linux/arch/powerpc/sysdev/xive/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2016,2017 IBM Corporation.
   4 */
   5
   6#define pr_fmt(fmt) "xive: " fmt
   7
   8#include <linux/types.h>
   9#include <linux/threads.h>
  10#include <linux/kernel.h>
  11#include <linux/irq.h>
  12#include <linux/debugfs.h>
  13#include <linux/smp.h>
  14#include <linux/interrupt.h>
  15#include <linux/seq_file.h>
  16#include <linux/init.h>
  17#include <linux/cpu.h>
  18#include <linux/of.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/msi.h>
  22
  23#include <asm/prom.h>
  24#include <asm/io.h>
  25#include <asm/smp.h>
  26#include <asm/machdep.h>
  27#include <asm/irq.h>
  28#include <asm/errno.h>
  29#include <asm/xive.h>
  30#include <asm/xive-regs.h>
  31#include <asm/xmon.h>
  32
  33#include "xive-internal.h"
  34
  35#undef DEBUG_FLUSH
  36#undef DEBUG_ALL
  37
  38#ifdef DEBUG_ALL
  39#define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
  40                                         smp_processor_id(), ## __VA_ARGS__)
  41#else
  42#define DBG_VERBOSE(fmt...)     do { } while(0)
  43#endif
  44
  45bool __xive_enabled;
  46EXPORT_SYMBOL_GPL(__xive_enabled);
  47bool xive_cmdline_disabled;
  48
  49/* We use only one priority for now */
  50static u8 xive_irq_priority;
  51
  52/* TIMA exported to KVM */
  53void __iomem *xive_tima;
  54EXPORT_SYMBOL_GPL(xive_tima);
  55u32 xive_tima_offset;
  56
  57/* Backend ops */
  58static const struct xive_ops *xive_ops;
  59
  60/* Our global interrupt domain */
  61static struct irq_domain *xive_irq_domain;
  62
  63#ifdef CONFIG_SMP
  64/* The IPIs all use the same logical irq number */
  65static u32 xive_ipi_irq;
  66#endif
  67
  68/* Xive state for each CPU */
  69static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  70
  71/*
  72 * A "disabled" interrupt should never fire, to catch problems
  73 * we set its logical number to this
  74 */
  75#define XIVE_BAD_IRQ            0x7fffffff
  76#define XIVE_MAX_IRQ            (XIVE_BAD_IRQ - 1)
  77
  78/* An invalid CPU target */
  79#define XIVE_INVALID_TARGET     (-1)
  80
  81/*
  82 * Read the next entry in a queue, return its content if it's valid
  83 * or 0 if there is no new entry.
  84 *
  85 * The queue pointer is moved forward unless "just_peek" is set
  86 */
  87static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  88{
  89        u32 cur;
  90
  91        if (!q->qpage)
  92                return 0;
  93        cur = be32_to_cpup(q->qpage + q->idx);
  94
  95        /* Check valid bit (31) vs current toggle polarity */
  96        if ((cur >> 31) == q->toggle)
  97                return 0;
  98
  99        /* If consuming from the queue ... */
 100        if (!just_peek) {
 101                /* Next entry */
 102                q->idx = (q->idx + 1) & q->msk;
 103
 104                /* Wrap around: flip valid toggle */
 105                if (q->idx == 0)
 106                        q->toggle ^= 1;
 107        }
 108        /* Mask out the valid bit (31) */
 109        return cur & 0x7fffffff;
 110}
 111
 112/*
 113 * Scans all the queue that may have interrupts in them
 114 * (based on "pending_prio") in priority order until an
 115 * interrupt is found or all the queues are empty.
 116 *
 117 * Then updates the CPPR (Current Processor Priority
 118 * Register) based on the most favored interrupt found
 119 * (0xff if none) and return what was found (0 if none).
 120 *
 121 * If just_peek is set, return the most favored pending
 122 * interrupt if any but don't update the queue pointers.
 123 *
 124 * Note: This function can operate generically on any number
 125 * of queues (up to 8). The current implementation of the XIVE
 126 * driver only uses a single queue however.
 127 *
 128 * Note2: This will also "flush" "the pending_count" of a queue
 129 * into the "count" when that queue is observed to be empty.
 130 * This is used to keep track of the amount of interrupts
 131 * targetting a queue. When an interrupt is moved away from
 132 * a queue, we only decrement that queue count once the queue
 133 * has been observed empty to avoid races.
 134 */
 135static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 136{
 137        u32 irq = 0;
 138        u8 prio;
 139
 140        /* Find highest pending priority */
 141        while (xc->pending_prio != 0) {
 142                struct xive_q *q;
 143
 144                prio = ffs(xc->pending_prio) - 1;
 145                DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 146
 147                /* Try to fetch */
 148                irq = xive_read_eq(&xc->queue[prio], just_peek);
 149
 150                /* Found something ? That's it */
 151                if (irq)
 152                        break;
 153
 154                /* Clear pending bits */
 155                xc->pending_prio &= ~(1 << prio);
 156
 157                /*
 158                 * Check if the queue count needs adjusting due to
 159                 * interrupts being moved away. See description of
 160                 * xive_dec_target_count()
 161                 */
 162                q = &xc->queue[prio];
 163                if (atomic_read(&q->pending_count)) {
 164                        int p = atomic_xchg(&q->pending_count, 0);
 165                        if (p) {
 166                                WARN_ON(p > atomic_read(&q->count));
 167                                atomic_sub(p, &q->count);
 168                        }
 169                }
 170        }
 171
 172        /* If nothing was found, set CPPR to 0xff */
 173        if (irq == 0)
 174                prio = 0xff;
 175
 176        /* Update HW CPPR to match if necessary */
 177        if (prio != xc->cppr) {
 178                DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 179                xc->cppr = prio;
 180                out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 181        }
 182
 183        return irq;
 184}
 185
 186/*
 187 * This is used to perform the magic loads from an ESB
 188 * described in xive.h
 189 */
 190static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 191{
 192        u64 val;
 193
 194        /* Handle HW errata */
 195        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 196                offset |= offset << 4;
 197
 198        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 199                val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 200        else
 201                val = in_be64(xd->eoi_mmio + offset);
 202
 203        return (u8)val;
 204}
 205
 206static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 207{
 208        /* Handle HW errata */
 209        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 210                offset |= offset << 4;
 211
 212        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 213                xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 214        else
 215                out_be64(xd->eoi_mmio + offset, data);
 216}
 217
 218#ifdef CONFIG_XMON
 219static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 220{
 221        u32 i0, i1, idx;
 222
 223        if (!q->qpage)
 224                return;
 225        idx = q->idx;
 226        i0 = be32_to_cpup(q->qpage + idx);
 227        idx = (idx + 1) & q->msk;
 228        i1 = be32_to_cpup(q->qpage + idx);
 229        xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
 230                    q->toggle, i0, i1);
 231}
 232
 233notrace void xmon_xive_do_dump(int cpu)
 234{
 235        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 236
 237        xmon_printf("XIVE state for CPU %d:\n", cpu);
 238        xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
 239        xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
 240#ifdef CONFIG_SMP
 241        {
 242                u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 243                xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
 244                        val & XIVE_ESB_VAL_P ? 'P' : 'p',
 245                        val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
 246        }
 247#endif
 248}
 249#endif /* CONFIG_XMON */
 250
 251static unsigned int xive_get_irq(void)
 252{
 253        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 254        u32 irq;
 255
 256        /*
 257         * This can be called either as a result of a HW interrupt or
 258         * as a "replay" because EOI decided there was still something
 259         * in one of the queues.
 260         *
 261         * First we perform an ACK cycle in order to update our mask
 262         * of pending priorities. This will also have the effect of
 263         * updating the CPPR to the most favored pending interrupts.
 264         *
 265         * In the future, if we have a way to differentiate a first
 266         * entry (on HW interrupt) from a replay triggered by EOI,
 267         * we could skip this on replays unless we soft-mask tells us
 268         * that a new HW interrupt occurred.
 269         */
 270        xive_ops->update_pending(xc);
 271
 272        DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 273
 274        /* Scan our queue(s) for interrupts */
 275        irq = xive_scan_interrupts(xc, false);
 276
 277        DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 278            irq, xc->pending_prio);
 279
 280        /* Return pending interrupt if any */
 281        if (irq == XIVE_BAD_IRQ)
 282                return 0;
 283        return irq;
 284}
 285
 286/*
 287 * After EOI'ing an interrupt, we need to re-check the queue
 288 * to see if another interrupt is pending since multiple
 289 * interrupts can coalesce into a single notification to the
 290 * CPU.
 291 *
 292 * If we find that there is indeed more in there, we call
 293 * force_external_irq_replay() to make Linux synthetize an
 294 * external interrupt on the next call to local_irq_restore().
 295 */
 296static void xive_do_queue_eoi(struct xive_cpu *xc)
 297{
 298        if (xive_scan_interrupts(xc, true) != 0) {
 299                DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 300                force_external_irq_replay();
 301        }
 302}
 303
 304/*
 305 * EOI an interrupt at the source. There are several methods
 306 * to do this depending on the HW version and source type
 307 */
 308static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 309{
 310        /* If the XIVE supports the new "store EOI facility, use it */
 311        if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 312                xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 313        else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 314                /*
 315                 * The FW told us to call it. This happens for some
 316                 * interrupt sources that need additional HW whacking
 317                 * beyond the ESB manipulation. For example LPC interrupts
 318                 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
 319                 * itself. The Firmware will take care of it.
 320                 */
 321                if (WARN_ON_ONCE(!xive_ops->eoi))
 322                        return;
 323                xive_ops->eoi(hw_irq);
 324        } else {
 325                u8 eoi_val;
 326
 327                /*
 328                 * Otherwise for EOI, we use the special MMIO that does
 329                 * a clear of both P and Q and returns the old Q,
 330                 * except for LSIs where we use the "EOI cycle" special
 331                 * load.
 332                 *
 333                 * This allows us to then do a re-trigger if Q was set
 334                 * rather than synthesizing an interrupt in software
 335                 *
 336                 * For LSIs the HW EOI cycle is used rather than PQ bits,
 337                 * as they are automatically re-triggred in HW when still
 338                 * pending.
 339                 */
 340                if (xd->flags & XIVE_IRQ_FLAG_LSI)
 341                        xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 342                else {
 343                        eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 344                        DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 345
 346                        /* Re-trigger if needed */
 347                        if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 348                                out_be64(xd->trig_mmio, 0);
 349                }
 350        }
 351}
 352
 353/* irq_chip eoi callback */
 354static void xive_irq_eoi(struct irq_data *d)
 355{
 356        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 357        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 358
 359        DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 360                    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 361
 362        /*
 363         * EOI the source if it hasn't been disabled and hasn't
 364         * been passed-through to a KVM guest
 365         */
 366        if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 367            !(xd->flags & XIVE_IRQ_NO_EOI))
 368                xive_do_source_eoi(irqd_to_hwirq(d), xd);
 369
 370        /*
 371         * Clear saved_p to indicate that it's no longer occupying
 372         * a queue slot on the target queue
 373         */
 374        xd->saved_p = false;
 375
 376        /* Check for more work in the queue */
 377        xive_do_queue_eoi(xc);
 378}
 379
 380/*
 381 * Helper used to mask and unmask an interrupt source. This
 382 * is only called for normal interrupts that do not require
 383 * masking/unmasking via firmware.
 384 */
 385static void xive_do_source_set_mask(struct xive_irq_data *xd,
 386                                    bool mask)
 387{
 388        u64 val;
 389
 390        /*
 391         * If the interrupt had P set, it may be in a queue.
 392         *
 393         * We need to make sure we don't re-enable it until it
 394         * has been fetched from that queue and EOId. We keep
 395         * a copy of that P state and use it to restore the
 396         * ESB accordingly on unmask.
 397         */
 398        if (mask) {
 399                val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 400                xd->saved_p = !!(val & XIVE_ESB_VAL_P);
 401        } else if (xd->saved_p)
 402                xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 403        else
 404                xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 405}
 406
 407/*
 408 * Try to chose "cpu" as a new interrupt target. Increments
 409 * the queue accounting for that target if it's not already
 410 * full.
 411 */
 412static bool xive_try_pick_target(int cpu)
 413{
 414        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 415        struct xive_q *q = &xc->queue[xive_irq_priority];
 416        int max;
 417
 418        /*
 419         * Calculate max number of interrupts in that queue.
 420         *
 421         * We leave a gap of 1 just in case...
 422         */
 423        max = (q->msk + 1) - 1;
 424        return !!atomic_add_unless(&q->count, 1, max);
 425}
 426
 427/*
 428 * Un-account an interrupt for a target CPU. We don't directly
 429 * decrement q->count since the interrupt might still be present
 430 * in the queue.
 431 *
 432 * Instead increment a separate counter "pending_count" which
 433 * will be substracted from "count" later when that CPU observes
 434 * the queue to be empty.
 435 */
 436static void xive_dec_target_count(int cpu)
 437{
 438        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 439        struct xive_q *q = &xc->queue[xive_irq_priority];
 440
 441        if (WARN_ON(cpu < 0 || !xc)) {
 442                pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 443                return;
 444        }
 445
 446        /*
 447         * We increment the "pending count" which will be used
 448         * to decrement the target queue count whenever it's next
 449         * processed and found empty. This ensure that we don't
 450         * decrement while we still have the interrupt there
 451         * occupying a slot.
 452         */
 453        atomic_inc(&q->pending_count);
 454}
 455
 456/* Find a tentative CPU target in a CPU mask */
 457static int xive_find_target_in_mask(const struct cpumask *mask,
 458                                    unsigned int fuzz)
 459{
 460        int cpu, first, num, i;
 461
 462        /* Pick up a starting point CPU in the mask based on  fuzz */
 463        num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 464        first = fuzz % num;
 465
 466        /* Locate it */
 467        cpu = cpumask_first(mask);
 468        for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 469                cpu = cpumask_next(cpu, mask);
 470
 471        /* Sanity check */
 472        if (WARN_ON(cpu >= nr_cpu_ids))
 473                cpu = cpumask_first(cpu_online_mask);
 474
 475        /* Remember first one to handle wrap-around */
 476        first = cpu;
 477
 478        /*
 479         * Now go through the entire mask until we find a valid
 480         * target.
 481         */
 482        for (;;) {
 483                /*
 484                 * We re-check online as the fallback case passes us
 485                 * an untested affinity mask
 486                 */
 487                if (cpu_online(cpu) && xive_try_pick_target(cpu))
 488                        return cpu;
 489                cpu = cpumask_next(cpu, mask);
 490                if (cpu == first)
 491                        break;
 492                /* Wrap around */
 493                if (cpu >= nr_cpu_ids)
 494                        cpu = cpumask_first(mask);
 495        }
 496        return -1;
 497}
 498
 499/*
 500 * Pick a target CPU for an interrupt. This is done at
 501 * startup or if the affinity is changed in a way that
 502 * invalidates the current target.
 503 */
 504static int xive_pick_irq_target(struct irq_data *d,
 505                                const struct cpumask *affinity)
 506{
 507        static unsigned int fuzz;
 508        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 509        cpumask_var_t mask;
 510        int cpu = -1;
 511
 512        /*
 513         * If we have chip IDs, first we try to build a mask of
 514         * CPUs matching the CPU and find a target in there
 515         */
 516        if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 517                zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 518                /* Build a mask of matching chip IDs */
 519                for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 520                        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 521                        if (xc->chip_id == xd->src_chip)
 522                                cpumask_set_cpu(cpu, mask);
 523                }
 524                /* Try to find a target */
 525                if (cpumask_empty(mask))
 526                        cpu = -1;
 527                else
 528                        cpu = xive_find_target_in_mask(mask, fuzz++);
 529                free_cpumask_var(mask);
 530                if (cpu >= 0)
 531                        return cpu;
 532                fuzz--;
 533        }
 534
 535        /* No chip IDs, fallback to using the affinity mask */
 536        return xive_find_target_in_mask(affinity, fuzz++);
 537}
 538
 539static unsigned int xive_irq_startup(struct irq_data *d)
 540{
 541        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 542        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 543        int target, rc;
 544
 545        pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 546                 d->irq, hw_irq, d);
 547
 548#ifdef CONFIG_PCI_MSI
 549        /*
 550         * The generic MSI code returns with the interrupt disabled on the
 551         * card, using the MSI mask bits. Firmware doesn't appear to unmask
 552         * at that level, so we do it here by hand.
 553         */
 554        if (irq_data_get_msi_desc(d))
 555                pci_msi_unmask_irq(d);
 556#endif
 557
 558        /* Pick a target */
 559        target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 560        if (target == XIVE_INVALID_TARGET) {
 561                /* Try again breaking affinity */
 562                target = xive_pick_irq_target(d, cpu_online_mask);
 563                if (target == XIVE_INVALID_TARGET)
 564                        return -ENXIO;
 565                pr_warn("irq %d started with broken affinity\n", d->irq);
 566        }
 567
 568        /* Sanity check */
 569        if (WARN_ON(target == XIVE_INVALID_TARGET ||
 570                    target >= nr_cpu_ids))
 571                target = smp_processor_id();
 572
 573        xd->target = target;
 574
 575        /*
 576         * Configure the logical number to be the Linux IRQ number
 577         * and set the target queue
 578         */
 579        rc = xive_ops->configure_irq(hw_irq,
 580                                     get_hard_smp_processor_id(target),
 581                                     xive_irq_priority, d->irq);
 582        if (rc)
 583                return rc;
 584
 585        /* Unmask the ESB */
 586        xive_do_source_set_mask(xd, false);
 587
 588        return 0;
 589}
 590
 591static void xive_irq_shutdown(struct irq_data *d)
 592{
 593        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 594        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 595
 596        pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 597                 d->irq, hw_irq, d);
 598
 599        if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 600                return;
 601
 602        /* Mask the interrupt at the source */
 603        xive_do_source_set_mask(xd, true);
 604
 605        /*
 606         * The above may have set saved_p. We clear it otherwise it
 607         * will prevent re-enabling later on. It is ok to forget the
 608         * fact that the interrupt might be in a queue because we are
 609         * accounting that already in xive_dec_target_count() and will
 610         * be re-routing it to a new queue with proper accounting when
 611         * it's started up again
 612         */
 613        xd->saved_p = false;
 614
 615        /*
 616         * Mask the interrupt in HW in the IVT/EAS and set the number
 617         * to be the "bad" IRQ number
 618         */
 619        xive_ops->configure_irq(hw_irq,
 620                                get_hard_smp_processor_id(xd->target),
 621                                0xff, XIVE_BAD_IRQ);
 622
 623        xive_dec_target_count(xd->target);
 624        xd->target = XIVE_INVALID_TARGET;
 625}
 626
 627static void xive_irq_unmask(struct irq_data *d)
 628{
 629        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 630
 631        pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 632
 633        /*
 634         * This is a workaround for PCI LSI problems on P9, for
 635         * these, we call FW to set the mask. The problems might
 636         * be fixed by P9 DD2.0, if that is the case, firmware
 637         * will no longer set that flag.
 638         */
 639        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 640                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 641                xive_ops->configure_irq(hw_irq,
 642                                        get_hard_smp_processor_id(xd->target),
 643                                        xive_irq_priority, d->irq);
 644                return;
 645        }
 646
 647        xive_do_source_set_mask(xd, false);
 648}
 649
 650static void xive_irq_mask(struct irq_data *d)
 651{
 652        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 653
 654        pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 655
 656        /*
 657         * This is a workaround for PCI LSI problems on P9, for
 658         * these, we call OPAL to set the mask. The problems might
 659         * be fixed by P9 DD2.0, if that is the case, firmware
 660         * will no longer set that flag.
 661         */
 662        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 663                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 664                xive_ops->configure_irq(hw_irq,
 665                                        get_hard_smp_processor_id(xd->target),
 666                                        0xff, d->irq);
 667                return;
 668        }
 669
 670        xive_do_source_set_mask(xd, true);
 671}
 672
 673static int xive_irq_set_affinity(struct irq_data *d,
 674                                 const struct cpumask *cpumask,
 675                                 bool force)
 676{
 677        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 678        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 679        u32 target, old_target;
 680        int rc = 0;
 681
 682        pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 683
 684        /* Is this valid ? */
 685        if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 686                return -EINVAL;
 687
 688        /* Don't do anything if the interrupt isn't started */
 689        if (!irqd_is_started(d))
 690                return IRQ_SET_MASK_OK;
 691
 692        /*
 693         * If existing target is already in the new mask, and is
 694         * online then do nothing.
 695         */
 696        if (xd->target != XIVE_INVALID_TARGET &&
 697            cpu_online(xd->target) &&
 698            cpumask_test_cpu(xd->target, cpumask))
 699                return IRQ_SET_MASK_OK;
 700
 701        /* Pick a new target */
 702        target = xive_pick_irq_target(d, cpumask);
 703
 704        /* No target found */
 705        if (target == XIVE_INVALID_TARGET)
 706                return -ENXIO;
 707
 708        /* Sanity check */
 709        if (WARN_ON(target >= nr_cpu_ids))
 710                target = smp_processor_id();
 711
 712        old_target = xd->target;
 713
 714        /*
 715         * Only configure the irq if it's not currently passed-through to
 716         * a KVM guest
 717         */
 718        if (!irqd_is_forwarded_to_vcpu(d))
 719                rc = xive_ops->configure_irq(hw_irq,
 720                                             get_hard_smp_processor_id(target),
 721                                             xive_irq_priority, d->irq);
 722        if (rc < 0) {
 723                pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 724                return rc;
 725        }
 726
 727        pr_devel("  target: 0x%x\n", target);
 728        xd->target = target;
 729
 730        /* Give up previous target */
 731        if (old_target != XIVE_INVALID_TARGET)
 732            xive_dec_target_count(old_target);
 733
 734        return IRQ_SET_MASK_OK;
 735}
 736
 737static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 738{
 739        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 740
 741        /*
 742         * We only support these. This has really no effect other than setting
 743         * the corresponding descriptor bits mind you but those will in turn
 744         * affect the resend function when re-enabling an edge interrupt.
 745         *
 746         * Set set the default to edge as explained in map().
 747         */
 748        if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 749                flow_type = IRQ_TYPE_EDGE_RISING;
 750
 751        if (flow_type != IRQ_TYPE_EDGE_RISING &&
 752            flow_type != IRQ_TYPE_LEVEL_LOW)
 753                return -EINVAL;
 754
 755        irqd_set_trigger_type(d, flow_type);
 756
 757        /*
 758         * Double check it matches what the FW thinks
 759         *
 760         * NOTE: We don't know yet if the PAPR interface will provide
 761         * the LSI vs MSI information apart from the device-tree so
 762         * this check might have to move into an optional backend call
 763         * that is specific to the native backend
 764         */
 765        if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 766            !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 767                pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 768                        d->irq, (u32)irqd_to_hwirq(d),
 769                        (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 770                        (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 771        }
 772
 773        return IRQ_SET_MASK_OK_NOCOPY;
 774}
 775
 776static int xive_irq_retrigger(struct irq_data *d)
 777{
 778        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 779
 780        /* This should be only for MSIs */
 781        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 782                return 0;
 783
 784        /*
 785         * To perform a retrigger, we first set the PQ bits to
 786         * 11, then perform an EOI.
 787         */
 788        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 789
 790        /*
 791         * Note: We pass "0" to the hw_irq argument in order to
 792         * avoid calling into the backend EOI code which we don't
 793         * want to do in the case of a re-trigger. Backends typically
 794         * only do EOI for LSIs anyway.
 795         */
 796        xive_do_source_eoi(0, xd);
 797
 798        return 1;
 799}
 800
 801static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 802{
 803        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 804        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 805        int rc;
 806        u8 pq;
 807
 808        /*
 809         * We only support this on interrupts that do not require
 810         * firmware calls for masking and unmasking
 811         */
 812        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 813                return -EIO;
 814
 815        /*
 816         * This is called by KVM with state non-NULL for enabling
 817         * pass-through or NULL for disabling it
 818         */
 819        if (state) {
 820                irqd_set_forwarded_to_vcpu(d);
 821
 822                /* Set it to PQ=10 state to prevent further sends */
 823                pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 824
 825                /* No target ? nothing to do */
 826                if (xd->target == XIVE_INVALID_TARGET) {
 827                        /*
 828                         * An untargetted interrupt should have been
 829                         * also masked at the source
 830                         */
 831                        WARN_ON(pq & 2);
 832
 833                        return 0;
 834                }
 835
 836                /*
 837                 * If P was set, adjust state to PQ=11 to indicate
 838                 * that a resend is needed for the interrupt to reach
 839                 * the guest. Also remember the value of P.
 840                 *
 841                 * This also tells us that it's in flight to a host queue
 842                 * or has already been fetched but hasn't been EOIed yet
 843                 * by the host. This it's potentially using up a host
 844                 * queue slot. This is important to know because as long
 845                 * as this is the case, we must not hard-unmask it when
 846                 * "returning" that interrupt to the host.
 847                 *
 848                 * This saved_p is cleared by the host EOI, when we know
 849                 * for sure the queue slot is no longer in use.
 850                 */
 851                if (pq & 2) {
 852                        pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 853                        xd->saved_p = true;
 854
 855                        /*
 856                         * Sync the XIVE source HW to ensure the interrupt
 857                         * has gone through the EAS before we change its
 858                         * target to the guest. That should guarantee us
 859                         * that we *will* eventually get an EOI for it on
 860                         * the host. Otherwise there would be a small window
 861                         * for P to be seen here but the interrupt going
 862                         * to the guest queue.
 863                         */
 864                        if (xive_ops->sync_source)
 865                                xive_ops->sync_source(hw_irq);
 866                } else
 867                        xd->saved_p = false;
 868        } else {
 869                irqd_clr_forwarded_to_vcpu(d);
 870
 871                /* No host target ? hard mask and return */
 872                if (xd->target == XIVE_INVALID_TARGET) {
 873                        xive_do_source_set_mask(xd, true);
 874                        return 0;
 875                }
 876
 877                /*
 878                 * Sync the XIVE source HW to ensure the interrupt
 879                 * has gone through the EAS before we change its
 880                 * target to the host.
 881                 */
 882                if (xive_ops->sync_source)
 883                        xive_ops->sync_source(hw_irq);
 884
 885                /*
 886                 * By convention we are called with the interrupt in
 887                 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 888                 * have latched in Q whether there's a pending HW
 889                 * interrupt or not.
 890                 *
 891                 * First reconfigure the target.
 892                 */
 893                rc = xive_ops->configure_irq(hw_irq,
 894                                             get_hard_smp_processor_id(xd->target),
 895                                             xive_irq_priority, d->irq);
 896                if (rc)
 897                        return rc;
 898
 899                /*
 900                 * Then if saved_p is not set, effectively re-enable the
 901                 * interrupt with an EOI. If it is set, we know there is
 902                 * still a message in a host queue somewhere that will be
 903                 * EOId eventually.
 904                 *
 905                 * Note: We don't check irqd_irq_disabled(). Effectively,
 906                 * we *will* let the irq get through even if masked if the
 907                 * HW is still firing it in order to deal with the whole
 908                 * saved_p business properly. If the interrupt triggers
 909                 * while masked, the generic code will re-mask it anyway.
 910                 */
 911                if (!xd->saved_p)
 912                        xive_do_source_eoi(hw_irq, xd);
 913
 914        }
 915        return 0;
 916}
 917
 918static struct irq_chip xive_irq_chip = {
 919        .name = "XIVE-IRQ",
 920        .irq_startup = xive_irq_startup,
 921        .irq_shutdown = xive_irq_shutdown,
 922        .irq_eoi = xive_irq_eoi,
 923        .irq_mask = xive_irq_mask,
 924        .irq_unmask = xive_irq_unmask,
 925        .irq_set_affinity = xive_irq_set_affinity,
 926        .irq_set_type = xive_irq_set_type,
 927        .irq_retrigger = xive_irq_retrigger,
 928        .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 929};
 930
 931bool is_xive_irq(struct irq_chip *chip)
 932{
 933        return chip == &xive_irq_chip;
 934}
 935EXPORT_SYMBOL_GPL(is_xive_irq);
 936
 937void xive_cleanup_irq_data(struct xive_irq_data *xd)
 938{
 939        if (xd->eoi_mmio) {
 940                iounmap(xd->eoi_mmio);
 941                if (xd->eoi_mmio == xd->trig_mmio)
 942                        xd->trig_mmio = NULL;
 943                xd->eoi_mmio = NULL;
 944        }
 945        if (xd->trig_mmio) {
 946                iounmap(xd->trig_mmio);
 947                xd->trig_mmio = NULL;
 948        }
 949}
 950EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
 951
 952static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
 953{
 954        struct xive_irq_data *xd;
 955        int rc;
 956
 957        xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
 958        if (!xd)
 959                return -ENOMEM;
 960        rc = xive_ops->populate_irq_data(hw, xd);
 961        if (rc) {
 962                kfree(xd);
 963                return rc;
 964        }
 965        xd->target = XIVE_INVALID_TARGET;
 966        irq_set_handler_data(virq, xd);
 967
 968        return 0;
 969}
 970
 971static void xive_irq_free_data(unsigned int virq)
 972{
 973        struct xive_irq_data *xd = irq_get_handler_data(virq);
 974
 975        if (!xd)
 976                return;
 977        irq_set_handler_data(virq, NULL);
 978        xive_cleanup_irq_data(xd);
 979        kfree(xd);
 980}
 981
 982#ifdef CONFIG_SMP
 983
 984static void xive_cause_ipi(int cpu)
 985{
 986        struct xive_cpu *xc;
 987        struct xive_irq_data *xd;
 988
 989        xc = per_cpu(xive_cpu, cpu);
 990
 991        DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
 992                    smp_processor_id(), cpu, xc->hw_ipi);
 993
 994        xd = &xc->ipi_data;
 995        if (WARN_ON(!xd->trig_mmio))
 996                return;
 997        out_be64(xd->trig_mmio, 0);
 998}
 999
1000static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1001{
1002        return smp_ipi_demux();
1003}
1004
1005static void xive_ipi_eoi(struct irq_data *d)
1006{
1007        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1008
1009        /* Handle possible race with unplug and drop stale IPIs */
1010        if (!xc)
1011                return;
1012
1013        DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1014                    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1015
1016        xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1017        xive_do_queue_eoi(xc);
1018}
1019
1020static void xive_ipi_do_nothing(struct irq_data *d)
1021{
1022        /*
1023         * Nothing to do, we never mask/unmask IPIs, but the callback
1024         * has to exist for the struct irq_chip.
1025         */
1026}
1027
1028static struct irq_chip xive_ipi_chip = {
1029        .name = "XIVE-IPI",
1030        .irq_eoi = xive_ipi_eoi,
1031        .irq_mask = xive_ipi_do_nothing,
1032        .irq_unmask = xive_ipi_do_nothing,
1033};
1034
1035static void __init xive_request_ipi(void)
1036{
1037        unsigned int virq;
1038
1039        /*
1040         * Initialization failed, move on, we might manage to
1041         * reach the point where we display our errors before
1042         * the system falls appart
1043         */
1044        if (!xive_irq_domain)
1045                return;
1046
1047        /* Initialize it */
1048        virq = irq_create_mapping(xive_irq_domain, 0);
1049        xive_ipi_irq = virq;
1050
1051        WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1052                            IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1053}
1054
1055static int xive_setup_cpu_ipi(unsigned int cpu)
1056{
1057        struct xive_cpu *xc;
1058        int rc;
1059
1060        pr_debug("Setting up IPI for CPU %d\n", cpu);
1061
1062        xc = per_cpu(xive_cpu, cpu);
1063
1064        /* Check if we are already setup */
1065        if (xc->hw_ipi != 0)
1066                return 0;
1067
1068        /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1069        if (xive_ops->get_ipi(cpu, xc))
1070                return -EIO;
1071
1072        /*
1073         * Populate the IRQ data in the xive_cpu structure and
1074         * configure the HW / enable the IPIs.
1075         */
1076        rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1077        if (rc) {
1078                pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1079                return -EIO;
1080        }
1081        rc = xive_ops->configure_irq(xc->hw_ipi,
1082                                     get_hard_smp_processor_id(cpu),
1083                                     xive_irq_priority, xive_ipi_irq);
1084        if (rc) {
1085                pr_err("Failed to map IPI CPU %d\n", cpu);
1086                return -EIO;
1087        }
1088        pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1089            xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1090
1091        /* Unmask it */
1092        xive_do_source_set_mask(&xc->ipi_data, false);
1093
1094        return 0;
1095}
1096
1097static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1098{
1099        /* Disable the IPI and free the IRQ data */
1100
1101        /* Already cleaned up ? */
1102        if (xc->hw_ipi == 0)
1103                return;
1104
1105        /* Mask the IPI */
1106        xive_do_source_set_mask(&xc->ipi_data, true);
1107
1108        /*
1109         * Note: We don't call xive_cleanup_irq_data() to free
1110         * the mappings as this is called from an IPI on kexec
1111         * which is not a safe environment to call iounmap()
1112         */
1113
1114        /* Deconfigure/mask in the backend */
1115        xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1116                                0xff, xive_ipi_irq);
1117
1118        /* Free the IPIs in the backend */
1119        xive_ops->put_ipi(cpu, xc);
1120}
1121
1122void __init xive_smp_probe(void)
1123{
1124        smp_ops->cause_ipi = xive_cause_ipi;
1125
1126        /* Register the IPI */
1127        xive_request_ipi();
1128
1129        /* Allocate and setup IPI for the boot CPU */
1130        xive_setup_cpu_ipi(smp_processor_id());
1131}
1132
1133#endif /* CONFIG_SMP */
1134
1135static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1136                               irq_hw_number_t hw)
1137{
1138        int rc;
1139
1140        /*
1141         * Mark interrupts as edge sensitive by default so that resend
1142         * actually works. Will fix that up below if needed.
1143         */
1144        irq_clear_status_flags(virq, IRQ_LEVEL);
1145
1146#ifdef CONFIG_SMP
1147        /* IPIs are special and come up with HW number 0 */
1148        if (hw == 0) {
1149                /*
1150                 * IPIs are marked per-cpu. We use separate HW interrupts under
1151                 * the hood but associated with the same "linux" interrupt
1152                 */
1153                irq_set_chip_and_handler(virq, &xive_ipi_chip,
1154                                         handle_percpu_irq);
1155                return 0;
1156        }
1157#endif
1158
1159        rc = xive_irq_alloc_data(virq, hw);
1160        if (rc)
1161                return rc;
1162
1163        irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1164
1165        return 0;
1166}
1167
1168static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1169{
1170        struct irq_data *data = irq_get_irq_data(virq);
1171        unsigned int hw_irq;
1172
1173        /* XXX Assign BAD number */
1174        if (!data)
1175                return;
1176        hw_irq = (unsigned int)irqd_to_hwirq(data);
1177        if (hw_irq)
1178                xive_irq_free_data(virq);
1179}
1180
1181static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1182                                 const u32 *intspec, unsigned int intsize,
1183                                 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1184
1185{
1186        *out_hwirq = intspec[0];
1187
1188        /*
1189         * If intsize is at least 2, we look for the type in the second cell,
1190         * we assume the LSB indicates a level interrupt.
1191         */
1192        if (intsize > 1) {
1193                if (intspec[1] & 1)
1194                        *out_flags = IRQ_TYPE_LEVEL_LOW;
1195                else
1196                        *out_flags = IRQ_TYPE_EDGE_RISING;
1197        } else
1198                *out_flags = IRQ_TYPE_LEVEL_LOW;
1199
1200        return 0;
1201}
1202
1203static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1204                                 enum irq_domain_bus_token bus_token)
1205{
1206        return xive_ops->match(node);
1207}
1208
1209static const struct irq_domain_ops xive_irq_domain_ops = {
1210        .match = xive_irq_domain_match,
1211        .map = xive_irq_domain_map,
1212        .unmap = xive_irq_domain_unmap,
1213        .xlate = xive_irq_domain_xlate,
1214};
1215
1216static void __init xive_init_host(void)
1217{
1218        xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1219                                               &xive_irq_domain_ops, NULL);
1220        if (WARN_ON(xive_irq_domain == NULL))
1221                return;
1222        irq_set_default_host(xive_irq_domain);
1223}
1224
1225static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1226{
1227        if (xc->queue[xive_irq_priority].qpage)
1228                xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1229}
1230
1231static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1232{
1233        int rc = 0;
1234
1235        /* We setup 1 queues for now with a 64k page */
1236        if (!xc->queue[xive_irq_priority].qpage)
1237                rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1238
1239        return rc;
1240}
1241
1242static int xive_prepare_cpu(unsigned int cpu)
1243{
1244        struct xive_cpu *xc;
1245
1246        xc = per_cpu(xive_cpu, cpu);
1247        if (!xc) {
1248                struct device_node *np;
1249
1250                xc = kzalloc_node(sizeof(struct xive_cpu),
1251                                  GFP_KERNEL, cpu_to_node(cpu));
1252                if (!xc)
1253                        return -ENOMEM;
1254                np = of_get_cpu_node(cpu, NULL);
1255                if (np)
1256                        xc->chip_id = of_get_ibm_chip_id(np);
1257                of_node_put(np);
1258
1259                per_cpu(xive_cpu, cpu) = xc;
1260        }
1261
1262        /* Setup EQs if not already */
1263        return xive_setup_cpu_queues(cpu, xc);
1264}
1265
1266static void xive_setup_cpu(void)
1267{
1268        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1269
1270        /* The backend might have additional things to do */
1271        if (xive_ops->setup_cpu)
1272                xive_ops->setup_cpu(smp_processor_id(), xc);
1273
1274        /* Set CPPR to 0xff to enable flow of interrupts */
1275        xc->cppr = 0xff;
1276        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1277}
1278
1279#ifdef CONFIG_SMP
1280void xive_smp_setup_cpu(void)
1281{
1282        pr_devel("SMP setup CPU %d\n", smp_processor_id());
1283
1284        /* This will have already been done on the boot CPU */
1285        if (smp_processor_id() != boot_cpuid)
1286                xive_setup_cpu();
1287
1288}
1289
1290int xive_smp_prepare_cpu(unsigned int cpu)
1291{
1292        int rc;
1293
1294        /* Allocate per-CPU data and queues */
1295        rc = xive_prepare_cpu(cpu);
1296        if (rc)
1297                return rc;
1298
1299        /* Allocate and setup IPI for the new CPU */
1300        return xive_setup_cpu_ipi(cpu);
1301}
1302
1303#ifdef CONFIG_HOTPLUG_CPU
1304static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1305{
1306        u32 irq;
1307
1308        /* We assume local irqs are disabled */
1309        WARN_ON(!irqs_disabled());
1310
1311        /* Check what's already in the CPU queue */
1312        while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1313                /*
1314                 * We need to re-route that interrupt to its new destination.
1315                 * First get and lock the descriptor
1316                 */
1317                struct irq_desc *desc = irq_to_desc(irq);
1318                struct irq_data *d = irq_desc_get_irq_data(desc);
1319                struct xive_irq_data *xd;
1320                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1321
1322                /*
1323                 * Ignore anything that isn't a XIVE irq and ignore
1324                 * IPIs, so can just be dropped.
1325                 */
1326                if (d->domain != xive_irq_domain || hw_irq == 0)
1327                        continue;
1328
1329                /*
1330                 * The IRQ should have already been re-routed, it's just a
1331                 * stale in the old queue, so re-trigger it in order to make
1332                 * it reach is new destination.
1333                 */
1334#ifdef DEBUG_FLUSH
1335                pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1336                        cpu, irq);
1337#endif
1338                raw_spin_lock(&desc->lock);
1339                xd = irq_desc_get_handler_data(desc);
1340
1341                /*
1342                 * For LSIs, we EOI, this will cause a resend if it's
1343                 * still asserted. Otherwise do an MSI retrigger.
1344                 */
1345                if (xd->flags & XIVE_IRQ_FLAG_LSI)
1346                        xive_do_source_eoi(irqd_to_hwirq(d), xd);
1347                else
1348                        xive_irq_retrigger(d);
1349
1350                raw_spin_unlock(&desc->lock);
1351        }
1352}
1353
1354void xive_smp_disable_cpu(void)
1355{
1356        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1357        unsigned int cpu = smp_processor_id();
1358
1359        /* Migrate interrupts away from the CPU */
1360        irq_migrate_all_off_this_cpu();
1361
1362        /* Set CPPR to 0 to disable flow of interrupts */
1363        xc->cppr = 0;
1364        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1365
1366        /* Flush everything still in the queue */
1367        xive_flush_cpu_queue(cpu, xc);
1368
1369        /* Re-enable CPPR  */
1370        xc->cppr = 0xff;
1371        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1372}
1373
1374void xive_flush_interrupt(void)
1375{
1376        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1377        unsigned int cpu = smp_processor_id();
1378
1379        /* Called if an interrupt occurs while the CPU is hot unplugged */
1380        xive_flush_cpu_queue(cpu, xc);
1381}
1382
1383#endif /* CONFIG_HOTPLUG_CPU */
1384
1385#endif /* CONFIG_SMP */
1386
1387void xive_teardown_cpu(void)
1388{
1389        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1390        unsigned int cpu = smp_processor_id();
1391
1392        /* Set CPPR to 0 to disable flow of interrupts */
1393        xc->cppr = 0;
1394        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1395
1396        if (xive_ops->teardown_cpu)
1397                xive_ops->teardown_cpu(cpu, xc);
1398
1399#ifdef CONFIG_SMP
1400        /* Get rid of IPI */
1401        xive_cleanup_cpu_ipi(cpu, xc);
1402#endif
1403
1404        /* Disable and free the queues */
1405        xive_cleanup_cpu_queues(cpu, xc);
1406}
1407
1408void xive_shutdown(void)
1409{
1410        xive_ops->shutdown();
1411}
1412
1413bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1414                           u8 max_prio)
1415{
1416        xive_tima = area;
1417        xive_tima_offset = offset;
1418        xive_ops = ops;
1419        xive_irq_priority = max_prio;
1420
1421        ppc_md.get_irq = xive_get_irq;
1422        __xive_enabled = true;
1423
1424        pr_devel("Initializing host..\n");
1425        xive_init_host();
1426
1427        pr_devel("Initializing boot CPU..\n");
1428
1429        /* Allocate per-CPU data and queues */
1430        xive_prepare_cpu(smp_processor_id());
1431
1432        /* Get ready for interrupts */
1433        xive_setup_cpu();
1434
1435        pr_info("Interrupt handling initialized with %s backend\n",
1436                xive_ops->name);
1437        pr_info("Using priority %d for all interrupts\n", max_prio);
1438
1439        return true;
1440}
1441
1442__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1443{
1444        unsigned int alloc_order;
1445        struct page *pages;
1446        __be32 *qpage;
1447
1448        alloc_order = xive_alloc_order(queue_shift);
1449        pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1450        if (!pages)
1451                return ERR_PTR(-ENOMEM);
1452        qpage = (__be32 *)page_address(pages);
1453        memset(qpage, 0, 1 << queue_shift);
1454
1455        return qpage;
1456}
1457
1458static int __init xive_off(char *arg)
1459{
1460        xive_cmdline_disabled = true;
1461        return 0;
1462}
1463__setup("xive=off", xive_off);
1464