linux/arch/powerpc/kernel/setup_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 
   4 * Common boot and setup code.
   5 *
   6 * Copyright (C) 2001 PPC64 Team, IBM Corp
   7 */
   8
   9#include <linux/export.h>
  10#include <linux/string.h>
  11#include <linux/sched.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/reboot.h>
  15#include <linux/delay.h>
  16#include <linux/initrd.h>
  17#include <linux/seq_file.h>
  18#include <linux/ioport.h>
  19#include <linux/console.h>
  20#include <linux/utsname.h>
  21#include <linux/tty.h>
  22#include <linux/root_dev.h>
  23#include <linux/notifier.h>
  24#include <linux/cpu.h>
  25#include <linux/unistd.h>
  26#include <linux/serial.h>
  27#include <linux/serial_8250.h>
  28#include <linux/memblock.h>
  29#include <linux/pci.h>
  30#include <linux/lockdep.h>
  31#include <linux/memory.h>
  32#include <linux/nmi.h>
  33
  34#include <asm/debugfs.h>
  35#include <asm/io.h>
  36#include <asm/kdump.h>
  37#include <asm/prom.h>
  38#include <asm/processor.h>
  39#include <asm/pgtable.h>
  40#include <asm/smp.h>
  41#include <asm/elf.h>
  42#include <asm/machdep.h>
  43#include <asm/paca.h>
  44#include <asm/time.h>
  45#include <asm/cputable.h>
  46#include <asm/dt_cpu_ftrs.h>
  47#include <asm/sections.h>
  48#include <asm/btext.h>
  49#include <asm/nvram.h>
  50#include <asm/setup.h>
  51#include <asm/rtas.h>
  52#include <asm/iommu.h>
  53#include <asm/serial.h>
  54#include <asm/cache.h>
  55#include <asm/page.h>
  56#include <asm/mmu.h>
  57#include <asm/firmware.h>
  58#include <asm/xmon.h>
  59#include <asm/udbg.h>
  60#include <asm/kexec.h>
  61#include <asm/code-patching.h>
  62#include <asm/livepatch.h>
  63#include <asm/opal.h>
  64#include <asm/cputhreads.h>
  65#include <asm/hw_irq.h>
  66#include <asm/feature-fixups.h>
  67#include <asm/kup.h>
  68
  69#include "setup.h"
  70
  71#ifdef DEBUG
  72#define DBG(fmt...) udbg_printf(fmt)
  73#else
  74#define DBG(fmt...)
  75#endif
  76
  77int spinning_secondaries;
  78u64 ppc64_pft_size;
  79
  80struct ppc64_caches ppc64_caches = {
  81        .l1d = {
  82                .block_size = 0x40,
  83                .log_block_size = 6,
  84        },
  85        .l1i = {
  86                .block_size = 0x40,
  87                .log_block_size = 6
  88        },
  89};
  90EXPORT_SYMBOL_GPL(ppc64_caches);
  91
  92#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
  93void __init setup_tlb_core_data(void)
  94{
  95        int cpu;
  96
  97        BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
  98
  99        for_each_possible_cpu(cpu) {
 100                int first = cpu_first_thread_sibling(cpu);
 101
 102                /*
 103                 * If we boot via kdump on a non-primary thread,
 104                 * make sure we point at the thread that actually
 105                 * set up this TLB.
 106                 */
 107                if (cpu_first_thread_sibling(boot_cpuid) == first)
 108                        first = boot_cpuid;
 109
 110                paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
 111
 112                /*
 113                 * If we have threads, we need either tlbsrx.
 114                 * or e6500 tablewalk mode, or else TLB handlers
 115                 * will be racy and could produce duplicate entries.
 116                 * Should we panic instead?
 117                 */
 118                WARN_ONCE(smt_enabled_at_boot >= 2 &&
 119                          !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
 120                          book3e_htw_mode != PPC_HTW_E6500,
 121                          "%s: unsupported MMU configuration\n", __func__);
 122        }
 123}
 124#endif
 125
 126#ifdef CONFIG_SMP
 127
 128static char *smt_enabled_cmdline;
 129
 130/* Look for ibm,smt-enabled OF option */
 131void __init check_smt_enabled(void)
 132{
 133        struct device_node *dn;
 134        const char *smt_option;
 135
 136        /* Default to enabling all threads */
 137        smt_enabled_at_boot = threads_per_core;
 138
 139        /* Allow the command line to overrule the OF option */
 140        if (smt_enabled_cmdline) {
 141                if (!strcmp(smt_enabled_cmdline, "on"))
 142                        smt_enabled_at_boot = threads_per_core;
 143                else if (!strcmp(smt_enabled_cmdline, "off"))
 144                        smt_enabled_at_boot = 0;
 145                else {
 146                        int smt;
 147                        int rc;
 148
 149                        rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
 150                        if (!rc)
 151                                smt_enabled_at_boot =
 152                                        min(threads_per_core, smt);
 153                }
 154        } else {
 155                dn = of_find_node_by_path("/options");
 156                if (dn) {
 157                        smt_option = of_get_property(dn, "ibm,smt-enabled",
 158                                                     NULL);
 159
 160                        if (smt_option) {
 161                                if (!strcmp(smt_option, "on"))
 162                                        smt_enabled_at_boot = threads_per_core;
 163                                else if (!strcmp(smt_option, "off"))
 164                                        smt_enabled_at_boot = 0;
 165                        }
 166
 167                        of_node_put(dn);
 168                }
 169        }
 170}
 171
 172/* Look for smt-enabled= cmdline option */
 173static int __init early_smt_enabled(char *p)
 174{
 175        smt_enabled_cmdline = p;
 176        return 0;
 177}
 178early_param("smt-enabled", early_smt_enabled);
 179
 180#endif /* CONFIG_SMP */
 181
 182/** Fix up paca fields required for the boot cpu */
 183static void __init fixup_boot_paca(void)
 184{
 185        /* The boot cpu is started */
 186        get_paca()->cpu_start = 1;
 187        /* Allow percpu accesses to work until we setup percpu data */
 188        get_paca()->data_offset = 0;
 189        /* Mark interrupts disabled in PACA */
 190        irq_soft_mask_set(IRQS_DISABLED);
 191}
 192
 193static void __init configure_exceptions(void)
 194{
 195        /*
 196         * Setup the trampolines from the lowmem exception vectors
 197         * to the kdump kernel when not using a relocatable kernel.
 198         */
 199        setup_kdump_trampoline();
 200
 201        /* Under a PAPR hypervisor, we need hypercalls */
 202        if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
 203                /* Enable AIL if possible */
 204                pseries_enable_reloc_on_exc();
 205
 206                /*
 207                 * Tell the hypervisor that we want our exceptions to
 208                 * be taken in little endian mode.
 209                 *
 210                 * We don't call this for big endian as our calling convention
 211                 * makes us always enter in BE, and the call may fail under
 212                 * some circumstances with kdump.
 213                 */
 214#ifdef __LITTLE_ENDIAN__
 215                pseries_little_endian_exceptions();
 216#endif
 217        } else {
 218                /* Set endian mode using OPAL */
 219                if (firmware_has_feature(FW_FEATURE_OPAL))
 220                        opal_configure_cores();
 221
 222                /* AIL on native is done in cpu_ready_for_interrupts() */
 223        }
 224}
 225
 226static void cpu_ready_for_interrupts(void)
 227{
 228        /*
 229         * Enable AIL if supported, and we are in hypervisor mode. This
 230         * is called once for every processor.
 231         *
 232         * If we are not in hypervisor mode the job is done once for
 233         * the whole partition in configure_exceptions().
 234         */
 235        if (cpu_has_feature(CPU_FTR_HVMODE) &&
 236            cpu_has_feature(CPU_FTR_ARCH_207S)) {
 237                unsigned long lpcr = mfspr(SPRN_LPCR);
 238                mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
 239        }
 240
 241        /*
 242         * Set HFSCR:TM based on CPU features:
 243         * In the special case of TM no suspend (P9N DD2.1), Linux is
 244         * told TM is off via the dt-ftrs but told to (partially) use
 245         * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
 246         * will be off from dt-ftrs but we need to turn it on for the
 247         * no suspend case.
 248         */
 249        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 250                if (cpu_has_feature(CPU_FTR_TM_COMP))
 251                        mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
 252                else
 253                        mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
 254        }
 255
 256        /* Set IR and DR in PACA MSR */
 257        get_paca()->kernel_msr = MSR_KERNEL;
 258}
 259
 260unsigned long spr_default_dscr = 0;
 261
 262void __init record_spr_defaults(void)
 263{
 264        if (early_cpu_has_feature(CPU_FTR_DSCR))
 265                spr_default_dscr = mfspr(SPRN_DSCR);
 266}
 267
 268/*
 269 * Early initialization entry point. This is called by head.S
 270 * with MMU translation disabled. We rely on the "feature" of
 271 * the CPU that ignores the top 2 bits of the address in real
 272 * mode so we can access kernel globals normally provided we
 273 * only toy with things in the RMO region. From here, we do
 274 * some early parsing of the device-tree to setup out MEMBLOCK
 275 * data structures, and allocate & initialize the hash table
 276 * and segment tables so we can start running with translation
 277 * enabled.
 278 *
 279 * It is this function which will call the probe() callback of
 280 * the various platform types and copy the matching one to the
 281 * global ppc_md structure. Your platform can eventually do
 282 * some very early initializations from the probe() routine, but
 283 * this is not recommended, be very careful as, for example, the
 284 * device-tree is not accessible via normal means at this point.
 285 */
 286
 287void __init early_setup(unsigned long dt_ptr)
 288{
 289        static __initdata struct paca_struct boot_paca;
 290
 291        /* -------- printk is _NOT_ safe to use here ! ------- */
 292
 293        /* Try new device tree based feature discovery ... */
 294        if (!dt_cpu_ftrs_init(__va(dt_ptr)))
 295                /* Otherwise use the old style CPU table */
 296                identify_cpu(0, mfspr(SPRN_PVR));
 297
 298        /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
 299        initialise_paca(&boot_paca, 0);
 300        setup_paca(&boot_paca);
 301        fixup_boot_paca();
 302
 303        /* -------- printk is now safe to use ------- */
 304
 305        /* Enable early debugging if any specified (see udbg.h) */
 306        udbg_early_init();
 307
 308        DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
 309
 310        /*
 311         * Do early initialization using the flattened device
 312         * tree, such as retrieving the physical memory map or
 313         * calculating/retrieving the hash table size.
 314         */
 315        early_init_devtree(__va(dt_ptr));
 316
 317        /* Now we know the logical id of our boot cpu, setup the paca. */
 318        if (boot_cpuid != 0) {
 319                /* Poison paca_ptrs[0] again if it's not the boot cpu */
 320                memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
 321        }
 322        setup_paca(paca_ptrs[boot_cpuid]);
 323        fixup_boot_paca();
 324
 325        /*
 326         * Configure exception handlers. This include setting up trampolines
 327         * if needed, setting exception endian mode, etc...
 328         */
 329        configure_exceptions();
 330
 331        /*
 332         * Configure Kernel Userspace Protection. This needs to happen before
 333         * feature fixups for platforms that implement this using features.
 334         */
 335        setup_kup();
 336
 337        /* Apply all the dynamic patching */
 338        apply_feature_fixups();
 339        setup_feature_keys();
 340
 341        /* Initialize the hash table or TLB handling */
 342        early_init_mmu();
 343
 344        /*
 345         * After firmware and early platform setup code has set things up,
 346         * we note the SPR values for configurable control/performance
 347         * registers, and use those as initial defaults.
 348         */
 349        record_spr_defaults();
 350
 351        /*
 352         * At this point, we can let interrupts switch to virtual mode
 353         * (the MMU has been setup), so adjust the MSR in the PACA to
 354         * have IR and DR set and enable AIL if it exists
 355         */
 356        cpu_ready_for_interrupts();
 357
 358        /*
 359         * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
 360         * will only actually get enabled on the boot cpu much later once
 361         * ftrace itself has been initialized.
 362         */
 363        this_cpu_enable_ftrace();
 364
 365        DBG(" <- early_setup()\n");
 366
 367#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
 368        /*
 369         * This needs to be done *last* (after the above DBG() even)
 370         *
 371         * Right after we return from this function, we turn on the MMU
 372         * which means the real-mode access trick that btext does will
 373         * no longer work, it needs to switch to using a real MMU
 374         * mapping. This call will ensure that it does
 375         */
 376        btext_map();
 377#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
 378}
 379
 380#ifdef CONFIG_SMP
 381void early_setup_secondary(void)
 382{
 383        /* Mark interrupts disabled in PACA */
 384        irq_soft_mask_set(IRQS_DISABLED);
 385
 386        /* Initialize the hash table or TLB handling */
 387        early_init_mmu_secondary();
 388
 389        /* Perform any KUP setup that is per-cpu */
 390        setup_kup();
 391
 392        /*
 393         * At this point, we can let interrupts switch to virtual mode
 394         * (the MMU has been setup), so adjust the MSR in the PACA to
 395         * have IR and DR set.
 396         */
 397        cpu_ready_for_interrupts();
 398}
 399
 400#endif /* CONFIG_SMP */
 401
 402void panic_smp_self_stop(void)
 403{
 404        hard_irq_disable();
 405        spin_begin();
 406        while (1)
 407                spin_cpu_relax();
 408}
 409
 410#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
 411static bool use_spinloop(void)
 412{
 413        if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 414                /*
 415                 * See comments in head_64.S -- not all platforms insert
 416                 * secondaries at __secondary_hold and wait at the spin
 417                 * loop.
 418                 */
 419                if (firmware_has_feature(FW_FEATURE_OPAL))
 420                        return false;
 421                return true;
 422        }
 423
 424        /*
 425         * When book3e boots from kexec, the ePAPR spin table does
 426         * not get used.
 427         */
 428        return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
 429}
 430
 431void smp_release_cpus(void)
 432{
 433        unsigned long *ptr;
 434        int i;
 435
 436        if (!use_spinloop())
 437                return;
 438
 439        DBG(" -> smp_release_cpus()\n");
 440
 441        /* All secondary cpus are spinning on a common spinloop, release them
 442         * all now so they can start to spin on their individual paca
 443         * spinloops. For non SMP kernels, the secondary cpus never get out
 444         * of the common spinloop.
 445         */
 446
 447        ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
 448                        - PHYSICAL_START);
 449        *ptr = ppc_function_entry(generic_secondary_smp_init);
 450
 451        /* And wait a bit for them to catch up */
 452        for (i = 0; i < 100000; i++) {
 453                mb();
 454                HMT_low();
 455                if (spinning_secondaries == 0)
 456                        break;
 457                udelay(1);
 458        }
 459        DBG("spinning_secondaries = %d\n", spinning_secondaries);
 460
 461        DBG(" <- smp_release_cpus()\n");
 462}
 463#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
 464
 465/*
 466 * Initialize some remaining members of the ppc64_caches and systemcfg
 467 * structures
 468 * (at least until we get rid of them completely). This is mostly some
 469 * cache informations about the CPU that will be used by cache flush
 470 * routines and/or provided to userland
 471 */
 472
 473static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
 474                            u32 bsize, u32 sets)
 475{
 476        info->size = size;
 477        info->sets = sets;
 478        info->line_size = lsize;
 479        info->block_size = bsize;
 480        info->log_block_size = __ilog2(bsize);
 481        if (bsize)
 482                info->blocks_per_page = PAGE_SIZE / bsize;
 483        else
 484                info->blocks_per_page = 0;
 485
 486        if (sets == 0)
 487                info->assoc = 0xffff;
 488        else
 489                info->assoc = size / (sets * lsize);
 490}
 491
 492static bool __init parse_cache_info(struct device_node *np,
 493                                    bool icache,
 494                                    struct ppc_cache_info *info)
 495{
 496        static const char *ipropnames[] __initdata = {
 497                "i-cache-size",
 498                "i-cache-sets",
 499                "i-cache-block-size",
 500                "i-cache-line-size",
 501        };
 502        static const char *dpropnames[] __initdata = {
 503                "d-cache-size",
 504                "d-cache-sets",
 505                "d-cache-block-size",
 506                "d-cache-line-size",
 507        };
 508        const char **propnames = icache ? ipropnames : dpropnames;
 509        const __be32 *sizep, *lsizep, *bsizep, *setsp;
 510        u32 size, lsize, bsize, sets;
 511        bool success = true;
 512
 513        size = 0;
 514        sets = -1u;
 515        lsize = bsize = cur_cpu_spec->dcache_bsize;
 516        sizep = of_get_property(np, propnames[0], NULL);
 517        if (sizep != NULL)
 518                size = be32_to_cpu(*sizep);
 519        setsp = of_get_property(np, propnames[1], NULL);
 520        if (setsp != NULL)
 521                sets = be32_to_cpu(*setsp);
 522        bsizep = of_get_property(np, propnames[2], NULL);
 523        lsizep = of_get_property(np, propnames[3], NULL);
 524        if (bsizep == NULL)
 525                bsizep = lsizep;
 526        if (lsizep != NULL)
 527                lsize = be32_to_cpu(*lsizep);
 528        if (bsizep != NULL)
 529                bsize = be32_to_cpu(*bsizep);
 530        if (sizep == NULL || bsizep == NULL || lsizep == NULL)
 531                success = false;
 532
 533        /*
 534         * OF is weird .. it represents fully associative caches
 535         * as "1 way" which doesn't make much sense and doesn't
 536         * leave room for direct mapped. We'll assume that 0
 537         * in OF means direct mapped for that reason.
 538         */
 539        if (sets == 1)
 540                sets = 0;
 541        else if (sets == 0)
 542                sets = 1;
 543
 544        init_cache_info(info, size, lsize, bsize, sets);
 545
 546        return success;
 547}
 548
 549void __init initialize_cache_info(void)
 550{
 551        struct device_node *cpu = NULL, *l2, *l3 = NULL;
 552        u32 pvr;
 553
 554        DBG(" -> initialize_cache_info()\n");
 555
 556        /*
 557         * All shipping POWER8 machines have a firmware bug that
 558         * puts incorrect information in the device-tree. This will
 559         * be (hopefully) fixed for future chips but for now hard
 560         * code the values if we are running on one of these
 561         */
 562        pvr = PVR_VER(mfspr(SPRN_PVR));
 563        if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
 564            pvr == PVR_POWER8NVL) {
 565                                                /* size    lsize   blk  sets */
 566                init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
 567                init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
 568                init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
 569                init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
 570        } else
 571                cpu = of_find_node_by_type(NULL, "cpu");
 572
 573        /*
 574         * We're assuming *all* of the CPUs have the same
 575         * d-cache and i-cache sizes... -Peter
 576         */
 577        if (cpu) {
 578                if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
 579                        DBG("Argh, can't find dcache properties !\n");
 580
 581                if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
 582                        DBG("Argh, can't find icache properties !\n");
 583
 584                /*
 585                 * Try to find the L2 and L3 if any. Assume they are
 586                 * unified and use the D-side properties.
 587                 */
 588                l2 = of_find_next_cache_node(cpu);
 589                of_node_put(cpu);
 590                if (l2) {
 591                        parse_cache_info(l2, false, &ppc64_caches.l2);
 592                        l3 = of_find_next_cache_node(l2);
 593                        of_node_put(l2);
 594                }
 595                if (l3) {
 596                        parse_cache_info(l3, false, &ppc64_caches.l3);
 597                        of_node_put(l3);
 598                }
 599        }
 600
 601        /* For use by binfmt_elf */
 602        dcache_bsize = ppc64_caches.l1d.block_size;
 603        icache_bsize = ppc64_caches.l1i.block_size;
 604
 605        cur_cpu_spec->dcache_bsize = dcache_bsize;
 606        cur_cpu_spec->icache_bsize = icache_bsize;
 607
 608        DBG(" <- initialize_cache_info()\n");
 609}
 610
 611/*
 612 * This returns the limit below which memory accesses to the linear
 613 * mapping are guarnateed not to cause an architectural exception (e.g.,
 614 * TLB or SLB miss fault).
 615 *
 616 * This is used to allocate PACAs and various interrupt stacks that
 617 * that are accessed early in interrupt handlers that must not cause
 618 * re-entrant interrupts.
 619 */
 620__init u64 ppc64_bolted_size(void)
 621{
 622#ifdef CONFIG_PPC_BOOK3E
 623        /* Freescale BookE bolts the entire linear mapping */
 624        /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
 625        if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
 626                return linear_map_top;
 627        /* Other BookE, we assume the first GB is bolted */
 628        return 1ul << 30;
 629#else
 630        /* BookS radix, does not take faults on linear mapping */
 631        if (early_radix_enabled())
 632                return ULONG_MAX;
 633
 634        /* BookS hash, the first segment is bolted */
 635        if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
 636                return 1UL << SID_SHIFT_1T;
 637        return 1UL << SID_SHIFT;
 638#endif
 639}
 640
 641static void *__init alloc_stack(unsigned long limit, int cpu)
 642{
 643        void *ptr;
 644
 645        BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
 646
 647        ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
 648                                     MEMBLOCK_LOW_LIMIT, limit,
 649                                     early_cpu_to_node(cpu));
 650        if (!ptr)
 651                panic("cannot allocate stacks");
 652
 653        return ptr;
 654}
 655
 656void __init irqstack_early_init(void)
 657{
 658        u64 limit = ppc64_bolted_size();
 659        unsigned int i;
 660
 661        /*
 662         * Interrupt stacks must be in the first segment since we
 663         * cannot afford to take SLB misses on them. They are not
 664         * accessed in realmode.
 665         */
 666        for_each_possible_cpu(i) {
 667                softirq_ctx[i] = alloc_stack(limit, i);
 668                hardirq_ctx[i] = alloc_stack(limit, i);
 669        }
 670}
 671
 672#ifdef CONFIG_PPC_BOOK3E
 673void __init exc_lvl_early_init(void)
 674{
 675        unsigned int i;
 676
 677        for_each_possible_cpu(i) {
 678                void *sp;
 679
 680                sp = alloc_stack(ULONG_MAX, i);
 681                critirq_ctx[i] = sp;
 682                paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
 683
 684                sp = alloc_stack(ULONG_MAX, i);
 685                dbgirq_ctx[i] = sp;
 686                paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
 687
 688                sp = alloc_stack(ULONG_MAX, i);
 689                mcheckirq_ctx[i] = sp;
 690                paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
 691        }
 692
 693        if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
 694                patch_exception(0x040, exc_debug_debug_book3e);
 695}
 696#endif
 697
 698/*
 699 * Stack space used when we detect a bad kernel stack pointer, and
 700 * early in SMP boots before relocation is enabled. Exclusive emergency
 701 * stack for machine checks.
 702 */
 703void __init emergency_stack_init(void)
 704{
 705        u64 limit;
 706        unsigned int i;
 707
 708        /*
 709         * Emergency stacks must be under 256MB, we cannot afford to take
 710         * SLB misses on them. The ABI also requires them to be 128-byte
 711         * aligned.
 712         *
 713         * Since we use these as temporary stacks during secondary CPU
 714         * bringup, machine check, system reset, and HMI, we need to get
 715         * at them in real mode. This means they must also be within the RMO
 716         * region.
 717         *
 718         * The IRQ stacks allocated elsewhere in this file are zeroed and
 719         * initialized in kernel/irq.c. These are initialized here in order
 720         * to have emergency stacks available as early as possible.
 721         */
 722        limit = min(ppc64_bolted_size(), ppc64_rma_size);
 723
 724        for_each_possible_cpu(i) {
 725                paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 726
 727#ifdef CONFIG_PPC_BOOK3S_64
 728                /* emergency stack for NMI exception handling. */
 729                paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 730
 731                /* emergency stack for machine check exception handling. */
 732                paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 733#endif
 734        }
 735}
 736
 737#ifdef CONFIG_SMP
 738#define PCPU_DYN_SIZE           ()
 739
 740static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 741{
 742        return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
 743                                      MEMBLOCK_ALLOC_ACCESSIBLE,
 744                                      early_cpu_to_node(cpu));
 745
 746}
 747
 748static void __init pcpu_fc_free(void *ptr, size_t size)
 749{
 750        memblock_free(__pa(ptr), size);
 751}
 752
 753static int pcpu_cpu_distance(unsigned int from, unsigned int to)
 754{
 755        if (early_cpu_to_node(from) == early_cpu_to_node(to))
 756                return LOCAL_DISTANCE;
 757        else
 758                return REMOTE_DISTANCE;
 759}
 760
 761unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 762EXPORT_SYMBOL(__per_cpu_offset);
 763
 764void __init setup_per_cpu_areas(void)
 765{
 766        const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
 767        size_t atom_size;
 768        unsigned long delta;
 769        unsigned int cpu;
 770        int rc;
 771
 772        /*
 773         * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
 774         * to group units.  For larger mappings, use 1M atom which
 775         * should be large enough to contain a number of units.
 776         */
 777        if (mmu_linear_psize == MMU_PAGE_4K)
 778                atom_size = PAGE_SIZE;
 779        else
 780                atom_size = 1 << 20;
 781
 782        rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
 783                                    pcpu_fc_alloc, pcpu_fc_free);
 784        if (rc < 0)
 785                panic("cannot initialize percpu area (err=%d)", rc);
 786
 787        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 788        for_each_possible_cpu(cpu) {
 789                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 790                paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
 791        }
 792}
 793#endif
 794
 795#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 796unsigned long memory_block_size_bytes(void)
 797{
 798        if (ppc_md.memory_block_size)
 799                return ppc_md.memory_block_size();
 800
 801        return MIN_MEMORY_BLOCK_SIZE;
 802}
 803#endif
 804
 805#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
 806struct ppc_pci_io ppc_pci_io;
 807EXPORT_SYMBOL(ppc_pci_io);
 808#endif
 809
 810#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 811u64 hw_nmi_get_sample_period(int watchdog_thresh)
 812{
 813        return ppc_proc_freq * watchdog_thresh;
 814}
 815#endif
 816
 817/*
 818 * The perf based hardlockup detector breaks PMU event based branches, so
 819 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 820 * on the decrementer interrupt, so it does not suffer from this problem.
 821 *
 822 * It is likely to get false positives in VM guests, so disable it there
 823 * by default too.
 824 */
 825static int __init disable_hardlockup_detector(void)
 826{
 827#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 828        hardlockup_detector_disable();
 829#else
 830        if (firmware_has_feature(FW_FEATURE_LPAR))
 831                hardlockup_detector_disable();
 832#endif
 833
 834        return 0;
 835}
 836early_initcall(disable_hardlockup_detector);
 837
 838#ifdef CONFIG_PPC_BOOK3S_64
 839static enum l1d_flush_type enabled_flush_types;
 840static void *l1d_flush_fallback_area;
 841static bool no_rfi_flush;
 842bool rfi_flush;
 843
 844static int __init handle_no_rfi_flush(char *p)
 845{
 846        pr_info("rfi-flush: disabled on command line.");
 847        no_rfi_flush = true;
 848        return 0;
 849}
 850early_param("no_rfi_flush", handle_no_rfi_flush);
 851
 852/*
 853 * The RFI flush is not KPTI, but because users will see doco that says to use
 854 * nopti we hijack that option here to also disable the RFI flush.
 855 */
 856static int __init handle_no_pti(char *p)
 857{
 858        pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
 859        handle_no_rfi_flush(NULL);
 860        return 0;
 861}
 862early_param("nopti", handle_no_pti);
 863
 864static void do_nothing(void *unused)
 865{
 866        /*
 867         * We don't need to do the flush explicitly, just enter+exit kernel is
 868         * sufficient, the RFI exit handlers will do the right thing.
 869         */
 870}
 871
 872void rfi_flush_enable(bool enable)
 873{
 874        if (enable) {
 875                do_rfi_flush_fixups(enabled_flush_types);
 876                on_each_cpu(do_nothing, NULL, 1);
 877        } else
 878                do_rfi_flush_fixups(L1D_FLUSH_NONE);
 879
 880        rfi_flush = enable;
 881}
 882
 883static void __ref init_fallback_flush(void)
 884{
 885        u64 l1d_size, limit;
 886        int cpu;
 887
 888        /* Only allocate the fallback flush area once (at boot time). */
 889        if (l1d_flush_fallback_area)
 890                return;
 891
 892        l1d_size = ppc64_caches.l1d.size;
 893
 894        /*
 895         * If there is no d-cache-size property in the device tree, l1d_size
 896         * could be zero. That leads to the loop in the asm wrapping around to
 897         * 2^64-1, and then walking off the end of the fallback area and
 898         * eventually causing a page fault which is fatal. Just default to
 899         * something vaguely sane.
 900         */
 901        if (!l1d_size)
 902                l1d_size = (64 * 1024);
 903
 904        limit = min(ppc64_bolted_size(), ppc64_rma_size);
 905
 906        /*
 907         * Align to L1d size, and size it at 2x L1d size, to catch possible
 908         * hardware prefetch runoff. We don't have a recipe for load patterns to
 909         * reliably avoid the prefetcher.
 910         */
 911        l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
 912                                                l1d_size, MEMBLOCK_LOW_LIMIT,
 913                                                limit, NUMA_NO_NODE);
 914        if (!l1d_flush_fallback_area)
 915                panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
 916                      __func__, l1d_size * 2, l1d_size, &limit);
 917
 918
 919        for_each_possible_cpu(cpu) {
 920                struct paca_struct *paca = paca_ptrs[cpu];
 921                paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
 922                paca->l1d_flush_size = l1d_size;
 923        }
 924}
 925
 926void setup_rfi_flush(enum l1d_flush_type types, bool enable)
 927{
 928        if (types & L1D_FLUSH_FALLBACK) {
 929                pr_info("rfi-flush: fallback displacement flush available\n");
 930                init_fallback_flush();
 931        }
 932
 933        if (types & L1D_FLUSH_ORI)
 934                pr_info("rfi-flush: ori type flush available\n");
 935
 936        if (types & L1D_FLUSH_MTTRIG)
 937                pr_info("rfi-flush: mttrig type flush available\n");
 938
 939        enabled_flush_types = types;
 940
 941        if (!no_rfi_flush && !cpu_mitigations_off())
 942                rfi_flush_enable(enable);
 943}
 944
 945#ifdef CONFIG_DEBUG_FS
 946static int rfi_flush_set(void *data, u64 val)
 947{
 948        bool enable;
 949
 950        if (val == 1)
 951                enable = true;
 952        else if (val == 0)
 953                enable = false;
 954        else
 955                return -EINVAL;
 956
 957        /* Only do anything if we're changing state */
 958        if (enable != rfi_flush)
 959                rfi_flush_enable(enable);
 960
 961        return 0;
 962}
 963
 964static int rfi_flush_get(void *data, u64 *val)
 965{
 966        *val = rfi_flush ? 1 : 0;
 967        return 0;
 968}
 969
 970DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
 971
 972static __init int rfi_flush_debugfs_init(void)
 973{
 974        debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
 975        return 0;
 976}
 977device_initcall(rfi_flush_debugfs_init);
 978#endif
 979#endif /* CONFIG_PPC_BOOK3S_64 */
 980