linux/arch/sparc/include/asm/tsb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _SPARC64_TSB_H
   3#define _SPARC64_TSB_H
   4
   5/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
   6 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
   7 * pointers into this table for 8K and 64K page sizes, and also a
   8 * comparison TAG based upon the virtual address and context which
   9 * faults.
  10 *
  11 * TLB miss trap handler software does the actual lookup via something
  12 * of the form:
  13 *
  14 *      ldxa            [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
  15 *      ldxa            [%g0] ASI_{D,I}MMU, %g6
  16 *      sllx            %g6, 22, %g6
  17 *      srlx            %g6, 22, %g6
  18 *      ldda            [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
  19 *      cmp             %g4, %g6
  20 *      bne,pn  %xcc, tsb_miss_{d,i}tlb
  21 *       mov            FAULT_CODE_{D,I}TLB, %g3
  22 *      stxa            %g5, [%g0] ASI_{D,I}TLB_DATA_IN
  23 *      retry
  24 *
  25 *
  26 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
  27 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
  28 * register which is:
  29 *
  30 * -------------------------------------------------
  31 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
  32 * -------------------------------------------------
  33 *  63 61 60      48 47 42 41                     0
  34 *
  35 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
  36 * field.
  37 *
  38 * Like the powerpc hashtables we need to use locking in order to
  39 * synchronize while we update the entries.  PTE updates need locking
  40 * as well.
  41 *
  42 * We need to carefully choose a lock bits for the TSB entry.  We
  43 * choose to use bit 47 in the tag.  Also, since we never map anything
  44 * at page zero in context zero, we use zero as an invalid tag entry.
  45 * When the lock bit is set, this forces a tag comparison failure.
  46 */
  47
  48#define TSB_TAG_LOCK_BIT        47
  49#define TSB_TAG_LOCK_HIGH       (1 << (TSB_TAG_LOCK_BIT - 32))
  50
  51#define TSB_TAG_INVALID_BIT     46
  52#define TSB_TAG_INVALID_HIGH    (1 << (TSB_TAG_INVALID_BIT - 32))
  53
  54/* Some cpus support physical address quad loads.  We want to use
  55 * those if possible so we don't need to hard-lock the TSB mapping
  56 * into the TLB.  We encode some instruction patching in order to
  57 * support this.
  58 *
  59 * The kernel TSB is locked into the TLB by virtue of being in the
  60 * kernel image, so we don't play these games for swapper_tsb access.
  61 */
  62#ifndef __ASSEMBLY__
  63struct tsb_ldquad_phys_patch_entry {
  64        unsigned int    addr;
  65        unsigned int    sun4u_insn;
  66        unsigned int    sun4v_insn;
  67};
  68extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
  69        __tsb_ldquad_phys_patch_end;
  70
  71struct tsb_phys_patch_entry {
  72        unsigned int    addr;
  73        unsigned int    insn;
  74};
  75extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
  76#endif
  77#define TSB_LOAD_QUAD(TSB, REG) \
  78661:    ldda            [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
  79        .section        .tsb_ldquad_phys_patch, "ax"; \
  80        .word           661b; \
  81        ldda            [TSB] ASI_QUAD_LDD_PHYS, REG; \
  82        ldda            [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
  83        .previous
  84
  85#define TSB_LOAD_TAG_HIGH(TSB, REG) \
  86661:    lduwa           [TSB] ASI_N, REG; \
  87        .section        .tsb_phys_patch, "ax"; \
  88        .word           661b; \
  89        lduwa           [TSB] ASI_PHYS_USE_EC, REG; \
  90        .previous
  91
  92#define TSB_LOAD_TAG(TSB, REG) \
  93661:    ldxa            [TSB] ASI_N, REG; \
  94        .section        .tsb_phys_patch, "ax"; \
  95        .word           661b; \
  96        ldxa            [TSB] ASI_PHYS_USE_EC, REG; \
  97        .previous
  98
  99#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
 100661:    casa            [TSB] ASI_N, REG1, REG2; \
 101        .section        .tsb_phys_patch, "ax"; \
 102        .word           661b; \
 103        casa            [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
 104        .previous
 105
 106#define TSB_CAS_TAG(TSB, REG1, REG2) \
 107661:    casxa           [TSB] ASI_N, REG1, REG2; \
 108        .section        .tsb_phys_patch, "ax"; \
 109        .word           661b; \
 110        casxa           [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
 111        .previous
 112
 113#define TSB_STORE(ADDR, VAL) \
 114661:    stxa            VAL, [ADDR] ASI_N; \
 115        .section        .tsb_phys_patch, "ax"; \
 116        .word           661b; \
 117        stxa            VAL, [ADDR] ASI_PHYS_USE_EC; \
 118        .previous
 119
 120#define TSB_LOCK_TAG(TSB, REG1, REG2)   \
 12199:     TSB_LOAD_TAG_HIGH(TSB, REG1);   \
 122        sethi   %hi(TSB_TAG_LOCK_HIGH), REG2;\
 123        andcc   REG1, REG2, %g0;        \
 124        bne,pn  %icc, 99b;              \
 125         nop;                           \
 126        TSB_CAS_TAG_HIGH(TSB, REG1, REG2);      \
 127        cmp     REG1, REG2;             \
 128        bne,pn  %icc, 99b;              \
 129         nop;                           \
 130
 131#define TSB_WRITE(TSB, TTE, TAG) \
 132        add     TSB, 0x8, TSB;   \
 133        TSB_STORE(TSB, TTE);     \
 134        sub     TSB, 0x8, TSB;   \
 135        TSB_STORE(TSB, TAG);
 136
 137        /* Do a kernel page table walk.  Leaves valid PTE value in
 138         * REG1.  Jumps to FAIL_LABEL on early page table walk
 139         * termination.  VADDR will not be clobbered, but REG2 will.
 140         *
 141         * There are two masks we must apply to propagate bits from
 142         * the virtual address into the PTE physical address field
 143         * when dealing with huge pages.  This is because the page
 144         * table boundaries do not match the huge page size(s) the
 145         * hardware supports.
 146         *
 147         * In these cases we propagate the bits that are below the
 148         * page table level where we saw the huge page mapping, but
 149         * are still within the relevant physical bits for the huge
 150         * page size in question.  So for PMD mappings (which fall on
 151         * bit 23, for 8MB per PMD) we must propagate bit 22 for a
 152         * 4MB huge page.  For huge PUDs (which fall on bit 33, for
 153         * 8GB per PUD), we have to accommodate 256MB and 2GB huge
 154         * pages.  So for those we propagate bits 32 to 28.
 155         */
 156#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)        \
 157        sethi           %hi(swapper_pg_dir), REG1; \
 158        or              REG1, %lo(swapper_pg_dir), REG1; \
 159        sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
 160        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 161        andn            REG2, 0x7, REG2; \
 162        ldx             [REG1 + REG2], REG1; \
 163        brz,pn          REG1, FAIL_LABEL; \
 164         sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
 165        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 166        andn            REG2, 0x7, REG2; \
 167        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 168        brz,pn          REG1, FAIL_LABEL; \
 169        sethi           %uhi(_PAGE_PUD_HUGE), REG2; \
 170        brz,pn          REG1, FAIL_LABEL; \
 171         sllx           REG2, 32, REG2; \
 172        andcc           REG1, REG2, %g0; \
 173        sethi           %hi(0xf8000000), REG2; \
 174        bne,pt          %xcc, 697f; \
 175         sllx           REG2, 1, REG2; \
 176        sllx            VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
 177        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 178        andn            REG2, 0x7, REG2; \
 179        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 180        sethi           %uhi(_PAGE_PMD_HUGE), REG2; \
 181        brz,pn          REG1, FAIL_LABEL; \
 182         sllx           REG2, 32, REG2; \
 183        andcc           REG1, REG2, %g0; \
 184        be,pn           %xcc, 698f; \
 185         sethi          %hi(0x400000), REG2; \
 186697:    brgez,pn        REG1, FAIL_LABEL; \
 187         andn           REG1, REG2, REG1; \
 188        and             VADDR, REG2, REG2; \
 189        ba,pt           %xcc, 699f; \
 190         or             REG1, REG2, REG1; \
 191698:    sllx            VADDR, 64 - PMD_SHIFT, REG2; \
 192        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 193        andn            REG2, 0x7, REG2; \
 194        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 195        brgez,pn        REG1, FAIL_LABEL; \
 196         nop; \
 197699:
 198
 199        /* PUD has been loaded into REG1, interpret the value, seeing
 200         * if it is a HUGE PUD or a normal one.  If it is not valid
 201         * then jump to FAIL_LABEL.  If it is a HUGE PUD, and it
 202         * translates to a valid PTE, branch to PTE_LABEL.
 203         *
 204         * We have to propagate bits [32:22] from the virtual address
 205         * to resolve at 4M granularity.
 206         */
 207#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 208#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 209700:    ba 700f;                                        \
 210         nop;                                           \
 211        .section        .pud_huge_patch, "ax";          \
 212        .word           700b;                           \
 213        nop;                                            \
 214        .previous;                                      \
 215        brz,pn          REG1, FAIL_LABEL;               \
 216         sethi          %uhi(_PAGE_PUD_HUGE), REG2;     \
 217        sllx            REG2, 32, REG2;                 \
 218        andcc           REG1, REG2, %g0;                \
 219        be,pt           %xcc, 700f;                     \
 220         sethi          %hi(0xffe00000), REG2;          \
 221        sllx            REG2, 1, REG2;                  \
 222        brgez,pn        REG1, FAIL_LABEL;               \
 223         andn           REG1, REG2, REG1;               \
 224        and             VADDR, REG2, REG2;              \
 225        brlz,pt         REG1, PTE_LABEL;                \
 226         or             REG1, REG2, REG1;               \
 227700:
 228#else
 229#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 230        brz,pn          REG1, FAIL_LABEL; \
 231         nop;
 232#endif
 233
 234        /* PMD has been loaded into REG1, interpret the value, seeing
 235         * if it is a HUGE PMD or a normal one.  If it is not valid
 236         * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
 237         * translates to a valid PTE, branch to PTE_LABEL.
 238         *
 239         * We have to propagate the 4MB bit of the virtual address
 240         * because we are fabricating 8MB pages using 4MB hw pages.
 241         */
 242#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 243#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 244        brz,pn          REG1, FAIL_LABEL;               \
 245         sethi          %uhi(_PAGE_PMD_HUGE), REG2;     \
 246        sllx            REG2, 32, REG2;                 \
 247        andcc           REG1, REG2, %g0;                \
 248        be,pt           %xcc, 700f;                     \
 249         sethi          %hi(4 * 1024 * 1024), REG2;     \
 250        brgez,pn        REG1, FAIL_LABEL;               \
 251         andn           REG1, REG2, REG1;               \
 252        and             VADDR, REG2, REG2;              \
 253        brlz,pt         REG1, PTE_LABEL;                \
 254         or             REG1, REG2, REG1;               \
 255700:
 256#else
 257#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 258        brz,pn          REG1, FAIL_LABEL; \
 259         nop;
 260#endif
 261
 262        /* Do a user page table walk in MMU globals.  Leaves final,
 263         * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
 264         * page table walk termination or if the PTE is not valid.
 265         *
 266         * Physical base of page tables is in PHYS_PGD which will not
 267         * be modified.
 268         *
 269         * VADDR will not be clobbered, but REG1 and REG2 will.
 270         */
 271#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)  \
 272        sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
 273        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 274        andn            REG2, 0x7, REG2; \
 275        ldxa            [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
 276        brz,pn          REG1, FAIL_LABEL; \
 277         sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
 278        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 279        andn            REG2, 0x7, REG2; \
 280        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 281        USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
 282        brz,pn          REG1, FAIL_LABEL; \
 283         sllx           VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
 284        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 285        andn            REG2, 0x7, REG2; \
 286        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 287        USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
 288        sllx            VADDR, 64 - PMD_SHIFT, REG2; \
 289        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
 290        andn            REG2, 0x7, REG2; \
 291        add             REG1, REG2, REG1; \
 292        ldxa            [REG1] ASI_PHYS_USE_EC, REG1; \
 293        brgez,pn        REG1, FAIL_LABEL; \
 294         nop; \
 295800:
 296
 297/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 298 * If no entry is found, FAIL_LABEL will be branched to.  On success
 299 * the resulting PTE value will be left in REG1.  VADDR is preserved
 300 * by this routine.
 301 */
 302#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
 303        sethi           %hi(prom_trans), REG1; \
 304        or              REG1, %lo(prom_trans), REG1; \
 30597:     ldx             [REG1 + 0x00], REG2; \
 306        brz,pn          REG2, FAIL_LABEL; \
 307         nop; \
 308        ldx             [REG1 + 0x08], REG3; \
 309        add             REG2, REG3, REG3; \
 310        cmp             REG2, VADDR; \
 311        bgu,pt          %xcc, 98f; \
 312         cmp            VADDR, REG3; \
 313        bgeu,pt         %xcc, 98f; \
 314         ldx            [REG1 + 0x10], REG3; \
 315        sub             VADDR, REG2, REG2; \
 316        ba,pt           %xcc, 99f; \
 317         add            REG3, REG2, REG1; \
 31898:     ba,pt           %xcc, 97b; \
 319         add            REG1, (3 * 8), REG1; \
 32099:
 321
 322        /* We use a 32K TSB for the whole kernel, this allows to
 323         * handle about 16MB of modules and vmalloc mappings without
 324         * incurring many hash conflicts.
 325         */
 326#define KERNEL_TSB_SIZE_BYTES   (32 * 1024)
 327#define KERNEL_TSB_NENTRIES     \
 328        (KERNEL_TSB_SIZE_BYTES / 16)
 329#define KERNEL_TSB4M_NENTRIES   4096
 330
 331        /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
 332         * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
 333         * and the found TTE will be left in REG1.  REG3 and REG4 must
 334         * be an even/odd pair of registers.
 335         *
 336         * VADDR and TAG will be preserved and not clobbered by this macro.
 337         */
 338#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
 339661:    sethi           %uhi(swapper_tsb), REG1; \
 340        sethi           %hi(swapper_tsb), REG2; \
 341        or              REG1, %ulo(swapper_tsb), REG1; \
 342        or              REG2, %lo(swapper_tsb), REG2; \
 343        .section        .swapper_tsb_phys_patch, "ax"; \
 344        .word           661b; \
 345        .previous; \
 346        sllx            REG1, 32, REG1; \
 347        or              REG1, REG2, REG1; \
 348        srlx            VADDR, PAGE_SHIFT, REG2; \
 349        and             REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
 350        sllx            REG2, 4, REG2; \
 351        add             REG1, REG2, REG2; \
 352        TSB_LOAD_QUAD(REG2, REG3); \
 353        cmp             REG3, TAG; \
 354        be,a,pt         %xcc, OK_LABEL; \
 355         mov            REG4, REG1;
 356
 357#ifndef CONFIG_DEBUG_PAGEALLOC
 358        /* This version uses a trick, the TAG is already (VADDR >> 22) so
 359         * we can make use of that for the index computation.
 360         */
 361#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
 362661:    sethi           %uhi(swapper_4m_tsb), REG1; \
 363        sethi           %hi(swapper_4m_tsb), REG2; \
 364        or              REG1, %ulo(swapper_4m_tsb), REG1; \
 365        or              REG2, %lo(swapper_4m_tsb), REG2; \
 366        .section        .swapper_4m_tsb_phys_patch, "ax"; \
 367        .word           661b; \
 368        .previous; \
 369        sllx            REG1, 32, REG1; \
 370        or              REG1, REG2, REG1; \
 371        and             TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
 372        sllx            REG2, 4, REG2; \
 373        add             REG1, REG2, REG2; \
 374        TSB_LOAD_QUAD(REG2, REG3); \
 375        cmp             REG3, TAG; \
 376        be,a,pt         %xcc, OK_LABEL; \
 377         mov            REG4, REG1;
 378#endif
 379
 380#endif /* !(_SPARC64_TSB_H) */
 381