linux/arch/powerpc/include/asm/book3s/64/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   4
   5#include <asm-generic/5level-fixup.h>
   6
   7#ifndef __ASSEMBLY__
   8#include <linux/mmdebug.h>
   9#include <linux/bug.h>
  10#endif
  11
  12/*
  13 * Common bits between hash and Radix page table
  14 */
  15#define _PAGE_BIT_SWAP_TYPE     0
  16
  17#define _PAGE_EXEC              0x00001 /* execute permission */
  18#define _PAGE_WRITE             0x00002 /* write access allowed */
  19#define _PAGE_READ              0x00004 /* read access allowed */
  20#define _PAGE_RW                (_PAGE_READ | _PAGE_WRITE)
  21#define _PAGE_RWX               (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
  22#define _PAGE_PRIVILEGED        0x00008 /* kernel access only */
  23#define _PAGE_SAO               0x00010 /* Strong access order */
  24#define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
  25#define _PAGE_TOLERANT          0x00030 /* tolerant memory, cache inhibited */
  26#define _PAGE_DIRTY             0x00080 /* C: page changed */
  27#define _PAGE_ACCESSED          0x00100 /* R: page referenced */
  28/*
  29 * Software bits
  30 */
  31#define _RPAGE_SW0              0x2000000000000000UL
  32#define _RPAGE_SW1              0x00800
  33#define _RPAGE_SW2              0x00400
  34#define _RPAGE_SW3              0x00200
  35#define _RPAGE_RSV1             0x1000000000000000UL
  36#define _RPAGE_RSV2             0x0800000000000000UL
  37#define _RPAGE_RSV3             0x0400000000000000UL
  38#define _RPAGE_RSV4             0x0200000000000000UL
  39#define _RPAGE_RSV5             0x00040UL
  40
  41#define _PAGE_PTE               0x4000000000000000UL    /* distinguishes PTEs from pointers */
  42#define _PAGE_PRESENT           0x8000000000000000UL    /* pte contains a translation */
  43/*
  44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
  45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
  46 * differentiate between two use a SW field when invalidating.
  47 *
  48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
  49 *
  50 * This is used only when _PAGE_PRESENT is cleared.
  51 */
  52#define _PAGE_INVALID           _RPAGE_SW0
  53
  54/*
  55 * Top and bottom bits of RPN which can be used by hash
  56 * translation mode, because we expect them to be zero
  57 * otherwise.
  58 */
  59#define _RPAGE_RPN0             0x01000
  60#define _RPAGE_RPN1             0x02000
  61#define _RPAGE_RPN44            0x0100000000000000UL
  62#define _RPAGE_RPN43            0x0080000000000000UL
  63#define _RPAGE_RPN42            0x0040000000000000UL
  64#define _RPAGE_RPN41            0x0020000000000000UL
  65
  66/* Max physical address bit as per radix table */
  67#define _RPAGE_PA_MAX           57
  68
  69/*
  70 * Max physical address bit we will use for now.
  71 *
  72 * This is mostly a hardware limitation and for now Power9 has
  73 * a 51 bit limit.
  74 *
  75 * This is different from the number of physical bit required to address
  76 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
  77 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
  78 * number of sections we can support (SECTIONS_SHIFT).
  79 *
  80 * This is different from Radix page table limitation above and
  81 * should always be less than that. The limit is done such that
  82 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
  83 * for hash linux page table specific bits.
  84 *
  85 * In order to be compatible with future hardware generations we keep
  86 * some offsets and limit this for now to 53
  87 */
  88#define _PAGE_PA_MAX            53
  89
  90#define _PAGE_SOFT_DIRTY        _RPAGE_SW3 /* software: software dirty tracking */
  91#define _PAGE_SPECIAL           _RPAGE_SW2 /* software: special page */
  92#define _PAGE_DEVMAP            _RPAGE_SW1 /* software: ZONE_DEVICE page */
  93#define __HAVE_ARCH_PTE_DEVMAP
  94
  95/*
  96 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
  97 * Instead of fixing all of them, add an alternate define which
  98 * maps CI pte mapping.
  99 */
 100#define _PAGE_NO_CACHE          _PAGE_TOLERANT
 101/*
 102 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
 103 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
 104 * and every thing below PAGE_SHIFT;
 105 */
 106#define PTE_RPN_MASK    (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
 107/*
 108 * set of bits not changed in pmd_modify. Even though we have hash specific bits
 109 * in here, on radix we expect them to be zero.
 110 */
 111#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 112                         _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
 113                         _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
 114/*
 115 * user access blocked by key
 116 */
 117#define _PAGE_KERNEL_RW         (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
 118#define _PAGE_KERNEL_RO          (_PAGE_PRIVILEGED | _PAGE_READ)
 119#define _PAGE_KERNEL_RWX        (_PAGE_PRIVILEGED | _PAGE_DIRTY |       \
 120                                 _PAGE_RW | _PAGE_EXEC)
 121/*
 122 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 123 * pgprot changes
 124 */
 125#define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 126                         _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
 127                         _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
 128
 129#define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
 130                     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
 131/*
 132 * We define 2 sets of base prot bits, one for basic pages (ie,
 133 * cacheable kernel and user pages) and one for non cacheable
 134 * pages. We always set _PAGE_COHERENT when SMP is enabled or
 135 * the processor might need it for DMA coherency.
 136 */
 137#define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED)
 138#define _PAGE_BASE      (_PAGE_BASE_NC)
 139
 140/* Permission masks used to generate the __P and __S table,
 141 *
 142 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 143 *
 144 * Write permissions imply read permissions for now (we could make write-only
 145 * pages on BookE but we don't bother for now). Execute permission control is
 146 * possible on platforms that define _PAGE_EXEC
 147 */
 148#define PAGE_NONE       __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
 149#define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW)
 150#define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
 151#define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_READ)
 152#define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 153#define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
 154#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 155
 156/* Permission masks used for kernel mappings */
 157#define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
 158#define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 159                                 _PAGE_TOLERANT)
 160#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 161                                 _PAGE_NON_IDEMPOTENT)
 162#define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
 163#define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
 164#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
 165
 166/*
 167 * Protection used for kernel text. We want the debuggers to be able to
 168 * set breakpoints anywhere, so don't write protect the kernel text
 169 * on platforms where such control is possible.
 170 */
 171#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
 172        defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
 173#define PAGE_KERNEL_TEXT        PAGE_KERNEL_X
 174#else
 175#define PAGE_KERNEL_TEXT        PAGE_KERNEL_ROX
 176#endif
 177
 178/* Make modules code happy. We don't set RO yet */
 179#define PAGE_KERNEL_EXEC        PAGE_KERNEL_X
 180#define PAGE_AGP                (PAGE_KERNEL_NC)
 181
 182#ifndef __ASSEMBLY__
 183/*
 184 * page table defines
 185 */
 186extern unsigned long __pte_index_size;
 187extern unsigned long __pmd_index_size;
 188extern unsigned long __pud_index_size;
 189extern unsigned long __pgd_index_size;
 190extern unsigned long __pud_cache_index;
 191#define PTE_INDEX_SIZE  __pte_index_size
 192#define PMD_INDEX_SIZE  __pmd_index_size
 193#define PUD_INDEX_SIZE  __pud_index_size
 194#define PGD_INDEX_SIZE  __pgd_index_size
 195/* pmd table use page table fragments */
 196#define PMD_CACHE_INDEX  0
 197#define PUD_CACHE_INDEX __pud_cache_index
 198/*
 199 * Because of use of pte fragments and THP, size of page table
 200 * are not always derived out of index size above.
 201 */
 202extern unsigned long __pte_table_size;
 203extern unsigned long __pmd_table_size;
 204extern unsigned long __pud_table_size;
 205extern unsigned long __pgd_table_size;
 206#define PTE_TABLE_SIZE  __pte_table_size
 207#define PMD_TABLE_SIZE  __pmd_table_size
 208#define PUD_TABLE_SIZE  __pud_table_size
 209#define PGD_TABLE_SIZE  __pgd_table_size
 210
 211extern unsigned long __pmd_val_bits;
 212extern unsigned long __pud_val_bits;
 213extern unsigned long __pgd_val_bits;
 214#define PMD_VAL_BITS    __pmd_val_bits
 215#define PUD_VAL_BITS    __pud_val_bits
 216#define PGD_VAL_BITS    __pgd_val_bits
 217
 218extern unsigned long __pte_frag_nr;
 219#define PTE_FRAG_NR __pte_frag_nr
 220extern unsigned long __pte_frag_size_shift;
 221#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
 222#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
 223
 224extern unsigned long __pmd_frag_nr;
 225#define PMD_FRAG_NR __pmd_frag_nr
 226extern unsigned long __pmd_frag_size_shift;
 227#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
 228#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
 229
 230#define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
 231#define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
 232#define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
 233#define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
 234
 235/* PMD_SHIFT determines what a second-level page table entry can map */
 236#define PMD_SHIFT       (PAGE_SHIFT + PTE_INDEX_SIZE)
 237#define PMD_SIZE        (1UL << PMD_SHIFT)
 238#define PMD_MASK        (~(PMD_SIZE-1))
 239
 240/* PUD_SHIFT determines what a third-level page table entry can map */
 241#define PUD_SHIFT       (PMD_SHIFT + PMD_INDEX_SIZE)
 242#define PUD_SIZE        (1UL << PUD_SHIFT)
 243#define PUD_MASK        (~(PUD_SIZE-1))
 244
 245/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
 246#define PGDIR_SHIFT     (PUD_SHIFT + PUD_INDEX_SIZE)
 247#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 248#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 249
 250/* Bits to mask out from a PMD to get to the PTE page */
 251#define PMD_MASKED_BITS         0xc0000000000000ffUL
 252/* Bits to mask out from a PUD to get to the PMD page */
 253#define PUD_MASKED_BITS         0xc0000000000000ffUL
 254/* Bits to mask out from a PGD to get to the PUD page */
 255#define PGD_MASKED_BITS         0xc0000000000000ffUL
 256
 257/*
 258 * Used as an indicator for rcu callback functions
 259 */
 260enum pgtable_index {
 261        PTE_INDEX = 0,
 262        PMD_INDEX,
 263        PUD_INDEX,
 264        PGD_INDEX,
 265        /*
 266         * Below are used with 4k page size and hugetlb
 267         */
 268        HTLB_16M_INDEX,
 269        HTLB_16G_INDEX,
 270};
 271
 272extern unsigned long __vmalloc_start;
 273extern unsigned long __vmalloc_end;
 274#define VMALLOC_START   __vmalloc_start
 275#define VMALLOC_END     __vmalloc_end
 276
 277extern unsigned long __kernel_virt_start;
 278extern unsigned long __kernel_virt_size;
 279extern unsigned long __kernel_io_start;
 280extern unsigned long __kernel_io_end;
 281#define KERN_VIRT_START __kernel_virt_start
 282#define KERN_IO_START  __kernel_io_start
 283#define KERN_IO_END __kernel_io_end
 284
 285extern struct page *vmemmap;
 286extern unsigned long ioremap_bot;
 287extern unsigned long pci_io_base;
 288#endif /* __ASSEMBLY__ */
 289
 290#include <asm/book3s/64/hash.h>
 291#include <asm/book3s/64/radix.h>
 292
 293#ifdef CONFIG_PPC_64K_PAGES
 294#include <asm/book3s/64/pgtable-64k.h>
 295#else
 296#include <asm/book3s/64/pgtable-4k.h>
 297#endif
 298
 299#include <asm/barrier.h>
 300/*
 301 * IO space itself carved into the PIO region (ISA and PHB IO space) and
 302 * the ioremap space
 303 *
 304 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 305 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 306 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 307 */
 308#define FULL_IO_SIZE    0x80000000ul
 309#define  ISA_IO_BASE    (KERN_IO_START)
 310#define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
 311#define  PHB_IO_BASE    (ISA_IO_END)
 312#define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
 313#define IOREMAP_BASE    (PHB_IO_END)
 314#define IOREMAP_END     (KERN_IO_END)
 315
 316/* Advertise special mapping type for AGP */
 317#define HAVE_PAGE_AGP
 318
 319#ifndef __ASSEMBLY__
 320
 321/*
 322 * This is the default implementation of various PTE accessors, it's
 323 * used in all cases except Book3S with 64K pages where we have a
 324 * concept of sub-pages
 325 */
 326#ifndef __real_pte
 327
 328#define __real_pte(e, p, o)             ((real_pte_t){(e)})
 329#define __rpte_to_pte(r)        ((r).pte)
 330#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
 331
 332#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 333        do {                                                             \
 334                index = 0;                                               \
 335                shift = mmu_psize_defs[psize].shift;                     \
 336
 337#define pte_iterate_hashed_end() } while(0)
 338
 339/*
 340 * We expect this to be called only for user addresses or kernel virtual
 341 * addresses other than the linear mapping.
 342 */
 343#define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
 344
 345#endif /* __real_pte */
 346
 347static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
 348                                       pte_t *ptep, unsigned long clr,
 349                                       unsigned long set, int huge)
 350{
 351        if (radix_enabled())
 352                return radix__pte_update(mm, addr, ptep, clr, set, huge);
 353        return hash__pte_update(mm, addr, ptep, clr, set, huge);
 354}
 355/*
 356 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 357 * We currently remove entries from the hashtable regardless of whether
 358 * the entry was young or dirty.
 359 *
 360 * We should be more intelligent about this but for the moment we override
 361 * these functions and force a tlb flush unconditionally
 362 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 363 * function for both hash and radix.
 364 */
 365static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 366                                              unsigned long addr, pte_t *ptep)
 367{
 368        unsigned long old;
 369
 370        if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
 371                return 0;
 372        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 373        return (old & _PAGE_ACCESSED) != 0;
 374}
 375
 376#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 377#define ptep_test_and_clear_young(__vma, __addr, __ptep)        \
 378({                                                              \
 379        int __r;                                                \
 380        __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 381        __r;                                                    \
 382})
 383
 384static inline int __pte_write(pte_t pte)
 385{
 386        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
 387}
 388
 389#ifdef CONFIG_NUMA_BALANCING
 390#define pte_savedwrite pte_savedwrite
 391static inline bool pte_savedwrite(pte_t pte)
 392{
 393        /*
 394         * Saved write ptes are prot none ptes that doesn't have
 395         * privileged bit sit. We mark prot none as one which has
 396         * present and pviliged bit set and RWX cleared. To mark
 397         * protnone which used to have _PAGE_WRITE set we clear
 398         * the privileged bit.
 399         */
 400        return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
 401}
 402#else
 403#define pte_savedwrite pte_savedwrite
 404static inline bool pte_savedwrite(pte_t pte)
 405{
 406        return false;
 407}
 408#endif
 409
 410static inline int pte_write(pte_t pte)
 411{
 412        return __pte_write(pte) || pte_savedwrite(pte);
 413}
 414
 415static inline int pte_read(pte_t pte)
 416{
 417        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
 418}
 419
 420#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 421static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 422                                      pte_t *ptep)
 423{
 424        if (__pte_write(*ptep))
 425                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
 426        else if (unlikely(pte_savedwrite(*ptep)))
 427                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
 428}
 429
 430#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
 431static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 432                                           unsigned long addr, pte_t *ptep)
 433{
 434        /*
 435         * We should not find protnone for hugetlb, but this complete the
 436         * interface.
 437         */
 438        if (__pte_write(*ptep))
 439                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
 440        else if (unlikely(pte_savedwrite(*ptep)))
 441                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
 442}
 443
 444#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 445static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 446                                       unsigned long addr, pte_t *ptep)
 447{
 448        unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 449        return __pte(old);
 450}
 451
 452#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 453static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 454                                            unsigned long addr,
 455                                            pte_t *ptep, int full)
 456{
 457        if (full && radix_enabled()) {
 458                /*
 459                 * We know that this is a full mm pte clear and
 460                 * hence can be sure there is no parallel set_pte.
 461                 */
 462                return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
 463        }
 464        return ptep_get_and_clear(mm, addr, ptep);
 465}
 466
 467
 468static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 469                             pte_t * ptep)
 470{
 471        pte_update(mm, addr, ptep, ~0UL, 0, 0);
 472}
 473
 474static inline int pte_dirty(pte_t pte)
 475{
 476        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
 477}
 478
 479static inline int pte_young(pte_t pte)
 480{
 481        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
 482}
 483
 484static inline int pte_special(pte_t pte)
 485{
 486        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
 487}
 488
 489static inline bool pte_exec(pte_t pte)
 490{
 491        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
 492}
 493
 494
 495#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 496static inline bool pte_soft_dirty(pte_t pte)
 497{
 498        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
 499}
 500
 501static inline pte_t pte_mksoft_dirty(pte_t pte)
 502{
 503        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
 504}
 505
 506static inline pte_t pte_clear_soft_dirty(pte_t pte)
 507{
 508        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
 509}
 510#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 511
 512#ifdef CONFIG_NUMA_BALANCING
 513static inline int pte_protnone(pte_t pte)
 514{
 515        return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
 516                cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
 517}
 518
 519#define pte_mk_savedwrite pte_mk_savedwrite
 520static inline pte_t pte_mk_savedwrite(pte_t pte)
 521{
 522        /*
 523         * Used by Autonuma subsystem to preserve the write bit
 524         * while marking the pte PROT_NONE. Only allow this
 525         * on PROT_NONE pte
 526         */
 527        VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
 528                  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
 529        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
 530}
 531
 532#define pte_clear_savedwrite pte_clear_savedwrite
 533static inline pte_t pte_clear_savedwrite(pte_t pte)
 534{
 535        /*
 536         * Used by KSM subsystem to make a protnone pte readonly.
 537         */
 538        VM_BUG_ON(!pte_protnone(pte));
 539        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
 540}
 541#else
 542#define pte_clear_savedwrite pte_clear_savedwrite
 543static inline pte_t pte_clear_savedwrite(pte_t pte)
 544{
 545        VM_WARN_ON(1);
 546        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
 547}
 548#endif /* CONFIG_NUMA_BALANCING */
 549
 550static inline int pte_present(pte_t pte)
 551{
 552        /*
 553         * A pte is considerent present if _PAGE_PRESENT is set.
 554         * We also need to consider the pte present which is marked
 555         * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
 556         * if we find _PAGE_PRESENT cleared.
 557         */
 558        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
 559}
 560
 561static inline bool pte_hw_valid(pte_t pte)
 562{
 563        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
 564}
 565
 566#ifdef CONFIG_PPC_MEM_KEYS
 567extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
 568#else
 569static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
 570{
 571        return true;
 572}
 573#endif /* CONFIG_PPC_MEM_KEYS */
 574
 575static inline bool pte_user(pte_t pte)
 576{
 577        return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
 578}
 579
 580#define pte_access_permitted pte_access_permitted
 581static inline bool pte_access_permitted(pte_t pte, bool write)
 582{
 583        /*
 584         * _PAGE_READ is needed for any access and will be
 585         * cleared for PROT_NONE
 586         */
 587        if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
 588                return false;
 589
 590        if (write && !pte_write(pte))
 591                return false;
 592
 593        return arch_pte_access_permitted(pte_val(pte), write, 0);
 594}
 595
 596/*
 597 * Conversion functions: convert a page and protection to a page entry,
 598 * and a page entry and page directory to the page they refer to.
 599 *
 600 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 601 * long for now.
 602 */
 603static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 604{
 605        return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
 606                     pgprot_val(pgprot));
 607}
 608
 609static inline unsigned long pte_pfn(pte_t pte)
 610{
 611        return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
 612}
 613
 614/* Generic modifiers for PTE bits */
 615static inline pte_t pte_wrprotect(pte_t pte)
 616{
 617        if (unlikely(pte_savedwrite(pte)))
 618                return pte_clear_savedwrite(pte);
 619        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
 620}
 621
 622static inline pte_t pte_exprotect(pte_t pte)
 623{
 624        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
 625}
 626
 627static inline pte_t pte_mkclean(pte_t pte)
 628{
 629        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
 630}
 631
 632static inline pte_t pte_mkold(pte_t pte)
 633{
 634        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
 635}
 636
 637static inline pte_t pte_mkexec(pte_t pte)
 638{
 639        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
 640}
 641
 642static inline pte_t pte_mkpte(pte_t pte)
 643{
 644        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
 645}
 646
 647static inline pte_t pte_mkwrite(pte_t pte)
 648{
 649        /*
 650         * write implies read, hence set both
 651         */
 652        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
 653}
 654
 655static inline pte_t pte_mkdirty(pte_t pte)
 656{
 657        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
 658}
 659
 660static inline pte_t pte_mkyoung(pte_t pte)
 661{
 662        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
 663}
 664
 665static inline pte_t pte_mkspecial(pte_t pte)
 666{
 667        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
 668}
 669
 670static inline pte_t pte_mkhuge(pte_t pte)
 671{
 672        return pte;
 673}
 674
 675static inline pte_t pte_mkdevmap(pte_t pte)
 676{
 677        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
 678}
 679
 680static inline pte_t pte_mkprivileged(pte_t pte)
 681{
 682        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
 683}
 684
 685static inline pte_t pte_mkuser(pte_t pte)
 686{
 687        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
 688}
 689
 690/*
 691 * This is potentially called with a pmd as the argument, in which case it's not
 692 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
 693 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
 694 * use in page directory entries (ie. non-ptes).
 695 */
 696static inline int pte_devmap(pte_t pte)
 697{
 698        u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
 699
 700        return (pte_raw(pte) & mask) == mask;
 701}
 702
 703static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 704{
 705        /* FIXME!! check whether this need to be a conditional */
 706        return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
 707                         cpu_to_be64(pgprot_val(newprot)));
 708}
 709
 710/* Encode and de-code a swap entry */
 711#define MAX_SWAPFILES_CHECK() do { \
 712        BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
 713        /*                                                      \
 714         * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
 715         * We filter HPTEFLAGS on set_pte.                      \
 716         */                                                     \
 717        BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
 718        BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
 719        } while (0)
 720
 721#define SWP_TYPE_BITS 5
 722#define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
 723                                & ((1UL << SWP_TYPE_BITS) - 1))
 724#define __swp_offset(x)         (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
 725#define __swp_entry(type, offset)       ((swp_entry_t) { \
 726                                ((type) << _PAGE_BIT_SWAP_TYPE) \
 727                                | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
 728/*
 729 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 730 * swap type and offset we get from swap and convert that to pte to find a
 731 * matching pte in linux page table.
 732 * Clear bits not found in swap entries here.
 733 */
 734#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
 735#define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
 736#define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
 737#define __swp_entry_to_pmd(x)   (pte_pmd(__swp_entry_to_pte(x)))
 738
 739#ifdef CONFIG_MEM_SOFT_DIRTY
 740#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
 741#else
 742#define _PAGE_SWP_SOFT_DIRTY    0UL
 743#endif /* CONFIG_MEM_SOFT_DIRTY */
 744
 745#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 746static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 747{
 748        return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 749}
 750
 751static inline bool pte_swp_soft_dirty(pte_t pte)
 752{
 753        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 754}
 755
 756static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 757{
 758        return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
 759}
 760#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 761
 762static inline bool check_pte_access(unsigned long access, unsigned long ptev)
 763{
 764        /*
 765         * This check for _PAGE_RWX and _PAGE_PRESENT bits
 766         */
 767        if (access & ~ptev)
 768                return false;
 769        /*
 770         * This check for access to privilege space
 771         */
 772        if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
 773                return false;
 774
 775        return true;
 776}
 777/*
 778 * Generic functions with hash/radix callbacks
 779 */
 780
 781static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
 782                                           pte_t *ptep, pte_t entry,
 783                                           unsigned long address,
 784                                           int psize)
 785{
 786        if (radix_enabled())
 787                return radix__ptep_set_access_flags(vma, ptep, entry,
 788                                                    address, psize);
 789        return hash__ptep_set_access_flags(ptep, entry);
 790}
 791
 792#define __HAVE_ARCH_PTE_SAME
 793static inline int pte_same(pte_t pte_a, pte_t pte_b)
 794{
 795        if (radix_enabled())
 796                return radix__pte_same(pte_a, pte_b);
 797        return hash__pte_same(pte_a, pte_b);
 798}
 799
 800static inline int pte_none(pte_t pte)
 801{
 802        if (radix_enabled())
 803                return radix__pte_none(pte);
 804        return hash__pte_none(pte);
 805}
 806
 807static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 808                                pte_t *ptep, pte_t pte, int percpu)
 809{
 810        if (radix_enabled())
 811                return radix__set_pte_at(mm, addr, ptep, pte, percpu);
 812        return hash__set_pte_at(mm, addr, ptep, pte, percpu);
 813}
 814
 815#define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
 816
 817#define pgprot_noncached pgprot_noncached
 818static inline pgprot_t pgprot_noncached(pgprot_t prot)
 819{
 820        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 821                        _PAGE_NON_IDEMPOTENT);
 822}
 823
 824#define pgprot_noncached_wc pgprot_noncached_wc
 825static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
 826{
 827        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 828                        _PAGE_TOLERANT);
 829}
 830
 831#define pgprot_cached pgprot_cached
 832static inline pgprot_t pgprot_cached(pgprot_t prot)
 833{
 834        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
 835}
 836
 837#define pgprot_writecombine pgprot_writecombine
 838static inline pgprot_t pgprot_writecombine(pgprot_t prot)
 839{
 840        return pgprot_noncached_wc(prot);
 841}
 842/*
 843 * check a pte mapping have cache inhibited property
 844 */
 845static inline bool pte_ci(pte_t pte)
 846{
 847        __be64 pte_v = pte_raw(pte);
 848
 849        if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
 850            ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
 851                return true;
 852        return false;
 853}
 854
 855static inline void pmd_clear(pmd_t *pmdp)
 856{
 857        *pmdp = __pmd(0);
 858}
 859
 860static inline int pmd_none(pmd_t pmd)
 861{
 862        return !pmd_raw(pmd);
 863}
 864
 865static inline int pmd_present(pmd_t pmd)
 866{
 867        /*
 868         * A pmd is considerent present if _PAGE_PRESENT is set.
 869         * We also need to consider the pmd present which is marked
 870         * invalid during a split. Hence we look for _PAGE_INVALID
 871         * if we find _PAGE_PRESENT cleared.
 872         */
 873        if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
 874                return true;
 875
 876        return false;
 877}
 878
 879static inline int pmd_is_serializing(pmd_t pmd)
 880{
 881        /*
 882         * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
 883         * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
 884         *
 885         * This condition may also occur when flushing a pmd while flushing
 886         * it (see ptep_modify_prot_start), so callers must ensure this
 887         * case is fine as well.
 888         */
 889        if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
 890                                                cpu_to_be64(_PAGE_INVALID))
 891                return true;
 892
 893        return false;
 894}
 895
 896static inline int pmd_bad(pmd_t pmd)
 897{
 898        if (radix_enabled())
 899                return radix__pmd_bad(pmd);
 900        return hash__pmd_bad(pmd);
 901}
 902
 903static inline void pud_clear(pud_t *pudp)
 904{
 905        *pudp = __pud(0);
 906}
 907
 908static inline int pud_none(pud_t pud)
 909{
 910        return !pud_raw(pud);
 911}
 912
 913static inline int pud_present(pud_t pud)
 914{
 915        return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
 916}
 917
 918extern struct page *pud_page(pud_t pud);
 919extern struct page *pmd_page(pmd_t pmd);
 920static inline pte_t pud_pte(pud_t pud)
 921{
 922        return __pte_raw(pud_raw(pud));
 923}
 924
 925static inline pud_t pte_pud(pte_t pte)
 926{
 927        return __pud_raw(pte_raw(pte));
 928}
 929#define pud_write(pud)          pte_write(pud_pte(pud))
 930
 931static inline int pud_bad(pud_t pud)
 932{
 933        if (radix_enabled())
 934                return radix__pud_bad(pud);
 935        return hash__pud_bad(pud);
 936}
 937
 938#define pud_access_permitted pud_access_permitted
 939static inline bool pud_access_permitted(pud_t pud, bool write)
 940{
 941        return pte_access_permitted(pud_pte(pud), write);
 942}
 943
 944#define pgd_write(pgd)          pte_write(pgd_pte(pgd))
 945
 946static inline void pgd_clear(pgd_t *pgdp)
 947{
 948        *pgdp = __pgd(0);
 949}
 950
 951static inline int pgd_none(pgd_t pgd)
 952{
 953        return !pgd_raw(pgd);
 954}
 955
 956static inline int pgd_present(pgd_t pgd)
 957{
 958        return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
 959}
 960
 961static inline pte_t pgd_pte(pgd_t pgd)
 962{
 963        return __pte_raw(pgd_raw(pgd));
 964}
 965
 966static inline pgd_t pte_pgd(pte_t pte)
 967{
 968        return __pgd_raw(pte_raw(pte));
 969}
 970
 971static inline int pgd_bad(pgd_t pgd)
 972{
 973        if (radix_enabled())
 974                return radix__pgd_bad(pgd);
 975        return hash__pgd_bad(pgd);
 976}
 977
 978#define pgd_access_permitted pgd_access_permitted
 979static inline bool pgd_access_permitted(pgd_t pgd, bool write)
 980{
 981        return pte_access_permitted(pgd_pte(pgd), write);
 982}
 983
 984extern struct page *pgd_page(pgd_t pgd);
 985
 986/* Pointers in the page table tree are physical addresses */
 987#define __pgtable_ptr_val(ptr)  __pa(ptr)
 988
 989#define pmd_page_vaddr(pmd)     __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
 990#define pud_page_vaddr(pud)     __va(pud_val(pud) & ~PUD_MASKED_BITS)
 991#define pgd_page_vaddr(pgd)     __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
 992
 993#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 994#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
 995#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
 996#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
 997
 998/*
 999 * Find an entry in a page-table-directory.  We combine the address region
1000 * (the high order N bits) and the pgd portion of the address.
1001 */
1002
1003#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
1004
1005#define pud_offset(pgdp, addr)  \
1006        (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1007#define pmd_offset(pudp,addr) \
1008        (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1009#define pte_offset_kernel(dir,addr) \
1010        (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1011
1012#define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
1013
1014static inline void pte_unmap(pte_t *pte) { }
1015
1016/* to find an entry in a kernel page-table-directory */
1017/* This now only contains the vmalloc pages */
1018#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1019
1020#define pte_ERROR(e) \
1021        pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1022#define pmd_ERROR(e) \
1023        pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1024#define pud_ERROR(e) \
1025        pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1026#define pgd_ERROR(e) \
1027        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1028
1029static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1030{
1031        if (radix_enabled()) {
1032#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1033                unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1034                WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1035#endif
1036                return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1037        }
1038        return hash__map_kernel_page(ea, pa, prot);
1039}
1040
1041static inline int __meminit vmemmap_create_mapping(unsigned long start,
1042                                                   unsigned long page_size,
1043                                                   unsigned long phys)
1044{
1045        if (radix_enabled())
1046                return radix__vmemmap_create_mapping(start, page_size, phys);
1047        return hash__vmemmap_create_mapping(start, page_size, phys);
1048}
1049
1050#ifdef CONFIG_MEMORY_HOTPLUG
1051static inline void vmemmap_remove_mapping(unsigned long start,
1052                                          unsigned long page_size)
1053{
1054        if (radix_enabled())
1055                return radix__vmemmap_remove_mapping(start, page_size);
1056        return hash__vmemmap_remove_mapping(start, page_size);
1057}
1058#endif
1059
1060static inline pte_t pmd_pte(pmd_t pmd)
1061{
1062        return __pte_raw(pmd_raw(pmd));
1063}
1064
1065static inline pmd_t pte_pmd(pte_t pte)
1066{
1067        return __pmd_raw(pte_raw(pte));
1068}
1069
1070static inline pte_t *pmdp_ptep(pmd_t *pmd)
1071{
1072        return (pte_t *)pmd;
1073}
1074#define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
1075#define pmd_dirty(pmd)          pte_dirty(pmd_pte(pmd))
1076#define pmd_young(pmd)          pte_young(pmd_pte(pmd))
1077#define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
1078#define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1079#define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1080#define pmd_mkclean(pmd)        pte_pmd(pte_mkclean(pmd_pte(pmd)))
1081#define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1082#define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1083#define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1084#define pmd_clear_savedwrite(pmd)       pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1085
1086#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1087#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1088#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1089#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1090
1091#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1092#define pmd_swp_mksoft_dirty(pmd)       pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1093#define pmd_swp_soft_dirty(pmd)         pte_swp_soft_dirty(pmd_pte(pmd))
1094#define pmd_swp_clear_soft_dirty(pmd)   pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1095#endif
1096#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1097
1098#ifdef CONFIG_NUMA_BALANCING
1099static inline int pmd_protnone(pmd_t pmd)
1100{
1101        return pte_protnone(pmd_pte(pmd));
1102}
1103#endif /* CONFIG_NUMA_BALANCING */
1104
1105#define pmd_write(pmd)          pte_write(pmd_pte(pmd))
1106#define __pmd_write(pmd)        __pte_write(pmd_pte(pmd))
1107#define pmd_savedwrite(pmd)     pte_savedwrite(pmd_pte(pmd))
1108
1109#define pmd_access_permitted pmd_access_permitted
1110static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1111{
1112        /*
1113         * pmdp_invalidate sets this combination (which is not caught by
1114         * !pte_present() check in pte_access_permitted), to prevent
1115         * lock-free lookups, as part of the serialize_against_pte_lookup()
1116         * synchronisation.
1117         *
1118         * This also catches the case where the PTE's hardware PRESENT bit is
1119         * cleared while TLB is flushed, which is suboptimal but should not
1120         * be frequent.
1121         */
1122        if (pmd_is_serializing(pmd))
1123                return false;
1124
1125        return pte_access_permitted(pmd_pte(pmd), write);
1126}
1127
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1130extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1131extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1132extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1133                       pmd_t *pmdp, pmd_t pmd);
1134extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1135                                 pmd_t *pmd);
1136extern int hash__has_transparent_hugepage(void);
1137static inline int has_transparent_hugepage(void)
1138{
1139        if (radix_enabled())
1140                return radix__has_transparent_hugepage();
1141        return hash__has_transparent_hugepage();
1142}
1143#define has_transparent_hugepage has_transparent_hugepage
1144
1145static inline unsigned long
1146pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1147                    unsigned long clr, unsigned long set)
1148{
1149        if (radix_enabled())
1150                return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1151        return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1152}
1153
1154/*
1155 * returns true for pmd migration entries, THP, devmap, hugetlb
1156 * But compile time dependent on THP config
1157 */
1158static inline int pmd_large(pmd_t pmd)
1159{
1160        return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1161}
1162
1163static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1164{
1165        return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1166}
1167/*
1168 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1169 * the below will work for radix too
1170 */
1171static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1172                                              unsigned long addr, pmd_t *pmdp)
1173{
1174        unsigned long old;
1175
1176        if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1177                return 0;
1178        old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1179        return ((old & _PAGE_ACCESSED) != 0);
1180}
1181
1182#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1183static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1184                                      pmd_t *pmdp)
1185{
1186        if (__pmd_write((*pmdp)))
1187                pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1188        else if (unlikely(pmd_savedwrite(*pmdp)))
1189                pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1190}
1191
1192/*
1193 * Only returns true for a THP. False for pmd migration entry.
1194 * We also need to return true when we come across a pte that
1195 * in between a thp split. While splitting THP, we mark the pmd
1196 * invalid (pmdp_invalidate()) before we set it with pte page
1197 * address. A pmd_trans_huge() check against a pmd entry during that time
1198 * should return true.
1199 * We should not call this on a hugetlb entry. We should check for HugeTLB
1200 * entry using vma->vm_flags
1201 * The page table walk rule is explained in Documentation/vm/transhuge.rst
1202 */
1203static inline int pmd_trans_huge(pmd_t pmd)
1204{
1205        if (!pmd_present(pmd))
1206                return false;
1207
1208        if (radix_enabled())
1209                return radix__pmd_trans_huge(pmd);
1210        return hash__pmd_trans_huge(pmd);
1211}
1212
1213#define __HAVE_ARCH_PMD_SAME
1214static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1215{
1216        if (radix_enabled())
1217                return radix__pmd_same(pmd_a, pmd_b);
1218        return hash__pmd_same(pmd_a, pmd_b);
1219}
1220
1221static inline pmd_t pmd_mkhuge(pmd_t pmd)
1222{
1223        if (radix_enabled())
1224                return radix__pmd_mkhuge(pmd);
1225        return hash__pmd_mkhuge(pmd);
1226}
1227
1228#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1229extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1230                                 unsigned long address, pmd_t *pmdp,
1231                                 pmd_t entry, int dirty);
1232
1233#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1234extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1235                                     unsigned long address, pmd_t *pmdp);
1236
1237#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1238static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1239                                            unsigned long addr, pmd_t *pmdp)
1240{
1241        if (radix_enabled())
1242                return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1243        return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1244}
1245
1246static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1247                                        unsigned long address, pmd_t *pmdp)
1248{
1249        if (radix_enabled())
1250                return radix__pmdp_collapse_flush(vma, address, pmdp);
1251        return hash__pmdp_collapse_flush(vma, address, pmdp);
1252}
1253#define pmdp_collapse_flush pmdp_collapse_flush
1254
1255#define __HAVE_ARCH_PGTABLE_DEPOSIT
1256static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1257                                              pmd_t *pmdp, pgtable_t pgtable)
1258{
1259        if (radix_enabled())
1260                return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1261        return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1262}
1263
1264#define __HAVE_ARCH_PGTABLE_WITHDRAW
1265static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1266                                                    pmd_t *pmdp)
1267{
1268        if (radix_enabled())
1269                return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1270        return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1271}
1272
1273#define __HAVE_ARCH_PMDP_INVALIDATE
1274extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1275                             pmd_t *pmdp);
1276
1277#define pmd_move_must_withdraw pmd_move_must_withdraw
1278struct spinlock;
1279extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1280                                  struct spinlock *old_pmd_ptl,
1281                                  struct vm_area_struct *vma);
1282/*
1283 * Hash translation mode use the deposited table to store hash pte
1284 * slot information.
1285 */
1286#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1287static inline bool arch_needs_pgtable_deposit(void)
1288{
1289        if (radix_enabled())
1290                return false;
1291        return true;
1292}
1293extern void serialize_against_pte_lookup(struct mm_struct *mm);
1294
1295
1296static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1297{
1298        return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1299}
1300
1301static inline int pmd_devmap(pmd_t pmd)
1302{
1303        return pte_devmap(pmd_pte(pmd));
1304}
1305
1306static inline int pud_devmap(pud_t pud)
1307{
1308        return 0;
1309}
1310
1311static inline int pgd_devmap(pgd_t pgd)
1312{
1313        return 0;
1314}
1315#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1316
1317static inline int pud_pfn(pud_t pud)
1318{
1319        /*
1320         * Currently all calls to pud_pfn() are gated around a pud_devmap()
1321         * check so this should never be used. If it grows another user we
1322         * want to know about it.
1323         */
1324        BUILD_BUG();
1325        return 0;
1326}
1327#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1328pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1329void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1330                             pte_t *, pte_t, pte_t);
1331
1332/*
1333 * Returns true for a R -> RW upgrade of pte
1334 */
1335static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1336{
1337        if (!(old_val & _PAGE_READ))
1338                return false;
1339
1340        if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1341                return true;
1342
1343        return false;
1344}
1345
1346#endif /* __ASSEMBLY__ */
1347#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1348