        ia64_psr(regs)->sp = 0;
4267                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4268
4269                        SET_LAST_CPU(ctx, smp_processor_id());
4270                        INC_ACTIVATION();
4271                        SET_ACTIVATION(ctx);
4272#ifndef CONFIG_SMP
4273                        /*
4274                         * push the other task out, if any
4275                         */
4276                        owner_task = GET_PMU_OWNER();
4277                        if (owner_task) pfm_lazy_save_regs(owner_task);
4278#endif
4279                }
4280                /*
4281                 * load all PMD from ctx to PMU (as opposed to thread state)
4282                 * restore all PMC from ctx to PMU
4283                 */
4284                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4285                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4286
4287                ctx->ctx_reload_pmcs[0] = 0UL;
4288                ctx->ctx_reload_pmds[0] = 0UL;
4289
4290                /*
4291                 * guaranteed safe by earlier check against DBG_VALID
4292                 */
4293                if (ctx->ctx_fl_using_dbreg) {
4294                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4295                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4296                }
4297                /*
4298                 * set new ownership
4299                 */
4300                SET_PMU_OWNER(task, ctx);
4301
4302                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4303        } else {
4304                /*
4305                 * when not current, task MUST be stopped, so this is safe
4306                 */
4307                regs = task_pt_regs(task);
4308
4309                /* force a full reload */
4310                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4311                SET_LAST_CPU(ctx, -1);
4312
4313                /* initial saved psr (stopped) */
4314                ctx->ctx_saved_psr_up = 0UL;
4315                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4316        }
4317
4318        ret = 0;
4319
4320error_unres:
4321        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4322error:
4323        /*
4324         * we must undo the dbregs setting (for system-wide)
4325         */
4326        if (ret && set_dbregs) {
4327                LOCK_PFS(flags);
4328                pfm_sessions.pfs_sys_use_dbregs--;
4329                UNLOCK_PFS(flags);
4330        }
4331        /*
4332         * release task, there is now a link with the context
4333         */
4334        if (is_system == 0 && task != current) {
4335                pfm_put_task(task);
4336
4337                if (ret == 0) {
4338                        ret = pfm_check_task_exist(ctx);
4339                        if (ret) {
4340                                ctx->ctx_state = PFM_CTX_UNLOADED;
4341                                ctx->ctx_task  = NULL;
4342                        }
4343                }
4344        }
4345        return ret;
4346}
4347
4348/*
4349 * in this function, we do not need to increase the use count
4350 * for the task via get_task_struct(), because we hold the
4351 * context lock. If the task were to disappear while having
4352 * a context attached, it would go through pfm_exit_thread()
4353 * which also grabs the context lock  and would therefore be blocked
4354 * until we are here.
4355 */
4356static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4357
4358static int
4359pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4360{
4361        struct task_struct *task = PFM_CTX_TASK(ctx);
4362        struct pt_regs *tregs;
4363        int prev_state, is_system;
4364        int ret;
4365
4366        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4367
4368        prev_state = ctx->ctx_state;
4369        is_system  = ctx->ctx_fl_system;
4370
4371        /*
4372         * unload only when necessary
4373         */
4374        if (prev_state == PFM_CTX_UNLOADED) {
4375                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4376                return 0;
4377        }
4378
4379        /*
4380         * clear psr and dcr bits
4381         */
4382        ret = pfm_stop(ctx, NULL, 0, regs);
4383        if (ret) return ret;
4384
4385        ctx->ctx_state = PFM_CTX_UNLOADED;
4386
4387        /*
4388         * in system mode, we need to update the PMU directly
4389         * and the user level state of the caller, which may not
4390         * necessarily be the creator of the context.
4391         */
4392        if (is_system) {
4393
4394                /*
4395                 * Update cpuinfo
4396                 *
4397                 * local PMU is taken care of in pfm_stop()
4398                 */
4399                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4400                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4401
4402                /*
4403                 * save PMDs in context
4404                 * release ownership
4405                 */
4406                pfm_flush_pmds(current, ctx);
4407
4408                /*
4409                 * at this point we are done with the PMU
4410                 * so we can unreserve the resource.
4411                 */
4412                if (prev_state != PFM_CTX_ZOMBIE) 
4413                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4414
4415                /*
4416                 * disconnect context from task
4417                 */
4418                task->thread.pfm_context = NULL;
4419                /*
4420                 * disconnect task from context
4421                 */
4422                ctx->ctx_task = NULL;
4423
4424                /*
4425                 * There is nothing more to cleanup here.
4426                 */
4427                return 0;
4428        }
4429
4430        /*
4431         * per-task mode
4432         */
4433        tregs = task == current ? regs : task_pt_regs(task);
4434
4435        if (task == current) {
4436                /*
4437                 * cancel user level control
4438                 */
4439                ia64_psr(regs)->sp = 1;
4440
4441                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4442        }
4443        /*
4444         * save PMDs to context
4445         * release ownership
4446         */
4447        pfm_flush_pmds(task, ctx);
4448
4449        /*
4450         * at this point we are done with the PMU
4451         * so we can unreserve the resource.
4452         *
4453         * when state was ZOMBIE, we have already unreserved.
4454         */
4455        if (prev_state != PFM_CTX_ZOMBIE) 
4456                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4457
4458        /*
4459         * reset activation counter and psr
4460         */
4461        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4462        SET_LAST_CPU(ctx, -1);
4463
4464        /*
4465         * PMU state will not be restored
4466         */
4467        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4468
4469        /*
4470         * break links between context and task
4471         */
4472        task->thread.pfm_context  = NULL;
4473        ctx->ctx_task             = NULL;
4474
4475        PFM_SET_WORK_PENDING(task, 0);
4476
4477        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4478        ctx->ctx_fl_can_restart  = 0;
4479        ctx->ctx_fl_going_zombie = 0;
4480
4481        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4482
4483        return 0;
4484}
4485
4486
4487/*
4488 * called only from exit_thread()
4489 * we come here only if the task has a context attached (loaded or masked)
4490 */
4491void
4492pfm_exit_thread(struct task_struct *task)
4493{
4494        pfm_context_t *ctx;
4495        unsigned long flags;
4496        struct pt_regs *regs = task_pt_regs(task);
4497        int ret, state;
4498        int free_ok = 0;
4499
4500        ctx = PFM_GET_CTX(task);
4501
4502        PROTECT_CTX(ctx, flags);
4503
4504        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4505
4506        state = ctx->ctx_state;
4507        switch(state) {
4508                case PFM_CTX_UNLOADED:
4509                        /*
4510                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4511                         * be in unloaded state
4512                         */
4513                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4514                        break;
4515                case PFM_CTX_LOADED:
4516                case PFM_CTX_MASKED:
4517                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4518                        if (ret) {
4519                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4520                        }
4521                        DPRINT(("ctx unloaded for current state was %d\n", state));
4522
4523                        pfm_end_notify_user(ctx);
4524                        break;
4525                case PFM_CTX_ZOMBIE:
4526                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4527                        if (ret) {
4528                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4529                        }
4530                        free_ok = 1;
4531                        break;
4532                default:
4533                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4534                        break;
4535        }
4536        UNPROTECT_CTX(ctx, flags);
4537
4538        { u64 psr = pfm_get_psr();
4539          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4540          BUG_ON(GET_PMU_OWNER());
4541          BUG_ON(ia64_psr(regs)->up);
4542          BUG_ON(ia64_psr(regs)->pp);
4543        }
4544
4545        /*
4546         * All memory free operations (especially for vmalloc'ed memory)
4547         * MUST be done with interrupts ENABLED.
4548         */
4549        if (free_ok) pfm_context_free(ctx);
4550}
4551
4552/*
4553 * functions MUST be listed in the increasing order of their index (see permfon.h)
4554 */
4555#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4556#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4557#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4558#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4559#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4560
4561static pfm_cmd_desc_t pfm_cmd_tab[]={
4562/* 0  */PFM_CMD_NONE,
4563/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4564/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4565/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4566/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4567/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4568/* 6  */PFM_CMD_NONE,
4569/* 7  */PFM_CMD_NONE,
4570/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4571/* 9  */PFM_CMD_NONE,
4572/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4573/* 11 */PFM_CMD_NONE,
4574/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4575/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4576/* 14 */PFM_CMD_NONE,
4577/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4578/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4579/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4580/* 18 */PFM_CMD_NONE,
4581/* 19 */PFM_CMD_NONE,
4582/* 20 */PFM_CMD_NONE,
4583/* 21 */PFM_CMD_NONE,
4584/* 22 */PFM_CMD_NONE,
4585/* 23 */PFM_CMD_NONE,
4586/* 24 */PFM_CMD_NONE,
4587/* 25 */PFM_CMD_NONE,
4588/* 26 */PFM_CMD_NONE,
4589/* 27 */PFM_CMD_NONE,
4590/* 28 */PFM_CMD_NONE,
4591/* 29 */PFM_CMD_NONE,
4592/* 30 */PFM_CMD_NONE,
4593/* 31 */PFM_CMD_NONE,
4594/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4595/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4596};
4597#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4598
4599static int
4600pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4601{
4602        struct task_struct *task;
4603        int state, old_state;
4604
4605recheck:
4606        state = ctx->ctx_state;
4607        task  = ctx->ctx_task;
4608
4609        if (task == NULL) {
4610                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4611                return 0;
4612        }
4613
4614        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4615                ctx->ctx_fd,
4616                state,
4617                task_pid_nr(task),
4618                task->state, PFM_CMD_STOPPED(cmd)));
4619
4620        /*
4621         * self-monitoring always ok.
4622         *
4623         * for system-wide the caller can either be the creator of the
4624         * context (to one to which the context is attached to) OR
4625         * a task running on the same CPU as the session.
4626         */
4627        if (task == current || ctx->ctx_fl_system) return 0;
4628
4629        /*
4630         * we are monitoring another thread
4631         */
4632        switch(state) {
4633                case PFM_CTX_UNLOADED:
4634                        /*
4635                         * if context is UNLOADED we are safe to go
4636                         */
4637                        return 0;
4638                case PFM_CTX_ZOMBIE:
4639                        /*
4640                         * no command can operate on a zombie context
4641                         */
4642                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4643                        return -EINVAL;
4644                case PFM_CTX_MASKED:
4645                        /*
4646                         * PMU state has been saved to software even though
4647                         * the thread may still be running.
4648                         */
4649                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4650        }
4651
4652        /*
4653         * context is LOADED or MASKED. Some commands may need to have 
4654         * the task stopped.
4655         *
4656         * We could lift this restriction for UP but it would mean that
4657         * the user has no guarantee the task would not run between
4658         * two successive calls to perfmonctl(). That's probably OK.
4659         * If this user wants to ensure the task does not run, then
4660         * the task must be stopped.
4661         */
4662        if (PFM_CMD_STOPPED(cmd)) {
4663                if (!task_is_stopped_or_traced(task)) {
4664                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4665                        return -EBUSY;
4666                }
4667                /*
4668                 * task is now stopped, wait for ctxsw out
4669                 *
4670                 * This is an interesting point in the code.
4671                 * We need to unprotect the context because
4672                 * the pfm_save_regs() routines needs to grab
4673                 * the same lock. There are danger in doing
4674                 * this because it leaves a window open for
4675                 * another task to get access to the context
4676                 * and possibly change its state. The one thing
4677                 * that is not possible is for the context to disappear
4678                 * because we are protected by the VFS layer, i.e.,
4679                 * get_fd()/put_fd().
4680                 */
4681                old_state = state;
4682
4683                UNPROTECT_CTX(ctx, flags);
4684
4685                wait_task_inactive(task, 0);
4686
4687                PROTECT_CTX(ctx, flags);
4688
4689                /*
4690                 * we must recheck to verify if state has changed
4691                 */
4692                if (ctx->ctx_state != old_state) {
4693                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4694                        goto recheck;
4695                }
4696        }
4697        return 0;
4698}
4699
4700/*
4701 * system-call entry point (must return long)
4702 */
4703asmlinkage long
4704sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4705{
4706        struct fd f = {NULL, 0};
4707        pfm_context_t *ctx = NULL;
4708        unsigned long flags = 0UL;
4709        void *args_k = NULL;
4710        long ret; /* will expand int return types */
4711        size_t base_sz, sz, xtra_sz = 0;
4712        int narg, completed_args = 0, call_made = 0, cmd_flags;
4713        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4714        int (*getsize)(void *arg, size_t *sz);
4715#define PFM_MAX_ARGSIZE 4096
4716
4717        /*
4718         * reject any call if perfmon was disabled at initialization
4719         */
4720        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4721
4722        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4723                DPRINT(("invalid cmd=%d\n", cmd));
4724                return -EINVAL;
4725        }
4726
4727        func      = pfm_cmd_tab[cmd].cmd_func;
4728        narg      = pfm_cmd_tab[cmd].cmd_narg;
4729        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4730        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4731        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4732
4733        if (unlikely(func == NULL)) {
4734                DPRINT(("invalid cmd=%d\n", cmd));
4735                return -EINVAL;
4736        }
4737
4738        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4739                PFM_CMD_NAME(cmd),
4740                cmd,
4741                narg,
4742                base_sz,
4743                count));
4744
4745        /*
4746         * check if number of arguments matches what the command expects
4747         */
4748        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4749                return -EINVAL;
4750
4751restart_args:
4752        sz = xtra_sz + base_sz*count;
4753        /*
4754         * limit abuse to min page size
4755         */
4756        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4757                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4758                return -E2BIG;
4759        }
4760
4761        /*
4762         * allocate default-sized argument buffer
4763         */
4764        if (likely(count && args_k == NULL)) {
4765                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4766                if (args_k == NULL) return -ENOMEM;
4767        }
4768
4769        ret = -EFAULT;
4770
4771        /*
4772         * copy arguments
4773         *
4774         * assume sz = 0 for command without parameters
4775         */
4776        if (sz && copy_from_user(args_k, arg, sz)) {
4777                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4778                goto error_args;
4779        }
4780
4781        /*
4782         * check if command supports extra parameters
4783         */
4784        if (completed_args == 0 && getsize) {
4785                /*
4786                 * get extra parameters size (based on main argument)
4787                 */
4788                ret = (*getsize)(args_k, &xtra_sz);
4789                if (ret) goto error_args;
4790
4791                completed_args = 1;
4792
4793                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4794
4795                /* retry if necessary */
4796                if (likely(xtra_sz)) goto restart_args;
4797        }
4798
4799        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4800
4801        ret = -EBADF;
4802
4803        f = fdget(fd);
4804        if (unlikely(f.file == NULL)) {
4805                DPRINT(("invalid fd %d\n", fd));
4806                goto error_args;
4807        }
4808        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4809                DPRINT(("fd %d not related to perfmon\n", fd));
4810                goto error_args;
4811        }
4812
4813        ctx = f.file->private_data;
4814        if (unlikely(ctx == NULL)) {
4815                DPRINT(("no context for fd %d\n", fd));
4816                goto error_args;
4817        }
4818        prefetch(&ctx->ctx_state);
4819
4820        PROTECT_CTX(ctx, flags);
4821
4822        /*
4823         * check task is stopped
4824         */
4825        ret = pfm_check_task_state(ctx, cmd, flags);
4826        if (unlikely(ret)) goto abort_locked;
4827
4828skip_fd:
4829        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4830
4831        call_made = 1;
4832
4833abort_locked:
4834        if (likely(ctx)) {
4835                DPRINT(("context unlocked\n"));
4836                UNPROTECT_CTX(ctx, flags);
4837        }
4838
4839        /* copy argument back to user, if needed */
4840        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4841
4842error_args:
4843        if (f.file)
4844                fdput(f);
4845
4846        kfree(args_k);
4847
4848        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4849
4850        return ret;
4851}
4852
4853static void
4854pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4855{
4856        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4857        pfm_ovfl_ctrl_t rst_ctrl;
4858        int state;
4859        int ret = 0;
4860
4861        state = ctx->ctx_state;
4862        /*
4863         * Unlock sampling buffer and reset index atomically
4864         * XXX: not really needed when blocking
4865         */
4866        if (CTX_HAS_SMPL(ctx)) {
4867
4868                rst_ctrl.bits.mask_monitoring = 0;
4869                rst_ctrl.bits.reset_ovfl_pmds = 0;
4870
4871                if (state == PFM_CTX_LOADED)
4872                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4873                else
4874                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4875        } else {
4876                rst_ctrl.bits.mask_monitoring = 0;
4877                rst_ctrl.bits.reset_ovfl_pmds = 1;
4878        }
4879
4880        if (ret == 0) {
4881                if (rst_ctrl.bits.reset_ovfl_pmds) {
4882                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4883                }
4884                if (rst_ctrl.bits.mask_monitoring == 0) {
4885                        DPRINT(("resuming monitoring\n"));
4886                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4887                } else {
4888                        DPRINT(("stopping monitoring\n"));
4889                        //pfm_stop_monitoring(current, regs);
4890                }
4891                ctx->ctx_state = PFM_CTX_LOADED;
4892        }
4893}
4894
4895/*
4896 * context MUST BE LOCKED when calling
4897 * can only be called for current
4898 */
4899static void
4900pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4901{
4902        int ret;
4903
4904        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4905
4906        ret = pfm_context_unload(ctx, NULL, 0, regs);
4907        if (ret) {
4908                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4909        }
4910
4911        /*
4912         * and wakeup controlling task, indicating we are now disconnected
4913         */
4914        wake_up_interruptible(&ctx->ctx_zombieq);
4915
4916        /*
4917         * given that context is still locked, the controlling
4918         * task will only get access when we return from
4919         * pfm_handle_work().
4920         */
4921}
4922
4923static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4924
4925 /*
4926  * pfm_handle_work() can be called with interrupts enabled
4927  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4928  * call may sleep, therefore we must re-enable interrupts
4929  * to avoid deadlocks. It is safe to do so because this function
4930  * is called ONLY when returning to user level (pUStk=1), in which case
4931  * there is no risk of kernel stack overflow due to deep
4932  * interrupt nesting.
4933  */
4934void
4935pfm_handle_work(void)
4936{
4937        pfm_context_t *ctx;
4938        struct pt_regs *regs;
4939        unsigned long flags, dummy_flags;
4940        unsigned long ovfl_regs;
4941        unsigned int reason;
4942        int ret;
4943
4944        ctx = PFM_GET_CTX(current);
4945        if (ctx == NULL) {
4946                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4947                        task_pid_nr(current));
4948                return;
4949        }
4950
4951        PROTECT_CTX(ctx, flags);
4952
4953        PFM_SET_WORK_PENDING(current, 0);
4954
4955        regs = task_pt_regs(current);
4956
4957        /*
4958         * extract reason for being here and clear
4959         */
4960        reason = ctx->ctx_fl_trap_reason;
4961        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4962        ovfl_regs = ctx->ctx_ovfl_regs[0];
4963
4964        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
4965
4966        /*
4967         * must be done before we check for simple-reset mode
4968         */
4969        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
4970                goto do_zombie;
4971
4972        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
4973        if (reason == PFM_TRAP_REASON_RESET)
4974                goto skip_blocking;
4975
4976        /*
4977         * restore interrupt mask to what it was on entry.
4978         * Could be enabled/diasbled.
4979         */
4980        UNPROTECT_CTX(ctx, flags);
4981
4982        /*
4983         * force interrupt enable because of down_interruptible()
4984         */
4985        local_irq_enable();
4986
4987        DPRINT(("before block sleeping\n"));
4988
4989        /*
4990         * may go through without blocking on SMP systems
4991         * if restart has been received already by the time we call down()
4992         */
4993        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
4994
4995        DPRINT(("after block sleeping ret=%d\n", ret));
4996
4997        /*
4998         * lock context and mask interrupts again
4999         * We save flags into a dummy because we may have
5000         * altered interrupts mask compared to entry in this
5001         * function.
5002         */
5003        PROTECT_CTX(ctx, dummy_flags);
5004
5005        /*
5006         * we need to read the ovfl_regs only after wake-up
5007         * because we may have had pfm_write_pmds() in between
5008         * and that can changed PMD values and therefore 
5009         * ovfl_regs is reset for these new PMD values.
5010         */
5011        ovfl_regs = ctx->ctx_ovfl_regs[0];
5012
5013        if (ctx->ctx_fl_going_zombie) {
5014do_zombie:
5015                DPRINT(("context is zombie, bailing out\n"));
5016                pfm_context_force_terminate(ctx, regs);
5017                goto nothing_to_do;
5018        }
5019        /*
5020         * in case of interruption of down() we don't restart anything
5021         */
5022        if (ret < 0)
5023                goto nothing_to_do;
5024
5025skip_blocking:
5026        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5027        ctx->ctx_ovfl_regs[0] = 0UL;
5028
5029nothing_to_do:
5030        /*
5031         * restore flags as they were upon entry
5032         */
5033        UNPROTECT_CTX(ctx, flags);
5034}
5035
5036static int
5037pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5038{
5039        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5040                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5041                return 0;
5042        }
5043
5044        DPRINT(("waking up somebody\n"));
5045
5046        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5047
5048        /*
5049         * safe, we are not in intr handler, nor in ctxsw when
5050         * we come here
5051         */
5052        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5053
5054        return 0;
5055}
5056
5057static int
5058pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5059{
5060        pfm_msg_t *msg = NULL;
5061
5062        if (ctx->ctx_fl_no_msg == 0) {
5063                msg = pfm_get_new_msg(ctx);
5064                if (msg == NULL) {
5065                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5066                        return -1;
5067                }
5068
5069                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5070                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5071                msg->pfm_ovfl_msg.msg_active_set   = 0;
5072                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5073                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5074                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5075                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5076                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5077        }
5078
5079        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5080                msg,
5081                ctx->ctx_fl_no_msg,
5082                ctx->ctx_fd,
5083                ovfl_pmds));
5084
5085        return pfm_notify_user(ctx, msg);
5086}
5087
5088static int
5089pfm_end_notify_user(pfm_context_t *ctx)
5090{
5091        pfm_msg_t *msg;
5092
5093        msg = pfm_get_new_msg(ctx);
5094        if (msg == NULL) {
5095                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5096                return -1;
5097        }
5098        /* no leak */
5099        memset(msg, 0, sizeof(*msg));
5100
5101        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5102        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5103        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5104
5105        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5106                msg,
5107                ctx->ctx_fl_no_msg,
5108                ctx->ctx_fd));
5109
5110        return pfm_notify_user(ctx, msg);
5111}
5112
5113/*
5114 * main overflow processing routine.
5115 * it can be called from the interrupt path or explicitly during the context switch code
5116 */
5117static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5118                                unsigned long pmc0, struct pt_regs *regs)
5119{
5120        pfm_ovfl_arg_t *ovfl_arg;
5121        unsigned long mask;
5122        unsigned long old_val, ovfl_val, new_val;
5123        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5124        unsigned long tstamp;
5125        pfm_ovfl_ctrl_t ovfl_ctrl;
5126        unsigned int i, has_smpl;
5127        int must_notify = 0;
5128
5129        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5130
5131        /*
5132         * sanity test. Should never happen
5133         */
5134        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5135
5136        tstamp   = ia64_get_itc();
5137        mask     = pmc0 >> PMU_FIRST_COUNTER;
5138        ovfl_val = pmu_conf->ovfl_val;
5139        has_smpl = CTX_HAS_SMPL(ctx);
5140
5141        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5142                     "used_pmds=0x%lx\n",
5143                        pmc0,
5144                        task ? task_pid_nr(task): -1,
5145                        (regs ? regs->cr_iip : 0),
5146                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5147                        ctx->ctx_used_pmds[0]));
5148
5149
5150        /*
5151         * first we update the virtual counters
5152         * assume there was a prior ia64_srlz_d() issued
5153         */
5154        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5155
5156                /* skip pmd which did not overflow */
5157                if ((mask & 0x1) == 0) continue;
5158
5159                /*
5160                 * Note that the pmd is not necessarily 0 at this point as qualified events
5161                 * may have happened before the PMU was frozen. The residual count is not
5162                 * taken into consideration here but will be with any read of the pmd via
5163                 * pfm_read_pmds().
5164                 */
5165                old_val              = new_val = ctx->ctx_pmds[i].val;
5166                new_val             += 1 + ovfl_val;
5167                ctx->ctx_pmds[i].val = new_val;
5168
5169                /*
5170                 * check for overflow condition
5171                 */
5172                if (likely(old_val > new_val)) {
5173                        ovfl_pmds |= 1UL << i;
5174                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5175                }
5176
5177                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5178                        i,
5179                        new_val,
5180                        old_val,
5181                        ia64_get_pmd(i) & ovfl_val,
5182                        ovfl_pmds,
5183                        ovfl_notify));
5184        }
5185
5186        /*
5187         * there was no 64-bit overflow, nothing else to do
5188         */
5189        if (ovfl_pmds == 0UL) return;
5190
5191        /* 
5192         * reset all control bits
5193         */
5194        ovfl_ctrl.val = 0;
5195        reset_pmds    = 0UL;
5196
5197        /*
5198         * if a sampling format module exists, then we "cache" the overflow by 
5199         * calling the module's handler() routine.
5200         */
5201        if (has_smpl) {
5202                unsigned long start_cycles, end_cycles;
5203                unsigned long pmd_mask;
5204                int j, k, ret = 0;
5205                int this_cpu = smp_processor_id();
5206
5207                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5208                ovfl_arg = &ctx->ctx_ovfl_arg;
5209
5210                prefetch(ctx->ctx_smpl_hdr);
5211
5212                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5213
5214                        mask = 1UL << i;
5215
5216                        if ((pmd_mask & 0x1) == 0) continue;
5217
5218                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5219                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5220                        ovfl_arg->active_set    = 0;
5221                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5222                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5223
5224                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5225                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5226                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5227
5228                        /*
5229                         * copy values of pmds of interest. Sampling format may copy them
5230                         * into sampling buffer.
5231                         */
5232                        if (smpl_pmds) {
5233                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5234                                        if ((smpl_pmds & 0x1) == 0) continue;
5235                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5236                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5237                                }
5238                        }
5239
5240                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5241
5242                        start_cycles = ia64_get_itc();
5243
5244                        /*
5245                         * call custom buffer format record (handler) routine
5246                         */
5247                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5248
5249                        end_cycles = ia64_get_itc();
5250
5251                        /*
5252                         * For those controls, we take the union because they have
5253                         * an all or nothing behavior.
5254                         */
5255                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5256                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5257                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5258                        /*
5259                         * build the bitmask of pmds to reset now
5260                         */
5261                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5262
5263                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5264                }
5265                /*
5266                 * when the module cannot handle the rest of the overflows, we abort right here
5267                 */
5268                if (ret && pmd_mask) {
5269                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5270                                pmd_mask<<PMU_FIRST_COUNTER));
5271                }
5272                /*
5273                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5274                 */
5275                ovfl_pmds &= ~reset_pmds;
5276        } else {
5277                /*
5278                 * when no sampling module is used, then the default
5279                 * is to notify on overflow if requested by user
5280                 */
5281                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5282                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5283                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5284                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5285                /*
5286                 * if needed, we reset all overflowed pmds
5287                 */
5288                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5289        }
5290
5291        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5292
5293        /*
5294         * reset the requested PMD registers using the short reset values
5295         */
5296        if (reset_pmds) {
5297                unsigned long bm = reset_pmds;
5298                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5299        }
5300
5301        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5302                /*
5303                 * keep track of what to reset when unblocking
5304                 */
5305                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5306
5307                /*
5308                 * check for blocking context 
5309                 */
5310                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5311
5312                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5313
5314                        /*
5315                         * set the perfmon specific checking pending work for the task
5316                         */
5317                        PFM_SET_WORK_PENDING(task, 1);
5318
5319                        /*
5320                         * when coming from ctxsw, current still points to the
5321                         * previous task, therefore we must work with task and not current.
5322                         */
5323                        set_notify_resume(task);
5324                }
5325                /*
5326                 * defer until state is changed (shorten spin window). the context is locked
5327                 * anyway, so the signal receiver would come spin for nothing.
5328                 */
5329                must_notify = 1;
5330        }
5331
5332        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5333                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5334                        PFM_GET_WORK_PENDING(task),
5335                        ctx->ctx_fl_trap_reason,
5336                        ovfl_pmds,
5337                        ovfl_notify,
5338                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5339        /*
5340         * in case monitoring must be stopped, we toggle the psr bits
5341         */
5342        if (ovfl_ctrl.bits.mask_monitoring) {
5343                pfm_mask_monitoring(task);
5344                ctx->ctx_state = PFM_CTX_MASKED;
5345                ctx->ctx_fl_can_restart = 1;
5346        }
5347
5348        /*
5349         * send notification now
5350         */
5351        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5352
5353        return;
5354
5355sanity_check:
5356        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5357                        smp_processor_id(),
5358                        task ? task_pid_nr(task) : -1,
5359                        pmc0);
5360        return;
5361
5362stop_monitoring:
5363        /*
5364         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5365         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5366         * come here as zombie only if the task is the current task. In which case, we
5367         * can access the PMU  hardware directly.
5368         *
5369         * Note that zombies do have PM_VALID set. So here we do the minimal.
5370         *
5371         * In case the context was zombified it could not be reclaimed at the time
5372         * the monitoring program exited. At this point, the PMU reservation has been
5373         * returned, the sampiing buffer has been freed. We must convert this call
5374         * into a spurious interrupt. However, we must also avoid infinite overflows
5375         * by stopping monitoring for this task. We can only come here for a per-task
5376         * context. All we need to do is to stop monitoring using the psr bits which
5377         * are always task private. By re-enabling secure montioring, we ensure that
5378         * the monitored task will not be able to re-activate monitoring.
5379         * The task will eventually be context switched out, at which point the context
5380         * will be reclaimed (that includes releasing ownership of the PMU).
5381         *
5382         * So there might be a window of time where the number of per-task session is zero
5383         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5384         * context. This is safe because if a per-task session comes in, it will push this one
5385         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5386         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5387         * also push our zombie context out.
5388         *
5389         * Overall pretty hairy stuff....
5390         */
5391        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5392        pfm_clear_psr_up();
5393        ia64_psr(regs)->up = 0;
5394        ia64_psr(regs)->sp = 1;
5395        return;
5396}
5397
5398static int
5399pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5400{
5401        struct task_struct *task;
5402        pfm_context_t *ctx;
5403        unsigned long flags;
5404        u64 pmc0;
5405        int this_cpu = smp_processor_id();
5406        int retval = 0;
5407
5408        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5409
5410        /*
5411         * srlz.d done before arriving here
5412         */
5413        pmc0 = ia64_get_pmc(0);
5414
5415        task = GET_PMU_OWNER();
5416        ctx  = GET_PMU_CTX();
5417
5418        /*
5419         * if we have some pending bits set
5420         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5421         */
5422        if (PMC0_HAS_OVFL(pmc0) && task) {
5423                /*
5424                 * we assume that pmc0.fr is always set here
5425                 */
5426
5427                /* sanity check */
5428                if (!ctx) goto report_spurious1;
5429
5430                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5431                        goto report_spurious2;
5432
5433                PROTECT_CTX_NOPRINT(ctx, flags);
5434
5435                pfm_overflow_handler(task, ctx, pmc0, regs);
5436
5437                UNPROTECT_CTX_NOPRINT(ctx, flags);
5438
5439        } else {
5440                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5441                retval = -1;
5442        }
5443        /*
5444         * keep it unfrozen at all times
5445         */
5446        pfm_unfreeze_pmu();
5447
5448        return retval;
5449
5450report_spurious1:
5451        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5452                this_cpu, task_pid_nr(task));
5453        pfm_unfreeze_pmu();
5454        return -1;
5455report_spurious2:
5456        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5457                this_cpu, 
5458                task_pid_nr(task));
5459        pfm_unfreeze_pmu();
5460        return -1;
5461}
5462
5463static irqreturn_t
5464pfm_interrupt_handler(int irq, void *arg)
5465{
5466        unsigned long start_cycles, total_cycles;
5467        unsigned long min, max;
5468        int this_cpu;
5469        int ret;
5470        struct pt_regs *regs = get_irq_regs();
5471
5472        this_cpu = get_cpu();
5473        if (likely(!pfm_alt_intr_handler)) {
5474                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5475                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5476
5477                start_cycles = ia64_get_itc();
5478
5479                ret = pfm_do_interrupt_handler(arg, regs);
5480
5481                total_cycles = ia64_get_itc();
5482
5483                /*
5484                 * don't measure spurious interrupts
5485                 */
5486                if (likely(ret == 0)) {
5487                        total_cycles -= start_cycles;
5488
5489                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5490                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5491
5492                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5493                }
5494        }
5495        else {
5496                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5497        }
5498
5499        put_cpu();
5500        return IRQ_HANDLED;
5501}
5502
5503/*
5504 * /proc/perfmon interface, for debug only
5505 */
5506
5507#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5508
5509static void *
5510pfm_proc_start(struct seq_file *m, loff_t *pos)
5511{
5512        if (*pos == 0) {
5513                return PFM_PROC_SHOW_HEADER;
5514        }
5515
5516        while (*pos <= nr_cpu_ids) {
5517                if (cpu_online(*pos - 1)) {
5518                        return (void *)*pos;
5519                }
5520                ++*pos;
5521        }
5522        return NULL;
5523}
5524
5525static void *
5526pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5527{
5528        ++*pos;
5529        return pfm_proc_start(m, pos);
5530}
5531
5532static void
5533pfm_proc_stop(struct seq_file *m, void *v)
5534{
5535}
5536
5537static void
5538pfm_proc_show_header(struct seq_file *m)
5539{
5540        struct list_head * pos;
5541        pfm_buffer_fmt_t * entry;
5542        unsigned long flags;
5543
5544        seq_printf(m,
5545                "perfmon version           : %u.%u\n"
5546                "model                     : %s\n"
5547                "fastctxsw                 : %s\n"
5548                "expert mode               : %s\n"
5549                "ovfl_mask                 : 0x%lx\n"
5550                "PMU flags                 : 0x%x\n",
5551                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5552                pmu_conf->pmu_name,
5553                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5554                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5555                pmu_conf->ovfl_val,
5556                pmu_conf->flags);
5557
5558        LOCK_PFS(flags);
5559
5560        seq_printf(m,
5561                "proc_sessions             : %u\n"
5562                "sys_sessions              : %u\n"
5563                "sys_use_dbregs            : %u\n"
5564                "ptrace_use_dbregs         : %u\n",
5565                pfm_sessions.pfs_task_sessions,
5566                pfm_sessions.pfs_sys_sessions,
5567                pfm_sessions.pfs_sys_use_dbregs,
5568                pfm_sessions.pfs_ptrace_use_dbregs);
5569
5570        UNLOCK_PFS(flags);
5571
5572        spin_lock(&pfm_buffer_fmt_lock);
5573
5574        list_for_each(pos, &pfm_buffer_fmt_list) {
5575                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5576                seq_printf(m, "format                    : %16phD %s\n",
5577                           entry->fmt_uuid, entry->fmt_name);
5578        }
5579        spin_unlock(&pfm_buffer_fmt_lock);
5580
5581}
5582
5583static int
5584pfm_proc_show(struct seq_file *m, void *v)
5585{
5586        unsigned long psr;
5587        unsigned int i;
5588        int cpu;
5589
5590        if (v == PFM_PROC_SHOW_HEADER) {
5591                pfm_proc_show_header(m);
5592                return 0;
5593        }
5594
5595        /* show info for CPU (v - 1) */
5596
5597        cpu = (long)v - 1;
5598        seq_printf(m,
5599                "CPU%-2d overflow intrs      : %lu\n"
5600                "CPU%-2d overflow cycles     : %lu\n"
5601                "CPU%-2d overflow min        : %lu\n"
5602                "CPU%-2d overflow max        : %lu\n"
5603                "CPU%-2d smpl handler calls  : %lu\n"
5604                "CPU%-2d smpl handler cycles : %lu\n"
5605                "CPU%-2d spurious intrs      : %lu\n"
5606                "CPU%-2d replay   intrs      : %lu\n"
5607                "CPU%-2d syst_wide           : %d\n"
5608                "CPU%-2d dcr_pp              : %d\n"
5609                "CPU%-2d exclude idle        : %d\n"
5610                "CPU%-2d owner               : %d\n"
5611                "CPU%-2d context             : %p\n"
5612                "CPU%-2d activations         : %lu\n",
5613                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5614                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5615                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5616                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5617                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5618                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5619                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5620                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5621                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5622                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5623                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5624                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5625                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5626                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5627
5628        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5629
5630                psr = pfm_get_psr();
5631
5632                ia64_srlz_d();
5633
5634                seq_printf(m, 
5635                        "CPU%-2d psr                 : 0x%lx\n"
5636                        "CPU%-2d pmc0                : 0x%lx\n", 
5637                        cpu, psr,
5638                        cpu, ia64_get_pmc(0));
5639
5640                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5641                        if (PMC_IS_COUNTING(i) == 0) continue;
5642                        seq_printf(m, 
5643                                "CPU%-2d pmc%u                : 0x%lx\n"
5644                                "CPU%-2d pmd%u                : 0x%lx\n", 
5645                                cpu, i, ia64_get_pmc(i),
5646                                cpu, i, ia64_get_pmd(i));
5647                }
5648        }
5649        return 0;
5650}
5651
5652const struct seq_operations pfm_seq_ops = {
5653        .start =        pfm_proc_start,
5654        .next =         pfm_proc_next,
5655        .stop =         pfm_proc_stop,
5656        .show =         pfm_proc_show
5657};
5658
5659/*
5660 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5661 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5662 * is active or inactive based on mode. We must rely on the value in
5663 * local_cpu_data->pfm_syst_info
5664 */
5665void
5666pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5667{
5668        struct pt_regs *regs;
5669        unsigned long dcr;
5670        unsigned long dcr_pp;
5671
5672        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5673
5674        /*
5675         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5676         * on every CPU, so we can rely on the pid to identify the idle task.
5677         */
5678        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5679                regs = task_pt_regs(task);
5680                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5681                return;
5682        }
5683        /*
5684         * if monitoring has started
5685         */
5686        if (dcr_pp) {
5687                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5688                /*
5689                 * context switching in?
5690                 */
5691                if (is_ctxswin) {
5692                        /* mask monitoring for the idle task */
5693                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5694                        pfm_clear_psr_pp();
5695                        ia64_srlz_i();
5696                        return;
5697                }
5698                /*
5699                 * context switching out
5700                 * restore monitoring for next task
5701                 *
5702                 * Due to inlining this odd if-then-else construction generates
5703                 * better code.
5704                 */
5705                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5706                pfm_set_psr_pp();
5707                ia64_srlz_i();
5708        }
5709}
5710
5711#ifdef CONFIG_SMP
5712
5713static void
5714pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5715{
5716        struct task_struct *task = ctx->ctx_task;
5717
5718        ia64_psr(regs)->up = 0;
5719        ia64_psr(regs)->sp = 1;
5720
5721        if (GET_PMU_OWNER() == task) {
5722                DPRINT(("cleared ownership for [%d]\n",
5723                                        task_pid_nr(ctx->ctx_task)));
5724                SET_PMU_OWNER(NULL, NULL);
5725        }
5726
5727        /*
5728         * disconnect the task from the context and vice-versa
5729         */
5730        PFM_SET_WORK_PENDING(task, 0);
5731
5732        task->thread.pfm_context  = NULL;
5733        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5734
5735        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5736}
5737
5738
5739/*
5740 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5741 */
5742void
5743pfm_save_regs(struct task_struct *task)
5744{
5745        pfm_context_t *ctx;
5746        unsigned long flags;
5747        u64 psr;
5748
5749
5750        ctx = PFM_GET_CTX(task);
5751        if (ctx == NULL) return;
5752
5753        /*
5754         * we always come here with interrupts ALREADY disabled by
5755         * the scheduler. So we simply need to protect against concurrent
5756         * access, not CPU concurrency.
5757         */
5758        flags = pfm_protect_ctx_ctxsw(ctx);
5759
5760        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5761                struct pt_regs *regs = task_pt_regs(task);
5762
5763                pfm_clear_psr_up();
5764
5765                pfm_force_cleanup(ctx, regs);
5766
5767                BUG_ON(ctx->ctx_smpl_hdr);
5768
5769                pfm_unprotect_ctx_ctxsw(ctx, flags);
5770
5771                pfm_context_free(ctx);
5772                return;
5773        }
5774
5775        /*
5776         * save current PSR: needed because we modify it
5777         */
5778        ia64_srlz_d();
5779        psr = pfm_get_psr();
5780
5781        BUG_ON(psr & (IA64_PSR_I));
5782
5783        /*
5784         * stop monitoring:
5785         * This is the last instruction which may generate an overflow
5786         *
5787         * We do not need to set psr.sp because, it is irrelevant in kernel.
5788         * It will be restored from ipsr when going back to user level
5789         */
5790        pfm_clear_psr_up();
5791
5792        /*
5793         * keep a copy of psr.up (for reload)
5794         */
5795        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5796
5797        /*
5798         * release ownership of this PMU.
5799         * PM interrupts are masked, so nothing
5800         * can happen.
5801         */
5802        SET_PMU_OWNER(NULL, NULL);
5803
5804        /*
5805         * we systematically save the PMD as we have no
5806         * guarantee we will be schedule at that same
5807         * CPU again.
5808         */
5809        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5810
5811        /*
5812         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5813         * we will need it on the restore path to check
5814         * for pending overflow.
5815         */
5816        ctx->th_pmcs[0] = ia64_get_pmc(0);
5817
5818        /*
5819         * unfreeze PMU if had pending overflows
5820         */
5821        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5822
5823        /*
5824         * finally, allow context access.
5825         * interrupts will still be masked after this call.
5826         */
5827        pfm_unprotect_ctx_ctxsw(ctx, flags);
5828}
5829
5830#else /* !CONFIG_SMP */
5831void
5832pfm_save_regs(struct task_struct *task)
5833{
5834        pfm_context_t *ctx;
5835        u64 psr;
5836
5837        ctx = PFM_GET_CTX(task);
5838        if (ctx == NULL) return;
5839
5840        /*
5841         * save current PSR: needed because we modify it
5842         */
5843        psr = pfm_get_psr();
5844
5845        BUG_ON(psr & (IA64_PSR_I));
5846
5847        /*
5848         * stop monitoring:
5849         * This is the last instruction which may generate an overflow
5850         *
5851         * We do not need to set psr.sp because, it is irrelevant in kernel.
5852         * It will be restored from ipsr when going back to user level
5853         */
5854        pfm_clear_psr_up();
5855
5856        /*
5857         * keep a copy of psr.up (for reload)
5858         */
5859        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5860}
5861
5862static void
5863pfm_lazy_save_regs (struct task_struct *task)
5864{
5865        pfm_context_t *ctx;
5866        unsigned long flags;
5867
5868        { u64 psr  = pfm_get_psr();
5869          BUG_ON(psr & IA64_PSR_UP);
5870        }
5871
5872        ctx = PFM_GET_CTX(task);
5873
5874        /*
5875         * we need to mask PMU overflow here to
5876         * make sure that we maintain pmc0 until
5877         * we save it. overflow interrupts are
5878         * treated as spurious if there is no
5879         * owner.
5880         *
5881         * XXX: I don't think this is necessary
5882         */
5883        PROTECT_CTX(ctx,flags);
5884
5885        /*
5886         * release ownership of this PMU.
5887         * must be done before we save the registers.
5888         *
5889         * after this call any PMU interrupt is treated
5890         * as spurious.
5891         */
5892        SET_PMU_OWNER(NULL, NULL);
5893
5894        /*
5895         * save all the pmds we use
5896         */
5897        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5898
5899        /*
5900         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5901         * it is needed to check for pended overflow
5902         * on the restore path
5903         */
5904        ctx->th_pmcs[0] = ia64_get_pmc(0);
5905
5906        /*
5907         * unfreeze PMU if had pending overflows
5908         */
5909        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5910
5911        /*
5912         * now get can unmask PMU interrupts, they will
5913         * be treated as purely spurious and we will not
5914         * lose any information
5915         */
5916        UNPROTECT_CTX(ctx,flags);
5917}
5918#endif /* CONFIG_SMP */
5919
5920#ifdef CONFIG_SMP
5921/*
5922 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5923 */
5924void
5925pfm_load_regs (struct task_struct *task)
5926{
5927        pfm_context_t *ctx;
5928        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5929        unsigned long flags;
5930        u64 psr, psr_up;
5931        int need_irq_resend;
5932
5933        ctx = PFM_GET_CTX(task);
5934        if (unlikely(ctx == NULL)) return;
5935
5936        BUG_ON(GET_PMU_OWNER());
5937
5938        /*
5939         * possible on unload
5940         */
5941        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
5942
5943        /*
5944         * we always come here with interrupts ALREADY disabled by
5945         * the scheduler. So we simply need to protect against concurrent
5946         * access, not CPU concurrency.
5947         */
5948        flags = pfm_protect_ctx_ctxsw(ctx);
5949        psr   = pfm_get_psr();
5950
5951        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
5952
5953        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
5954        BUG_ON(psr & IA64_PSR_I);
5955
5956        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
5957                struct pt_regs *regs = task_pt_regs(task);
5958
5959                BUG_ON(ctx->ctx_smpl_hdr);
5960
5961                pfm_force_cleanup(ctx, regs);
5962
5963                pfm_unprotect_ctx_ctxsw(ctx, flags);
5964
5965                /*
5966                 * this one (kmalloc'ed) is fine with interrupts disabled
5967                 */
5968                pfm_context_free(ctx);
5969
5970                return;
5971        }
5972
5973        /*
5974         * we restore ALL the debug registers to avoid picking up
5975         * stale state.
5976         */
5977        if (ctx->ctx_fl_using_dbreg) {
5978                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
5979                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
5980        }
5981        /*
5982         * retrieve saved psr.up
5983         */
5984        psr_up = ctx->ctx_saved_psr_up;
5985
5986        /*
5987         * if we were the last user of the PMU on that CPU,
5988         * then nothing to do except restore psr
5989         */
5990        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
5991
5992                /*
5993                 * retrieve partial reload masks (due to user modifications)
5994                 */
5995                pmc_mask = ctx->ctx_reload_pmcs[0];
5996                pmd_mask = ctx->ctx_reload_pmds[0];
5997
5998        } else {
5999                /*
6000                 * To avoid leaking information to the user level when psr.sp=0,
6001                 * we must reload ALL implemented pmds (even the ones we don't use).
6002                 * In the kernel we only allow PFM_READ_PMDS on registers which
6003                 * we initialized or requested (sampling) so there is no risk there.
6004                 */
6005                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6006
6007                /*
6008                 * ALL accessible PMCs are systematically reloaded, unused registers
6009                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6010                 * up stale configuration.
6011                 *
6012                 * PMC0 is never in the mask. It is always restored separately.
6013                 */
6014                pmc_mask = ctx->ctx_all_pmcs[0];
6015        }
6016        /*
6017         * when context is MASKED, we will restore PMC with plm=0
6018         * and PMD with stale information, but that's ok, nothing
6019         * will be captured.
6020         *
6021         * XXX: optimize here
6022         */
6023        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6024        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6025
6026        /*
6027         * check for pending overflow at the time the state
6028         * was saved.
6029         */
6030        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6031                /*
6032                 * reload pmc0 with the overflow information
6033                 * On McKinley PMU, this will trigger a PMU interrupt
6034                 */
6035                ia64_set_pmc(0, ctx->th_pmcs[0]);
6036                ia64_srlz_d();
6037                ctx->th_pmcs[0] = 0UL;
6038
6039                /*
6040                 * will replay the PMU interrupt
6041                 */
6042                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6043
6044                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6045        }
6046
6047        /*
6048         * we just did a reload, so we reset the partial reload fields
6049         */
6050        ctx->ctx_reload_pmcs[0] = 0UL;
6051        ctx->ctx_reload_pmds[0] = 0UL;
6052
6053        SET_LAST_CPU(ctx, smp_processor_id());
6054
6055        /*
6056         * dump activation value for this PMU
6057         */
6058        INC_ACTIVATION();
6059        /*
6060         * record current activation for this context
6061         */
6062        SET_ACTIVATION(ctx);
6063
6064        /*
6065         * establish new ownership. 
6066         */
6067        SET_PMU_OWNER(task, ctx);
6068
6069        /*
6070         * restore the psr.up bit. measurement
6071         * is active again.
6072         * no PMU interrupt can happen at this point
6073         * because we still have interrupts disabled.
6074         */
6075        if (likely(psr_up)) pfm_set_psr_up();
6076
6077        /*
6078         * allow concurrent access to context
6079         */
6080        pfm_unprotect_ctx_ctxsw(ctx, flags);
6081}
6082#else /*  !CONFIG_SMP */
6083/*
6084 * reload PMU state for UP kernels
6085 * in 2.5 we come here with interrupts disabled
6086 */
6087void
6088pfm_load_regs (struct task_struct *task)
6089{
6090        pfm_context_t *ctx;
6091        struct task_struct *owner;
6092        unsigned long pmd_mask, pmc_mask;
6093        u64 psr, psr_up;
6094        int need_irq_resend;
6095
6096        owner = GET_PMU_OWNER();
6097        ctx   = PFM_GET_CTX(task);
6098        psr   = pfm_get_psr();
6099
6100        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6101        BUG_ON(psr & IA64_PSR_I);
6102
6103        /*
6104         * we restore ALL the debug registers to avoid picking up
6105         * stale state.
6106         *
6107         * This must be done even when the task is still the owner
6108         * as the registers may have been modified via ptrace()
6109         * (not perfmon) by the previous task.
6110         */
6111        if (ctx->ctx_fl_using_dbreg) {
6112                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6113                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6114        }
6115
6116        /*
6117         * retrieved saved psr.up
6118         */
6119        psr_up = ctx->ctx_saved_psr_up;
6120        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6121
6122        /*
6123         * short path, our state is still there, just
6124         * need to restore psr and we go
6125         *
6126         * we do not touch either PMC nor PMD. the psr is not touched
6127         * by the overflow_handler. So we are safe w.r.t. to interrupt
6128         * concurrency even without interrupt masking.
6129         */
6130        if (likely(owner == task)) {
6131                if (likely(psr_up)) pfm_set_psr_up();
6132                return;
6133        }
6134
6135        /*
6136         * someone else is still using the PMU, first push it out and
6137         * then we'll be able to install our stuff !
6138         *
6139         * Upon return, there will be no owner for the current PMU
6140         */
6141        if (owner) pfm_lazy_save_regs(owner);
6142
6143        /*
6144         * To avoid leaking information to the user level when psr.sp=0,
6145         * we must reload ALL implemented pmds (even the ones we don't use).
6146         * In the kernel we only allow PFM_READ_PMDS on registers which
6147         * we initialized or requested (sampling) so there is no risk there.
6148         */
6149        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6150
6151        /*
6152         * ALL accessible PMCs are systematically reloaded, unused registers
6153         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6154         * up stale configuration.
6155         *
6156         * PMC0 is never in the mask. It is always restored separately
6157         */
6158        pmc_mask = ctx->ctx_all_pmcs[0];
6159
6160        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6161        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6162
6163        /*
6164         * check for pending overflow at the time the state
6165         * was saved.
6166         */
6167        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6168                /*
6169                 * reload pmc0 with the overflow information
6170                 * On McKinley PMU, this will trigger a PMU interrupt
6171                 */
6172                ia64_set_pmc(0, ctx->th_pmcs[0]);
6173                ia64_srlz_d();
6174
6175                ctx->th_pmcs[0] = 0UL;
6176
6177                /*
6178                 * will replay the PMU interrupt
6179                 */
6180                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6181
6182                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6183        }
6184
6185        /*
6186         * establish new ownership. 
6187         */
6188        SET_PMU_OWNER(task, ctx);
6189
6190        /*
6191         * restore the psr.up bit. measurement
6192         * is active again.
6193         * no PMU interrupt can happen at this point
6194         * because we still have interrupts disabled.
6195         */
6196        if (likely(psr_up)) pfm_set_psr_up();
6197}
6198#endif /* CONFIG_SMP */
6199
6200/*
6201 * this function assumes monitoring is stopped
6202 */
6203static void
6204pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6205{
6206        u64 pmc0;
6207        unsigned long mask2, val, pmd_val, ovfl_val;
6208        int i, can_access_pmu = 0;
6209        int is_self;
6210
6211        /*
6212         * is the caller the task being monitored (or which initiated the
6213         * session for system wide measurements)
6214         */
6215        is_self = ctx->ctx_task == task ? 1 : 0;
6216
6217        /*
6218         * can access PMU is task is the owner of the PMU state on the current CPU
6219         * or if we are running on the CPU bound to the context in system-wide mode
6220         * (that is not necessarily the task the context is attached to in this mode).
6221         * In system-wide we always have can_access_pmu true because a task running on an
6222         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6223         */
6224        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6225        if (can_access_pmu) {
6226                /*
6227                 * Mark the PMU as not owned
6228                 * This will cause the interrupt handler to do nothing in case an overflow
6229                 * interrupt was in-flight
6230                 * This also guarantees that pmc0 will contain the final state
6231                 * It virtually gives us full control on overflow processing from that point
6232                 * on.
6233                 */
6234                SET_PMU_OWNER(NULL, NULL);
6235                DPRINT(("releasing ownership\n"));
6236
6237                /*
6238                 * read current overflow status:
6239                 *
6240                 * we are guaranteed to read the final stable state
6241                 */
6242                ia64_srlz_d();
6243                pmc0 = ia64_get_pmc(0); /* slow */
6244
6245                /*
6246                 * reset freeze bit, overflow status information destroyed
6247                 */
6248                pfm_unfreeze_pmu();
6249        } else {
6250                pmc0 = ctx->th_pmcs[0];
6251                /*
6252                 * clear whatever overflow status bits there were
6253                 */
6254                ctx->th_pmcs[0] = 0;
6255        }
6256        ovfl_val = pmu_conf->ovfl_val;
6257        /*
6258         * we save all the used pmds
6259         * we take care of overflows for counting PMDs
6260         *
6261         * XXX: sampling situation is not taken into account here
6262         */
6263        mask2 = ctx->ctx_used_pmds[0];
6264
6265        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6266
6267        for (i = 0; mask2; i++, mask2>>=1) {
6268
6269                /* skip non used pmds */
6270                if ((mask2 & 0x1) == 0) continue;
6271
6272                /*
6273                 * can access PMU always true in system wide mode
6274                 */
6275                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6276
6277                if (PMD_IS_COUNTING(i)) {
6278                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6279                                task_pid_nr(task),
6280                                i,
6281                                ctx->ctx_pmds[i].val,
6282                                val & ovfl_val));
6283
6284                        /*
6285                         * we rebuild the full 64 bit value of the counter
6286                         */
6287                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6288
6289                        /*
6290                         * now everything is in ctx_pmds[] and we need
6291                         * to clear the saved context from save_regs() such that
6292                         * pfm_read_pmds() gets the correct value
6293                         */
6294                        pmd_val = 0UL;
6295
6296                        /*
6297                         * take care of overflow inline
6298                         */
6299                        if (pmc0 & (1UL << i)) {
6300                                val += 1 + ovfl_val;
6301                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6302                        }
6303                }
6304
6305                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6306
6307                if (is_self) ctx->th_pmds[i] = pmd_val;
6308
6309                ctx->ctx_pmds[i].val = val;
6310        }
6311}
6312
6313static struct irqaction perfmon_irqaction = {
6314        .handler = pfm_interrupt_handler,
6315        .name    = "perfmon"
6316};
6317
6318static void
6319pfm_alt_save_pmu_state(void *data)
6320{
6321        struct pt_regs *regs;
6322
6323        regs = task_pt_regs(current);
6324
6325        DPRINT(("called\n"));
6326
6327        /*
6328         * should not be necessary but
6329         * let's take not risk
6330         */
6331        pfm_clear_psr_up();
6332        pfm_clear_psr_pp();
6333        ia64_psr(regs)->pp = 0;
6334
6335        /*
6336         * This call is required
6337         * May cause a spurious interrupt on some processors
6338         */
6339        pfm_freeze_pmu();
6340
6341        ia64_srlz_d();
6342}
6343
6344void
6345pfm_alt_restore_pmu_state(void *data)
6346{
6347        struct pt_regs *regs;
6348
6349        regs = task_pt_regs(current);
6350
6351        DPRINT(("called\n"));
6352
6353        /*
6354         * put PMU back in state expected
6355         * by perfmon
6356         */
6357        pfm_clear_psr_up();
6358        pfm_clear_psr_pp();
6359        ia64_psr(regs)->pp = 0;
6360
6361        /*
6362         * perfmon runs with PMU unfrozen at all times
6363         */
6364        pfm_unfreeze_pmu();
6365
6366        ia64_srlz_d();
6367}
6368
6369int
6370pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6371{
6372        int ret, i;
6373        int reserve_cpu;
6374
6375        /* some sanity checks */
6376        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6377
6378        /* do the easy test first */
6379        if (pfm_alt_intr_handler) return -EBUSY;
6380
6381        /* one at a time in the install or remove, just fail the others */
6382        if (!spin_trylock(&pfm_alt_install_check)) {
6383                return -EBUSY;
6384        }
6385
6386        /* reserve our session */
6387        for_each_online_cpu(reserve_cpu) {
6388                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6389                if (ret) goto cleanup_reserve;
6390        }
6391
6392        /* save the current system wide pmu states */
6393        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6394        if (ret) {
6395                DPRINT(("on_each_cpu() failed: %d\n", ret));
6396                goto cleanup_reserve;
6397        }
6398
6399        /* officially change to the alternate interrupt handler */
6400        pfm_alt_intr_handler = hdl;
6401
6402        spin_unlock(&pfm_alt_install_check);
6403
6404        return 0;
6405
6406cleanup_reserve:
6407        for_each_online_cpu(i) {
6408                /* don't unreserve more than we reserved */
6409                if (i >= reserve_cpu) break;
6410
6411                pfm_unreserve_session(NULL, 1, i);
6412        }
6413
6414        spin_unlock(&pfm_alt_install_check);
6415
6416        return ret;
6417}
6418EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6419
6420int
6421pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6422{
6423        int i;
6424        int ret;
6425
6426        if (hdl == NULL) return -EINVAL;
6427
6428        /* cannot remove someone else's handler! */
6429        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6430
6431        /* one at a time in the install or remove, just fail the others */
6432        if (!spin_trylock(&pfm_alt_install_check)) {
6433                return -EBUSY;
6434        }
6435
6436        pfm_alt_intr_handler = NULL;
6437
6438        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6439        if (ret) {
6440                DPRINT(("on_each_cpu() failed: %d\n", ret));
6441        }
6442
6443        for_each_online_cpu(i) {
6444                pfm_unreserve_session(NULL, 1, i);
6445        }
6446
6447        spin_unlock(&pfm_alt_install_check);
6448
6449        return 0;
6450}
6451EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6452
6453/*
6454 * perfmon initialization routine, called from the initcall() table
6455 */
6456static int init_pfm_fs(void);
6457
6458static int __init
6459pfm_probe_pmu(void)
6460{
6461        pmu_config_t **p;
6462        int family;
6463
6464        family = local_cpu_data->family;
6465        p      = pmu_confs;
6466
6467        while(*p) {
6468                if ((*p)->probe) {
6469                        if ((*p)->probe() == 0) goto found;
6470                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6471                        goto found;
6472                }
6473                p++;
6474        }
6475        return -1;
6476found:
6477        pmu_conf = *p;
6478        return 0;
6479}
6480
6481int __init
6482pfm_init(void)
6483{
6484        unsigned int n, n_counters, i;
6485
6486        printk("perfmon: version %u.%u IRQ %u\n",
6487                PFM_VERSION_MAJ,
6488                PFM_VERSION_MIN,
6489                IA64_PERFMON_VECTOR);
6490
6491        if (pfm_probe_pmu()) {
6492                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6493                                local_cpu_data->family);
6494                return -ENODEV;
6495        }
6496
6497        /*
6498         * compute the number of implemented PMD/PMC from the
6499         * description tables
6500         */
6501        n = 0;
6502        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6503                if (PMC_IS_IMPL(i) == 0) continue;
6504                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6505                n++;
6506        }
6507        pmu_conf->num_pmcs = n;
6508
6509        n = 0; n_counters = 0;
6510        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6511                if (PMD_IS_IMPL(i) == 0) continue;
6512                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6513                n++;
6514                if (PMD_IS_COUNTING(i)) n_counters++;
6515        }
6516        pmu_conf->num_pmds      = n;
6517        pmu_conf->num_counters  = n_counters;
6518
6519        /*
6520         * sanity checks on the number of debug registers
6521         */
6522        if (pmu_conf->use_rr_dbregs) {
6523                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6524                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6525                        pmu_conf = NULL;
6526                        return -1;
6527                }
6528                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6529                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6530                        pmu_conf = NULL;
6531                        return -1;
6532                }
6533        }
6534
6535        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6536               pmu_conf->pmu_name,
6537               pmu_conf->num_pmcs,
6538               pmu_conf->num_pmds,
6539               pmu_conf->num_counters,
6540               ffz(pmu_conf->ovfl_val));
6541
6542        /* sanity check */
6543        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6544                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6545                pmu_conf = NULL;
6546                return -1;
6547        }
6548
6549        /*
6550         * create /proc/perfmon (mostly for debugging purposes)
6551         */
6552        perfmon_dir = proc_create_seq("perfmon", S_IRUGO, NULL, &pfm_seq_ops);
6553        if (perfmon_dir == NULL) {
6554                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6555                pmu_conf = NULL;
6556                return -1;
6557        }
6558
6559        /*
6560         * create /proc/sys/kernel/perfmon (for debugging purposes)
6561         */
6562        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6563
6564        /*
6565         * initialize all our spinlocks
6566         */
6567        spin_lock_init(&pfm_sessions.pfs_lock);
6568        spin_lock_init(&pfm_buffer_fmt_lock);
6569
6570        init_pfm_fs();
6571
6572        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6573
6574        return 0;
6575}
6576
6577__initcall(pfm_init);
6578
6579/*
6580 * this function is called before pfm_init()
6581 */
6582void
6583pfm_init_percpu (void)
6584{
6585        static int first_time=1;
6586        /*
6587         * make sure no measurement is active
6588         * (may inherit programmed PMCs from EFI).
6589         */
6590        pfm_clear_psr_pp();
6591        pfm_clear_psr_up();
6592
6593        /*
6594         * we run with the PMU not frozen at all times
6595         */
6596        pfm_unfreeze_pmu();
6597
6598        if (first_time) {
6599                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6600                first_time=0;
6601        }
6602
6603        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6604        ia64_srlz_d();
6605}
6606
6607/*
6608 * used for debug purposes only
6609 */
6610void
6611dump_pmu_state(const char *from)
6612{
6613        struct task_struct *task;
6614        struct pt_regs *regs;
6615        pfm_context_t *ctx;
6616        unsigned long psr, dcr, info, flags;
6617        int i, this_cpu;
6618
6619        local_irq_save(flags);
6620
6621        this_cpu = smp_processor_id();
6622        regs     = task_pt_regs(current);
6623        info     = PFM_CPUINFO_GET();
6624        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6625
6626        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6627                local_irq_restore(flags);
6628                return;
6629        }
6630
6631        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6632                this_cpu, 
6633                from, 
6634                task_pid_nr(current),
6635                regs->cr_iip,
6636                current->comm);
6637
6638        task = GET_PMU_OWNER();
6639        ctx  = GET_PMU_CTX();
6640
6641        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6642
6643        psr = pfm_get_psr();
6644
6645        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6646                this_cpu,
6647                ia64_get_pmc(0),
6648                psr & IA64_PSR_PP ? 1 : 0,
6649                psr & IA64_PSR_UP ? 1 : 0,
6650                dcr & IA64_DCR_PP ? 1 : 0,
6651                info,
6652                ia64_psr(regs)->up,
6653                ia64_psr(regs)->pp);
6654
6655        ia64_psr(regs)->up = 0;
6656        ia64_psr(regs)->pp = 0;
6657
6658        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6659                if (PMC_IS_IMPL(i) == 0) continue;
6660                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6661        }
6662
6663        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6664                if (PMD_IS_IMPL(i) == 0) continue;
6665                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6666        }
6667
6668        if (ctx) {
6669                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6670                                this_cpu,
6671                                ctx->ctx_state,
6672                                ctx->ctx_smpl_vaddr,
6673                                ctx->ctx_smpl_hdr,
6674                                ctx->ctx_msgq_head,
6675                                ctx->ctx_msgq_tail,
6676                                ctx->ctx_saved_psr_up);
6677        }
6678        local_irq_restore(flags);
6679}
6680
6681/*
6682 * called from process.c:copy_thread(). task is new child.
6683 */
6684void
6685pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6686{
6687        struct thread_struct *thread;
6688
6689        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6690
6691        thread = &task->thread;
6692
6693        /*
6694         * cut links inherited from parent (current)
6695         */
6696        thread->pfm_context = NULL;
6697
6698        PFM_SET_WORK_PENDING(task, 0);
6699
6700        /*
6701         * the psr bits are already set properly in copy_threads()
6702         */
6703}
6704#else  /* !CONFIG_PERFMON */
6705asmlinkage long
6706sys_perfmonctl (int fd, int cmd, void *arg, int count)
6707{
6708        return -ENOSYS;
6709}
6710#endif /* CONFIG_PERFMON */
6711