linux/arch/parisc/kernel/module.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*    Kernel dynamically loadable module help for PARISC.
   3 *
   4 *    The best reference for this stuff is probably the Processor-
   5 *    Specific ELF Supplement for PA-RISC:
   6 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
   7 *
   8 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
   9 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  10 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
  11 *
  12 *    Notes:
  13 *    - PLT stub handling
  14 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
  15 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
  16 *      fail to reach their PLT stub if we only create one big stub array for
  17 *      all sections at the beginning of the core or init section.
  18 *      Instead we now insert individual PLT stub entries directly in front of
  19 *      of the code sections where the stubs are actually called.
  20 *      This reduces the distance between the PCREL location and the stub entry
  21 *      so that the relocations can be fulfilled.
  22 *      While calculating the final layout of the kernel module in memory, the
  23 *      kernel module loader calls arch_mod_section_prepend() to request the
  24 *      to be reserved amount of memory in front of each individual section.
  25 *
  26 *    - SEGREL32 handling
  27 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
  28 *      should do a value offset, like this:
  29 *                      if (in_init(me, (void *)val))
  30 *                              val -= (uint32_t)me->init_layout.base;
  31 *                      else
  32 *                              val -= (uint32_t)me->core_layout.base;
  33 *      However, SEGREL32 is used only for PARISC unwind entries, and we want
  34 *      those entries to have an absolute address, and not just an offset.
  35 *
  36 *      The unwind table mechanism has the ability to specify an offset for 
  37 *      the unwind table; however, because we split off the init functions into
  38 *      a different piece of memory, it is not possible to do this using a 
  39 *      single offset. Instead, we use the above hack for now.
  40 */
  41
  42#include <linux/moduleloader.h>
  43#include <linux/elf.h>
  44#include <linux/vmalloc.h>
  45#include <linux/fs.h>
  46#include <linux/string.h>
  47#include <linux/kernel.h>
  48#include <linux/bug.h>
  49#include <linux/mm.h>
  50#include <linux/slab.h>
  51
  52#include <asm/pgtable.h>
  53#include <asm/unwind.h>
  54#include <asm/sections.h>
  55
  56#if 0
  57#define DEBUGP printk
  58#else
  59#define DEBUGP(fmt...)
  60#endif
  61
  62#define RELOC_REACHABLE(val, bits) \
  63        (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||   \
  64             ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
  65        0 : 1)
  66
  67#define CHECK_RELOC(val, bits) \
  68        if (!RELOC_REACHABLE(val, bits)) { \
  69                printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
  70                me->name, strtab + sym->st_name, (unsigned long)val, bits); \
  71                return -ENOEXEC;                        \
  72        }
  73
  74/* Maximum number of GOT entries. We use a long displacement ldd from
  75 * the bottom of the table, which has a maximum signed displacement of
  76 * 0x3fff; however, since we're only going forward, this becomes
  77 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
  78 * at most 1023 entries.
  79 * To overcome this 14bit displacement with some kernel modules, we'll
  80 * use instead the unusal 16bit displacement method (see reassemble_16a)
  81 * which gives us a maximum positive displacement of 0x7fff, and as such
  82 * allows us to allocate up to 4095 GOT entries. */
  83#define MAX_GOTS        4095
  84
  85/* three functions to determine where in the module core
  86 * or init pieces the location is */
  87static inline int in_init(struct module *me, void *loc)
  88{
  89        return (loc >= me->init_layout.base &&
  90                loc <= (me->init_layout.base + me->init_layout.size));
  91}
  92
  93static inline int in_core(struct module *me, void *loc)
  94{
  95        return (loc >= me->core_layout.base &&
  96                loc <= (me->core_layout.base + me->core_layout.size));
  97}
  98
  99static inline int in_local(struct module *me, void *loc)
 100{
 101        return in_init(me, loc) || in_core(me, loc);
 102}
 103
 104#ifndef CONFIG_64BIT
 105struct got_entry {
 106        Elf32_Addr addr;
 107};
 108
 109struct stub_entry {
 110        Elf32_Word insns[2]; /* each stub entry has two insns */
 111};
 112#else
 113struct got_entry {
 114        Elf64_Addr addr;
 115};
 116
 117struct stub_entry {
 118        Elf64_Word insns[4]; /* each stub entry has four insns */
 119};
 120#endif
 121
 122/* Field selection types defined by hppa */
 123#define rnd(x)                  (((x)+0x1000)&~0x1fff)
 124/* fsel: full 32 bits */
 125#define fsel(v,a)               ((v)+(a))
 126/* lsel: select left 21 bits */
 127#define lsel(v,a)               (((v)+(a))>>11)
 128/* rsel: select right 11 bits */
 129#define rsel(v,a)               (((v)+(a))&0x7ff)
 130/* lrsel with rounding of addend to nearest 8k */
 131#define lrsel(v,a)              (((v)+rnd(a))>>11)
 132/* rrsel with rounding of addend to nearest 8k */
 133#define rrsel(v,a)              ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
 134
 135#define mask(x,sz)              ((x) & ~((1<<(sz))-1))
 136
 137
 138/* The reassemble_* functions prepare an immediate value for
 139   insertion into an opcode. pa-risc uses all sorts of weird bitfields
 140   in the instruction to hold the value.  */
 141static inline int sign_unext(int x, int len)
 142{
 143        int len_ones;
 144
 145        len_ones = (1 << len) - 1;
 146        return x & len_ones;
 147}
 148
 149static inline int low_sign_unext(int x, int len)
 150{
 151        int sign, temp;
 152
 153        sign = (x >> (len-1)) & 1;
 154        temp = sign_unext(x, len-1);
 155        return (temp << 1) | sign;
 156}
 157
 158static inline int reassemble_14(int as14)
 159{
 160        return (((as14 & 0x1fff) << 1) |
 161                ((as14 & 0x2000) >> 13));
 162}
 163
 164static inline int reassemble_16a(int as16)
 165{
 166        int s, t;
 167
 168        /* Unusual 16-bit encoding, for wide mode only.  */
 169        t = (as16 << 1) & 0xffff;
 170        s = (as16 & 0x8000);
 171        return (t ^ s ^ (s >> 1)) | (s >> 15);
 172}
 173
 174
 175static inline int reassemble_17(int as17)
 176{
 177        return (((as17 & 0x10000) >> 16) |
 178                ((as17 & 0x0f800) << 5) |
 179                ((as17 & 0x00400) >> 8) |
 180                ((as17 & 0x003ff) << 3));
 181}
 182
 183static inline int reassemble_21(int as21)
 184{
 185        return (((as21 & 0x100000) >> 20) |
 186                ((as21 & 0x0ffe00) >> 8) |
 187                ((as21 & 0x000180) << 7) |
 188                ((as21 & 0x00007c) << 14) |
 189                ((as21 & 0x000003) << 12));
 190}
 191
 192static inline int reassemble_22(int as22)
 193{
 194        return (((as22 & 0x200000) >> 21) |
 195                ((as22 & 0x1f0000) << 5) |
 196                ((as22 & 0x00f800) << 5) |
 197                ((as22 & 0x000400) >> 8) |
 198                ((as22 & 0x0003ff) << 3));
 199}
 200
 201void *module_alloc(unsigned long size)
 202{
 203        /* using RWX means less protection for modules, but it's
 204         * easier than trying to map the text, data, init_text and
 205         * init_data correctly */
 206        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
 207                                    GFP_KERNEL,
 208                                    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
 209                                    __builtin_return_address(0));
 210}
 211
 212#ifndef CONFIG_64BIT
 213static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
 214{
 215        return 0;
 216}
 217
 218static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
 219{
 220        return 0;
 221}
 222
 223static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
 224{
 225        unsigned long cnt = 0;
 226
 227        for (; n > 0; n--, rela++)
 228        {
 229                switch (ELF32_R_TYPE(rela->r_info)) {
 230                        case R_PARISC_PCREL17F:
 231                        case R_PARISC_PCREL22F:
 232                                cnt++;
 233                }
 234        }
 235
 236        return cnt;
 237}
 238#else
 239static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
 240{
 241        unsigned long cnt = 0;
 242
 243        for (; n > 0; n--, rela++)
 244        {
 245                switch (ELF64_R_TYPE(rela->r_info)) {
 246                        case R_PARISC_LTOFF21L:
 247                        case R_PARISC_LTOFF14R:
 248                        case R_PARISC_PCREL22F:
 249                                cnt++;
 250                }
 251        }
 252
 253        return cnt;
 254}
 255
 256static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
 257{
 258        unsigned long cnt = 0;
 259
 260        for (; n > 0; n--, rela++)
 261        {
 262                switch (ELF64_R_TYPE(rela->r_info)) {
 263                        case R_PARISC_FPTR64:
 264                                cnt++;
 265                }
 266        }
 267
 268        return cnt;
 269}
 270
 271static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
 272{
 273        unsigned long cnt = 0;
 274
 275        for (; n > 0; n--, rela++)
 276        {
 277                switch (ELF64_R_TYPE(rela->r_info)) {
 278                        case R_PARISC_PCREL22F:
 279                                cnt++;
 280                }
 281        }
 282
 283        return cnt;
 284}
 285#endif
 286
 287void module_arch_freeing_init(struct module *mod)
 288{
 289        kfree(mod->arch.section);
 290        mod->arch.section = NULL;
 291}
 292
 293/* Additional bytes needed in front of individual sections */
 294unsigned int arch_mod_section_prepend(struct module *mod,
 295                                      unsigned int section)
 296{
 297        /* size needed for all stubs of this section (including
 298         * one additional for correct alignment of the stubs) */
 299        return (mod->arch.section[section].stub_entries + 1)
 300                * sizeof(struct stub_entry);
 301}
 302
 303#define CONST 
 304int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
 305                              CONST Elf_Shdr *sechdrs,
 306                              CONST char *secstrings,
 307                              struct module *me)
 308{
 309        unsigned long gots = 0, fdescs = 0, len;
 310        unsigned int i;
 311
 312        len = hdr->e_shnum * sizeof(me->arch.section[0]);
 313        me->arch.section = kzalloc(len, GFP_KERNEL);
 314        if (!me->arch.section)
 315                return -ENOMEM;
 316
 317        for (i = 1; i < hdr->e_shnum; i++) {
 318                const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
 319                unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
 320                unsigned int count, s;
 321
 322                if (strncmp(secstrings + sechdrs[i].sh_name,
 323                            ".PARISC.unwind", 14) == 0)
 324                        me->arch.unwind_section = i;
 325
 326                if (sechdrs[i].sh_type != SHT_RELA)
 327                        continue;
 328
 329                /* some of these are not relevant for 32-bit/64-bit
 330                 * we leave them here to make the code common. the
 331                 * compiler will do its thing and optimize out the
 332                 * stuff we don't need
 333                 */
 334                gots += count_gots(rels, nrels);
 335                fdescs += count_fdescs(rels, nrels);
 336
 337                /* XXX: By sorting the relocs and finding duplicate entries
 338                 *  we could reduce the number of necessary stubs and save
 339                 *  some memory. */
 340                count = count_stubs(rels, nrels);
 341                if (!count)
 342                        continue;
 343
 344                /* so we need relocation stubs. reserve necessary memory. */
 345                /* sh_info gives the section for which we need to add stubs. */
 346                s = sechdrs[i].sh_info;
 347
 348                /* each code section should only have one relocation section */
 349                WARN_ON(me->arch.section[s].stub_entries);
 350
 351                /* store number of stubs we need for this section */
 352                me->arch.section[s].stub_entries += count;
 353        }
 354
 355        /* align things a bit */
 356        me->core_layout.size = ALIGN(me->core_layout.size, 16);
 357        me->arch.got_offset = me->core_layout.size;
 358        me->core_layout.size += gots * sizeof(struct got_entry);
 359
 360        me->core_layout.size = ALIGN(me->core_layout.size, 16);
 361        me->arch.fdesc_offset = me->core_layout.size;
 362        me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
 363
 364        me->arch.got_max = gots;
 365        me->arch.fdesc_max = fdescs;
 366
 367        return 0;
 368}
 369
 370#ifdef CONFIG_64BIT
 371static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
 372{
 373        unsigned int i;
 374        struct got_entry *got;
 375
 376        value += addend;
 377
 378        BUG_ON(value == 0);
 379
 380        got = me->core_layout.base + me->arch.got_offset;
 381        for (i = 0; got[i].addr; i++)
 382                if (got[i].addr == value)
 383                        goto out;
 384
 385        BUG_ON(++me->arch.got_count > me->arch.got_max);
 386
 387        got[i].addr = value;
 388 out:
 389        DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
 390               value);
 391        return i * sizeof(struct got_entry);
 392}
 393#endif /* CONFIG_64BIT */
 394
 395#ifdef CONFIG_64BIT
 396static Elf_Addr get_fdesc(struct module *me, unsigned long value)
 397{
 398        Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
 399
 400        if (!value) {
 401                printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
 402                return 0;
 403        }
 404
 405        /* Look for existing fdesc entry. */
 406        while (fdesc->addr) {
 407                if (fdesc->addr == value)
 408                        return (Elf_Addr)fdesc;
 409                fdesc++;
 410        }
 411
 412        BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
 413
 414        /* Create new one */
 415        fdesc->addr = value;
 416        fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
 417        return (Elf_Addr)fdesc;
 418}
 419#endif /* CONFIG_64BIT */
 420
 421enum elf_stub_type {
 422        ELF_STUB_GOT,
 423        ELF_STUB_MILLI,
 424        ELF_STUB_DIRECT,
 425};
 426
 427static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
 428        enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
 429{
 430        struct stub_entry *stub;
 431        int __maybe_unused d;
 432
 433        /* initialize stub_offset to point in front of the section */
 434        if (!me->arch.section[targetsec].stub_offset) {
 435                loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
 436                                sizeof(struct stub_entry);
 437                /* get correct alignment for the stubs */
 438                loc0 = ALIGN(loc0, sizeof(struct stub_entry));
 439                me->arch.section[targetsec].stub_offset = loc0;
 440        }
 441
 442        /* get address of stub entry */
 443        stub = (void *) me->arch.section[targetsec].stub_offset;
 444        me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
 445
 446        /* do not write outside available stub area */
 447        BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
 448
 449
 450#ifndef CONFIG_64BIT
 451/* for 32-bit the stub looks like this:
 452 *      ldil L'XXX,%r1
 453 *      be,n R'XXX(%sr4,%r1)
 454 */
 455        //value = *(unsigned long *)((value + addend) & ~3); /* why? */
 456
 457        stub->insns[0] = 0x20200000;    /* ldil L'XXX,%r1       */
 458        stub->insns[1] = 0xe0202002;    /* be,n R'XXX(%sr4,%r1) */
 459
 460        stub->insns[0] |= reassemble_21(lrsel(value, addend));
 461        stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
 462
 463#else
 464/* for 64-bit we have three kinds of stubs:
 465 * for normal function calls:
 466 *      ldd 0(%dp),%dp
 467 *      ldd 10(%dp), %r1
 468 *      bve (%r1)
 469 *      ldd 18(%dp), %dp
 470 *
 471 * for millicode:
 472 *      ldil 0, %r1
 473 *      ldo 0(%r1), %r1
 474 *      ldd 10(%r1), %r1
 475 *      bve,n (%r1)
 476 *
 477 * for direct branches (jumps between different section of the
 478 * same module):
 479 *      ldil 0, %r1
 480 *      ldo 0(%r1), %r1
 481 *      bve,n (%r1)
 482 */
 483        switch (stub_type) {
 484        case ELF_STUB_GOT:
 485                d = get_got(me, value, addend);
 486                if (d <= 15) {
 487                        /* Format 5 */
 488                        stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp  */
 489                        stub->insns[0] |= low_sign_unext(d, 5) << 16;
 490                } else {
 491                        /* Format 3 */
 492                        stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp  */
 493                        stub->insns[0] |= reassemble_16a(d);
 494                }
 495                stub->insns[1] = 0x53610020;    /* ldd 10(%dp),%r1      */
 496                stub->insns[2] = 0xe820d000;    /* bve (%r1)            */
 497                stub->insns[3] = 0x537b0030;    /* ldd 18(%dp),%dp      */
 498                break;
 499        case ELF_STUB_MILLI:
 500                stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
 501                stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
 502                stub->insns[2] = 0x50210020;    /* ldd 10(%r1),%r1      */
 503                stub->insns[3] = 0xe820d002;    /* bve,n (%r1)          */
 504
 505                stub->insns[0] |= reassemble_21(lrsel(value, addend));
 506                stub->insns[1] |= reassemble_14(rrsel(value, addend));
 507                break;
 508        case ELF_STUB_DIRECT:
 509                stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
 510                stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
 511                stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
 512
 513                stub->insns[0] |= reassemble_21(lrsel(value, addend));
 514                stub->insns[1] |= reassemble_14(rrsel(value, addend));
 515                break;
 516        }
 517
 518#endif
 519
 520        return (Elf_Addr)stub;
 521}
 522
 523#ifndef CONFIG_64BIT
 524int apply_relocate_add(Elf_Shdr *sechdrs,
 525                       const char *strtab,
 526                       unsigned int symindex,
 527                       unsigned int relsec,
 528                       struct module *me)
 529{
 530        int i;
 531        Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
 532        Elf32_Sym *sym;
 533        Elf32_Word *loc;
 534        Elf32_Addr val;
 535        Elf32_Sword addend;
 536        Elf32_Addr dot;
 537        Elf_Addr loc0;
 538        unsigned int targetsec = sechdrs[relsec].sh_info;
 539        //unsigned long dp = (unsigned long)$global$;
 540        register unsigned long dp asm ("r27");
 541
 542        DEBUGP("Applying relocate section %u to %u\n", relsec,
 543               targetsec);
 544        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 545                /* This is where to make the change */
 546                loc = (void *)sechdrs[targetsec].sh_addr
 547                      + rel[i].r_offset;
 548                /* This is the start of the target section */
 549                loc0 = sechdrs[targetsec].sh_addr;
 550                /* This is the symbol it is referring to */
 551                sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
 552                        + ELF32_R_SYM(rel[i].r_info);
 553                if (!sym->st_value) {
 554                        printk(KERN_WARNING "%s: Unknown symbol %s\n",
 555                               me->name, strtab + sym->st_name);
 556                        return -ENOENT;
 557                }
 558                //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
 559                dot =  (Elf32_Addr)loc & ~0x03;
 560
 561                val = sym->st_value;
 562                addend = rel[i].r_addend;
 563
 564#if 0
 565#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
 566                DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
 567                        strtab + sym->st_name,
 568                        (uint32_t)loc, val, addend,
 569                        r(R_PARISC_PLABEL32)
 570                        r(R_PARISC_DIR32)
 571                        r(R_PARISC_DIR21L)
 572                        r(R_PARISC_DIR14R)
 573                        r(R_PARISC_SEGREL32)
 574                        r(R_PARISC_DPREL21L)
 575                        r(R_PARISC_DPREL14R)
 576                        r(R_PARISC_PCREL17F)
 577                        r(R_PARISC_PCREL22F)
 578                        "UNKNOWN");
 579#undef r
 580#endif
 581
 582                switch (ELF32_R_TYPE(rel[i].r_info)) {
 583                case R_PARISC_PLABEL32:
 584                        /* 32-bit function address */
 585                        /* no function descriptors... */
 586                        *loc = fsel(val, addend);
 587                        break;
 588                case R_PARISC_DIR32:
 589                        /* direct 32-bit ref */
 590                        *loc = fsel(val, addend);
 591                        break;
 592                case R_PARISC_DIR21L:
 593                        /* left 21 bits of effective address */
 594                        val = lrsel(val, addend);
 595                        *loc = mask(*loc, 21) | reassemble_21(val);
 596                        break;
 597                case R_PARISC_DIR14R:
 598                        /* right 14 bits of effective address */
 599                        val = rrsel(val, addend);
 600                        *loc = mask(*loc, 14) | reassemble_14(val);
 601                        break;
 602                case R_PARISC_SEGREL32:
 603                        /* 32-bit segment relative address */
 604                        /* See note about special handling of SEGREL32 at
 605                         * the beginning of this file.
 606                         */
 607                        *loc = fsel(val, addend); 
 608                        break;
 609                case R_PARISC_SECREL32:
 610                        /* 32-bit section relative address. */
 611                        *loc = fsel(val, addend);
 612                        break;
 613                case R_PARISC_DPREL21L:
 614                        /* left 21 bit of relative address */
 615                        val = lrsel(val - dp, addend);
 616                        *loc = mask(*loc, 21) | reassemble_21(val);
 617                        break;
 618                case R_PARISC_DPREL14R:
 619                        /* right 14 bit of relative address */
 620                        val = rrsel(val - dp, addend);
 621                        *loc = mask(*loc, 14) | reassemble_14(val);
 622                        break;
 623                case R_PARISC_PCREL17F:
 624                        /* 17-bit PC relative address */
 625                        /* calculate direct call offset */
 626                        val += addend;
 627                        val = (val - dot - 8)/4;
 628                        if (!RELOC_REACHABLE(val, 17)) {
 629                                /* direct distance too far, create
 630                                 * stub entry instead */
 631                                val = get_stub(me, sym->st_value, addend,
 632                                        ELF_STUB_DIRECT, loc0, targetsec);
 633                                val = (val - dot - 8)/4;
 634                                CHECK_RELOC(val, 17);
 635                        }
 636                        *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
 637                        break;
 638                case R_PARISC_PCREL22F:
 639                        /* 22-bit PC relative address; only defined for pa20 */
 640                        /* calculate direct call offset */
 641                        val += addend;
 642                        val = (val - dot - 8)/4;
 643                        if (!RELOC_REACHABLE(val, 22)) {
 644                                /* direct distance too far, create
 645                                 * stub entry instead */
 646                                val = get_stub(me, sym->st_value, addend,
 647                                        ELF_STUB_DIRECT, loc0, targetsec);
 648                                val = (val - dot - 8)/4;
 649                                CHECK_RELOC(val, 22);
 650                        }
 651                        *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
 652                        break;
 653                case R_PARISC_PCREL32:
 654                        /* 32-bit PC relative address */
 655                        *loc = val - dot - 8 + addend;
 656                        break;
 657
 658                default:
 659                        printk(KERN_ERR "module %s: Unknown relocation: %u\n",
 660                               me->name, ELF32_R_TYPE(rel[i].r_info));
 661                        return -ENOEXEC;
 662                }
 663        }
 664
 665        return 0;
 666}
 667
 668#else
 669int apply_relocate_add(Elf_Shdr *sechdrs,
 670                       const char *strtab,
 671                       unsigned int symindex,
 672                       unsigned int relsec,
 673                       struct module *me)
 674{
 675        int i;
 676        Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
 677        Elf64_Sym *sym;
 678        Elf64_Word *loc;
 679        Elf64_Xword *loc64;
 680        Elf64_Addr val;
 681        Elf64_Sxword addend;
 682        Elf64_Addr dot;
 683        Elf_Addr loc0;
 684        unsigned int targetsec = sechdrs[relsec].sh_info;
 685
 686        DEBUGP("Applying relocate section %u to %u\n", relsec,
 687               targetsec);
 688        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 689                /* This is where to make the change */
 690                loc = (void *)sechdrs[targetsec].sh_addr
 691                      + rel[i].r_offset;
 692                /* This is the start of the target section */
 693                loc0 = sechdrs[targetsec].sh_addr;
 694                /* This is the symbol it is referring to */
 695                sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
 696                        + ELF64_R_SYM(rel[i].r_info);
 697                if (!sym->st_value) {
 698                        printk(KERN_WARNING "%s: Unknown symbol %s\n",
 699                               me->name, strtab + sym->st_name);
 700                        return -ENOENT;
 701                }
 702                //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
 703                dot = (Elf64_Addr)loc & ~0x03;
 704                loc64 = (Elf64_Xword *)loc;
 705
 706                val = sym->st_value;
 707                addend = rel[i].r_addend;
 708
 709#if 0
 710#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
 711                printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
 712                        strtab + sym->st_name,
 713                        loc, val, addend,
 714                        r(R_PARISC_LTOFF14R)
 715                        r(R_PARISC_LTOFF21L)
 716                        r(R_PARISC_PCREL22F)
 717                        r(R_PARISC_DIR64)
 718                        r(R_PARISC_SEGREL32)
 719                        r(R_PARISC_FPTR64)
 720                        "UNKNOWN");
 721#undef r
 722#endif
 723
 724                switch (ELF64_R_TYPE(rel[i].r_info)) {
 725                case R_PARISC_LTOFF21L:
 726                        /* LT-relative; left 21 bits */
 727                        val = get_got(me, val, addend);
 728                        DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
 729                               strtab + sym->st_name,
 730                               loc, val);
 731                        val = lrsel(val, 0);
 732                        *loc = mask(*loc, 21) | reassemble_21(val);
 733                        break;
 734                case R_PARISC_LTOFF14R:
 735                        /* L(ltoff(val+addend)) */
 736                        /* LT-relative; right 14 bits */
 737                        val = get_got(me, val, addend);
 738                        val = rrsel(val, 0);
 739                        DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
 740                               strtab + sym->st_name,
 741                               loc, val);
 742                        *loc = mask(*loc, 14) | reassemble_14(val);
 743                        break;
 744                case R_PARISC_PCREL22F:
 745                        /* PC-relative; 22 bits */
 746                        DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
 747                               strtab + sym->st_name,
 748                               loc, val);
 749                        val += addend;
 750                        /* can we reach it locally? */
 751                        if (in_local(me, (void *)val)) {
 752                                /* this is the case where the symbol is local
 753                                 * to the module, but in a different section,
 754                                 * so stub the jump in case it's more than 22
 755                                 * bits away */
 756                                val = (val - dot - 8)/4;
 757                                if (!RELOC_REACHABLE(val, 22)) {
 758                                        /* direct distance too far, create
 759                                         * stub entry instead */
 760                                        val = get_stub(me, sym->st_value,
 761                                                addend, ELF_STUB_DIRECT,
 762                                                loc0, targetsec);
 763                                } else {
 764                                        /* Ok, we can reach it directly. */
 765                                        val = sym->st_value;
 766                                        val += addend;
 767                                }
 768                        } else {
 769                                val = sym->st_value;
 770                                if (strncmp(strtab + sym->st_name, "$$", 2)
 771                                    == 0)
 772                                        val = get_stub(me, val, addend, ELF_STUB_MILLI,
 773                                                       loc0, targetsec);
 774                                else
 775                                        val = get_stub(me, val, addend, ELF_STUB_GOT,
 776                                                       loc0, targetsec);
 777                        }
 778                        DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
 779                               strtab + sym->st_name, loc, sym->st_value,
 780                               addend, val);
 781                        val = (val - dot - 8)/4;
 782                        CHECK_RELOC(val, 22);
 783                        *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
 784                        break;
 785                case R_PARISC_PCREL32:
 786                        /* 32-bit PC relative address */
 787                        *loc = val - dot - 8 + addend;
 788                        break;
 789                case R_PARISC_PCREL64:
 790                        /* 64-bit PC relative address */
 791                        *loc64 = val - dot - 8 + addend;
 792                        break;
 793                case R_PARISC_DIR64:
 794                        /* 64-bit effective address */
 795                        *loc64 = val + addend;
 796                        break;
 797                case R_PARISC_SEGREL32:
 798                        /* 32-bit segment relative address */
 799                        /* See note about special handling of SEGREL32 at
 800                         * the beginning of this file.
 801                         */
 802                        *loc = fsel(val, addend); 
 803                        break;
 804                case R_PARISC_SECREL32:
 805                        /* 32-bit section relative address. */
 806                        *loc = fsel(val, addend);
 807                        break;
 808                case R_PARISC_FPTR64:
 809                        /* 64-bit function address */
 810                        if(in_local(me, (void *)(val + addend))) {
 811                                *loc64 = get_fdesc(me, val+addend);
 812                                DEBUGP("FDESC for %s at %p points to %lx\n",
 813                                       strtab + sym->st_name, *loc64,
 814                                       ((Elf_Fdesc *)*loc64)->addr);
 815                        } else {
 816                                /* if the symbol is not local to this
 817                                 * module then val+addend is a pointer
 818                                 * to the function descriptor */
 819                                DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
 820                                       strtab + sym->st_name,
 821                                       loc, val);
 822                                *loc64 = val + addend;
 823                        }
 824                        break;
 825
 826                default:
 827                        printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
 828                               me->name, ELF64_R_TYPE(rel[i].r_info));
 829                        return -ENOEXEC;
 830                }
 831        }
 832        return 0;
 833}
 834#endif
 835
 836static void
 837register_unwind_table(struct module *me,
 838                      const Elf_Shdr *sechdrs)
 839{
 840        unsigned char *table, *end;
 841        unsigned long gp;
 842
 843        if (!me->arch.unwind_section)
 844                return;
 845
 846        table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
 847        end = table + sechdrs[me->arch.unwind_section].sh_size;
 848        gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
 849
 850        DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
 851               me->arch.unwind_section, table, end, gp);
 852        me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
 853}
 854
 855static void
 856deregister_unwind_table(struct module *me)
 857{
 858        if (me->arch.unwind)
 859                unwind_table_remove(me->arch.unwind);
 860}
 861
 862int module_finalize(const Elf_Ehdr *hdr,
 863                    const Elf_Shdr *sechdrs,
 864                    struct module *me)
 865{
 866        int i;
 867        unsigned long nsyms;
 868        const char *strtab = NULL;
 869        const Elf_Shdr *s;
 870        char *secstrings;
 871        Elf_Sym *newptr, *oldptr;
 872        Elf_Shdr *symhdr = NULL;
 873#ifdef DEBUG
 874        Elf_Fdesc *entry;
 875        u32 *addr;
 876
 877        entry = (Elf_Fdesc *)me->init;
 878        printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
 879               entry->gp, entry->addr);
 880        addr = (u32 *)entry->addr;
 881        printk("INSNS: %x %x %x %x\n",
 882               addr[0], addr[1], addr[2], addr[3]);
 883        printk("got entries used %ld, gots max %ld\n"
 884               "fdescs used %ld, fdescs max %ld\n",
 885               me->arch.got_count, me->arch.got_max,
 886               me->arch.fdesc_count, me->arch.fdesc_max);
 887#endif
 888
 889        register_unwind_table(me, sechdrs);
 890
 891        /* haven't filled in me->symtab yet, so have to find it
 892         * ourselves */
 893        for (i = 1; i < hdr->e_shnum; i++) {
 894                if(sechdrs[i].sh_type == SHT_SYMTAB
 895                   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
 896                        int strindex = sechdrs[i].sh_link;
 897                        /* FIXME: AWFUL HACK
 898                         * The cast is to drop the const from
 899                         * the sechdrs pointer */
 900                        symhdr = (Elf_Shdr *)&sechdrs[i];
 901                        strtab = (char *)sechdrs[strindex].sh_addr;
 902                        break;
 903                }
 904        }
 905
 906        DEBUGP("module %s: strtab %p, symhdr %p\n",
 907               me->name, strtab, symhdr);
 908
 909        if(me->arch.got_count > MAX_GOTS) {
 910                printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
 911                                me->name, me->arch.got_count, MAX_GOTS);
 912                return -EINVAL;
 913        }
 914
 915        kfree(me->arch.section);
 916        me->arch.section = NULL;
 917
 918        /* no symbol table */
 919        if(symhdr == NULL)
 920                return 0;
 921
 922        oldptr = (void *)symhdr->sh_addr;
 923        newptr = oldptr + 1;    /* we start counting at 1 */
 924        nsyms = symhdr->sh_size / sizeof(Elf_Sym);
 925        DEBUGP("OLD num_symtab %lu\n", nsyms);
 926
 927        for (i = 1; i < nsyms; i++) {
 928                oldptr++;       /* note, count starts at 1 so preincrement */
 929                if(strncmp(strtab + oldptr->st_name,
 930                              ".L", 2) == 0)
 931                        continue;
 932
 933                if(newptr != oldptr)
 934                        *newptr++ = *oldptr;
 935                else
 936                        newptr++;
 937
 938        }
 939        nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
 940        DEBUGP("NEW num_symtab %lu\n", nsyms);
 941        symhdr->sh_size = nsyms * sizeof(Elf_Sym);
 942
 943        /* find .altinstructions section */
 944        secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
 945        for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
 946                void *aseg = (void *) s->sh_addr;
 947                char *secname = secstrings + s->sh_name;
 948
 949                if (!strcmp(".altinstructions", secname))
 950                        /* patch .altinstructions */
 951                        apply_alternatives(aseg, aseg + s->sh_size, me->name);
 952        }
 953
 954        return 0;
 955}
 956
 957void module_arch_cleanup(struct module *mod)
 958{
 959        deregister_unwind_table(mod);
 960}
 961
 962#ifdef CONFIG_64BIT
 963void *dereference_module_function_descriptor(struct module *mod, void *ptr)
 964{
 965        unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
 966                                   mod->arch.fdesc_offset;
 967        unsigned long end_opd = start_opd +
 968                                mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
 969
 970        if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
 971                return ptr;
 972
 973        return dereference_function_descriptor(ptr);
 974}
 975#endif
 976