linux/arch/powerpc/mm/book3s64/hash_utils.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   4 *   {mikejc|engebret}@us.ibm.com
   5 *
   6 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   7 *
   8 * SMP scalability work:
   9 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  10 * 
  11 *    Module name: htab.c
  12 *
  13 *    Description:
  14 *      PowerPC Hashed Page Table functions
  15 */
  16
  17#undef DEBUG
  18#undef DEBUG_LOW
  19
  20#define pr_fmt(fmt) "hash-mmu: " fmt
  21#include <linux/spinlock.h>
  22#include <linux/errno.h>
  23#include <linux/sched/mm.h>
  24#include <linux/proc_fs.h>
  25#include <linux/stat.h>
  26#include <linux/sysctl.h>
  27#include <linux/export.h>
  28#include <linux/ctype.h>
  29#include <linux/cache.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/memblock.h>
  33#include <linux/context_tracking.h>
  34#include <linux/libfdt.h>
  35#include <linux/pkeys.h>
  36#include <linux/hugetlb.h>
  37
  38#include <asm/debugfs.h>
  39#include <asm/processor.h>
  40#include <asm/pgtable.h>
  41#include <asm/mmu.h>
  42#include <asm/mmu_context.h>
  43#include <asm/page.h>
  44#include <asm/types.h>
  45#include <linux/uaccess.h>
  46#include <asm/machdep.h>
  47#include <asm/prom.h>
  48#include <asm/io.h>
  49#include <asm/eeh.h>
  50#include <asm/tlb.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cputable.h>
  53#include <asm/sections.h>
  54#include <asm/copro.h>
  55#include <asm/udbg.h>
  56#include <asm/code-patching.h>
  57#include <asm/fadump.h>
  58#include <asm/firmware.h>
  59#include <asm/tm.h>
  60#include <asm/trace.h>
  61#include <asm/ps3.h>
  62#include <asm/pte-walk.h>
  63#include <asm/asm-prototypes.h>
  64
  65#include <mm/mmu_decl.h>
  66
  67#ifdef DEBUG
  68#define DBG(fmt...) udbg_printf(fmt)
  69#else
  70#define DBG(fmt...)
  71#endif
  72
  73#ifdef DEBUG_LOW
  74#define DBG_LOW(fmt...) udbg_printf(fmt)
  75#else
  76#define DBG_LOW(fmt...)
  77#endif
  78
  79#define KB (1024)
  80#define MB (1024*KB)
  81#define GB (1024L*MB)
  82
  83/*
  84 * Note:  pte   --> Linux PTE
  85 *        HPTE  --> PowerPC Hashed Page Table Entry
  86 *
  87 * Execution context:
  88 *   htab_initialize is called with the MMU off (of course), but
  89 *   the kernel has been copied down to zero so it can directly
  90 *   reference global data.  At this point it is very difficult
  91 *   to print debug info.
  92 *
  93 */
  94
  95static unsigned long _SDR1;
  96struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  97EXPORT_SYMBOL_GPL(mmu_psize_defs);
  98
  99u8 hpte_page_sizes[1 << LP_BITS];
 100EXPORT_SYMBOL_GPL(hpte_page_sizes);
 101
 102struct hash_pte *htab_address;
 103unsigned long htab_size_bytes;
 104unsigned long htab_hash_mask;
 105EXPORT_SYMBOL_GPL(htab_hash_mask);
 106int mmu_linear_psize = MMU_PAGE_4K;
 107EXPORT_SYMBOL_GPL(mmu_linear_psize);
 108int mmu_virtual_psize = MMU_PAGE_4K;
 109int mmu_vmalloc_psize = MMU_PAGE_4K;
 110#ifdef CONFIG_SPARSEMEM_VMEMMAP
 111int mmu_vmemmap_psize = MMU_PAGE_4K;
 112#endif
 113int mmu_io_psize = MMU_PAGE_4K;
 114int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 115EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 116int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 117u16 mmu_slb_size = 64;
 118EXPORT_SYMBOL_GPL(mmu_slb_size);
 119#ifdef CONFIG_PPC_64K_PAGES
 120int mmu_ci_restrictions;
 121#endif
 122#ifdef CONFIG_DEBUG_PAGEALLOC
 123static u8 *linear_map_hash_slots;
 124static unsigned long linear_map_hash_count;
 125static DEFINE_SPINLOCK(linear_map_hash_lock);
 126#endif /* CONFIG_DEBUG_PAGEALLOC */
 127struct mmu_hash_ops mmu_hash_ops;
 128EXPORT_SYMBOL(mmu_hash_ops);
 129
 130/*
 131 * These are definitions of page sizes arrays to be used when none
 132 * is provided by the firmware.
 133 */
 134
 135/*
 136 * Fallback (4k pages only)
 137 */
 138static struct mmu_psize_def mmu_psize_defaults[] = {
 139        [MMU_PAGE_4K] = {
 140                .shift  = 12,
 141                .sllp   = 0,
 142                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 143                .avpnm  = 0,
 144                .tlbiel = 0,
 145        },
 146};
 147
 148/*
 149 * POWER4, GPUL, POWER5
 150 *
 151 * Support for 16Mb large pages
 152 */
 153static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 154        [MMU_PAGE_4K] = {
 155                .shift  = 12,
 156                .sllp   = 0,
 157                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 158                .avpnm  = 0,
 159                .tlbiel = 1,
 160        },
 161        [MMU_PAGE_16M] = {
 162                .shift  = 24,
 163                .sllp   = SLB_VSID_L,
 164                .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 165                            [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 166                .avpnm  = 0x1UL,
 167                .tlbiel = 0,
 168        },
 169};
 170
 171/*
 172 * 'R' and 'C' update notes:
 173 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 174 *     create writeable HPTEs without C set, because the hcall H_PROTECT
 175 *     that we use in that case will not update C
 176 *  - The above is however not a problem, because we also don't do that
 177 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 178 *     do the right thing and thus we don't have the race I described earlier
 179 *
 180 *    - Under bare metal,  we do have the race, so we need R and C set
 181 *    - We make sure R is always set and never lost
 182 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 183 */
 184unsigned long htab_convert_pte_flags(unsigned long pteflags)
 185{
 186        unsigned long rflags = 0;
 187
 188        /* _PAGE_EXEC -> NOEXEC */
 189        if ((pteflags & _PAGE_EXEC) == 0)
 190                rflags |= HPTE_R_N;
 191        /*
 192         * PPP bits:
 193         * Linux uses slb key 0 for kernel and 1 for user.
 194         * kernel RW areas are mapped with PPP=0b000
 195         * User area is mapped with PPP=0b010 for read/write
 196         * or PPP=0b011 for read-only (including writeable but clean pages).
 197         */
 198        if (pteflags & _PAGE_PRIVILEGED) {
 199                /*
 200                 * Kernel read only mapped with ppp bits 0b110
 201                 */
 202                if (!(pteflags & _PAGE_WRITE)) {
 203                        if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 204                                rflags |= (HPTE_R_PP0 | 0x2);
 205                        else
 206                                rflags |= 0x3;
 207                }
 208        } else {
 209                if (pteflags & _PAGE_RWX)
 210                        rflags |= 0x2;
 211                if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 212                        rflags |= 0x1;
 213        }
 214        /*
 215         * We can't allow hardware to update hpte bits. Hence always
 216         * set 'R' bit and set 'C' if it is a write fault
 217         */
 218        rflags |=  HPTE_R_R;
 219
 220        if (pteflags & _PAGE_DIRTY)
 221                rflags |= HPTE_R_C;
 222        /*
 223         * Add in WIG bits
 224         */
 225
 226        if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 227                rflags |= HPTE_R_I;
 228        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 229                rflags |= (HPTE_R_I | HPTE_R_G);
 230        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 231                rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 232        else
 233                /*
 234                 * Add memory coherence if cache inhibited is not set
 235                 */
 236                rflags |= HPTE_R_M;
 237
 238        rflags |= pte_to_hpte_pkey_bits(pteflags);
 239        return rflags;
 240}
 241
 242int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 243                      unsigned long pstart, unsigned long prot,
 244                      int psize, int ssize)
 245{
 246        unsigned long vaddr, paddr;
 247        unsigned int step, shift;
 248        int ret = 0;
 249
 250        shift = mmu_psize_defs[psize].shift;
 251        step = 1 << shift;
 252
 253        prot = htab_convert_pte_flags(prot);
 254
 255        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 256            vstart, vend, pstart, prot, psize, ssize);
 257
 258        for (vaddr = vstart, paddr = pstart; vaddr < vend;
 259             vaddr += step, paddr += step) {
 260                unsigned long hash, hpteg;
 261                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 262                unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 263                unsigned long tprot = prot;
 264
 265                /*
 266                 * If we hit a bad address return error.
 267                 */
 268                if (!vsid)
 269                        return -1;
 270                /* Make kernel text executable */
 271                if (overlaps_kernel_text(vaddr, vaddr + step))
 272                        tprot &= ~HPTE_R_N;
 273
 274                /* Make kvm guest trampolines executable */
 275                if (overlaps_kvm_tmp(vaddr, vaddr + step))
 276                        tprot &= ~HPTE_R_N;
 277
 278                /*
 279                 * If relocatable, check if it overlaps interrupt vectors that
 280                 * are copied down to real 0. For relocatable kernel
 281                 * (e.g. kdump case) we copy interrupt vectors down to real
 282                 * address 0. Mark that region as executable. This is
 283                 * because on p8 system with relocation on exception feature
 284                 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 285                 * in order to execute the interrupt handlers in virtual
 286                 * mode the vector region need to be marked as executable.
 287                 */
 288                if ((PHYSICAL_START > MEMORY_START) &&
 289                        overlaps_interrupt_vector_text(vaddr, vaddr + step))
 290                                tprot &= ~HPTE_R_N;
 291
 292                hash = hpt_hash(vpn, shift, ssize);
 293                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 294
 295                BUG_ON(!mmu_hash_ops.hpte_insert);
 296                ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 297                                               HPTE_V_BOLTED, psize, psize,
 298                                               ssize);
 299
 300                if (ret < 0)
 301                        break;
 302
 303#ifdef CONFIG_DEBUG_PAGEALLOC
 304                if (debug_pagealloc_enabled() &&
 305                        (paddr >> PAGE_SHIFT) < linear_map_hash_count)
 306                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 307#endif /* CONFIG_DEBUG_PAGEALLOC */
 308        }
 309        return ret < 0 ? ret : 0;
 310}
 311
 312int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 313                      int psize, int ssize)
 314{
 315        unsigned long vaddr;
 316        unsigned int step, shift;
 317        int rc;
 318        int ret = 0;
 319
 320        shift = mmu_psize_defs[psize].shift;
 321        step = 1 << shift;
 322
 323        if (!mmu_hash_ops.hpte_removebolted)
 324                return -ENODEV;
 325
 326        for (vaddr = vstart; vaddr < vend; vaddr += step) {
 327                rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 328                if (rc == -ENOENT) {
 329                        ret = -ENOENT;
 330                        continue;
 331                }
 332                if (rc < 0)
 333                        return rc;
 334        }
 335
 336        return ret;
 337}
 338
 339static bool disable_1tb_segments = false;
 340
 341static int __init parse_disable_1tb_segments(char *p)
 342{
 343        disable_1tb_segments = true;
 344        return 0;
 345}
 346early_param("disable_1tb_segments", parse_disable_1tb_segments);
 347
 348static int __init htab_dt_scan_seg_sizes(unsigned long node,
 349                                         const char *uname, int depth,
 350                                         void *data)
 351{
 352        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 353        const __be32 *prop;
 354        int size = 0;
 355
 356        /* We are scanning "cpu" nodes only */
 357        if (type == NULL || strcmp(type, "cpu") != 0)
 358                return 0;
 359
 360        prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 361        if (prop == NULL)
 362                return 0;
 363        for (; size >= 4; size -= 4, ++prop) {
 364                if (be32_to_cpu(prop[0]) == 40) {
 365                        DBG("1T segment support detected\n");
 366
 367                        if (disable_1tb_segments) {
 368                                DBG("1T segments disabled by command line\n");
 369                                break;
 370                        }
 371
 372                        cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 373                        return 1;
 374                }
 375        }
 376        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 377        return 0;
 378}
 379
 380static int __init get_idx_from_shift(unsigned int shift)
 381{
 382        int idx = -1;
 383
 384        switch (shift) {
 385        case 0xc:
 386                idx = MMU_PAGE_4K;
 387                break;
 388        case 0x10:
 389                idx = MMU_PAGE_64K;
 390                break;
 391        case 0x14:
 392                idx = MMU_PAGE_1M;
 393                break;
 394        case 0x18:
 395                idx = MMU_PAGE_16M;
 396                break;
 397        case 0x22:
 398                idx = MMU_PAGE_16G;
 399                break;
 400        }
 401        return idx;
 402}
 403
 404static int __init htab_dt_scan_page_sizes(unsigned long node,
 405                                          const char *uname, int depth,
 406                                          void *data)
 407{
 408        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 409        const __be32 *prop;
 410        int size = 0;
 411
 412        /* We are scanning "cpu" nodes only */
 413        if (type == NULL || strcmp(type, "cpu") != 0)
 414                return 0;
 415
 416        prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 417        if (!prop)
 418                return 0;
 419
 420        pr_info("Page sizes from device-tree:\n");
 421        size /= 4;
 422        cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 423        while(size > 0) {
 424                unsigned int base_shift = be32_to_cpu(prop[0]);
 425                unsigned int slbenc = be32_to_cpu(prop[1]);
 426                unsigned int lpnum = be32_to_cpu(prop[2]);
 427                struct mmu_psize_def *def;
 428                int idx, base_idx;
 429
 430                size -= 3; prop += 3;
 431                base_idx = get_idx_from_shift(base_shift);
 432                if (base_idx < 0) {
 433                        /* skip the pte encoding also */
 434                        prop += lpnum * 2; size -= lpnum * 2;
 435                        continue;
 436                }
 437                def = &mmu_psize_defs[base_idx];
 438                if (base_idx == MMU_PAGE_16M)
 439                        cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 440
 441                def->shift = base_shift;
 442                if (base_shift <= 23)
 443                        def->avpnm = 0;
 444                else
 445                        def->avpnm = (1 << (base_shift - 23)) - 1;
 446                def->sllp = slbenc;
 447                /*
 448                 * We don't know for sure what's up with tlbiel, so
 449                 * for now we only set it for 4K and 64K pages
 450                 */
 451                if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 452                        def->tlbiel = 1;
 453                else
 454                        def->tlbiel = 0;
 455
 456                while (size > 0 && lpnum) {
 457                        unsigned int shift = be32_to_cpu(prop[0]);
 458                        int penc  = be32_to_cpu(prop[1]);
 459
 460                        prop += 2; size -= 2;
 461                        lpnum--;
 462
 463                        idx = get_idx_from_shift(shift);
 464                        if (idx < 0)
 465                                continue;
 466
 467                        if (penc == -1)
 468                                pr_err("Invalid penc for base_shift=%d "
 469                                       "shift=%d\n", base_shift, shift);
 470
 471                        def->penc[idx] = penc;
 472                        pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 473                                " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 474                                base_shift, shift, def->sllp,
 475                                def->avpnm, def->tlbiel, def->penc[idx]);
 476                }
 477        }
 478
 479        return 1;
 480}
 481
 482#ifdef CONFIG_HUGETLB_PAGE
 483/*
 484 * Scan for 16G memory blocks that have been set aside for huge pages
 485 * and reserve those blocks for 16G huge pages.
 486 */
 487static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 488                                        const char *uname, int depth,
 489                                        void *data) {
 490        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 491        const __be64 *addr_prop;
 492        const __be32 *page_count_prop;
 493        unsigned int expected_pages;
 494        long unsigned int phys_addr;
 495        long unsigned int block_size;
 496
 497        /* We are scanning "memory" nodes only */
 498        if (type == NULL || strcmp(type, "memory") != 0)
 499                return 0;
 500
 501        /*
 502         * This property is the log base 2 of the number of virtual pages that
 503         * will represent this memory block.
 504         */
 505        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 506        if (page_count_prop == NULL)
 507                return 0;
 508        expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 509        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 510        if (addr_prop == NULL)
 511                return 0;
 512        phys_addr = be64_to_cpu(addr_prop[0]);
 513        block_size = be64_to_cpu(addr_prop[1]);
 514        if (block_size != (16 * GB))
 515                return 0;
 516        printk(KERN_INFO "Huge page(16GB) memory: "
 517                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 518                        phys_addr, block_size, expected_pages);
 519        if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 520                memblock_reserve(phys_addr, block_size * expected_pages);
 521                pseries_add_gpage(phys_addr, block_size, expected_pages);
 522        }
 523        return 0;
 524}
 525#endif /* CONFIG_HUGETLB_PAGE */
 526
 527static void mmu_psize_set_default_penc(void)
 528{
 529        int bpsize, apsize;
 530        for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 531                for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 532                        mmu_psize_defs[bpsize].penc[apsize] = -1;
 533}
 534
 535#ifdef CONFIG_PPC_64K_PAGES
 536
 537static bool might_have_hea(void)
 538{
 539        /*
 540         * The HEA ethernet adapter requires awareness of the
 541         * GX bus. Without that awareness we can easily assume
 542         * we will never see an HEA ethernet device.
 543         */
 544#ifdef CONFIG_IBMEBUS
 545        return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 546                firmware_has_feature(FW_FEATURE_SPLPAR);
 547#else
 548        return false;
 549#endif
 550}
 551
 552#endif /* #ifdef CONFIG_PPC_64K_PAGES */
 553
 554static void __init htab_scan_page_sizes(void)
 555{
 556        int rc;
 557
 558        /* se the invalid penc to -1 */
 559        mmu_psize_set_default_penc();
 560
 561        /* Default to 4K pages only */
 562        memcpy(mmu_psize_defs, mmu_psize_defaults,
 563               sizeof(mmu_psize_defaults));
 564
 565        /*
 566         * Try to find the available page sizes in the device-tree
 567         */
 568        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 569        if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 570                /*
 571                 * Nothing in the device-tree, but the CPU supports 16M pages,
 572                 * so let's fallback on a known size list for 16M capable CPUs.
 573                 */
 574                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 575                       sizeof(mmu_psize_defaults_gp));
 576        }
 577
 578#ifdef CONFIG_HUGETLB_PAGE
 579        if (!hugetlb_disabled) {
 580                /* Reserve 16G huge page memory sections for huge pages */
 581                of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 582        }
 583#endif /* CONFIG_HUGETLB_PAGE */
 584}
 585
 586/*
 587 * Fill in the hpte_page_sizes[] array.
 588 * We go through the mmu_psize_defs[] array looking for all the
 589 * supported base/actual page size combinations.  Each combination
 590 * has a unique pagesize encoding (penc) value in the low bits of
 591 * the LP field of the HPTE.  For actual page sizes less than 1MB,
 592 * some of the upper LP bits are used for RPN bits, meaning that
 593 * we need to fill in several entries in hpte_page_sizes[].
 594 *
 595 * In diagrammatic form, with r = RPN bits and z = page size bits:
 596 *        PTE LP     actual page size
 597 *    rrrr rrrz         >=8KB
 598 *    rrrr rrzz         >=16KB
 599 *    rrrr rzzz         >=32KB
 600 *    rrrr zzzz         >=64KB
 601 *    ...
 602 *
 603 * The zzzz bits are implementation-specific but are chosen so that
 604 * no encoding for a larger page size uses the same value in its
 605 * low-order N bits as the encoding for the 2^(12+N) byte page size
 606 * (if it exists).
 607 */
 608static void init_hpte_page_sizes(void)
 609{
 610        long int ap, bp;
 611        long int shift, penc;
 612
 613        for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 614                if (!mmu_psize_defs[bp].shift)
 615                        continue;       /* not a supported page size */
 616                for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 617                        penc = mmu_psize_defs[bp].penc[ap];
 618                        if (penc == -1 || !mmu_psize_defs[ap].shift)
 619                                continue;
 620                        shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 621                        if (shift <= 0)
 622                                continue;       /* should never happen */
 623                        /*
 624                         * For page sizes less than 1MB, this loop
 625                         * replicates the entry for all possible values
 626                         * of the rrrr bits.
 627                         */
 628                        while (penc < (1 << LP_BITS)) {
 629                                hpte_page_sizes[penc] = (ap << 4) | bp;
 630                                penc += 1 << shift;
 631                        }
 632                }
 633        }
 634}
 635
 636static void __init htab_init_page_sizes(void)
 637{
 638        init_hpte_page_sizes();
 639
 640        if (!debug_pagealloc_enabled()) {
 641                /*
 642                 * Pick a size for the linear mapping. Currently, we only
 643                 * support 16M, 1M and 4K which is the default
 644                 */
 645                if (mmu_psize_defs[MMU_PAGE_16M].shift)
 646                        mmu_linear_psize = MMU_PAGE_16M;
 647                else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 648                        mmu_linear_psize = MMU_PAGE_1M;
 649        }
 650
 651#ifdef CONFIG_PPC_64K_PAGES
 652        /*
 653         * Pick a size for the ordinary pages. Default is 4K, we support
 654         * 64K for user mappings and vmalloc if supported by the processor.
 655         * We only use 64k for ioremap if the processor
 656         * (and firmware) support cache-inhibited large pages.
 657         * If not, we use 4k and set mmu_ci_restrictions so that
 658         * hash_page knows to switch processes that use cache-inhibited
 659         * mappings to 4k pages.
 660         */
 661        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 662                mmu_virtual_psize = MMU_PAGE_64K;
 663                mmu_vmalloc_psize = MMU_PAGE_64K;
 664                if (mmu_linear_psize == MMU_PAGE_4K)
 665                        mmu_linear_psize = MMU_PAGE_64K;
 666                if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 667                        /*
 668                         * When running on pSeries using 64k pages for ioremap
 669                         * would stop us accessing the HEA ethernet. So if we
 670                         * have the chance of ever seeing one, stay at 4k.
 671                         */
 672                        if (!might_have_hea())
 673                                mmu_io_psize = MMU_PAGE_64K;
 674                } else
 675                        mmu_ci_restrictions = 1;
 676        }
 677#endif /* CONFIG_PPC_64K_PAGES */
 678
 679#ifdef CONFIG_SPARSEMEM_VMEMMAP
 680        /*
 681         * We try to use 16M pages for vmemmap if that is supported
 682         * and we have at least 1G of RAM at boot
 683         */
 684        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 685            memblock_phys_mem_size() >= 0x40000000)
 686                mmu_vmemmap_psize = MMU_PAGE_16M;
 687        else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 688                mmu_vmemmap_psize = MMU_PAGE_64K;
 689        else
 690                mmu_vmemmap_psize = MMU_PAGE_4K;
 691#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 692
 693        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 694               "virtual = %d, io = %d"
 695#ifdef CONFIG_SPARSEMEM_VMEMMAP
 696               ", vmemmap = %d"
 697#endif
 698               "\n",
 699               mmu_psize_defs[mmu_linear_psize].shift,
 700               mmu_psize_defs[mmu_virtual_psize].shift,
 701               mmu_psize_defs[mmu_io_psize].shift
 702#ifdef CONFIG_SPARSEMEM_VMEMMAP
 703               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 704#endif
 705               );
 706}
 707
 708static int __init htab_dt_scan_pftsize(unsigned long node,
 709                                       const char *uname, int depth,
 710                                       void *data)
 711{
 712        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 713        const __be32 *prop;
 714
 715        /* We are scanning "cpu" nodes only */
 716        if (type == NULL || strcmp(type, "cpu") != 0)
 717                return 0;
 718
 719        prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 720        if (prop != NULL) {
 721                /* pft_size[0] is the NUMA CEC cookie */
 722                ppc64_pft_size = be32_to_cpu(prop[1]);
 723                return 1;
 724        }
 725        return 0;
 726}
 727
 728unsigned htab_shift_for_mem_size(unsigned long mem_size)
 729{
 730        unsigned memshift = __ilog2(mem_size);
 731        unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 732        unsigned pteg_shift;
 733
 734        /* round mem_size up to next power of 2 */
 735        if ((1UL << memshift) < mem_size)
 736                memshift += 1;
 737
 738        /* aim for 2 pages / pteg */
 739        pteg_shift = memshift - (pshift + 1);
 740
 741        /*
 742         * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 743         * size permitted by the architecture.
 744         */
 745        return max(pteg_shift + 7, 18U);
 746}
 747
 748static unsigned long __init htab_get_table_size(void)
 749{
 750        /*
 751         * If hash size isn't already provided by the platform, we try to
 752         * retrieve it from the device-tree. If it's not there neither, we
 753         * calculate it now based on the total RAM size
 754         */
 755        if (ppc64_pft_size == 0)
 756                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 757        if (ppc64_pft_size)
 758                return 1UL << ppc64_pft_size;
 759
 760        return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 761}
 762
 763#ifdef CONFIG_MEMORY_HOTPLUG
 764int resize_hpt_for_hotplug(unsigned long new_mem_size)
 765{
 766        unsigned target_hpt_shift;
 767
 768        if (!mmu_hash_ops.resize_hpt)
 769                return 0;
 770
 771        target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 772
 773        /*
 774         * To avoid lots of HPT resizes if memory size is fluctuating
 775         * across a boundary, we deliberately have some hysterisis
 776         * here: we immediately increase the HPT size if the target
 777         * shift exceeds the current shift, but we won't attempt to
 778         * reduce unless the target shift is at least 2 below the
 779         * current shift
 780         */
 781        if (target_hpt_shift > ppc64_pft_size ||
 782            target_hpt_shift < ppc64_pft_size - 1)
 783                return mmu_hash_ops.resize_hpt(target_hpt_shift);
 784
 785        return 0;
 786}
 787
 788int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 789{
 790        int rc;
 791
 792        if (end >= H_VMALLOC_START) {
 793                pr_warn("Outside the supported range\n");
 794                return -1;
 795        }
 796
 797        rc = htab_bolt_mapping(start, end, __pa(start),
 798                               pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 799                               mmu_kernel_ssize);
 800
 801        if (rc < 0) {
 802                int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 803                                              mmu_kernel_ssize);
 804                BUG_ON(rc2 && (rc2 != -ENOENT));
 805        }
 806        return rc;
 807}
 808
 809int hash__remove_section_mapping(unsigned long start, unsigned long end)
 810{
 811        int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 812                                     mmu_kernel_ssize);
 813        WARN_ON(rc < 0);
 814        return rc;
 815}
 816#endif /* CONFIG_MEMORY_HOTPLUG */
 817
 818static void __init hash_init_partition_table(phys_addr_t hash_table,
 819                                             unsigned long htab_size)
 820{
 821        mmu_partition_table_init();
 822
 823        /*
 824         * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 825         * For now, UPRT is 0 and we have no segment table.
 826         */
 827        htab_size =  __ilog2(htab_size) - 18;
 828        mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
 829        pr_info("Partition table %p\n", partition_tb);
 830}
 831
 832static void __init htab_initialize(void)
 833{
 834        unsigned long table;
 835        unsigned long pteg_count;
 836        unsigned long prot;
 837        unsigned long base = 0, size = 0;
 838        struct memblock_region *reg;
 839
 840        DBG(" -> htab_initialize()\n");
 841
 842        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 843                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 844                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 845                printk(KERN_INFO "Using 1TB segments\n");
 846        }
 847
 848        /*
 849         * Calculate the required size of the htab.  We want the number of
 850         * PTEGs to equal one half the number of real pages.
 851         */ 
 852        htab_size_bytes = htab_get_table_size();
 853        pteg_count = htab_size_bytes >> 7;
 854
 855        htab_hash_mask = pteg_count - 1;
 856
 857        if (firmware_has_feature(FW_FEATURE_LPAR) ||
 858            firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 859                /* Using a hypervisor which owns the htab */
 860                htab_address = NULL;
 861                _SDR1 = 0; 
 862                /*
 863                 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
 864                 * to inform the hypervisor that we wish to use the HPT.
 865                 */
 866                if (cpu_has_feature(CPU_FTR_ARCH_300))
 867                        register_process_table(0, 0, 0);
 868#ifdef CONFIG_FA_DUMP
 869                /*
 870                 * If firmware assisted dump is active firmware preserves
 871                 * the contents of htab along with entire partition memory.
 872                 * Clear the htab if firmware assisted dump is active so
 873                 * that we dont end up using old mappings.
 874                 */
 875                if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 876                        mmu_hash_ops.hpte_clear_all();
 877#endif
 878        } else {
 879                unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 880
 881#ifdef CONFIG_PPC_CELL
 882                /*
 883                 * Cell may require the hash table down low when using the
 884                 * Axon IOMMU in order to fit the dynamic region over it, see
 885                 * comments in cell/iommu.c
 886                 */
 887                if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 888                        limit = 0x80000000;
 889                        pr_info("Hash table forced below 2G for Axon IOMMU\n");
 890                }
 891#endif /* CONFIG_PPC_CELL */
 892
 893                table = memblock_phys_alloc_range(htab_size_bytes,
 894                                                  htab_size_bytes,
 895                                                  0, limit);
 896                if (!table)
 897                        panic("ERROR: Failed to allocate %pa bytes below %pa\n",
 898                              &htab_size_bytes, &limit);
 899
 900                DBG("Hash table allocated at %lx, size: %lx\n", table,
 901                    htab_size_bytes);
 902
 903                htab_address = __va(table);
 904
 905                /* htab absolute addr + encoded htabsize */
 906                _SDR1 = table + __ilog2(htab_size_bytes) - 18;
 907
 908                /* Initialize the HPT with no entries */
 909                memset((void *)table, 0, htab_size_bytes);
 910
 911                if (!cpu_has_feature(CPU_FTR_ARCH_300))
 912                        /* Set SDR1 */
 913                        mtspr(SPRN_SDR1, _SDR1);
 914                else
 915                        hash_init_partition_table(table, htab_size_bytes);
 916        }
 917
 918        prot = pgprot_val(PAGE_KERNEL);
 919
 920#ifdef CONFIG_DEBUG_PAGEALLOC
 921        if (debug_pagealloc_enabled()) {
 922                linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 923                linear_map_hash_slots = memblock_alloc_try_nid(
 924                                linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
 925                                ppc64_rma_size, NUMA_NO_NODE);
 926                if (!linear_map_hash_slots)
 927                        panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
 928                              __func__, linear_map_hash_count, &ppc64_rma_size);
 929        }
 930#endif /* CONFIG_DEBUG_PAGEALLOC */
 931
 932        /* create bolted the linear mapping in the hash table */
 933        for_each_memblock(memory, reg) {
 934                base = (unsigned long)__va(reg->base);
 935                size = reg->size;
 936
 937                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 938                    base, size, prot);
 939
 940                if ((base + size) >= H_VMALLOC_START) {
 941                        pr_warn("Outside the supported range\n");
 942                        continue;
 943                }
 944
 945                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 946                                prot, mmu_linear_psize, mmu_kernel_ssize));
 947        }
 948        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 949
 950        /*
 951         * If we have a memory_limit and we've allocated TCEs then we need to
 952         * explicitly map the TCE area at the top of RAM. We also cope with the
 953         * case that the TCEs start below memory_limit.
 954         * tce_alloc_start/end are 16MB aligned so the mapping should work
 955         * for either 4K or 16MB pages.
 956         */
 957        if (tce_alloc_start) {
 958                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 959                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 960
 961                if (base + size >= tce_alloc_start)
 962                        tce_alloc_start = base + size + 1;
 963
 964                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 965                                         __pa(tce_alloc_start), prot,
 966                                         mmu_linear_psize, mmu_kernel_ssize));
 967        }
 968
 969
 970        DBG(" <- htab_initialize()\n");
 971}
 972#undef KB
 973#undef MB
 974
 975void __init hash__early_init_devtree(void)
 976{
 977        /* Initialize segment sizes */
 978        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 979
 980        /* Initialize page sizes */
 981        htab_scan_page_sizes();
 982}
 983
 984struct hash_mm_context init_hash_mm_context;
 985void __init hash__early_init_mmu(void)
 986{
 987#ifndef CONFIG_PPC_64K_PAGES
 988        /*
 989         * We have code in __hash_page_4K() and elsewhere, which assumes it can
 990         * do the following:
 991         *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 992         *
 993         * Where the slot number is between 0-15, and values of 8-15 indicate
 994         * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 995         * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
 996         * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
 997         * with a BUILD_BUG_ON().
 998         */
 999        BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1000#endif /* CONFIG_PPC_64K_PAGES */
1001
1002        htab_init_page_sizes();
1003
1004        /*
1005         * initialize page table size
1006         */
1007        __pte_frag_nr = H_PTE_FRAG_NR;
1008        __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1009        __pmd_frag_nr = H_PMD_FRAG_NR;
1010        __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1011
1012        __pte_index_size = H_PTE_INDEX_SIZE;
1013        __pmd_index_size = H_PMD_INDEX_SIZE;
1014        __pud_index_size = H_PUD_INDEX_SIZE;
1015        __pgd_index_size = H_PGD_INDEX_SIZE;
1016        __pud_cache_index = H_PUD_CACHE_INDEX;
1017        __pte_table_size = H_PTE_TABLE_SIZE;
1018        __pmd_table_size = H_PMD_TABLE_SIZE;
1019        __pud_table_size = H_PUD_TABLE_SIZE;
1020        __pgd_table_size = H_PGD_TABLE_SIZE;
1021        /*
1022         * 4k use hugepd format, so for hash set then to
1023         * zero
1024         */
1025        __pmd_val_bits = HASH_PMD_VAL_BITS;
1026        __pud_val_bits = HASH_PUD_VAL_BITS;
1027        __pgd_val_bits = HASH_PGD_VAL_BITS;
1028
1029        __kernel_virt_start = H_KERN_VIRT_START;
1030        __vmalloc_start = H_VMALLOC_START;
1031        __vmalloc_end = H_VMALLOC_END;
1032        __kernel_io_start = H_KERN_IO_START;
1033        __kernel_io_end = H_KERN_IO_END;
1034        vmemmap = (struct page *)H_VMEMMAP_START;
1035        ioremap_bot = IOREMAP_BASE;
1036
1037#ifdef CONFIG_PCI
1038        pci_io_base = ISA_IO_BASE;
1039#endif
1040
1041        /* Select appropriate backend */
1042        if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1043                ps3_early_mm_init();
1044        else if (firmware_has_feature(FW_FEATURE_LPAR))
1045                hpte_init_pseries();
1046        else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1047                hpte_init_native();
1048
1049        if (!mmu_hash_ops.hpte_insert)
1050                panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1051
1052        /*
1053         * Initialize the MMU Hash table and create the linear mapping
1054         * of memory. Has to be done before SLB initialization as this is
1055         * currently where the page size encoding is obtained.
1056         */
1057        htab_initialize();
1058
1059        init_mm.context.hash_context = &init_hash_mm_context;
1060        mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1061
1062        pr_info("Initializing hash mmu with SLB\n");
1063        /* Initialize SLB management */
1064        slb_initialize();
1065
1066        if (cpu_has_feature(CPU_FTR_ARCH_206)
1067                        && cpu_has_feature(CPU_FTR_HVMODE))
1068                tlbiel_all();
1069}
1070
1071#ifdef CONFIG_SMP
1072void hash__early_init_mmu_secondary(void)
1073{
1074        /* Initialize hash table for that CPU */
1075        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1076
1077                if (!cpu_has_feature(CPU_FTR_ARCH_300))
1078                        mtspr(SPRN_SDR1, _SDR1);
1079                else
1080                        mtspr(SPRN_PTCR,
1081                              __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1082        }
1083        /* Initialize SLB */
1084        slb_initialize();
1085
1086        if (cpu_has_feature(CPU_FTR_ARCH_206)
1087                        && cpu_has_feature(CPU_FTR_HVMODE))
1088                tlbiel_all();
1089}
1090#endif /* CONFIG_SMP */
1091
1092/*
1093 * Called by asm hashtable.S for doing lazy icache flush
1094 */
1095unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1096{
1097        struct page *page;
1098
1099        if (!pfn_valid(pte_pfn(pte)))
1100                return pp;
1101
1102        page = pte_page(pte);
1103
1104        /* page is dirty */
1105        if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1106                if (trap == 0x400) {
1107                        flush_dcache_icache_page(page);
1108                        set_bit(PG_arch_1, &page->flags);
1109                } else
1110                        pp |= HPTE_R_N;
1111        }
1112        return pp;
1113}
1114
1115#ifdef CONFIG_PPC_MM_SLICES
1116static unsigned int get_paca_psize(unsigned long addr)
1117{
1118        unsigned char *psizes;
1119        unsigned long index, mask_index;
1120
1121        if (addr < SLICE_LOW_TOP) {
1122                psizes = get_paca()->mm_ctx_low_slices_psize;
1123                index = GET_LOW_SLICE_INDEX(addr);
1124        } else {
1125                psizes = get_paca()->mm_ctx_high_slices_psize;
1126                index = GET_HIGH_SLICE_INDEX(addr);
1127        }
1128        mask_index = index & 0x1;
1129        return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1130}
1131
1132#else
1133unsigned int get_paca_psize(unsigned long addr)
1134{
1135        return get_paca()->mm_ctx_user_psize;
1136}
1137#endif
1138
1139/*
1140 * Demote a segment to using 4k pages.
1141 * For now this makes the whole process use 4k pages.
1142 */
1143#ifdef CONFIG_PPC_64K_PAGES
1144void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1145{
1146        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1147                return;
1148        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1149        copro_flush_all_slbs(mm);
1150        if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1151
1152                copy_mm_to_paca(mm);
1153                slb_flush_and_restore_bolted();
1154        }
1155}
1156#endif /* CONFIG_PPC_64K_PAGES */
1157
1158#ifdef CONFIG_PPC_SUBPAGE_PROT
1159/*
1160 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1161 * Userspace sets the subpage permissions using the subpage_prot system call.
1162 *
1163 * Result is 0: full permissions, _PAGE_RW: read-only,
1164 * _PAGE_RWX: no access.
1165 */
1166static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1167{
1168        struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1169        u32 spp = 0;
1170        u32 **sbpm, *sbpp;
1171
1172        if (!spt)
1173                return 0;
1174
1175        if (ea >= spt->maxaddr)
1176                return 0;
1177        if (ea < 0x100000000UL) {
1178                /* addresses below 4GB use spt->low_prot */
1179                sbpm = spt->low_prot;
1180        } else {
1181                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1182                if (!sbpm)
1183                        return 0;
1184        }
1185        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1186        if (!sbpp)
1187                return 0;
1188        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1189
1190        /* extract 2-bit bitfield for this 4k subpage */
1191        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1192
1193        /*
1194         * 0 -> full premission
1195         * 1 -> Read only
1196         * 2 -> no access.
1197         * We return the flag that need to be cleared.
1198         */
1199        spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1200        return spp;
1201}
1202
1203#else /* CONFIG_PPC_SUBPAGE_PROT */
1204static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1205{
1206        return 0;
1207}
1208#endif
1209
1210void hash_failure_debug(unsigned long ea, unsigned long access,
1211                        unsigned long vsid, unsigned long trap,
1212                        int ssize, int psize, int lpsize, unsigned long pte)
1213{
1214        if (!printk_ratelimit())
1215                return;
1216        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1217                ea, access, current->comm);
1218        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1219                trap, vsid, ssize, psize, lpsize, pte);
1220}
1221
1222static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1223                             int psize, bool user_region)
1224{
1225        if (user_region) {
1226                if (psize != get_paca_psize(ea)) {
1227                        copy_mm_to_paca(mm);
1228                        slb_flush_and_restore_bolted();
1229                }
1230        } else if (get_paca()->vmalloc_sllp !=
1231                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1232                get_paca()->vmalloc_sllp =
1233                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1234                slb_vmalloc_update();
1235        }
1236}
1237
1238/*
1239 * Result code is:
1240 *  0 - handled
1241 *  1 - normal page fault
1242 * -1 - critical hash insertion error
1243 * -2 - access not permitted by subpage protection mechanism
1244 */
1245int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1246                 unsigned long access, unsigned long trap,
1247                 unsigned long flags)
1248{
1249        bool is_thp;
1250        enum ctx_state prev_state = exception_enter();
1251        pgd_t *pgdir;
1252        unsigned long vsid;
1253        pte_t *ptep;
1254        unsigned hugeshift;
1255        int rc, user_region = 0;
1256        int psize, ssize;
1257
1258        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1259                ea, access, trap);
1260        trace_hash_fault(ea, access, trap);
1261
1262        /* Get region & vsid */
1263        switch (get_region_id(ea)) {
1264        case USER_REGION_ID:
1265                user_region = 1;
1266                if (! mm) {
1267                        DBG_LOW(" user region with no mm !\n");
1268                        rc = 1;
1269                        goto bail;
1270                }
1271                psize = get_slice_psize(mm, ea);
1272                ssize = user_segment_size(ea);
1273                vsid = get_user_vsid(&mm->context, ea, ssize);
1274                break;
1275        case VMALLOC_REGION_ID:
1276                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1277                psize = mmu_vmalloc_psize;
1278                ssize = mmu_kernel_ssize;
1279                break;
1280
1281        case IO_REGION_ID:
1282                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1283                psize = mmu_io_psize;
1284                ssize = mmu_kernel_ssize;
1285                break;
1286        default:
1287                /*
1288                 * Not a valid range
1289                 * Send the problem up to do_page_fault()
1290                 */
1291                rc = 1;
1292                goto bail;
1293        }
1294        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1295
1296        /* Bad address. */
1297        if (!vsid) {
1298                DBG_LOW("Bad address!\n");
1299                rc = 1;
1300                goto bail;
1301        }
1302        /* Get pgdir */
1303        pgdir = mm->pgd;
1304        if (pgdir == NULL) {
1305                rc = 1;
1306                goto bail;
1307        }
1308
1309        /* Check CPU locality */
1310        if (user_region && mm_is_thread_local(mm))
1311                flags |= HPTE_LOCAL_UPDATE;
1312
1313#ifndef CONFIG_PPC_64K_PAGES
1314        /*
1315         * If we use 4K pages and our psize is not 4K, then we might
1316         * be hitting a special driver mapping, and need to align the
1317         * address before we fetch the PTE.
1318         *
1319         * It could also be a hugepage mapping, in which case this is
1320         * not necessary, but it's not harmful, either.
1321         */
1322        if (psize != MMU_PAGE_4K)
1323                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1324#endif /* CONFIG_PPC_64K_PAGES */
1325
1326        /* Get PTE and page size from page tables */
1327        ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1328        if (ptep == NULL || !pte_present(*ptep)) {
1329                DBG_LOW(" no PTE !\n");
1330                rc = 1;
1331                goto bail;
1332        }
1333
1334        /* Add _PAGE_PRESENT to the required access perm */
1335        access |= _PAGE_PRESENT;
1336
1337        /*
1338         * Pre-check access permissions (will be re-checked atomically
1339         * in __hash_page_XX but this pre-check is a fast path
1340         */
1341        if (!check_pte_access(access, pte_val(*ptep))) {
1342                DBG_LOW(" no access !\n");
1343                rc = 1;
1344                goto bail;
1345        }
1346
1347        if (hugeshift) {
1348                if (is_thp)
1349                        rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1350                                             trap, flags, ssize, psize);
1351#ifdef CONFIG_HUGETLB_PAGE
1352                else
1353                        rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1354                                              flags, ssize, hugeshift, psize);
1355#else
1356                else {
1357                        /*
1358                         * if we have hugeshift, and is not transhuge with
1359                         * hugetlb disabled, something is really wrong.
1360                         */
1361                        rc = 1;
1362                        WARN_ON(1);
1363                }
1364#endif
1365                if (current->mm == mm)
1366                        check_paca_psize(ea, mm, psize, user_region);
1367
1368                goto bail;
1369        }
1370
1371#ifndef CONFIG_PPC_64K_PAGES
1372        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1373#else
1374        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1375                pte_val(*(ptep + PTRS_PER_PTE)));
1376#endif
1377        /* Do actual hashing */
1378#ifdef CONFIG_PPC_64K_PAGES
1379        /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1380        if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1381                demote_segment_4k(mm, ea);
1382                psize = MMU_PAGE_4K;
1383        }
1384
1385        /*
1386         * If this PTE is non-cacheable and we have restrictions on
1387         * using non cacheable large pages, then we switch to 4k
1388         */
1389        if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1390                if (user_region) {
1391                        demote_segment_4k(mm, ea);
1392                        psize = MMU_PAGE_4K;
1393                } else if (ea < VMALLOC_END) {
1394                        /*
1395                         * some driver did a non-cacheable mapping
1396                         * in vmalloc space, so switch vmalloc
1397                         * to 4k pages
1398                         */
1399                        printk(KERN_ALERT "Reducing vmalloc segment "
1400                               "to 4kB pages because of "
1401                               "non-cacheable mapping\n");
1402                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1403                        copro_flush_all_slbs(mm);
1404                }
1405        }
1406
1407#endif /* CONFIG_PPC_64K_PAGES */
1408
1409        if (current->mm == mm)
1410                check_paca_psize(ea, mm, psize, user_region);
1411
1412#ifdef CONFIG_PPC_64K_PAGES
1413        if (psize == MMU_PAGE_64K)
1414                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1415                                     flags, ssize);
1416        else
1417#endif /* CONFIG_PPC_64K_PAGES */
1418        {
1419                int spp = subpage_protection(mm, ea);
1420                if (access & spp)
1421                        rc = -2;
1422                else
1423                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1424                                            flags, ssize, spp);
1425        }
1426
1427        /*
1428         * Dump some info in case of hash insertion failure, they should
1429         * never happen so it is really useful to know if/when they do
1430         */
1431        if (rc == -1)
1432                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1433                                   psize, pte_val(*ptep));
1434#ifndef CONFIG_PPC_64K_PAGES
1435        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1436#else
1437        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1438                pte_val(*(ptep + PTRS_PER_PTE)));
1439#endif
1440        DBG_LOW(" -> rc=%d\n", rc);
1441
1442bail:
1443        exception_exit(prev_state);
1444        return rc;
1445}
1446EXPORT_SYMBOL_GPL(hash_page_mm);
1447
1448int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1449              unsigned long dsisr)
1450{
1451        unsigned long flags = 0;
1452        struct mm_struct *mm = current->mm;
1453
1454        if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1455            (get_region_id(ea) == IO_REGION_ID))
1456                mm = &init_mm;
1457
1458        if (dsisr & DSISR_NOHPTE)
1459                flags |= HPTE_NOHPTE_UPDATE;
1460
1461        return hash_page_mm(mm, ea, access, trap, flags);
1462}
1463EXPORT_SYMBOL_GPL(hash_page);
1464
1465int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1466                unsigned long dsisr)
1467{
1468        unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1469        unsigned long flags = 0;
1470        struct mm_struct *mm = current->mm;
1471        unsigned int region_id = get_region_id(ea);
1472
1473        if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1474                mm = &init_mm;
1475
1476        if (dsisr & DSISR_NOHPTE)
1477                flags |= HPTE_NOHPTE_UPDATE;
1478
1479        if (dsisr & DSISR_ISSTORE)
1480                access |= _PAGE_WRITE;
1481        /*
1482         * We set _PAGE_PRIVILEGED only when
1483         * kernel mode access kernel space.
1484         *
1485         * _PAGE_PRIVILEGED is NOT set
1486         * 1) when kernel mode access user space
1487         * 2) user space access kernel space.
1488         */
1489        access |= _PAGE_PRIVILEGED;
1490        if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1491                access &= ~_PAGE_PRIVILEGED;
1492
1493        if (trap == 0x400)
1494                access |= _PAGE_EXEC;
1495
1496        return hash_page_mm(mm, ea, access, trap, flags);
1497}
1498
1499#ifdef CONFIG_PPC_MM_SLICES
1500static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1501{
1502        int psize = get_slice_psize(mm, ea);
1503
1504        /* We only prefault standard pages for now */
1505        if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1506                return false;
1507
1508        /*
1509         * Don't prefault if subpage protection is enabled for the EA.
1510         */
1511        if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1512                return false;
1513
1514        return true;
1515}
1516#else
1517static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1518{
1519        return true;
1520}
1521#endif
1522
1523void hash_preload(struct mm_struct *mm, unsigned long ea,
1524                  bool is_exec, unsigned long trap)
1525{
1526        int hugepage_shift;
1527        unsigned long vsid;
1528        pgd_t *pgdir;
1529        pte_t *ptep;
1530        unsigned long flags;
1531        int rc, ssize, update_flags = 0;
1532        unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1533
1534        BUG_ON(get_region_id(ea) != USER_REGION_ID);
1535
1536        if (!should_hash_preload(mm, ea))
1537                return;
1538
1539        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1540                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1541
1542        /* Get Linux PTE if available */
1543        pgdir = mm->pgd;
1544        if (pgdir == NULL)
1545                return;
1546
1547        /* Get VSID */
1548        ssize = user_segment_size(ea);
1549        vsid = get_user_vsid(&mm->context, ea, ssize);
1550        if (!vsid)
1551                return;
1552        /*
1553         * Hash doesn't like irqs. Walking linux page table with irq disabled
1554         * saves us from holding multiple locks.
1555         */
1556        local_irq_save(flags);
1557
1558        /*
1559         * THP pages use update_mmu_cache_pmd. We don't do
1560         * hash preload there. Hence can ignore THP here
1561         */
1562        ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1563        if (!ptep)
1564                goto out_exit;
1565
1566        WARN_ON(hugepage_shift);
1567#ifdef CONFIG_PPC_64K_PAGES
1568        /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1569         * a 64K kernel), then we don't preload, hash_page() will take
1570         * care of it once we actually try to access the page.
1571         * That way we don't have to duplicate all of the logic for segment
1572         * page size demotion here
1573         */
1574        if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1575                goto out_exit;
1576#endif /* CONFIG_PPC_64K_PAGES */
1577
1578        /* Is that local to this CPU ? */
1579        if (mm_is_thread_local(mm))
1580                update_flags |= HPTE_LOCAL_UPDATE;
1581
1582        /* Hash it in */
1583#ifdef CONFIG_PPC_64K_PAGES
1584        if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1585                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1586                                     update_flags, ssize);
1587        else
1588#endif /* CONFIG_PPC_64K_PAGES */
1589                rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1590                                    ssize, subpage_protection(mm, ea));
1591
1592        /* Dump some info in case of hash insertion failure, they should
1593         * never happen so it is really useful to know if/when they do
1594         */
1595        if (rc == -1)
1596                hash_failure_debug(ea, access, vsid, trap, ssize,
1597                                   mm_ctx_user_psize(&mm->context),
1598                                   mm_ctx_user_psize(&mm->context),
1599                                   pte_val(*ptep));
1600out_exit:
1601        local_irq_restore(flags);
1602}
1603
1604#ifdef CONFIG_PPC_MEM_KEYS
1605/*
1606 * Return the protection key associated with the given address and the
1607 * mm_struct.
1608 */
1609u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1610{
1611        pte_t *ptep;
1612        u16 pkey = 0;
1613        unsigned long flags;
1614
1615        if (!mm || !mm->pgd)
1616                return 0;
1617
1618        local_irq_save(flags);
1619        ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1620        if (ptep)
1621                pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1622        local_irq_restore(flags);
1623
1624        return pkey;
1625}
1626#endif /* CONFIG_PPC_MEM_KEYS */
1627
1628#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1629static inline void tm_flush_hash_page(int local)
1630{
1631        /*
1632         * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1633         * page back to a block device w/PIO could pick up transactional data
1634         * (bad!) so we force an abort here. Before the sync the page will be
1635         * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1636         * kernel uses a page from userspace without unmapping it first, it may
1637         * see the speculated version.
1638         */
1639        if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1640            MSR_TM_ACTIVE(current->thread.regs->msr)) {
1641                tm_enable();
1642                tm_abort(TM_CAUSE_TLBI);
1643        }
1644}
1645#else
1646static inline void tm_flush_hash_page(int local)
1647{
1648}
1649#endif
1650
1651/*
1652 * Return the global hash slot, corresponding to the given PTE, which contains
1653 * the HPTE.
1654 */
1655unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1656                int ssize, real_pte_t rpte, unsigned int subpg_index)
1657{
1658        unsigned long hash, gslot, hidx;
1659
1660        hash = hpt_hash(vpn, shift, ssize);
1661        hidx = __rpte_to_hidx(rpte, subpg_index);
1662        if (hidx & _PTEIDX_SECONDARY)
1663                hash = ~hash;
1664        gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1665        gslot += hidx & _PTEIDX_GROUP_IX;
1666        return gslot;
1667}
1668
1669/*
1670 * WARNING: This is called from hash_low_64.S, if you change this prototype,
1671 *          do not forget to update the assembly call site !
1672 */
1673void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1674                     unsigned long flags)
1675{
1676        unsigned long index, shift, gslot;
1677        int local = flags & HPTE_LOCAL_UPDATE;
1678
1679        DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1680        pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1681                gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1682                DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1683                /*
1684                 * We use same base page size and actual psize, because we don't
1685                 * use these functions for hugepage
1686                 */
1687                mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1688                                             ssize, local);
1689        } pte_iterate_hashed_end();
1690
1691        tm_flush_hash_page(local);
1692}
1693
1694#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1695void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1696                         pmd_t *pmdp, unsigned int psize, int ssize,
1697                         unsigned long flags)
1698{
1699        int i, max_hpte_count, valid;
1700        unsigned long s_addr;
1701        unsigned char *hpte_slot_array;
1702        unsigned long hidx, shift, vpn, hash, slot;
1703        int local = flags & HPTE_LOCAL_UPDATE;
1704
1705        s_addr = addr & HPAGE_PMD_MASK;
1706        hpte_slot_array = get_hpte_slot_array(pmdp);
1707        /*
1708         * IF we try to do a HUGE PTE update after a withdraw is done.
1709         * we will find the below NULL. This happens when we do
1710         * split_huge_page_pmd
1711         */
1712        if (!hpte_slot_array)
1713                return;
1714
1715        if (mmu_hash_ops.hugepage_invalidate) {
1716                mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1717                                                 psize, ssize, local);
1718                goto tm_abort;
1719        }
1720        /*
1721         * No bluk hpte removal support, invalidate each entry
1722         */
1723        shift = mmu_psize_defs[psize].shift;
1724        max_hpte_count = HPAGE_PMD_SIZE >> shift;
1725        for (i = 0; i < max_hpte_count; i++) {
1726                /*
1727                 * 8 bits per each hpte entries
1728                 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1729                 */
1730                valid = hpte_valid(hpte_slot_array, i);
1731                if (!valid)
1732                        continue;
1733                hidx =  hpte_hash_index(hpte_slot_array, i);
1734
1735                /* get the vpn */
1736                addr = s_addr + (i * (1ul << shift));
1737                vpn = hpt_vpn(addr, vsid, ssize);
1738                hash = hpt_hash(vpn, shift, ssize);
1739                if (hidx & _PTEIDX_SECONDARY)
1740                        hash = ~hash;
1741
1742                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1743                slot += hidx & _PTEIDX_GROUP_IX;
1744                mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1745                                             MMU_PAGE_16M, ssize, local);
1746        }
1747tm_abort:
1748        tm_flush_hash_page(local);
1749}
1750#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1751
1752void flush_hash_range(unsigned long number, int local)
1753{
1754        if (mmu_hash_ops.flush_hash_range)
1755                mmu_hash_ops.flush_hash_range(number, local);
1756        else {
1757                int i;
1758                struct ppc64_tlb_batch *batch =
1759                        this_cpu_ptr(&ppc64_tlb_batch);
1760
1761                for (i = 0; i < number; i++)
1762                        flush_hash_page(batch->vpn[i], batch->pte[i],
1763                                        batch->psize, batch->ssize, local);
1764        }
1765}
1766
1767/*
1768 * low_hash_fault is called when we the low level hash code failed
1769 * to instert a PTE due to an hypervisor error
1770 */
1771void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1772{
1773        enum ctx_state prev_state = exception_enter();
1774
1775        if (user_mode(regs)) {
1776#ifdef CONFIG_PPC_SUBPAGE_PROT
1777                if (rc == -2)
1778                        _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1779                else
1780#endif
1781                        _exception(SIGBUS, regs, BUS_ADRERR, address);
1782        } else
1783                bad_page_fault(regs, address, SIGBUS);
1784
1785        exception_exit(prev_state);
1786}
1787
1788long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1789                           unsigned long pa, unsigned long rflags,
1790                           unsigned long vflags, int psize, int ssize)
1791{
1792        unsigned long hpte_group;
1793        long slot;
1794
1795repeat:
1796        hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1797
1798        /* Insert into the hash table, primary slot */
1799        slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1800                                        psize, psize, ssize);
1801
1802        /* Primary is full, try the secondary */
1803        if (unlikely(slot == -1)) {
1804                hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1805                slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1806                                                vflags | HPTE_V_SECONDARY,
1807                                                psize, psize, ssize);
1808                if (slot == -1) {
1809                        if (mftb() & 0x1)
1810                                hpte_group = (hash & htab_hash_mask) *
1811                                                HPTES_PER_GROUP;
1812
1813                        mmu_hash_ops.hpte_remove(hpte_group);
1814                        goto repeat;
1815                }
1816        }
1817
1818        return slot;
1819}
1820
1821#ifdef CONFIG_DEBUG_PAGEALLOC
1822static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1823{
1824        unsigned long hash;
1825        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1826        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1827        unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1828        long ret;
1829
1830        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1831
1832        /* Don't create HPTE entries for bad address */
1833        if (!vsid)
1834                return;
1835
1836        ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1837                                    HPTE_V_BOLTED,
1838                                    mmu_linear_psize, mmu_kernel_ssize);
1839
1840        BUG_ON (ret < 0);
1841        spin_lock(&linear_map_hash_lock);
1842        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1843        linear_map_hash_slots[lmi] = ret | 0x80;
1844        spin_unlock(&linear_map_hash_lock);
1845}
1846
1847static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1848{
1849        unsigned long hash, hidx, slot;
1850        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1851        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1852
1853        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1854        spin_lock(&linear_map_hash_lock);
1855        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1856        hidx = linear_map_hash_slots[lmi] & 0x7f;
1857        linear_map_hash_slots[lmi] = 0;
1858        spin_unlock(&linear_map_hash_lock);
1859        if (hidx & _PTEIDX_SECONDARY)
1860                hash = ~hash;
1861        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1862        slot += hidx & _PTEIDX_GROUP_IX;
1863        mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1864                                     mmu_linear_psize,
1865                                     mmu_kernel_ssize, 0);
1866}
1867
1868void __kernel_map_pages(struct page *page, int numpages, int enable)
1869{
1870        unsigned long flags, vaddr, lmi;
1871        int i;
1872
1873        local_irq_save(flags);
1874        for (i = 0; i < numpages; i++, page++) {
1875                vaddr = (unsigned long)page_address(page);
1876                lmi = __pa(vaddr) >> PAGE_SHIFT;
1877                if (lmi >= linear_map_hash_count)
1878                        continue;
1879                if (enable)
1880                        kernel_map_linear_page(vaddr, lmi);
1881                else
1882                        kernel_unmap_linear_page(vaddr, lmi);
1883        }
1884        local_irq_restore(flags);
1885}
1886#endif /* CONFIG_DEBUG_PAGEALLOC */
1887
1888void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1889                                phys_addr_t first_memblock_size)
1890{
1891        /*
1892         * We don't currently support the first MEMBLOCK not mapping 0
1893         * physical on those processors
1894         */
1895        BUG_ON(first_memblock_base != 0);
1896
1897        /*
1898         * On virtualized systems the first entry is our RMA region aka VRMA,
1899         * non-virtualized 64-bit hash MMU systems don't have a limitation
1900         * on real mode access.
1901         *
1902         * For guests on platforms before POWER9, we clamp the it limit to 1G
1903         * to avoid some funky things such as RTAS bugs etc...
1904         */
1905        if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1906                ppc64_rma_size = first_memblock_size;
1907                if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1908                        ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1909
1910                /* Finally limit subsequent allocations */
1911                memblock_set_current_limit(ppc64_rma_size);
1912        } else {
1913                ppc64_rma_size = ULONG_MAX;
1914        }
1915}
1916
1917#ifdef CONFIG_DEBUG_FS
1918
1919static int hpt_order_get(void *data, u64 *val)
1920{
1921        *val = ppc64_pft_size;
1922        return 0;
1923}
1924
1925static int hpt_order_set(void *data, u64 val)
1926{
1927        if (!mmu_hash_ops.resize_hpt)
1928                return -ENODEV;
1929
1930        return mmu_hash_ops.resize_hpt(val);
1931}
1932
1933DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1934
1935static int __init hash64_debugfs(void)
1936{
1937        if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
1938                                        NULL, &fops_hpt_order)) {
1939                pr_err("lpar: unable to create hpt_order debugsfs file\n");
1940        }
1941
1942        return 0;
1943}
1944machine_device_initcall(pseries, hash64_debugfs);
1945#endif /* CONFIG_DEBUG_FS */
1946
1947void __init print_system_hash_info(void)
1948{
1949        pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
1950
1951        if (htab_hash_mask)
1952                pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
1953        pr_info("kernel vmalloc start   = 0x%lx\n", KERN_VIRT_START);
1954        pr_info("kernel IO start        = 0x%lx\n", KERN_IO_START);
1955        pr_info("kernel vmemmap start   = 0x%lx\n", (unsigned long)vmemmap);
1956}
1957