linux/arch/powerpc/perf/imc-pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * In-Memory Collection (IMC) Performance Monitor counter support.
   4 *
   5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
   6 *           (C) 2017 Anju T Sudhakar, IBM Corporation.
   7 *           (C) 2017 Hemant K Shaw, IBM Corporation.
   8 */
   9#include <linux/perf_event.h>
  10#include <linux/slab.h>
  11#include <asm/opal.h>
  12#include <asm/imc-pmu.h>
  13#include <asm/cputhreads.h>
  14#include <asm/smp.h>
  15#include <linux/string.h>
  16
  17/* Nest IMC data structures and variables */
  18
  19/*
  20 * Used to avoid races in counting the nest-pmu units during hotplug
  21 * register and unregister
  22 */
  23static DEFINE_MUTEX(nest_init_lock);
  24static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
  25static struct imc_pmu **per_nest_pmu_arr;
  26static cpumask_t nest_imc_cpumask;
  27static struct imc_pmu_ref *nest_imc_refc;
  28static int nest_pmus;
  29
  30/* Core IMC data structures and variables */
  31
  32static cpumask_t core_imc_cpumask;
  33static struct imc_pmu_ref *core_imc_refc;
  34static struct imc_pmu *core_imc_pmu;
  35
  36/* Thread IMC data structures and variables */
  37
  38static DEFINE_PER_CPU(u64 *, thread_imc_mem);
  39static struct imc_pmu *thread_imc_pmu;
  40static int thread_imc_mem_size;
  41
  42/* Trace IMC data structures */
  43static DEFINE_PER_CPU(u64 *, trace_imc_mem);
  44static struct imc_pmu_ref *trace_imc_refc;
  45static int trace_imc_mem_size;
  46
  47static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
  48{
  49        return container_of(event->pmu, struct imc_pmu, pmu);
  50}
  51
  52PMU_FORMAT_ATTR(event, "config:0-61");
  53PMU_FORMAT_ATTR(offset, "config:0-31");
  54PMU_FORMAT_ATTR(rvalue, "config:32");
  55PMU_FORMAT_ATTR(mode, "config:33-40");
  56static struct attribute *imc_format_attrs[] = {
  57        &format_attr_event.attr,
  58        &format_attr_offset.attr,
  59        &format_attr_rvalue.attr,
  60        &format_attr_mode.attr,
  61        NULL,
  62};
  63
  64static struct attribute_group imc_format_group = {
  65        .name = "format",
  66        .attrs = imc_format_attrs,
  67};
  68
  69/* Format attribute for imc trace-mode */
  70PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
  71PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
  72PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
  73PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
  74static struct attribute *trace_imc_format_attrs[] = {
  75        &format_attr_event.attr,
  76        &format_attr_cpmc_reserved.attr,
  77        &format_attr_cpmc_event.attr,
  78        &format_attr_cpmc_samplesel.attr,
  79        &format_attr_cpmc_load.attr,
  80        NULL,
  81};
  82
  83static struct attribute_group trace_imc_format_group = {
  84.name = "format",
  85.attrs = trace_imc_format_attrs,
  86};
  87
  88/* Get the cpumask printed to a buffer "buf" */
  89static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
  90                                        struct device_attribute *attr,
  91                                        char *buf)
  92{
  93        struct pmu *pmu = dev_get_drvdata(dev);
  94        struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
  95        cpumask_t *active_mask;
  96
  97        switch(imc_pmu->domain){
  98        case IMC_DOMAIN_NEST:
  99                active_mask = &nest_imc_cpumask;
 100                break;
 101        case IMC_DOMAIN_CORE:
 102                active_mask = &core_imc_cpumask;
 103                break;
 104        default:
 105                return 0;
 106        }
 107
 108        return cpumap_print_to_pagebuf(true, buf, active_mask);
 109}
 110
 111static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
 112
 113static struct attribute *imc_pmu_cpumask_attrs[] = {
 114        &dev_attr_cpumask.attr,
 115        NULL,
 116};
 117
 118static struct attribute_group imc_pmu_cpumask_attr_group = {
 119        .attrs = imc_pmu_cpumask_attrs,
 120};
 121
 122/* device_str_attr_create : Populate event "name" and string "str" in attribute */
 123static struct attribute *device_str_attr_create(const char *name, const char *str)
 124{
 125        struct perf_pmu_events_attr *attr;
 126
 127        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 128        if (!attr)
 129                return NULL;
 130        sysfs_attr_init(&attr->attr.attr);
 131
 132        attr->event_str = str;
 133        attr->attr.attr.name = name;
 134        attr->attr.attr.mode = 0444;
 135        attr->attr.show = perf_event_sysfs_show;
 136
 137        return &attr->attr.attr;
 138}
 139
 140static int imc_parse_event(struct device_node *np, const char *scale,
 141                                  const char *unit, const char *prefix,
 142                                  u32 base, struct imc_events *event)
 143{
 144        const char *s;
 145        u32 reg;
 146
 147        if (of_property_read_u32(np, "reg", &reg))
 148                goto error;
 149        /* Add the base_reg value to the "reg" */
 150        event->value = base + reg;
 151
 152        if (of_property_read_string(np, "event-name", &s))
 153                goto error;
 154
 155        event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
 156        if (!event->name)
 157                goto error;
 158
 159        if (of_property_read_string(np, "scale", &s))
 160                s = scale;
 161
 162        if (s) {
 163                event->scale = kstrdup(s, GFP_KERNEL);
 164                if (!event->scale)
 165                        goto error;
 166        }
 167
 168        if (of_property_read_string(np, "unit", &s))
 169                s = unit;
 170
 171        if (s) {
 172                event->unit = kstrdup(s, GFP_KERNEL);
 173                if (!event->unit)
 174                        goto error;
 175        }
 176
 177        return 0;
 178error:
 179        kfree(event->unit);
 180        kfree(event->scale);
 181        kfree(event->name);
 182        return -EINVAL;
 183}
 184
 185/*
 186 * imc_free_events: Function to cleanup the events list, having
 187 *                  "nr_entries".
 188 */
 189static void imc_free_events(struct imc_events *events, int nr_entries)
 190{
 191        int i;
 192
 193        /* Nothing to clean, return */
 194        if (!events)
 195                return;
 196        for (i = 0; i < nr_entries; i++) {
 197                kfree(events[i].unit);
 198                kfree(events[i].scale);
 199                kfree(events[i].name);
 200        }
 201
 202        kfree(events);
 203}
 204
 205/*
 206 * update_events_in_group: Update the "events" information in an attr_group
 207 *                         and assign the attr_group to the pmu "pmu".
 208 */
 209static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
 210{
 211        struct attribute_group *attr_group;
 212        struct attribute **attrs, *dev_str;
 213        struct device_node *np, *pmu_events;
 214        u32 handle, base_reg;
 215        int i = 0, j = 0, ct, ret;
 216        const char *prefix, *g_scale, *g_unit;
 217        const char *ev_val_str, *ev_scale_str, *ev_unit_str;
 218
 219        if (!of_property_read_u32(node, "events", &handle))
 220                pmu_events = of_find_node_by_phandle(handle);
 221        else
 222                return 0;
 223
 224        /* Did not find any node with a given phandle */
 225        if (!pmu_events)
 226                return 0;
 227
 228        /* Get a count of number of child nodes */
 229        ct = of_get_child_count(pmu_events);
 230
 231        /* Get the event prefix */
 232        if (of_property_read_string(node, "events-prefix", &prefix))
 233                return 0;
 234
 235        /* Get a global unit and scale data if available */
 236        if (of_property_read_string(node, "scale", &g_scale))
 237                g_scale = NULL;
 238
 239        if (of_property_read_string(node, "unit", &g_unit))
 240                g_unit = NULL;
 241
 242        /* "reg" property gives out the base offset of the counters data */
 243        of_property_read_u32(node, "reg", &base_reg);
 244
 245        /* Allocate memory for the events */
 246        pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
 247        if (!pmu->events)
 248                return -ENOMEM;
 249
 250        ct = 0;
 251        /* Parse the events and update the struct */
 252        for_each_child_of_node(pmu_events, np) {
 253                ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
 254                if (!ret)
 255                        ct++;
 256        }
 257
 258        /* Allocate memory for attribute group */
 259        attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
 260        if (!attr_group) {
 261                imc_free_events(pmu->events, ct);
 262                return -ENOMEM;
 263        }
 264
 265        /*
 266         * Allocate memory for attributes.
 267         * Since we have count of events for this pmu, we also allocate
 268         * memory for the scale and unit attribute for now.
 269         * "ct" has the total event structs added from the events-parent node.
 270         * So allocate three times the "ct" (this includes event, event_scale and
 271         * event_unit).
 272         */
 273        attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
 274        if (!attrs) {
 275                kfree(attr_group);
 276                imc_free_events(pmu->events, ct);
 277                return -ENOMEM;
 278        }
 279
 280        attr_group->name = "events";
 281        attr_group->attrs = attrs;
 282        do {
 283                ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
 284                dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
 285                if (!dev_str)
 286                        continue;
 287
 288                attrs[j++] = dev_str;
 289                if (pmu->events[i].scale) {
 290                        ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
 291                        dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
 292                        if (!dev_str)
 293                                continue;
 294
 295                        attrs[j++] = dev_str;
 296                }
 297
 298                if (pmu->events[i].unit) {
 299                        ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
 300                        dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
 301                        if (!dev_str)
 302                                continue;
 303
 304                        attrs[j++] = dev_str;
 305                }
 306        } while (++i < ct);
 307
 308        /* Save the event attribute */
 309        pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
 310
 311        return 0;
 312}
 313
 314/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
 315static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
 316{
 317        return per_cpu(local_nest_imc_refc, cpu);
 318}
 319
 320static void nest_change_cpu_context(int old_cpu, int new_cpu)
 321{
 322        struct imc_pmu **pn = per_nest_pmu_arr;
 323
 324        if (old_cpu < 0 || new_cpu < 0)
 325                return;
 326
 327        while (*pn) {
 328                perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
 329                pn++;
 330        }
 331}
 332
 333static int ppc_nest_imc_cpu_offline(unsigned int cpu)
 334{
 335        int nid, target = -1;
 336        const struct cpumask *l_cpumask;
 337        struct imc_pmu_ref *ref;
 338
 339        /*
 340         * Check in the designated list for this cpu. Dont bother
 341         * if not one of them.
 342         */
 343        if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
 344                return 0;
 345
 346        /*
 347         * Check whether nest_imc is registered. We could end up here if the
 348         * cpuhotplug callback registration fails. i.e, callback invokes the
 349         * offline path for all successfully registered nodes. At this stage,
 350         * nest_imc pmu will not be registered and we should return here.
 351         *
 352         * We return with a zero since this is not an offline failure. And
 353         * cpuhp_setup_state() returns the actual failure reason to the caller,
 354         * which in turn will call the cleanup routine.
 355         */
 356        if (!nest_pmus)
 357                return 0;
 358
 359        /*
 360         * Now that this cpu is one of the designated,
 361         * find a next cpu a) which is online and b) in same chip.
 362         */
 363        nid = cpu_to_node(cpu);
 364        l_cpumask = cpumask_of_node(nid);
 365        target = cpumask_any_but(l_cpumask, cpu);
 366
 367        /*
 368         * Update the cpumask with the target cpu and
 369         * migrate the context if needed
 370         */
 371        if (target >= 0 && target < nr_cpu_ids) {
 372                cpumask_set_cpu(target, &nest_imc_cpumask);
 373                nest_change_cpu_context(cpu, target);
 374        } else {
 375                opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 376                                       get_hard_smp_processor_id(cpu));
 377                /*
 378                 * If this is the last cpu in this chip then, skip the reference
 379                 * count mutex lock and make the reference count on this chip zero.
 380                 */
 381                ref = get_nest_pmu_ref(cpu);
 382                if (!ref)
 383                        return -EINVAL;
 384
 385                ref->refc = 0;
 386        }
 387        return 0;
 388}
 389
 390static int ppc_nest_imc_cpu_online(unsigned int cpu)
 391{
 392        const struct cpumask *l_cpumask;
 393        static struct cpumask tmp_mask;
 394        int res;
 395
 396        /* Get the cpumask of this node */
 397        l_cpumask = cpumask_of_node(cpu_to_node(cpu));
 398
 399        /*
 400         * If this is not the first online CPU on this node, then
 401         * just return.
 402         */
 403        if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
 404                return 0;
 405
 406        /*
 407         * If this is the first online cpu on this node
 408         * disable the nest counters by making an OPAL call.
 409         */
 410        res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 411                                     get_hard_smp_processor_id(cpu));
 412        if (res)
 413                return res;
 414
 415        /* Make this CPU the designated target for counter collection */
 416        cpumask_set_cpu(cpu, &nest_imc_cpumask);
 417        return 0;
 418}
 419
 420static int nest_pmu_cpumask_init(void)
 421{
 422        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
 423                                 "perf/powerpc/imc:online",
 424                                 ppc_nest_imc_cpu_online,
 425                                 ppc_nest_imc_cpu_offline);
 426}
 427
 428static void nest_imc_counters_release(struct perf_event *event)
 429{
 430        int rc, node_id;
 431        struct imc_pmu_ref *ref;
 432
 433        if (event->cpu < 0)
 434                return;
 435
 436        node_id = cpu_to_node(event->cpu);
 437
 438        /*
 439         * See if we need to disable the nest PMU.
 440         * If no events are currently in use, then we have to take a
 441         * mutex to ensure that we don't race with another task doing
 442         * enable or disable the nest counters.
 443         */
 444        ref = get_nest_pmu_ref(event->cpu);
 445        if (!ref)
 446                return;
 447
 448        /* Take the mutex lock for this node and then decrement the reference count */
 449        mutex_lock(&ref->lock);
 450        if (ref->refc == 0) {
 451                /*
 452                 * The scenario where this is true is, when perf session is
 453                 * started, followed by offlining of all cpus in a given node.
 454                 *
 455                 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
 456                 * function set the ref->count to zero, if the cpu which is
 457                 * about to offline is the last cpu in a given node and make
 458                 * an OPAL call to disable the engine in that node.
 459                 *
 460                 */
 461                mutex_unlock(&ref->lock);
 462                return;
 463        }
 464        ref->refc--;
 465        if (ref->refc == 0) {
 466                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 467                                            get_hard_smp_processor_id(event->cpu));
 468                if (rc) {
 469                        mutex_unlock(&ref->lock);
 470                        pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
 471                        return;
 472                }
 473        } else if (ref->refc < 0) {
 474                WARN(1, "nest-imc: Invalid event reference count\n");
 475                ref->refc = 0;
 476        }
 477        mutex_unlock(&ref->lock);
 478}
 479
 480static int nest_imc_event_init(struct perf_event *event)
 481{
 482        int chip_id, rc, node_id;
 483        u32 l_config, config = event->attr.config;
 484        struct imc_mem_info *pcni;
 485        struct imc_pmu *pmu;
 486        struct imc_pmu_ref *ref;
 487        bool flag = false;
 488
 489        if (event->attr.type != event->pmu->type)
 490                return -ENOENT;
 491
 492        /* Sampling not supported */
 493        if (event->hw.sample_period)
 494                return -EINVAL;
 495
 496        if (event->cpu < 0)
 497                return -EINVAL;
 498
 499        pmu = imc_event_to_pmu(event);
 500
 501        /* Sanity check for config (event offset) */
 502        if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
 503                return -EINVAL;
 504
 505        /*
 506         * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
 507         * Get the base memory addresss for this cpu.
 508         */
 509        chip_id = cpu_to_chip_id(event->cpu);
 510
 511        /* Return, if chip_id is not valid */
 512        if (chip_id < 0)
 513                return -ENODEV;
 514
 515        pcni = pmu->mem_info;
 516        do {
 517                if (pcni->id == chip_id) {
 518                        flag = true;
 519                        break;
 520                }
 521                pcni++;
 522        } while (pcni->vbase != 0);
 523
 524        if (!flag)
 525                return -ENODEV;
 526
 527        /*
 528         * Add the event offset to the base address.
 529         */
 530        l_config = config & IMC_EVENT_OFFSET_MASK;
 531        event->hw.event_base = (u64)pcni->vbase + l_config;
 532        node_id = cpu_to_node(event->cpu);
 533
 534        /*
 535         * Get the imc_pmu_ref struct for this node.
 536         * Take the mutex lock and then increment the count of nest pmu events
 537         * inited.
 538         */
 539        ref = get_nest_pmu_ref(event->cpu);
 540        if (!ref)
 541                return -EINVAL;
 542
 543        mutex_lock(&ref->lock);
 544        if (ref->refc == 0) {
 545                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
 546                                             get_hard_smp_processor_id(event->cpu));
 547                if (rc) {
 548                        mutex_unlock(&ref->lock);
 549                        pr_err("nest-imc: Unable to start the counters for node %d\n",
 550                                                                        node_id);
 551                        return rc;
 552                }
 553        }
 554        ++ref->refc;
 555        mutex_unlock(&ref->lock);
 556
 557        event->destroy = nest_imc_counters_release;
 558        return 0;
 559}
 560
 561/*
 562 * core_imc_mem_init : Initializes memory for the current core.
 563 *
 564 * Uses alloc_pages_node() and uses the returned address as an argument to
 565 * an opal call to configure the pdbar. The address sent as an argument is
 566 * converted to physical address before the opal call is made. This is the
 567 * base address at which the core imc counters are populated.
 568 */
 569static int core_imc_mem_init(int cpu, int size)
 570{
 571        int nid, rc = 0, core_id = (cpu / threads_per_core);
 572        struct imc_mem_info *mem_info;
 573
 574        /*
 575         * alloc_pages_node() will allocate memory for core in the
 576         * local node only.
 577         */
 578        nid = cpu_to_node(cpu);
 579        mem_info = &core_imc_pmu->mem_info[core_id];
 580        mem_info->id = core_id;
 581
 582        /* We need only vbase for core counters */
 583        mem_info->vbase = page_address(alloc_pages_node(nid,
 584                                          GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 585                                          __GFP_NOWARN, get_order(size)));
 586        if (!mem_info->vbase)
 587                return -ENOMEM;
 588
 589        /* Init the mutex */
 590        core_imc_refc[core_id].id = core_id;
 591        mutex_init(&core_imc_refc[core_id].lock);
 592
 593        rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
 594                                __pa((void *)mem_info->vbase),
 595                                get_hard_smp_processor_id(cpu));
 596        if (rc) {
 597                free_pages((u64)mem_info->vbase, get_order(size));
 598                mem_info->vbase = NULL;
 599        }
 600
 601        return rc;
 602}
 603
 604static bool is_core_imc_mem_inited(int cpu)
 605{
 606        struct imc_mem_info *mem_info;
 607        int core_id = (cpu / threads_per_core);
 608
 609        mem_info = &core_imc_pmu->mem_info[core_id];
 610        if (!mem_info->vbase)
 611                return false;
 612
 613        return true;
 614}
 615
 616static int ppc_core_imc_cpu_online(unsigned int cpu)
 617{
 618        const struct cpumask *l_cpumask;
 619        static struct cpumask tmp_mask;
 620        int ret = 0;
 621
 622        /* Get the cpumask for this core */
 623        l_cpumask = cpu_sibling_mask(cpu);
 624
 625        /* If a cpu for this core is already set, then, don't do anything */
 626        if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
 627                return 0;
 628
 629        if (!is_core_imc_mem_inited(cpu)) {
 630                ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
 631                if (ret) {
 632                        pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
 633                        return ret;
 634                }
 635        }
 636
 637        /* set the cpu in the mask */
 638        cpumask_set_cpu(cpu, &core_imc_cpumask);
 639        return 0;
 640}
 641
 642static int ppc_core_imc_cpu_offline(unsigned int cpu)
 643{
 644        unsigned int core_id;
 645        int ncpu;
 646        struct imc_pmu_ref *ref;
 647
 648        /*
 649         * clear this cpu out of the mask, if not present in the mask,
 650         * don't bother doing anything.
 651         */
 652        if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
 653                return 0;
 654
 655        /*
 656         * Check whether core_imc is registered. We could end up here
 657         * if the cpuhotplug callback registration fails. i.e, callback
 658         * invokes the offline path for all sucessfully registered cpus.
 659         * At this stage, core_imc pmu will not be registered and we
 660         * should return here.
 661         *
 662         * We return with a zero since this is not an offline failure.
 663         * And cpuhp_setup_state() returns the actual failure reason
 664         * to the caller, which inturn will call the cleanup routine.
 665         */
 666        if (!core_imc_pmu->pmu.event_init)
 667                return 0;
 668
 669        /* Find any online cpu in that core except the current "cpu" */
 670        ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
 671
 672        if (ncpu >= 0 && ncpu < nr_cpu_ids) {
 673                cpumask_set_cpu(ncpu, &core_imc_cpumask);
 674                perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
 675        } else {
 676                /*
 677                 * If this is the last cpu in this core then, skip taking refernce
 678                 * count mutex lock for this core and directly zero "refc" for
 679                 * this core.
 680                 */
 681                opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 682                                       get_hard_smp_processor_id(cpu));
 683                core_id = cpu / threads_per_core;
 684                ref = &core_imc_refc[core_id];
 685                if (!ref)
 686                        return -EINVAL;
 687
 688                ref->refc = 0;
 689        }
 690        return 0;
 691}
 692
 693static int core_imc_pmu_cpumask_init(void)
 694{
 695        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
 696                                 "perf/powerpc/imc_core:online",
 697                                 ppc_core_imc_cpu_online,
 698                                 ppc_core_imc_cpu_offline);
 699}
 700
 701static void core_imc_counters_release(struct perf_event *event)
 702{
 703        int rc, core_id;
 704        struct imc_pmu_ref *ref;
 705
 706        if (event->cpu < 0)
 707                return;
 708        /*
 709         * See if we need to disable the IMC PMU.
 710         * If no events are currently in use, then we have to take a
 711         * mutex to ensure that we don't race with another task doing
 712         * enable or disable the core counters.
 713         */
 714        core_id = event->cpu / threads_per_core;
 715
 716        /* Take the mutex lock and decrement the refernce count for this core */
 717        ref = &core_imc_refc[core_id];
 718        if (!ref)
 719                return;
 720
 721        mutex_lock(&ref->lock);
 722        if (ref->refc == 0) {
 723                /*
 724                 * The scenario where this is true is, when perf session is
 725                 * started, followed by offlining of all cpus in a given core.
 726                 *
 727                 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
 728                 * function set the ref->count to zero, if the cpu which is
 729                 * about to offline is the last cpu in a given core and make
 730                 * an OPAL call to disable the engine in that core.
 731                 *
 732                 */
 733                mutex_unlock(&ref->lock);
 734                return;
 735        }
 736        ref->refc--;
 737        if (ref->refc == 0) {
 738                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 739                                            get_hard_smp_processor_id(event->cpu));
 740                if (rc) {
 741                        mutex_unlock(&ref->lock);
 742                        pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
 743                        return;
 744                }
 745        } else if (ref->refc < 0) {
 746                WARN(1, "core-imc: Invalid event reference count\n");
 747                ref->refc = 0;
 748        }
 749        mutex_unlock(&ref->lock);
 750}
 751
 752static int core_imc_event_init(struct perf_event *event)
 753{
 754        int core_id, rc;
 755        u64 config = event->attr.config;
 756        struct imc_mem_info *pcmi;
 757        struct imc_pmu *pmu;
 758        struct imc_pmu_ref *ref;
 759
 760        if (event->attr.type != event->pmu->type)
 761                return -ENOENT;
 762
 763        /* Sampling not supported */
 764        if (event->hw.sample_period)
 765                return -EINVAL;
 766
 767        if (event->cpu < 0)
 768                return -EINVAL;
 769
 770        event->hw.idx = -1;
 771        pmu = imc_event_to_pmu(event);
 772
 773        /* Sanity check for config (event offset) */
 774        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 775                return -EINVAL;
 776
 777        if (!is_core_imc_mem_inited(event->cpu))
 778                return -ENODEV;
 779
 780        core_id = event->cpu / threads_per_core;
 781        pcmi = &core_imc_pmu->mem_info[core_id];
 782        if ((!pcmi->vbase))
 783                return -ENODEV;
 784
 785        /* Get the core_imc mutex for this core */
 786        ref = &core_imc_refc[core_id];
 787        if (!ref)
 788                return -EINVAL;
 789
 790        /*
 791         * Core pmu units are enabled only when it is used.
 792         * See if this is triggered for the first time.
 793         * If yes, take the mutex lock and enable the core counters.
 794         * If not, just increment the count in core_imc_refc struct.
 795         */
 796        mutex_lock(&ref->lock);
 797        if (ref->refc == 0) {
 798                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
 799                                             get_hard_smp_processor_id(event->cpu));
 800                if (rc) {
 801                        mutex_unlock(&ref->lock);
 802                        pr_err("core-imc: Unable to start the counters for core %d\n",
 803                                                                        core_id);
 804                        return rc;
 805                }
 806        }
 807        ++ref->refc;
 808        mutex_unlock(&ref->lock);
 809
 810        event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
 811        event->destroy = core_imc_counters_release;
 812        return 0;
 813}
 814
 815/*
 816 * Allocates a page of memory for each of the online cpus, and load
 817 * LDBAR with 0.
 818 * The physical base address of the page allocated for a cpu will be
 819 * written to the LDBAR for that cpu, when the thread-imc event
 820 * is added.
 821 *
 822 * LDBAR Register Layout:
 823 *
 824 *  0          4         8         12        16        20        24        28
 825 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 826 *   | |       [   ]    [                   Counter Address [8:50]
 827 *   | * Mode    |
 828 *   |           * PB Scope
 829 *   * Enable/Disable
 830 *
 831 *  32        36        40        44        48        52        56        60
 832 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 833 *           Counter Address [8:50]              ]
 834 *
 835 */
 836static int thread_imc_mem_alloc(int cpu_id, int size)
 837{
 838        u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
 839        int nid = cpu_to_node(cpu_id);
 840
 841        if (!local_mem) {
 842                /*
 843                 * This case could happen only once at start, since we dont
 844                 * free the memory in cpu offline path.
 845                 */
 846                local_mem = page_address(alloc_pages_node(nid,
 847                                  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 848                                  __GFP_NOWARN, get_order(size)));
 849                if (!local_mem)
 850                        return -ENOMEM;
 851
 852                per_cpu(thread_imc_mem, cpu_id) = local_mem;
 853        }
 854
 855        mtspr(SPRN_LDBAR, 0);
 856        return 0;
 857}
 858
 859static int ppc_thread_imc_cpu_online(unsigned int cpu)
 860{
 861        return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
 862}
 863
 864static int ppc_thread_imc_cpu_offline(unsigned int cpu)
 865{
 866        mtspr(SPRN_LDBAR, 0);
 867        return 0;
 868}
 869
 870static int thread_imc_cpu_init(void)
 871{
 872        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
 873                          "perf/powerpc/imc_thread:online",
 874                          ppc_thread_imc_cpu_online,
 875                          ppc_thread_imc_cpu_offline);
 876}
 877
 878static int thread_imc_event_init(struct perf_event *event)
 879{
 880        u32 config = event->attr.config;
 881        struct task_struct *target;
 882        struct imc_pmu *pmu;
 883
 884        if (event->attr.type != event->pmu->type)
 885                return -ENOENT;
 886
 887        if (!capable(CAP_SYS_ADMIN))
 888                return -EACCES;
 889
 890        /* Sampling not supported */
 891        if (event->hw.sample_period)
 892                return -EINVAL;
 893
 894        event->hw.idx = -1;
 895        pmu = imc_event_to_pmu(event);
 896
 897        /* Sanity check for config offset */
 898        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 899                return -EINVAL;
 900
 901        target = event->hw.target;
 902        if (!target)
 903                return -EINVAL;
 904
 905        event->pmu->task_ctx_nr = perf_sw_context;
 906        return 0;
 907}
 908
 909static bool is_thread_imc_pmu(struct perf_event *event)
 910{
 911        if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
 912                return true;
 913
 914        return false;
 915}
 916
 917static u64 * get_event_base_addr(struct perf_event *event)
 918{
 919        u64 addr;
 920
 921        if (is_thread_imc_pmu(event)) {
 922                addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
 923                return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
 924        }
 925
 926        return (u64 *)event->hw.event_base;
 927}
 928
 929static void thread_imc_pmu_start_txn(struct pmu *pmu,
 930                                     unsigned int txn_flags)
 931{
 932        if (txn_flags & ~PERF_PMU_TXN_ADD)
 933                return;
 934        perf_pmu_disable(pmu);
 935}
 936
 937static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
 938{
 939        perf_pmu_enable(pmu);
 940}
 941
 942static int thread_imc_pmu_commit_txn(struct pmu *pmu)
 943{
 944        perf_pmu_enable(pmu);
 945        return 0;
 946}
 947
 948static u64 imc_read_counter(struct perf_event *event)
 949{
 950        u64 *addr, data;
 951
 952        /*
 953         * In-Memory Collection (IMC) counters are free flowing counters.
 954         * So we take a snapshot of the counter value on enable and save it
 955         * to calculate the delta at later stage to present the event counter
 956         * value.
 957         */
 958        addr = get_event_base_addr(event);
 959        data = be64_to_cpu(READ_ONCE(*addr));
 960        local64_set(&event->hw.prev_count, data);
 961
 962        return data;
 963}
 964
 965static void imc_event_update(struct perf_event *event)
 966{
 967        u64 counter_prev, counter_new, final_count;
 968
 969        counter_prev = local64_read(&event->hw.prev_count);
 970        counter_new = imc_read_counter(event);
 971        final_count = counter_new - counter_prev;
 972
 973        /* Update the delta to the event count */
 974        local64_add(final_count, &event->count);
 975}
 976
 977static void imc_event_start(struct perf_event *event, int flags)
 978{
 979        /*
 980         * In Memory Counters are free flowing counters. HW or the microcode
 981         * keeps adding to the counter offset in memory. To get event
 982         * counter value, we snapshot the value here and we calculate
 983         * delta at later point.
 984         */
 985        imc_read_counter(event);
 986}
 987
 988static void imc_event_stop(struct perf_event *event, int flags)
 989{
 990        /*
 991         * Take a snapshot and calculate the delta and update
 992         * the event counter values.
 993         */
 994        imc_event_update(event);
 995}
 996
 997static int imc_event_add(struct perf_event *event, int flags)
 998{
 999        if (flags & PERF_EF_START)
1000                imc_event_start(event, flags);
1001
1002        return 0;
1003}
1004
1005static int thread_imc_event_add(struct perf_event *event, int flags)
1006{
1007        int core_id;
1008        struct imc_pmu_ref *ref;
1009        u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1010
1011        if (flags & PERF_EF_START)
1012                imc_event_start(event, flags);
1013
1014        if (!is_core_imc_mem_inited(smp_processor_id()))
1015                return -EINVAL;
1016
1017        core_id = smp_processor_id() / threads_per_core;
1018        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1019        mtspr(SPRN_LDBAR, ldbar_value);
1020
1021        /*
1022         * imc pmus are enabled only when it is used.
1023         * See if this is triggered for the first time.
1024         * If yes, take the mutex lock and enable the counters.
1025         * If not, just increment the count in ref count struct.
1026         */
1027        ref = &core_imc_refc[core_id];
1028        if (!ref)
1029                return -EINVAL;
1030
1031        mutex_lock(&ref->lock);
1032        if (ref->refc == 0) {
1033                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1034                    get_hard_smp_processor_id(smp_processor_id()))) {
1035                        mutex_unlock(&ref->lock);
1036                        pr_err("thread-imc: Unable to start the counter\
1037                                for core %d\n", core_id);
1038                        return -EINVAL;
1039                }
1040        }
1041        ++ref->refc;
1042        mutex_unlock(&ref->lock);
1043        return 0;
1044}
1045
1046static void thread_imc_event_del(struct perf_event *event, int flags)
1047{
1048
1049        int core_id;
1050        struct imc_pmu_ref *ref;
1051
1052        mtspr(SPRN_LDBAR, 0);
1053
1054        core_id = smp_processor_id() / threads_per_core;
1055        ref = &core_imc_refc[core_id];
1056
1057        mutex_lock(&ref->lock);
1058        ref->refc--;
1059        if (ref->refc == 0) {
1060                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1061                    get_hard_smp_processor_id(smp_processor_id()))) {
1062                        mutex_unlock(&ref->lock);
1063                        pr_err("thread-imc: Unable to stop the counters\
1064                                for core %d\n", core_id);
1065                        return;
1066                }
1067        } else if (ref->refc < 0) {
1068                ref->refc = 0;
1069        }
1070        mutex_unlock(&ref->lock);
1071        /*
1072         * Take a snapshot and calculate the delta and update
1073         * the event counter values.
1074         */
1075        imc_event_update(event);
1076}
1077
1078/*
1079 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1080 */
1081static int trace_imc_mem_alloc(int cpu_id, int size)
1082{
1083        u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1084        int phys_id = cpu_to_node(cpu_id), rc = 0;
1085        int core_id = (cpu_id / threads_per_core);
1086
1087        if (!local_mem) {
1088                local_mem = page_address(alloc_pages_node(phys_id,
1089                                        GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1090                                        __GFP_NOWARN, get_order(size)));
1091                if (!local_mem)
1092                        return -ENOMEM;
1093                per_cpu(trace_imc_mem, cpu_id) = local_mem;
1094
1095                /* Initialise the counters for trace mode */
1096                rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1097                                            get_hard_smp_processor_id(cpu_id));
1098                if (rc) {
1099                        pr_info("IMC:opal init failed for trace imc\n");
1100                        return rc;
1101                }
1102        }
1103
1104        /* Init the mutex, if not already */
1105        trace_imc_refc[core_id].id = core_id;
1106        mutex_init(&trace_imc_refc[core_id].lock);
1107
1108        mtspr(SPRN_LDBAR, 0);
1109        return 0;
1110}
1111
1112static int ppc_trace_imc_cpu_online(unsigned int cpu)
1113{
1114        return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1115}
1116
1117static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1118{
1119        mtspr(SPRN_LDBAR, 0);
1120        return 0;
1121}
1122
1123static int trace_imc_cpu_init(void)
1124{
1125        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1126                          "perf/powerpc/imc_trace:online",
1127                          ppc_trace_imc_cpu_online,
1128                          ppc_trace_imc_cpu_offline);
1129}
1130
1131static u64 get_trace_imc_event_base_addr(void)
1132{
1133        return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1134}
1135
1136/*
1137 * Function to parse trace-imc data obtained
1138 * and to prepare the perf sample.
1139 */
1140static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1141                                    struct perf_sample_data *data,
1142                                    u64 *prev_tb,
1143                                    struct perf_event_header *header,
1144                                    struct perf_event *event)
1145{
1146        /* Sanity checks for a valid record */
1147        if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1148                *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1149        else
1150                return -EINVAL;
1151
1152        if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1153                         be64_to_cpu(READ_ONCE(mem->tb2)))
1154                return -EINVAL;
1155
1156        /* Prepare perf sample */
1157        data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1158        data->period = event->hw.last_period;
1159
1160        header->type = PERF_RECORD_SAMPLE;
1161        header->size = sizeof(*header) + event->header_size;
1162        header->misc = 0;
1163
1164        if (is_kernel_addr(data->ip))
1165                header->misc |= PERF_RECORD_MISC_KERNEL;
1166        else
1167                header->misc |= PERF_RECORD_MISC_USER;
1168
1169        perf_event_header__init_id(header, data, event);
1170
1171        return 0;
1172}
1173
1174static void dump_trace_imc_data(struct perf_event *event)
1175{
1176        struct trace_imc_data *mem;
1177        int i, ret;
1178        u64 prev_tb = 0;
1179
1180        mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1181        for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1182                i++, mem++) {
1183                struct perf_sample_data data;
1184                struct perf_event_header header;
1185
1186                ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1187                if (ret) /* Exit, if not a valid record */
1188                        break;
1189                else {
1190                        /* If this is a valid record, create the sample */
1191                        struct perf_output_handle handle;
1192
1193                        if (perf_output_begin(&handle, event, header.size))
1194                                return;
1195
1196                        perf_output_sample(&handle, &header, &data, event);
1197                        perf_output_end(&handle);
1198                }
1199        }
1200}
1201
1202static int trace_imc_event_add(struct perf_event *event, int flags)
1203{
1204        int core_id = smp_processor_id() / threads_per_core;
1205        struct imc_pmu_ref *ref = NULL;
1206        u64 local_mem, ldbar_value;
1207
1208        /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1209        local_mem = get_trace_imc_event_base_addr();
1210        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1211
1212        if (core_imc_refc)
1213                ref = &core_imc_refc[core_id];
1214        if (!ref) {
1215                /* If core-imc is not enabled, use trace-imc reference count */
1216                if (trace_imc_refc)
1217                        ref = &trace_imc_refc[core_id];
1218                if (!ref)
1219                        return -EINVAL;
1220        }
1221        mtspr(SPRN_LDBAR, ldbar_value);
1222        mutex_lock(&ref->lock);
1223        if (ref->refc == 0) {
1224                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1225                                get_hard_smp_processor_id(smp_processor_id()))) {
1226                        mutex_unlock(&ref->lock);
1227                        pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1228                        mtspr(SPRN_LDBAR, 0);
1229                        return -EINVAL;
1230                }
1231        }
1232        ++ref->refc;
1233        mutex_unlock(&ref->lock);
1234
1235        return 0;
1236}
1237
1238static void trace_imc_event_read(struct perf_event *event)
1239{
1240        return;
1241}
1242
1243static void trace_imc_event_stop(struct perf_event *event, int flags)
1244{
1245        u64 local_mem = get_trace_imc_event_base_addr();
1246        dump_trace_imc_data(event);
1247        memset((void *)local_mem, 0, sizeof(u64));
1248}
1249
1250static void trace_imc_event_start(struct perf_event *event, int flags)
1251{
1252        return;
1253}
1254
1255static void trace_imc_event_del(struct perf_event *event, int flags)
1256{
1257        int core_id = smp_processor_id() / threads_per_core;
1258        struct imc_pmu_ref *ref = NULL;
1259
1260        if (core_imc_refc)
1261                ref = &core_imc_refc[core_id];
1262        if (!ref) {
1263                /* If core-imc is not enabled, use trace-imc reference count */
1264                if (trace_imc_refc)
1265                        ref = &trace_imc_refc[core_id];
1266                if (!ref)
1267                        return;
1268        }
1269        mtspr(SPRN_LDBAR, 0);
1270        mutex_lock(&ref->lock);
1271        ref->refc--;
1272        if (ref->refc == 0) {
1273                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1274                                get_hard_smp_processor_id(smp_processor_id()))) {
1275                        mutex_unlock(&ref->lock);
1276                        pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1277                        return;
1278                }
1279        } else if (ref->refc < 0) {
1280                ref->refc = 0;
1281        }
1282        mutex_unlock(&ref->lock);
1283        trace_imc_event_stop(event, flags);
1284}
1285
1286static int trace_imc_event_init(struct perf_event *event)
1287{
1288        struct task_struct *target;
1289
1290        if (event->attr.type != event->pmu->type)
1291                return -ENOENT;
1292
1293        if (!capable(CAP_SYS_ADMIN))
1294                return -EACCES;
1295
1296        /* Return if this is a couting event */
1297        if (event->attr.sample_period == 0)
1298                return -ENOENT;
1299
1300        event->hw.idx = -1;
1301        target = event->hw.target;
1302
1303        event->pmu->task_ctx_nr = perf_hw_context;
1304        return 0;
1305}
1306
1307/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1308static int update_pmu_ops(struct imc_pmu *pmu)
1309{
1310        pmu->pmu.task_ctx_nr = perf_invalid_context;
1311        pmu->pmu.add = imc_event_add;
1312        pmu->pmu.del = imc_event_stop;
1313        pmu->pmu.start = imc_event_start;
1314        pmu->pmu.stop = imc_event_stop;
1315        pmu->pmu.read = imc_event_update;
1316        pmu->pmu.attr_groups = pmu->attr_groups;
1317        pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1318        pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1319
1320        switch (pmu->domain) {
1321        case IMC_DOMAIN_NEST:
1322                pmu->pmu.event_init = nest_imc_event_init;
1323                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1324                break;
1325        case IMC_DOMAIN_CORE:
1326                pmu->pmu.event_init = core_imc_event_init;
1327                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1328                break;
1329        case IMC_DOMAIN_THREAD:
1330                pmu->pmu.event_init = thread_imc_event_init;
1331                pmu->pmu.add = thread_imc_event_add;
1332                pmu->pmu.del = thread_imc_event_del;
1333                pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1334                pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1335                pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1336                break;
1337        case IMC_DOMAIN_TRACE:
1338                pmu->pmu.event_init = trace_imc_event_init;
1339                pmu->pmu.add = trace_imc_event_add;
1340                pmu->pmu.del = trace_imc_event_del;
1341                pmu->pmu.start = trace_imc_event_start;
1342                pmu->pmu.stop = trace_imc_event_stop;
1343                pmu->pmu.read = trace_imc_event_read;
1344                pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1345        default:
1346                break;
1347        }
1348
1349        return 0;
1350}
1351
1352/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1353static int init_nest_pmu_ref(void)
1354{
1355        int nid, i, cpu;
1356
1357        nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1358                                                                GFP_KERNEL);
1359
1360        if (!nest_imc_refc)
1361                return -ENOMEM;
1362
1363        i = 0;
1364        for_each_node(nid) {
1365                /*
1366                 * Mutex lock to avoid races while tracking the number of
1367                 * sessions using the chip's nest pmu units.
1368                 */
1369                mutex_init(&nest_imc_refc[i].lock);
1370
1371                /*
1372                 * Loop to init the "id" with the node_id. Variable "i" initialized to
1373                 * 0 and will be used as index to the array. "i" will not go off the
1374                 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1375                 * nodes only.
1376                 */
1377                nest_imc_refc[i++].id = nid;
1378        }
1379
1380        /*
1381         * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1382         * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1383         */
1384        for_each_possible_cpu(cpu) {
1385                nid = cpu_to_node(cpu);
1386                for (i = 0; i < num_possible_nodes(); i++) {
1387                        if (nest_imc_refc[i].id == nid) {
1388                                per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1389                                break;
1390                        }
1391                }
1392        }
1393        return 0;
1394}
1395
1396static void cleanup_all_core_imc_memory(void)
1397{
1398        int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1399        struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1400        int size = core_imc_pmu->counter_mem_size;
1401
1402        /* mem_info will never be NULL */
1403        for (i = 0; i < nr_cores; i++) {
1404                if (ptr[i].vbase)
1405                        free_pages((u64)ptr[i].vbase, get_order(size));
1406        }
1407
1408        kfree(ptr);
1409        kfree(core_imc_refc);
1410}
1411
1412static void thread_imc_ldbar_disable(void *dummy)
1413{
1414        /*
1415         * By Zeroing LDBAR, we disable thread-imc
1416         * updates.
1417         */
1418        mtspr(SPRN_LDBAR, 0);
1419}
1420
1421void thread_imc_disable(void)
1422{
1423        on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1424}
1425
1426static void cleanup_all_thread_imc_memory(void)
1427{
1428        int i, order = get_order(thread_imc_mem_size);
1429
1430        for_each_online_cpu(i) {
1431                if (per_cpu(thread_imc_mem, i))
1432                        free_pages((u64)per_cpu(thread_imc_mem, i), order);
1433
1434        }
1435}
1436
1437static void cleanup_all_trace_imc_memory(void)
1438{
1439        int i, order = get_order(trace_imc_mem_size);
1440
1441        for_each_online_cpu(i) {
1442                if (per_cpu(trace_imc_mem, i))
1443                        free_pages((u64)per_cpu(trace_imc_mem, i), order);
1444
1445        }
1446        kfree(trace_imc_refc);
1447}
1448
1449/* Function to free the attr_groups which are dynamically allocated */
1450static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1451{
1452        if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1453                kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1454        kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1455}
1456
1457/*
1458 * Common function to unregister cpu hotplug callback and
1459 * free the memory.
1460 * TODO: Need to handle pmu unregistering, which will be
1461 * done in followup series.
1462 */
1463static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1464{
1465        if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1466                mutex_lock(&nest_init_lock);
1467                if (nest_pmus == 1) {
1468                        cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1469                        kfree(nest_imc_refc);
1470                        kfree(per_nest_pmu_arr);
1471                        per_nest_pmu_arr = NULL;
1472                }
1473
1474                if (nest_pmus > 0)
1475                        nest_pmus--;
1476                mutex_unlock(&nest_init_lock);
1477        }
1478
1479        /* Free core_imc memory */
1480        if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1481                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1482                cleanup_all_core_imc_memory();
1483        }
1484
1485        /* Free thread_imc memory */
1486        if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1487                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1488                cleanup_all_thread_imc_memory();
1489        }
1490
1491        if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1492                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1493                cleanup_all_trace_imc_memory();
1494        }
1495}
1496
1497/*
1498 * Function to unregister thread-imc if core-imc
1499 * is not registered.
1500 */
1501void unregister_thread_imc(void)
1502{
1503        imc_common_cpuhp_mem_free(thread_imc_pmu);
1504        imc_common_mem_free(thread_imc_pmu);
1505        perf_pmu_unregister(&thread_imc_pmu->pmu);
1506}
1507
1508/*
1509 * imc_mem_init : Function to support memory allocation for core imc.
1510 */
1511static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1512                                                                int pmu_index)
1513{
1514        const char *s;
1515        int nr_cores, cpu, res = -ENOMEM;
1516
1517        if (of_property_read_string(parent, "name", &s))
1518                return -ENODEV;
1519
1520        switch (pmu_ptr->domain) {
1521        case IMC_DOMAIN_NEST:
1522                /* Update the pmu name */
1523                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1524                if (!pmu_ptr->pmu.name)
1525                        goto err;
1526
1527                /* Needed for hotplug/migration */
1528                if (!per_nest_pmu_arr) {
1529                        per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1530                                                sizeof(struct imc_pmu *),
1531                                                GFP_KERNEL);
1532                        if (!per_nest_pmu_arr)
1533                                goto err;
1534                }
1535                per_nest_pmu_arr[pmu_index] = pmu_ptr;
1536                break;
1537        case IMC_DOMAIN_CORE:
1538                /* Update the pmu name */
1539                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1540                if (!pmu_ptr->pmu.name)
1541                        goto err;
1542
1543                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1544                pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1545                                                                GFP_KERNEL);
1546
1547                if (!pmu_ptr->mem_info)
1548                        goto err;
1549
1550                core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1551                                                                GFP_KERNEL);
1552
1553                if (!core_imc_refc) {
1554                        kfree(pmu_ptr->mem_info);
1555                        goto err;
1556                }
1557
1558                core_imc_pmu = pmu_ptr;
1559                break;
1560        case IMC_DOMAIN_THREAD:
1561                /* Update the pmu name */
1562                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1563                if (!pmu_ptr->pmu.name)
1564                        goto err;
1565
1566                thread_imc_mem_size = pmu_ptr->counter_mem_size;
1567                for_each_online_cpu(cpu) {
1568                        res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1569                        if (res) {
1570                                cleanup_all_thread_imc_memory();
1571                                goto err;
1572                        }
1573                }
1574
1575                thread_imc_pmu = pmu_ptr;
1576                break;
1577        case IMC_DOMAIN_TRACE:
1578                /* Update the pmu name */
1579                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1580                if (!pmu_ptr->pmu.name)
1581                        return -ENOMEM;
1582
1583                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1584                trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1585                                                                GFP_KERNEL);
1586                if (!trace_imc_refc)
1587                        return -ENOMEM;
1588
1589                trace_imc_mem_size = pmu_ptr->counter_mem_size;
1590                for_each_online_cpu(cpu) {
1591                        res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1592                        if (res) {
1593                                cleanup_all_trace_imc_memory();
1594                                goto err;
1595                        }
1596                }
1597                break;
1598        default:
1599                return -EINVAL;
1600        }
1601
1602        return 0;
1603err:
1604        return res;
1605}
1606
1607/*
1608 * init_imc_pmu : Setup and register the IMC pmu device.
1609 *
1610 * @parent:     Device tree unit node
1611 * @pmu_ptr:    memory allocated for this pmu
1612 * @pmu_idx:    Count of nest pmc registered
1613 *
1614 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1615 * Handles failure cases and accordingly frees memory.
1616 */
1617int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1618{
1619        int ret;
1620
1621        ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1622        if (ret)
1623                goto err_free_mem;
1624
1625        switch (pmu_ptr->domain) {
1626        case IMC_DOMAIN_NEST:
1627                /*
1628                * Nest imc pmu need only one cpu per chip, we initialize the
1629                * cpumask for the first nest imc pmu and use the same for the
1630                * rest. To handle the cpuhotplug callback unregister, we track
1631                * the number of nest pmus in "nest_pmus".
1632                */
1633                mutex_lock(&nest_init_lock);
1634                if (nest_pmus == 0) {
1635                        ret = init_nest_pmu_ref();
1636                        if (ret) {
1637                                mutex_unlock(&nest_init_lock);
1638                                kfree(per_nest_pmu_arr);
1639                                per_nest_pmu_arr = NULL;
1640                                goto err_free_mem;
1641                        }
1642                        /* Register for cpu hotplug notification. */
1643                        ret = nest_pmu_cpumask_init();
1644                        if (ret) {
1645                                mutex_unlock(&nest_init_lock);
1646                                kfree(nest_imc_refc);
1647                                kfree(per_nest_pmu_arr);
1648                                per_nest_pmu_arr = NULL;
1649                                goto err_free_mem;
1650                        }
1651                }
1652                nest_pmus++;
1653                mutex_unlock(&nest_init_lock);
1654                break;
1655        case IMC_DOMAIN_CORE:
1656                ret = core_imc_pmu_cpumask_init();
1657                if (ret) {
1658                        cleanup_all_core_imc_memory();
1659                        goto err_free_mem;
1660                }
1661
1662                break;
1663        case IMC_DOMAIN_THREAD:
1664                ret = thread_imc_cpu_init();
1665                if (ret) {
1666                        cleanup_all_thread_imc_memory();
1667                        goto err_free_mem;
1668                }
1669
1670                break;
1671        case IMC_DOMAIN_TRACE:
1672                ret = trace_imc_cpu_init();
1673                if (ret) {
1674                        cleanup_all_trace_imc_memory();
1675                        goto err_free_mem;
1676                }
1677
1678                break;
1679        default:
1680                return  -EINVAL;        /* Unknown domain */
1681        }
1682
1683        ret = update_events_in_group(parent, pmu_ptr);
1684        if (ret)
1685                goto err_free_cpuhp_mem;
1686
1687        ret = update_pmu_ops(pmu_ptr);
1688        if (ret)
1689                goto err_free_cpuhp_mem;
1690
1691        ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1692        if (ret)
1693                goto err_free_cpuhp_mem;
1694
1695        pr_debug("%s performance monitor hardware support registered\n",
1696                                                        pmu_ptr->pmu.name);
1697
1698        return 0;
1699
1700err_free_cpuhp_mem:
1701        imc_common_cpuhp_mem_free(pmu_ptr);
1702err_free_mem:
1703        imc_common_mem_free(pmu_ptr);
1704        return ret;
1705}
1706