linux/arch/sparc/kernel/traps_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kdebug.h>
  22#include <linux/ftrace.h>
  23#include <linux/reboot.h>
  24#include <linux/gfp.h>
  25#include <linux/context_tracking.h>
  26
  27#include <asm/smp.h>
  28#include <asm/delay.h>
  29#include <asm/ptrace.h>
  30#include <asm/oplib.h>
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60        struct {
  61                unsigned long tstate;
  62                unsigned long tpc;
  63                unsigned long tnpc;
  64                unsigned long tt;
  65        } trapstack[4];
  66        unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71        int i, limit;
  72
  73        printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74               "dumping track stack.\n", p->tl);
  75
  76        limit = (tlb_type == hypervisor) ? 2 : 4;
  77        for (i = 0; i < limit; i++) {
  78                printk(KERN_EMERG
  79                       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80                       "TNPC[%016lx] TT[%lx]\n",
  81                       i + 1,
  82                       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83                       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84                printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85        }
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90        char buffer[36];
  91
  92        if (notify_die(DIE_TRAP, "bad trap", regs,
  93                       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94                return;
  95
  96        if (lvl < 0x100) {
  97                sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98                die_if_kernel(buffer, regs);
  99        }
 100
 101        lvl -= 0x100;
 102        if (regs->tstate & TSTATE_PRIV) {
 103                sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104                die_if_kernel(buffer, regs);
 105        }
 106        if (test_thread_flag(TIF_32BIT)) {
 107                regs->tpc &= 0xffffffff;
 108                regs->tnpc &= 0xffffffff;
 109        }
 110        force_sig_fault(SIGILL, ILL_ILLTRP,
 111                        (void __user *)regs->tpc, lvl, current);
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116        char buffer[36];
 117        
 118        if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119                       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120                return;
 121
 122        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124        sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125        die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131        bust_spinlocks(1);
 132        printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142        unsigned long flags;
 143        int ret = -ENODEV;
 144
 145        spin_lock_irqsave(&dimm_handler_lock, flags);
 146        if (dimm_handler) {
 147                ret = dimm_handler(synd_code, paddr, buf, buflen);
 148        } else if (tlb_type == spitfire) {
 149                if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150                        ret = -EINVAL;
 151                else
 152                        ret = 0;
 153        } else
 154                ret = -ENODEV;
 155        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157        return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162        unsigned long flags;
 163        int ret = 0;
 164
 165        spin_lock_irqsave(&dimm_handler_lock, flags);
 166        if (!dimm_handler)
 167                dimm_handler = func;
 168        else
 169                ret = -EEXIST;
 170        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172        return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178        unsigned long flags;
 179
 180        spin_lock_irqsave(&dimm_handler_lock, flags);
 181        if (dimm_handler == func)
 182                dimm_handler = NULL;
 183        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189        enum ctx_state prev_state = exception_enter();
 190
 191        if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193                goto out;
 194
 195        if (regs->tstate & TSTATE_PRIV) {
 196                printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197                       "SFAR[%016lx], going.\n", sfsr, sfar);
 198                die_if_kernel("Iax", regs);
 199        }
 200        if (test_thread_flag(TIF_32BIT)) {
 201                regs->tpc &= 0xffffffff;
 202                regs->tnpc &= 0xffffffff;
 203        }
 204        force_sig_fault(SIGSEGV, SEGV_MAPERR,
 205                        (void __user *)regs->tpc, 0, current);
 206out:
 207        exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212        if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214                return;
 215
 216        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217        spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222        unsigned short type = (type_ctx >> 16);
 223        unsigned short ctx  = (type_ctx & 0xffff);
 224
 225        if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227                return;
 228
 229        if (regs->tstate & TSTATE_PRIV) {
 230                printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231                       "CTX[%04x] TYPE[%04x], going.\n",
 232                       addr, ctx, type);
 233                die_if_kernel("Iax", regs);
 234        }
 235
 236        if (test_thread_flag(TIF_32BIT)) {
 237                regs->tpc &= 0xffffffff;
 238                regs->tnpc &= 0xffffffff;
 239        }
 240        force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0, current);
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245        if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247                return;
 248
 249        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250        sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255        unsigned char asi;
 256        u32 insn;
 257
 258        if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259                return false;
 260
 261        /*
 262         * Must do a little instruction decoding here in order to
 263         * decide on a course of action. The bits of interest are:
 264         *  insn[31:30] = op, where 3 indicates the load/store group
 265         *  insn[24:19] = op3, which identifies individual opcodes
 266         *  insn[13] indicates an immediate offset
 267         *  op3[4]=1 identifies alternate space instructions
 268         *  op3[5:4]=3 identifies floating point instructions
 269         *  op3[2]=1 identifies stores
 270         * See "Opcode Maps" in the appendix of any Sparc V9
 271         * architecture spec for full details.
 272         */
 273        if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274                if (insn & 0x2000)                  /* immediate offset */
 275                        asi = (regs->tstate >> 24); /* saved %asi       */
 276                else
 277                        asi = (insn >> 5);          /* immediate asi    */
 278                if ((asi & 0xf2) == ASI_PNF) {
 279                        if (insn & 0x1000000) {     /* op3[5:4]=3       */
 280                                handle_ldf_stq(insn, regs);
 281                                return true;
 282                        } else if (insn & 0x200000) { /* op3[2], stores */
 283                                return false;
 284                        }
 285                        handle_ld_nf(insn, regs);
 286                        return true;
 287                }
 288        }
 289        return false;
 290}
 291
 292void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 293{
 294        enum ctx_state prev_state = exception_enter();
 295
 296        if (notify_die(DIE_TRAP, "data access exception", regs,
 297                       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 298                goto out;
 299
 300        if (regs->tstate & TSTATE_PRIV) {
 301                /* Test if this comes from uaccess places. */
 302                const struct exception_table_entry *entry;
 303
 304                entry = search_exception_tables(regs->tpc);
 305                if (entry) {
 306                        /* Ouch, somebody is trying VM hole tricks on us... */
 307#ifdef DEBUG_EXCEPTIONS
 308                        printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 309                        printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 310                               regs->tpc, entry->fixup);
 311#endif
 312                        regs->tpc = entry->fixup;
 313                        regs->tnpc = regs->tpc + 4;
 314                        goto out;
 315                }
 316                /* Shit... */
 317                printk("spitfire_data_access_exception: SFSR[%016lx] "
 318                       "SFAR[%016lx], going.\n", sfsr, sfar);
 319                die_if_kernel("Dax", regs);
 320        }
 321
 322        if (is_no_fault_exception(regs))
 323                return;
 324
 325        force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0, current);
 326out:
 327        exception_exit(prev_state);
 328}
 329
 330void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 331{
 332        if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 333                       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 334                return;
 335
 336        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 337        spitfire_data_access_exception(regs, sfsr, sfar);
 338}
 339
 340void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 341{
 342        unsigned short type = (type_ctx >> 16);
 343        unsigned short ctx  = (type_ctx & 0xffff);
 344
 345        if (notify_die(DIE_TRAP, "data access exception", regs,
 346                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 347                return;
 348
 349        if (regs->tstate & TSTATE_PRIV) {
 350                /* Test if this comes from uaccess places. */
 351                const struct exception_table_entry *entry;
 352
 353                entry = search_exception_tables(regs->tpc);
 354                if (entry) {
 355                        /* Ouch, somebody is trying VM hole tricks on us... */
 356#ifdef DEBUG_EXCEPTIONS
 357                        printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 358                        printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 359                               regs->tpc, entry->fixup);
 360#endif
 361                        regs->tpc = entry->fixup;
 362                        regs->tnpc = regs->tpc + 4;
 363                        return;
 364                }
 365                printk("sun4v_data_access_exception: ADDR[%016lx] "
 366                       "CTX[%04x] TYPE[%04x], going.\n",
 367                       addr, ctx, type);
 368                die_if_kernel("Dax", regs);
 369        }
 370
 371        if (test_thread_flag(TIF_32BIT)) {
 372                regs->tpc &= 0xffffffff;
 373                regs->tnpc &= 0xffffffff;
 374        }
 375        if (is_no_fault_exception(regs))
 376                return;
 377
 378        /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 379         * is vectored thorugh data access exception trap with fault type
 380         * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 381         * Accessing an address with invalid ASI for the address, for
 382         * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 383         * when TTE.mcd is not set for the VA, is also vectored into
 384         * kerbel by HV as data access exception with fault type set to
 385         * HV_FAULT_TYPE_INV_ASI.
 386         */
 387        switch (type) {
 388        case HV_FAULT_TYPE_INV_ASI:
 389                force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
 390                                current);
 391                break;
 392        case HV_FAULT_TYPE_MCD_DIS:
 393                force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
 394                                current);
 395                break;
 396        default:
 397                force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
 398                                current);
 399                break;
 400        }
 401}
 402
 403void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 404{
 405        if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 406                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 407                return;
 408
 409        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 410        sun4v_data_access_exception(regs, addr, type_ctx);
 411}
 412
 413#ifdef CONFIG_PCI
 414#include "pci_impl.h"
 415#endif
 416
 417/* When access exceptions happen, we must do this. */
 418static void spitfire_clean_and_reenable_l1_caches(void)
 419{
 420        unsigned long va;
 421
 422        if (tlb_type != spitfire)
 423                BUG();
 424
 425        /* Clean 'em. */
 426        for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 427                spitfire_put_icache_tag(va, 0x0);
 428                spitfire_put_dcache_tag(va, 0x0);
 429        }
 430
 431        /* Re-enable in LSU. */
 432        __asm__ __volatile__("flush %%g6\n\t"
 433                             "membar #Sync\n\t"
 434                             "stxa %0, [%%g0] %1\n\t"
 435                             "membar #Sync"
 436                             : /* no outputs */
 437                             : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 438                                    LSU_CONTROL_IM | LSU_CONTROL_DM),
 439                             "i" (ASI_LSU_CONTROL)
 440                             : "memory");
 441}
 442
 443static void spitfire_enable_estate_errors(void)
 444{
 445        __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
 446                             "membar    #Sync"
 447                             : /* no outputs */
 448                             : "r" (ESTATE_ERR_ALL),
 449                               "i" (ASI_ESTATE_ERROR_EN));
 450}
 451
 452static char ecc_syndrome_table[] = {
 453        0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 454        0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 455        0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 456        0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 457        0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 458        0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 459        0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 460        0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 461        0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 462        0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 463        0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 464        0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 465        0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 466        0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 467        0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 468        0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 469        0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 470        0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 471        0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 472        0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 473        0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 474        0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 475        0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 476        0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 477        0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 478        0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 479        0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 480        0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 481        0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 482        0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 483        0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 484        0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 485};
 486
 487static char *syndrome_unknown = "<Unknown>";
 488
 489static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 490{
 491        unsigned short scode;
 492        char memmod_str[64], *p;
 493
 494        if (udbl & bit) {
 495                scode = ecc_syndrome_table[udbl & 0xff];
 496                if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 497                        p = syndrome_unknown;
 498                else
 499                        p = memmod_str;
 500                printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 501                       "Memory Module \"%s\"\n",
 502                       smp_processor_id(), scode, p);
 503        }
 504
 505        if (udbh & bit) {
 506                scode = ecc_syndrome_table[udbh & 0xff];
 507                if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 508                        p = syndrome_unknown;
 509                else
 510                        p = memmod_str;
 511                printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 512                       "Memory Module \"%s\"\n",
 513                       smp_processor_id(), scode, p);
 514        }
 515
 516}
 517
 518static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 519{
 520
 521        printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 522               "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 523               smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 524
 525        spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 526
 527        /* We always log it, even if someone is listening for this
 528         * trap.
 529         */
 530        notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 531                   0, TRAP_TYPE_CEE, SIGTRAP);
 532
 533        /* The Correctable ECC Error trap does not disable I/D caches.  So
 534         * we only have to restore the ESTATE Error Enable register.
 535         */
 536        spitfire_enable_estate_errors();
 537}
 538
 539static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 540{
 541        printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 542               "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 543               smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 544
 545        /* XXX add more human friendly logging of the error status
 546         * XXX as is implemented for cheetah
 547         */
 548
 549        spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 550
 551        /* We always log it, even if someone is listening for this
 552         * trap.
 553         */
 554        notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 555                   0, tt, SIGTRAP);
 556
 557        if (regs->tstate & TSTATE_PRIV) {
 558                if (tl1)
 559                        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 560                die_if_kernel("UE", regs);
 561        }
 562
 563        /* XXX need more intelligent processing here, such as is implemented
 564         * XXX for cheetah errors, in fact if the E-cache still holds the
 565         * XXX line with bad parity this will loop
 566         */
 567
 568        spitfire_clean_and_reenable_l1_caches();
 569        spitfire_enable_estate_errors();
 570
 571        if (test_thread_flag(TIF_32BIT)) {
 572                regs->tpc &= 0xffffffff;
 573                regs->tnpc &= 0xffffffff;
 574        }
 575        force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0, current);
 576}
 577
 578void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 579{
 580        unsigned long afsr, tt, udbh, udbl;
 581        int tl1;
 582
 583        afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 584        tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 585        tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 586        udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 587        udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 588
 589#ifdef CONFIG_PCI
 590        if (tt == TRAP_TYPE_DAE &&
 591            pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 592                spitfire_clean_and_reenable_l1_caches();
 593                spitfire_enable_estate_errors();
 594
 595                pci_poke_faulted = 1;
 596                regs->tnpc = regs->tpc + 4;
 597                return;
 598        }
 599#endif
 600
 601        if (afsr & SFAFSR_UE)
 602                spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 603
 604        if (tt == TRAP_TYPE_CEE) {
 605                /* Handle the case where we took a CEE trap, but ACK'd
 606                 * only the UE state in the UDB error registers.
 607                 */
 608                if (afsr & SFAFSR_UE) {
 609                        if (udbh & UDBE_CE) {
 610                                __asm__ __volatile__(
 611                                        "stxa   %0, [%1] %2\n\t"
 612                                        "membar #Sync"
 613                                        : /* no outputs */
 614                                        : "r" (udbh & UDBE_CE),
 615                                          "r" (0x0), "i" (ASI_UDB_ERROR_W));
 616                        }
 617                        if (udbl & UDBE_CE) {
 618                                __asm__ __volatile__(
 619                                        "stxa   %0, [%1] %2\n\t"
 620                                        "membar #Sync"
 621                                        : /* no outputs */
 622                                        : "r" (udbl & UDBE_CE),
 623                                          "r" (0x18), "i" (ASI_UDB_ERROR_W));
 624                        }
 625                }
 626
 627                spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 628        }
 629}
 630
 631int cheetah_pcache_forced_on;
 632
 633void cheetah_enable_pcache(void)
 634{
 635        unsigned long dcr;
 636
 637        printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 638               smp_processor_id());
 639
 640        __asm__ __volatile__("ldxa [%%g0] %1, %0"
 641                             : "=r" (dcr)
 642                             : "i" (ASI_DCU_CONTROL_REG));
 643        dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 644        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 645                             "membar #Sync"
 646                             : /* no outputs */
 647                             : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 648}
 649
 650/* Cheetah error trap handling. */
 651static unsigned long ecache_flush_physbase;
 652static unsigned long ecache_flush_linesize;
 653static unsigned long ecache_flush_size;
 654
 655/* This table is ordered in priority of errors and matches the
 656 * AFAR overwrite policy as well.
 657 */
 658
 659struct afsr_error_table {
 660        unsigned long mask;
 661        const char *name;
 662};
 663
 664static const char CHAFSR_PERR_msg[] =
 665        "System interface protocol error";
 666static const char CHAFSR_IERR_msg[] =
 667        "Internal processor error";
 668static const char CHAFSR_ISAP_msg[] =
 669        "System request parity error on incoming address";
 670static const char CHAFSR_UCU_msg[] =
 671        "Uncorrectable E-cache ECC error for ifetch/data";
 672static const char CHAFSR_UCC_msg[] =
 673        "SW Correctable E-cache ECC error for ifetch/data";
 674static const char CHAFSR_UE_msg[] =
 675        "Uncorrectable system bus data ECC error for read";
 676static const char CHAFSR_EDU_msg[] =
 677        "Uncorrectable E-cache ECC error for stmerge/blkld";
 678static const char CHAFSR_EMU_msg[] =
 679        "Uncorrectable system bus MTAG error";
 680static const char CHAFSR_WDU_msg[] =
 681        "Uncorrectable E-cache ECC error for writeback";
 682static const char CHAFSR_CPU_msg[] =
 683        "Uncorrectable ECC error for copyout";
 684static const char CHAFSR_CE_msg[] =
 685        "HW corrected system bus data ECC error for read";
 686static const char CHAFSR_EDC_msg[] =
 687        "HW corrected E-cache ECC error for stmerge/blkld";
 688static const char CHAFSR_EMC_msg[] =
 689        "HW corrected system bus MTAG ECC error";
 690static const char CHAFSR_WDC_msg[] =
 691        "HW corrected E-cache ECC error for writeback";
 692static const char CHAFSR_CPC_msg[] =
 693        "HW corrected ECC error for copyout";
 694static const char CHAFSR_TO_msg[] =
 695        "Unmapped error from system bus";
 696static const char CHAFSR_BERR_msg[] =
 697        "Bus error response from system bus";
 698static const char CHAFSR_IVC_msg[] =
 699        "HW corrected system bus data ECC error for ivec read";
 700static const char CHAFSR_IVU_msg[] =
 701        "Uncorrectable system bus data ECC error for ivec read";
 702static struct afsr_error_table __cheetah_error_table[] = {
 703        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 704        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 705        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 706        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 707        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 708        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 709        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 710        {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
 711        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 712        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 713        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 714        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 715        {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
 716        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 717        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 718        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 719        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 720        /* These two do not update the AFAR. */
 721        {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
 722        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 723        {       0,              NULL                    },
 724};
 725static const char CHPAFSR_DTO_msg[] =
 726        "System bus unmapped error for prefetch/storequeue-read";
 727static const char CHPAFSR_DBERR_msg[] =
 728        "System bus error for prefetch/storequeue-read";
 729static const char CHPAFSR_THCE_msg[] =
 730        "Hardware corrected E-cache Tag ECC error";
 731static const char CHPAFSR_TSCE_msg[] =
 732        "SW handled correctable E-cache Tag ECC error";
 733static const char CHPAFSR_TUE_msg[] =
 734        "Uncorrectable E-cache Tag ECC error";
 735static const char CHPAFSR_DUE_msg[] =
 736        "System bus uncorrectable data ECC error due to prefetch/store-fill";
 737static struct afsr_error_table __cheetah_plus_error_table[] = {
 738        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 739        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 740        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 741        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 742        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 743        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 744        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 745        {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
 746        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 747        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 748        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 749        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 750        {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
 751        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 752        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 753        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 754        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 755        {       CHPAFSR_DTO,    CHPAFSR_DTO_msg         },
 756        {       CHPAFSR_DBERR,  CHPAFSR_DBERR_msg       },
 757        {       CHPAFSR_THCE,   CHPAFSR_THCE_msg        },
 758        {       CHPAFSR_TSCE,   CHPAFSR_TSCE_msg        },
 759        {       CHPAFSR_TUE,    CHPAFSR_TUE_msg         },
 760        {       CHPAFSR_DUE,    CHPAFSR_DUE_msg         },
 761        /* These two do not update the AFAR. */
 762        {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
 763        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 764        {       0,              NULL                    },
 765};
 766static const char JPAFSR_JETO_msg[] =
 767        "System interface protocol error, hw timeout caused";
 768static const char JPAFSR_SCE_msg[] =
 769        "Parity error on system snoop results";
 770static const char JPAFSR_JEIC_msg[] =
 771        "System interface protocol error, illegal command detected";
 772static const char JPAFSR_JEIT_msg[] =
 773        "System interface protocol error, illegal ADTYPE detected";
 774static const char JPAFSR_OM_msg[] =
 775        "Out of range memory error has occurred";
 776static const char JPAFSR_ETP_msg[] =
 777        "Parity error on L2 cache tag SRAM";
 778static const char JPAFSR_UMS_msg[] =
 779        "Error due to unsupported store";
 780static const char JPAFSR_RUE_msg[] =
 781        "Uncorrectable ECC error from remote cache/memory";
 782static const char JPAFSR_RCE_msg[] =
 783        "Correctable ECC error from remote cache/memory";
 784static const char JPAFSR_BP_msg[] =
 785        "JBUS parity error on returned read data";
 786static const char JPAFSR_WBP_msg[] =
 787        "JBUS parity error on data for writeback or block store";
 788static const char JPAFSR_FRC_msg[] =
 789        "Foreign read to DRAM incurring correctable ECC error";
 790static const char JPAFSR_FRU_msg[] =
 791        "Foreign read to DRAM incurring uncorrectable ECC error";
 792static struct afsr_error_table __jalapeno_error_table[] = {
 793        {       JPAFSR_JETO,    JPAFSR_JETO_msg         },
 794        {       JPAFSR_SCE,     JPAFSR_SCE_msg          },
 795        {       JPAFSR_JEIC,    JPAFSR_JEIC_msg         },
 796        {       JPAFSR_JEIT,    JPAFSR_JEIT_msg         },
 797        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 798        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 799        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 800        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 801        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 802        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 803        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 804        {       JPAFSR_OM,      JPAFSR_OM_msg           },
 805        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 806        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 807        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 808        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 809        {       JPAFSR_ETP,     JPAFSR_ETP_msg          },
 810        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 811        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 812        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 813        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 814        {       JPAFSR_UMS,     JPAFSR_UMS_msg          },
 815        {       JPAFSR_RUE,     JPAFSR_RUE_msg          },
 816        {       JPAFSR_RCE,     JPAFSR_RCE_msg          },
 817        {       JPAFSR_BP,      JPAFSR_BP_msg           },
 818        {       JPAFSR_WBP,     JPAFSR_WBP_msg          },
 819        {       JPAFSR_FRC,     JPAFSR_FRC_msg          },
 820        {       JPAFSR_FRU,     JPAFSR_FRU_msg          },
 821        /* These two do not update the AFAR. */
 822        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 823        {       0,              NULL                    },
 824};
 825static struct afsr_error_table *cheetah_error_table;
 826static unsigned long cheetah_afsr_errors;
 827
 828struct cheetah_err_info *cheetah_error_log;
 829
 830static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 831{
 832        struct cheetah_err_info *p;
 833        int cpu = smp_processor_id();
 834
 835        if (!cheetah_error_log)
 836                return NULL;
 837
 838        p = cheetah_error_log + (cpu * 2);
 839        if ((afsr & CHAFSR_TL1) != 0UL)
 840                p++;
 841
 842        return p;
 843}
 844
 845extern unsigned int tl0_icpe[], tl1_icpe[];
 846extern unsigned int tl0_dcpe[], tl1_dcpe[];
 847extern unsigned int tl0_fecc[], tl1_fecc[];
 848extern unsigned int tl0_cee[], tl1_cee[];
 849extern unsigned int tl0_iae[], tl1_iae[];
 850extern unsigned int tl0_dae[], tl1_dae[];
 851extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 852extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 853extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 854extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 855extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 856
 857void __init cheetah_ecache_flush_init(void)
 858{
 859        unsigned long largest_size, smallest_linesize, order, ver;
 860        int i, sz;
 861
 862        /* Scan all cpu device tree nodes, note two values:
 863         * 1) largest E-cache size
 864         * 2) smallest E-cache line size
 865         */
 866        largest_size = 0UL;
 867        smallest_linesize = ~0UL;
 868
 869        for (i = 0; i < NR_CPUS; i++) {
 870                unsigned long val;
 871
 872                val = cpu_data(i).ecache_size;
 873                if (!val)
 874                        continue;
 875
 876                if (val > largest_size)
 877                        largest_size = val;
 878
 879                val = cpu_data(i).ecache_line_size;
 880                if (val < smallest_linesize)
 881                        smallest_linesize = val;
 882
 883        }
 884
 885        if (largest_size == 0UL || smallest_linesize == ~0UL) {
 886                prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 887                            "parameters.\n");
 888                prom_halt();
 889        }
 890
 891        ecache_flush_size = (2 * largest_size);
 892        ecache_flush_linesize = smallest_linesize;
 893
 894        ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 895
 896        if (ecache_flush_physbase == ~0UL) {
 897                prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 898                            "contiguous physical memory.\n",
 899                            ecache_flush_size);
 900                prom_halt();
 901        }
 902
 903        /* Now allocate error trap reporting scoreboard. */
 904        sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 905        for (order = 0; order < MAX_ORDER; order++) {
 906                if ((PAGE_SIZE << order) >= sz)
 907                        break;
 908        }
 909        cheetah_error_log = (struct cheetah_err_info *)
 910                __get_free_pages(GFP_KERNEL, order);
 911        if (!cheetah_error_log) {
 912                prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 913                            "error logging scoreboard (%d bytes).\n", sz);
 914                prom_halt();
 915        }
 916        memset(cheetah_error_log, 0, PAGE_SIZE << order);
 917
 918        /* Mark all AFSRs as invalid so that the trap handler will
 919         * log new new information there.
 920         */
 921        for (i = 0; i < 2 * NR_CPUS; i++)
 922                cheetah_error_log[i].afsr = CHAFSR_INVALID;
 923
 924        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 925        if ((ver >> 32) == __JALAPENO_ID ||
 926            (ver >> 32) == __SERRANO_ID) {
 927                cheetah_error_table = &__jalapeno_error_table[0];
 928                cheetah_afsr_errors = JPAFSR_ERRORS;
 929        } else if ((ver >> 32) == 0x003e0015) {
 930                cheetah_error_table = &__cheetah_plus_error_table[0];
 931                cheetah_afsr_errors = CHPAFSR_ERRORS;
 932        } else {
 933                cheetah_error_table = &__cheetah_error_table[0];
 934                cheetah_afsr_errors = CHAFSR_ERRORS;
 935        }
 936
 937        /* Now patch trap tables. */
 938        memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 939        memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 940        memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 941        memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 942        memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 943        memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 944        memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 945        memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 946        if (tlb_type == cheetah_plus) {
 947                memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 948                memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 949                memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 950                memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 951        }
 952        flushi(PAGE_OFFSET);
 953}
 954
 955static void cheetah_flush_ecache(void)
 956{
 957        unsigned long flush_base = ecache_flush_physbase;
 958        unsigned long flush_linesize = ecache_flush_linesize;
 959        unsigned long flush_size = ecache_flush_size;
 960
 961        __asm__ __volatile__("1: subcc  %0, %4, %0\n\t"
 962                             "   bne,pt %%xcc, 1b\n\t"
 963                             "    ldxa  [%2 + %0] %3, %%g0\n\t"
 964                             : "=&r" (flush_size)
 965                             : "0" (flush_size), "r" (flush_base),
 966                               "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 967}
 968
 969static void cheetah_flush_ecache_line(unsigned long physaddr)
 970{
 971        unsigned long alias;
 972
 973        physaddr &= ~(8UL - 1UL);
 974        physaddr = (ecache_flush_physbase +
 975                    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 976        alias = physaddr + (ecache_flush_size >> 1UL);
 977        __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 978                             "ldxa [%1] %2, %%g0\n\t"
 979                             "membar #Sync"
 980                             : /* no outputs */
 981                             : "r" (physaddr), "r" (alias),
 982                               "i" (ASI_PHYS_USE_EC));
 983}
 984
 985/* Unfortunately, the diagnostic access to the I-cache tags we need to
 986 * use to clear the thing interferes with I-cache coherency transactions.
 987 *
 988 * So we must only flush the I-cache when it is disabled.
 989 */
 990static void __cheetah_flush_icache(void)
 991{
 992        unsigned int icache_size, icache_line_size;
 993        unsigned long addr;
 994
 995        icache_size = local_cpu_data().icache_size;
 996        icache_line_size = local_cpu_data().icache_line_size;
 997
 998        /* Clear the valid bits in all the tags. */
 999        for (addr = 0; addr < icache_size; addr += icache_line_size) {
1000                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1001                                     "membar #Sync"
1002                                     : /* no outputs */
1003                                     : "r" (addr | (2 << 3)),
1004                                       "i" (ASI_IC_TAG));
1005        }
1006}
1007
1008static void cheetah_flush_icache(void)
1009{
1010        unsigned long dcu_save;
1011
1012        /* Save current DCU, disable I-cache. */
1013        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1014                             "or %0, %2, %%g1\n\t"
1015                             "stxa %%g1, [%%g0] %1\n\t"
1016                             "membar #Sync"
1017                             : "=r" (dcu_save)
1018                             : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1019                             : "g1");
1020
1021        __cheetah_flush_icache();
1022
1023        /* Restore DCU register */
1024        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1025                             "membar #Sync"
1026                             : /* no outputs */
1027                             : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1028}
1029
1030static void cheetah_flush_dcache(void)
1031{
1032        unsigned int dcache_size, dcache_line_size;
1033        unsigned long addr;
1034
1035        dcache_size = local_cpu_data().dcache_size;
1036        dcache_line_size = local_cpu_data().dcache_line_size;
1037
1038        for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1039                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1040                                     "membar #Sync"
1041                                     : /* no outputs */
1042                                     : "r" (addr), "i" (ASI_DCACHE_TAG));
1043        }
1044}
1045
1046/* In order to make the even parity correct we must do two things.
1047 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1048 * Next, we clear out all 32-bytes of data for that line.  Data of
1049 * all-zero + tag parity value of zero == correct parity.
1050 */
1051static void cheetah_plus_zap_dcache_parity(void)
1052{
1053        unsigned int dcache_size, dcache_line_size;
1054        unsigned long addr;
1055
1056        dcache_size = local_cpu_data().dcache_size;
1057        dcache_line_size = local_cpu_data().dcache_line_size;
1058
1059        for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1060                unsigned long tag = (addr >> 14);
1061                unsigned long line;
1062
1063                __asm__ __volatile__("membar    #Sync\n\t"
1064                                     "stxa      %0, [%1] %2\n\t"
1065                                     "membar    #Sync"
1066                                     : /* no outputs */
1067                                     : "r" (tag), "r" (addr),
1068                                       "i" (ASI_DCACHE_UTAG));
1069                for (line = addr; line < addr + dcache_line_size; line += 8)
1070                        __asm__ __volatile__("membar    #Sync\n\t"
1071                                             "stxa      %%g0, [%0] %1\n\t"
1072                                             "membar    #Sync"
1073                                             : /* no outputs */
1074                                             : "r" (line),
1075                                               "i" (ASI_DCACHE_DATA));
1076        }
1077}
1078
1079/* Conversion tables used to frob Cheetah AFSR syndrome values into
1080 * something palatable to the memory controller driver get_unumber
1081 * routine.
1082 */
1083#define MT0     137
1084#define MT1     138
1085#define MT2     139
1086#define NONE    254
1087#define MTC0    140
1088#define MTC1    141
1089#define MTC2    142
1090#define MTC3    143
1091#define C0      128
1092#define C1      129
1093#define C2      130
1094#define C3      131
1095#define C4      132
1096#define C5      133
1097#define C6      134
1098#define C7      135
1099#define C8      136
1100#define M2      144
1101#define M3      145
1102#define M4      146
1103#define M       147
1104static unsigned char cheetah_ecc_syntab[] = {
1105/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1106/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1107/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1108/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1109/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1110/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1111/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1112/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1113/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1114/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1115/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1116/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1117/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1118/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1119/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1120/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1121/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1122/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1123/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1124/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1125/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1126/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1127/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1128/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1129/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1130/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1131/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1132/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1133/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1134/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1135/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1136/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1137};
1138static unsigned char cheetah_mtag_syntab[] = {
1139       NONE, MTC0,
1140       MTC1, NONE,
1141       MTC2, NONE,
1142       NONE, MT0,
1143       MTC3, NONE,
1144       NONE, MT1,
1145       NONE, MT2,
1146       NONE, NONE
1147};
1148
1149/* Return the highest priority error conditon mentioned. */
1150static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1151{
1152        unsigned long tmp = 0;
1153        int i;
1154
1155        for (i = 0; cheetah_error_table[i].mask; i++) {
1156                if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1157                        return tmp;
1158        }
1159        return tmp;
1160}
1161
1162static const char *cheetah_get_string(unsigned long bit)
1163{
1164        int i;
1165
1166        for (i = 0; cheetah_error_table[i].mask; i++) {
1167                if ((bit & cheetah_error_table[i].mask) != 0UL)
1168                        return cheetah_error_table[i].name;
1169        }
1170        return "???";
1171}
1172
1173static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1174                               unsigned long afsr, unsigned long afar, int recoverable)
1175{
1176        unsigned long hipri;
1177        char unum[256];
1178
1179        printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1180               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181               afsr, afar,
1182               (afsr & CHAFSR_TL1) ? 1 : 0);
1183        printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1184               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1185               regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1186        printk("%s" "ERROR(%d): ",
1187               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1188        printk("TPC<%pS>\n", (void *) regs->tpc);
1189        printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1190               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1191               (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1192               (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1193               (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1194               (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1195        hipri = cheetah_get_hipri(afsr);
1196        printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1197               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1198               hipri, cheetah_get_string(hipri));
1199
1200        /* Try to get unumber if relevant. */
1201#define ESYND_ERRORS    (CHAFSR_IVC | CHAFSR_IVU | \
1202                         CHAFSR_CPC | CHAFSR_CPU | \
1203                         CHAFSR_UE  | CHAFSR_CE  | \
1204                         CHAFSR_EDC | CHAFSR_EDU  | \
1205                         CHAFSR_UCC | CHAFSR_UCU  | \
1206                         CHAFSR_WDU | CHAFSR_WDC)
1207#define MSYND_ERRORS    (CHAFSR_EMC | CHAFSR_EMU)
1208        if (afsr & ESYND_ERRORS) {
1209                int syndrome;
1210                int ret;
1211
1212                syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1213                syndrome = cheetah_ecc_syntab[syndrome];
1214                ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1215                if (ret != -1)
1216                        printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1217                               (recoverable ? KERN_WARNING : KERN_CRIT),
1218                               smp_processor_id(), unum);
1219        } else if (afsr & MSYND_ERRORS) {
1220                int syndrome;
1221                int ret;
1222
1223                syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1224                syndrome = cheetah_mtag_syntab[syndrome];
1225                ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1226                if (ret != -1)
1227                        printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1228                               (recoverable ? KERN_WARNING : KERN_CRIT),
1229                               smp_processor_id(), unum);
1230        }
1231
1232        /* Now dump the cache snapshots. */
1233        printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1234               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1235               (int) info->dcache_index,
1236               info->dcache_tag,
1237               info->dcache_utag,
1238               info->dcache_stag);
1239        printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1240               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1241               info->dcache_data[0],
1242               info->dcache_data[1],
1243               info->dcache_data[2],
1244               info->dcache_data[3]);
1245        printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1246               "u[%016llx] l[%016llx]\n",
1247               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1248               (int) info->icache_index,
1249               info->icache_tag,
1250               info->icache_utag,
1251               info->icache_stag,
1252               info->icache_upper,
1253               info->icache_lower);
1254        printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1255               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1256               info->icache_data[0],
1257               info->icache_data[1],
1258               info->icache_data[2],
1259               info->icache_data[3]);
1260        printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1261               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1262               info->icache_data[4],
1263               info->icache_data[5],
1264               info->icache_data[6],
1265               info->icache_data[7]);
1266        printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1267               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268               (int) info->ecache_index, info->ecache_tag);
1269        printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1270               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1271               info->ecache_data[0],
1272               info->ecache_data[1],
1273               info->ecache_data[2],
1274               info->ecache_data[3]);
1275
1276        afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1277        while (afsr != 0UL) {
1278                unsigned long bit = cheetah_get_hipri(afsr);
1279
1280                printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1281                       (recoverable ? KERN_WARNING : KERN_CRIT),
1282                       bit, cheetah_get_string(bit));
1283
1284                afsr &= ~bit;
1285        }
1286
1287        if (!recoverable)
1288                printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1289}
1290
1291static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1292{
1293        unsigned long afsr, afar;
1294        int ret = 0;
1295
1296        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297                             : "=r" (afsr)
1298                             : "i" (ASI_AFSR));
1299        if ((afsr & cheetah_afsr_errors) != 0) {
1300                if (logp != NULL) {
1301                        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1302                                             : "=r" (afar)
1303                                             : "i" (ASI_AFAR));
1304                        logp->afsr = afsr;
1305                        logp->afar = afar;
1306                }
1307                ret = 1;
1308        }
1309        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1310                             "membar #Sync\n\t"
1311                             : : "r" (afsr), "i" (ASI_AFSR));
1312
1313        return ret;
1314}
1315
1316void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1317{
1318        struct cheetah_err_info local_snapshot, *p;
1319        int recoverable;
1320
1321        /* Flush E-cache */
1322        cheetah_flush_ecache();
1323
1324        p = cheetah_get_error_log(afsr);
1325        if (!p) {
1326                prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1327                            afsr, afar);
1328                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1329                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1330                prom_halt();
1331        }
1332
1333        /* Grab snapshot of logged error. */
1334        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1335
1336        /* If the current trap snapshot does not match what the
1337         * trap handler passed along into our args, big trouble.
1338         * In such a case, mark the local copy as invalid.
1339         *
1340         * Else, it matches and we mark the afsr in the non-local
1341         * copy as invalid so we may log new error traps there.
1342         */
1343        if (p->afsr != afsr || p->afar != afar)
1344                local_snapshot.afsr = CHAFSR_INVALID;
1345        else
1346                p->afsr = CHAFSR_INVALID;
1347
1348        cheetah_flush_icache();
1349        cheetah_flush_dcache();
1350
1351        /* Re-enable I-cache/D-cache */
1352        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1353                             "or %%g1, %1, %%g1\n\t"
1354                             "stxa %%g1, [%%g0] %0\n\t"
1355                             "membar #Sync"
1356                             : /* no outputs */
1357                             : "i" (ASI_DCU_CONTROL_REG),
1358                               "i" (DCU_DC | DCU_IC)
1359                             : "g1");
1360
1361        /* Re-enable error reporting */
1362        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1363                             "or %%g1, %1, %%g1\n\t"
1364                             "stxa %%g1, [%%g0] %0\n\t"
1365                             "membar #Sync"
1366                             : /* no outputs */
1367                             : "i" (ASI_ESTATE_ERROR_EN),
1368                               "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1369                             : "g1");
1370
1371        /* Decide if we can continue after handling this trap and
1372         * logging the error.
1373         */
1374        recoverable = 1;
1375        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1376                recoverable = 0;
1377
1378        /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1379         * error was logged while we had error reporting traps disabled.
1380         */
1381        if (cheetah_recheck_errors(&local_snapshot)) {
1382                unsigned long new_afsr = local_snapshot.afsr;
1383
1384                /* If we got a new asynchronous error, die... */
1385                if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1386                                CHAFSR_WDU | CHAFSR_CPU |
1387                                CHAFSR_IVU | CHAFSR_UE |
1388                                CHAFSR_BERR | CHAFSR_TO))
1389                        recoverable = 0;
1390        }
1391
1392        /* Log errors. */
1393        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1394
1395        if (!recoverable)
1396                panic("Irrecoverable Fast-ECC error trap.\n");
1397
1398        /* Flush E-cache to kick the error trap handlers out. */
1399        cheetah_flush_ecache();
1400}
1401
1402/* Try to fix a correctable error by pushing the line out from
1403 * the E-cache.  Recheck error reporting registers to see if the
1404 * problem is intermittent.
1405 */
1406static int cheetah_fix_ce(unsigned long physaddr)
1407{
1408        unsigned long orig_estate;
1409        unsigned long alias1, alias2;
1410        int ret;
1411
1412        /* Make sure correctable error traps are disabled. */
1413        __asm__ __volatile__("ldxa      [%%g0] %2, %0\n\t"
1414                             "andn      %0, %1, %%g1\n\t"
1415                             "stxa      %%g1, [%%g0] %2\n\t"
1416                             "membar    #Sync"
1417                             : "=&r" (orig_estate)
1418                             : "i" (ESTATE_ERROR_CEEN),
1419                               "i" (ASI_ESTATE_ERROR_EN)
1420                             : "g1");
1421
1422        /* We calculate alias addresses that will force the
1423         * cache line in question out of the E-cache.  Then
1424         * we bring it back in with an atomic instruction so
1425         * that we get it in some modified/exclusive state,
1426         * then we displace it again to try and get proper ECC
1427         * pushed back into the system.
1428         */
1429        physaddr &= ~(8UL - 1UL);
1430        alias1 = (ecache_flush_physbase +
1431                  (physaddr & ((ecache_flush_size >> 1) - 1)));
1432        alias2 = alias1 + (ecache_flush_size >> 1);
1433        __asm__ __volatile__("ldxa      [%0] %3, %%g0\n\t"
1434                             "ldxa      [%1] %3, %%g0\n\t"
1435                             "casxa     [%2] %3, %%g0, %%g0\n\t"
1436                             "ldxa      [%0] %3, %%g0\n\t"
1437                             "ldxa      [%1] %3, %%g0\n\t"
1438                             "membar    #Sync"
1439                             : /* no outputs */
1440                             : "r" (alias1), "r" (alias2),
1441                               "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1442
1443        /* Did that trigger another error? */
1444        if (cheetah_recheck_errors(NULL)) {
1445                /* Try one more time. */
1446                __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1447                                     "membar #Sync"
1448                                     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1449                if (cheetah_recheck_errors(NULL))
1450                        ret = 2;
1451                else
1452                        ret = 1;
1453        } else {
1454                /* No new error, intermittent problem. */
1455                ret = 0;
1456        }
1457
1458        /* Restore error enables. */
1459        __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
1460                             "membar    #Sync"
1461                             : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1462
1463        return ret;
1464}
1465
1466/* Return non-zero if PADDR is a valid physical memory address. */
1467static int cheetah_check_main_memory(unsigned long paddr)
1468{
1469        unsigned long vaddr = PAGE_OFFSET + paddr;
1470
1471        if (vaddr > (unsigned long) high_memory)
1472                return 0;
1473
1474        return kern_addr_valid(vaddr);
1475}
1476
1477void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1478{
1479        struct cheetah_err_info local_snapshot, *p;
1480        int recoverable, is_memory;
1481
1482        p = cheetah_get_error_log(afsr);
1483        if (!p) {
1484                prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1485                            afsr, afar);
1486                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1487                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1488                prom_halt();
1489        }
1490
1491        /* Grab snapshot of logged error. */
1492        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1493
1494        /* If the current trap snapshot does not match what the
1495         * trap handler passed along into our args, big trouble.
1496         * In such a case, mark the local copy as invalid.
1497         *
1498         * Else, it matches and we mark the afsr in the non-local
1499         * copy as invalid so we may log new error traps there.
1500         */
1501        if (p->afsr != afsr || p->afar != afar)
1502                local_snapshot.afsr = CHAFSR_INVALID;
1503        else
1504                p->afsr = CHAFSR_INVALID;
1505
1506        is_memory = cheetah_check_main_memory(afar);
1507
1508        if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1509                /* XXX Might want to log the results of this operation
1510                 * XXX somewhere... -DaveM
1511                 */
1512                cheetah_fix_ce(afar);
1513        }
1514
1515        {
1516                int flush_all, flush_line;
1517
1518                flush_all = flush_line = 0;
1519                if ((afsr & CHAFSR_EDC) != 0UL) {
1520                        if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1521                                flush_line = 1;
1522                        else
1523                                flush_all = 1;
1524                } else if ((afsr & CHAFSR_CPC) != 0UL) {
1525                        if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1526                                flush_line = 1;
1527                        else
1528                                flush_all = 1;
1529                }
1530
1531                /* Trap handler only disabled I-cache, flush it. */
1532                cheetah_flush_icache();
1533
1534                /* Re-enable I-cache */
1535                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1536                                     "or %%g1, %1, %%g1\n\t"
1537                                     "stxa %%g1, [%%g0] %0\n\t"
1538                                     "membar #Sync"
1539                                     : /* no outputs */
1540                                     : "i" (ASI_DCU_CONTROL_REG),
1541                                     "i" (DCU_IC)
1542                                     : "g1");
1543
1544                if (flush_all)
1545                        cheetah_flush_ecache();
1546                else if (flush_line)
1547                        cheetah_flush_ecache_line(afar);
1548        }
1549
1550        /* Re-enable error reporting */
1551        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1552                             "or %%g1, %1, %%g1\n\t"
1553                             "stxa %%g1, [%%g0] %0\n\t"
1554                             "membar #Sync"
1555                             : /* no outputs */
1556                             : "i" (ASI_ESTATE_ERROR_EN),
1557                               "i" (ESTATE_ERROR_CEEN)
1558                             : "g1");
1559
1560        /* Decide if we can continue after handling this trap and
1561         * logging the error.
1562         */
1563        recoverable = 1;
1564        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1565                recoverable = 0;
1566
1567        /* Re-check AFSR/AFAR */
1568        (void) cheetah_recheck_errors(&local_snapshot);
1569
1570        /* Log errors. */
1571        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1572
1573        if (!recoverable)
1574                panic("Irrecoverable Correctable-ECC error trap.\n");
1575}
1576
1577void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1578{
1579        struct cheetah_err_info local_snapshot, *p;
1580        int recoverable, is_memory;
1581
1582#ifdef CONFIG_PCI
1583        /* Check for the special PCI poke sequence. */
1584        if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1585                cheetah_flush_icache();
1586                cheetah_flush_dcache();
1587
1588                /* Re-enable I-cache/D-cache */
1589                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1590                                     "or %%g1, %1, %%g1\n\t"
1591                                     "stxa %%g1, [%%g0] %0\n\t"
1592                                     "membar #Sync"
1593                                     : /* no outputs */
1594                                     : "i" (ASI_DCU_CONTROL_REG),
1595                                       "i" (DCU_DC | DCU_IC)
1596                                     : "g1");
1597
1598                /* Re-enable error reporting */
1599                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1600                                     "or %%g1, %1, %%g1\n\t"
1601                                     "stxa %%g1, [%%g0] %0\n\t"
1602                                     "membar #Sync"
1603                                     : /* no outputs */
1604                                     : "i" (ASI_ESTATE_ERROR_EN),
1605                                       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1606                                     : "g1");
1607
1608                (void) cheetah_recheck_errors(NULL);
1609
1610                pci_poke_faulted = 1;
1611                regs->tpc += 4;
1612                regs->tnpc = regs->tpc + 4;
1613                return;
1614        }
1615#endif
1616
1617        p = cheetah_get_error_log(afsr);
1618        if (!p) {
1619                prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1620                            afsr, afar);
1621                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1622                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1623                prom_halt();
1624        }
1625
1626        /* Grab snapshot of logged error. */
1627        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1628
1629        /* If the current trap snapshot does not match what the
1630         * trap handler passed along into our args, big trouble.
1631         * In such a case, mark the local copy as invalid.
1632         *
1633         * Else, it matches and we mark the afsr in the non-local
1634         * copy as invalid so we may log new error traps there.
1635         */
1636        if (p->afsr != afsr || p->afar != afar)
1637                local_snapshot.afsr = CHAFSR_INVALID;
1638        else
1639                p->afsr = CHAFSR_INVALID;
1640
1641        is_memory = cheetah_check_main_memory(afar);
1642
1643        {
1644                int flush_all, flush_line;
1645
1646                flush_all = flush_line = 0;
1647                if ((afsr & CHAFSR_EDU) != 0UL) {
1648                        if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1649                                flush_line = 1;
1650                        else
1651                                flush_all = 1;
1652                } else if ((afsr & CHAFSR_BERR) != 0UL) {
1653                        if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1654                                flush_line = 1;
1655                        else
1656                                flush_all = 1;
1657                }
1658
1659                cheetah_flush_icache();
1660                cheetah_flush_dcache();
1661
1662                /* Re-enable I/D caches */
1663                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1664                                     "or %%g1, %1, %%g1\n\t"
1665                                     "stxa %%g1, [%%g0] %0\n\t"
1666                                     "membar #Sync"
1667                                     : /* no outputs */
1668                                     : "i" (ASI_DCU_CONTROL_REG),
1669                                     "i" (DCU_IC | DCU_DC)
1670                                     : "g1");
1671
1672                if (flush_all)
1673                        cheetah_flush_ecache();
1674                else if (flush_line)
1675                        cheetah_flush_ecache_line(afar);
1676        }
1677
1678        /* Re-enable error reporting */
1679        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1680                             "or %%g1, %1, %%g1\n\t"
1681                             "stxa %%g1, [%%g0] %0\n\t"
1682                             "membar #Sync"
1683                             : /* no outputs */
1684                             : "i" (ASI_ESTATE_ERROR_EN),
1685                             "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1686                             : "g1");
1687
1688        /* Decide if we can continue after handling this trap and
1689         * logging the error.
1690         */
1691        recoverable = 1;
1692        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1693                recoverable = 0;
1694
1695        /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1696         * error was logged while we had error reporting traps disabled.
1697         */
1698        if (cheetah_recheck_errors(&local_snapshot)) {
1699                unsigned long new_afsr = local_snapshot.afsr;
1700
1701                /* If we got a new asynchronous error, die... */
1702                if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1703                                CHAFSR_WDU | CHAFSR_CPU |
1704                                CHAFSR_IVU | CHAFSR_UE |
1705                                CHAFSR_BERR | CHAFSR_TO))
1706                        recoverable = 0;
1707        }
1708
1709        /* Log errors. */
1710        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1711
1712        /* "Recoverable" here means we try to yank the page from ever
1713         * being newly used again.  This depends upon a few things:
1714         * 1) Must be main memory, and AFAR must be valid.
1715         * 2) If we trapped from user, OK.
1716         * 3) Else, if we trapped from kernel we must find exception
1717         *    table entry (ie. we have to have been accessing user
1718         *    space).
1719         *
1720         * If AFAR is not in main memory, or we trapped from kernel
1721         * and cannot find an exception table entry, it is unacceptable
1722         * to try and continue.
1723         */
1724        if (recoverable && is_memory) {
1725                if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1726                        /* OK, usermode access. */
1727                        recoverable = 1;
1728                } else {
1729                        const struct exception_table_entry *entry;
1730
1731                        entry = search_exception_tables(regs->tpc);
1732                        if (entry) {
1733                                /* OK, kernel access to userspace. */
1734                                recoverable = 1;
1735
1736                        } else {
1737                                /* BAD, privileged state is corrupted. */
1738                                recoverable = 0;
1739                        }
1740
1741                        if (recoverable) {
1742                                if (pfn_valid(afar >> PAGE_SHIFT))
1743                                        get_page(pfn_to_page(afar >> PAGE_SHIFT));
1744                                else
1745                                        recoverable = 0;
1746
1747                                /* Only perform fixup if we still have a
1748                                 * recoverable condition.
1749                                 */
1750                                if (recoverable) {
1751                                        regs->tpc = entry->fixup;
1752                                        regs->tnpc = regs->tpc + 4;
1753                                }
1754                        }
1755                }
1756        } else {
1757                recoverable = 0;
1758        }
1759
1760        if (!recoverable)
1761                panic("Irrecoverable deferred error trap.\n");
1762}
1763
1764/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1765 *
1766 * Bit0:        0=dcache,1=icache
1767 * Bit1:        0=recoverable,1=unrecoverable
1768 *
1769 * The hardware has disabled both the I-cache and D-cache in
1770 * the %dcr register.  
1771 */
1772void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1773{
1774        if (type & 0x1)
1775                __cheetah_flush_icache();
1776        else
1777                cheetah_plus_zap_dcache_parity();
1778        cheetah_flush_dcache();
1779
1780        /* Re-enable I-cache/D-cache */
1781        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1782                             "or %%g1, %1, %%g1\n\t"
1783                             "stxa %%g1, [%%g0] %0\n\t"
1784                             "membar #Sync"
1785                             : /* no outputs */
1786                             : "i" (ASI_DCU_CONTROL_REG),
1787                               "i" (DCU_DC | DCU_IC)
1788                             : "g1");
1789
1790        if (type & 0x2) {
1791                printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1792                       smp_processor_id(),
1793                       (type & 0x1) ? 'I' : 'D',
1794                       regs->tpc);
1795                printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1796                panic("Irrecoverable Cheetah+ parity error.");
1797        }
1798
1799        printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1800               smp_processor_id(),
1801               (type & 0x1) ? 'I' : 'D',
1802               regs->tpc);
1803        printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1804}
1805
1806struct sun4v_error_entry {
1807        /* Unique error handle */
1808/*0x00*/u64             err_handle;
1809
1810        /* %stick value at the time of the error */
1811/*0x08*/u64             err_stick;
1812
1813/*0x10*/u8              reserved_1[3];
1814
1815        /* Error type */
1816/*0x13*/u8              err_type;
1817#define SUN4V_ERR_TYPE_UNDEFINED        0
1818#define SUN4V_ERR_TYPE_UNCORRECTED_RES  1
1819#define SUN4V_ERR_TYPE_PRECISE_NONRES   2
1820#define SUN4V_ERR_TYPE_DEFERRED_NONRES  3
1821#define SUN4V_ERR_TYPE_SHUTDOWN_RQST    4
1822#define SUN4V_ERR_TYPE_DUMP_CORE        5
1823#define SUN4V_ERR_TYPE_SP_STATE_CHANGE  6
1824#define SUN4V_ERR_TYPE_NUM              7
1825
1826        /* Error attributes */
1827/*0x14*/u32             err_attrs;
1828#define SUN4V_ERR_ATTRS_PROCESSOR       0x00000001
1829#define SUN4V_ERR_ATTRS_MEMORY          0x00000002
1830#define SUN4V_ERR_ATTRS_PIO             0x00000004
1831#define SUN4V_ERR_ATTRS_INT_REGISTERS   0x00000008
1832#define SUN4V_ERR_ATTRS_FPU_REGISTERS   0x00000010
1833#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST   0x00000020
1834#define SUN4V_ERR_ATTRS_ASR             0x00000040
1835#define SUN4V_ERR_ATTRS_ASI             0x00000080
1836#define SUN4V_ERR_ATTRS_PRIV_REG        0x00000100
1837#define SUN4V_ERR_ATTRS_SPSTATE_MSK     0x00000600
1838#define SUN4V_ERR_ATTRS_MCD             0x00000800
1839#define SUN4V_ERR_ATTRS_SPSTATE_SHFT    9
1840#define SUN4V_ERR_ATTRS_MODE_MSK        0x03000000
1841#define SUN4V_ERR_ATTRS_MODE_SHFT       24
1842#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL  0x80000000
1843
1844#define SUN4V_ERR_SPSTATE_FAULTED       0
1845#define SUN4V_ERR_SPSTATE_AVAILABLE     1
1846#define SUN4V_ERR_SPSTATE_NOT_PRESENT   2
1847
1848#define SUN4V_ERR_MODE_USER             1
1849#define SUN4V_ERR_MODE_PRIV             2
1850
1851        /* Real address of the memory region or PIO transaction */
1852/*0x18*/u64             err_raddr;
1853
1854        /* Size of the operation triggering the error, in bytes */
1855/*0x20*/u32             err_size;
1856
1857        /* ID of the CPU */
1858/*0x24*/u16             err_cpu;
1859
1860        /* Grace periof for shutdown, in seconds */
1861/*0x26*/u16             err_secs;
1862
1863        /* Value of the %asi register */
1864/*0x28*/u8              err_asi;
1865
1866/*0x29*/u8              reserved_2;
1867
1868        /* Value of the ASR register number */
1869/*0x2a*/u16             err_asr;
1870#define SUN4V_ERR_ASR_VALID             0x8000
1871
1872/*0x2c*/u32             reserved_3;
1873/*0x30*/u64             reserved_4;
1874/*0x38*/u64             reserved_5;
1875};
1876
1877static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1878static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1879
1880static const char *sun4v_err_type_to_str(u8 type)
1881{
1882        static const char *types[SUN4V_ERR_TYPE_NUM] = {
1883                "undefined",
1884                "uncorrected resumable",
1885                "precise nonresumable",
1886                "deferred nonresumable",
1887                "shutdown request",
1888                "dump core",
1889                "SP state change",
1890        };
1891
1892        if (type < SUN4V_ERR_TYPE_NUM)
1893                return types[type];
1894
1895        return "unknown";
1896}
1897
1898static void sun4v_emit_err_attr_strings(u32 attrs)
1899{
1900        static const char *attr_names[] = {
1901                "processor",
1902                "memory",
1903                "PIO",
1904                "int-registers",
1905                "fpu-registers",
1906                "shutdown-request",
1907                "ASR",
1908                "ASI",
1909                "priv-reg",
1910        };
1911        static const char *sp_states[] = {
1912                "sp-faulted",
1913                "sp-available",
1914                "sp-not-present",
1915                "sp-state-reserved",
1916        };
1917        static const char *modes[] = {
1918                "mode-reserved0",
1919                "user",
1920                "priv",
1921                "mode-reserved1",
1922        };
1923        u32 sp_state, mode;
1924        int i;
1925
1926        for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1927                if (attrs & (1U << i)) {
1928                        const char *s = attr_names[i];
1929
1930                        pr_cont("%s ", s);
1931                }
1932        }
1933
1934        sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1935                    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1936        pr_cont("%s ", sp_states[sp_state]);
1937
1938        mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1939                SUN4V_ERR_ATTRS_MODE_SHFT);
1940        pr_cont("%s ", modes[mode]);
1941
1942        if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1943                pr_cont("res-queue-full ");
1944}
1945
1946/* When the report contains a real-address of "-1" it means that the
1947 * hardware did not provide the address.  So we compute the effective
1948 * address of the load or store instruction at regs->tpc and report
1949 * that.  Usually when this happens it's a PIO and in such a case we
1950 * are using physical addresses with bypass ASIs anyways, so what we
1951 * report here is exactly what we want.
1952 */
1953static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1954{
1955        unsigned int insn;
1956        u64 addr;
1957
1958        if (!(regs->tstate & TSTATE_PRIV))
1959                return;
1960
1961        insn = *(unsigned int *) regs->tpc;
1962
1963        addr = compute_effective_address(regs, insn, 0);
1964
1965        printk("%s: insn effective address [0x%016llx]\n",
1966               pfx, addr);
1967}
1968
1969static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1970                            int cpu, const char *pfx, atomic_t *ocnt)
1971{
1972        u64 *raw_ptr = (u64 *) ent;
1973        u32 attrs;
1974        int cnt;
1975
1976        printk("%s: Reporting on cpu %d\n", pfx, cpu);
1977        printk("%s: TPC [0x%016lx] <%pS>\n",
1978               pfx, regs->tpc, (void *) regs->tpc);
1979
1980        printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1981               pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1982        printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1983               pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1984
1985        printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1986               pfx, ent->err_handle, ent->err_stick);
1987
1988        printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1989
1990        attrs = ent->err_attrs;
1991        printk("%s: attrs [0x%08x] < ", pfx, attrs);
1992        sun4v_emit_err_attr_strings(attrs);
1993        pr_cont(">\n");
1994
1995        /* Various fields in the error report are only valid if
1996         * certain attribute bits are set.
1997         */
1998        if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1999                     SUN4V_ERR_ATTRS_PIO |
2000                     SUN4V_ERR_ATTRS_ASI)) {
2001                printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2002
2003                if (ent->err_raddr == ~(u64)0)
2004                        sun4v_report_real_raddr(pfx, regs);
2005        }
2006
2007        if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2008                printk("%s: size [0x%x]\n", pfx, ent->err_size);
2009
2010        if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2011                     SUN4V_ERR_ATTRS_INT_REGISTERS |
2012                     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2013                     SUN4V_ERR_ATTRS_PRIV_REG))
2014                printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2015
2016        if (attrs & SUN4V_ERR_ATTRS_ASI)
2017                printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2018
2019        if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2020                      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2021                      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2022            (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2023                printk("%s: reg [0x%04x]\n",
2024                       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2025
2026        show_regs(regs);
2027
2028        if ((cnt = atomic_read(ocnt)) != 0) {
2029                atomic_set(ocnt, 0);
2030                wmb();
2031                printk("%s: Queue overflowed %d times.\n",
2032                       pfx, cnt);
2033        }
2034}
2035
2036/* Handle memory corruption detected error which is vectored in
2037 * through resumable error trap.
2038 */
2039void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2040{
2041        if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2042                       SIGSEGV) == NOTIFY_STOP)
2043                return;
2044
2045        if (regs->tstate & TSTATE_PRIV) {
2046                /* MCD exception could happen because the task was
2047                 * running a system call with MCD enabled and passed a
2048                 * non-versioned pointer or pointer with bad version
2049                 * tag to the system call. In such cases, hypervisor
2050                 * places the address of offending instruction in the
2051                 * resumable error report. This is a deferred error,
2052                 * so the read/write that caused the trap was potentially
2053                 * retired long time back and we may have no choice
2054                 * but to send SIGSEGV to the process.
2055                 */
2056                const struct exception_table_entry *entry;
2057
2058                entry = search_exception_tables(regs->tpc);
2059                if (entry) {
2060                        /* Looks like a bad syscall parameter */
2061#ifdef DEBUG_EXCEPTIONS
2062                        pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2063                                 regs->tpc);
2064                        pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2065                                 ent.err_raddr, entry->fixup);
2066#endif
2067                        regs->tpc = entry->fixup;
2068                        regs->tnpc = regs->tpc + 4;
2069                        return;
2070                }
2071        }
2072
2073        /* Send SIGSEGV to the userspace process with the right signal
2074         * code
2075         */
2076        force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2077                        0, current);
2078}
2079
2080/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2081 * Log the event and clear the first word of the entry.
2082 */
2083void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2084{
2085        enum ctx_state prev_state = exception_enter();
2086        struct sun4v_error_entry *ent, local_copy;
2087        struct trap_per_cpu *tb;
2088        unsigned long paddr;
2089        int cpu;
2090
2091        cpu = get_cpu();
2092
2093        tb = &trap_block[cpu];
2094        paddr = tb->resum_kernel_buf_pa + offset;
2095        ent = __va(paddr);
2096
2097        memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2098
2099        /* We have a local copy now, so release the entry.  */
2100        ent->err_handle = 0;
2101        wmb();
2102
2103        put_cpu();
2104
2105        if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2106                /* We should really take the seconds field of
2107                 * the error report and use it for the shutdown
2108                 * invocation, but for now do the same thing we
2109                 * do for a DS shutdown request.
2110                 */
2111                pr_info("Shutdown request, %u seconds...\n",
2112                        local_copy.err_secs);
2113                orderly_poweroff(true);
2114                goto out;
2115        }
2116
2117        /* If this is a memory corruption detected error vectored in
2118         * by HV through resumable error trap, call the handler
2119         */
2120        if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2121                do_mcd_err(regs, local_copy);
2122                return;
2123        }
2124
2125        sun4v_log_error(regs, &local_copy, cpu,
2126                        KERN_ERR "RESUMABLE ERROR",
2127                        &sun4v_resum_oflow_cnt);
2128out:
2129        exception_exit(prev_state);
2130}
2131
2132/* If we try to printk() we'll probably make matters worse, by trying
2133 * to retake locks this cpu already holds or causing more errors. So
2134 * just bump a counter, and we'll report these counter bumps above.
2135 */
2136void sun4v_resum_overflow(struct pt_regs *regs)
2137{
2138        atomic_inc(&sun4v_resum_oflow_cnt);
2139}
2140
2141/* Given a set of registers, get the virtual addressi that was being accessed
2142 * by the faulting instructions at tpc.
2143 */
2144static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2145{
2146        unsigned int insn;
2147
2148        if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2149                return compute_effective_address(regs, insn,
2150                                                 (insn >> 25) & 0x1f);
2151        }
2152        return 0;
2153}
2154
2155/* Attempt to handle non-resumable errors generated from userspace.
2156 * Returns true if the signal was handled, false otherwise.
2157 */
2158bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2159                                  struct sun4v_error_entry *ent) {
2160
2161        unsigned int attrs = ent->err_attrs;
2162
2163        if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2164                unsigned long addr = ent->err_raddr;
2165
2166                if (addr == ~(u64)0) {
2167                        /* This seems highly unlikely to ever occur */
2168                        pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2169                } else {
2170                        unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2171                                                              PAGE_SIZE);
2172
2173                        /* Break the unfortunate news. */
2174                        pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2175                                 addr);
2176                        pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2177                                 page_cnt);
2178
2179                        while (page_cnt-- > 0) {
2180                                if (pfn_valid(addr >> PAGE_SHIFT))
2181                                        get_page(pfn_to_page(addr >> PAGE_SHIFT));
2182                                addr += PAGE_SIZE;
2183                        }
2184                }
2185                force_sig(SIGKILL, current);
2186
2187                return true;
2188        }
2189        if (attrs & SUN4V_ERR_ATTRS_PIO) {
2190                force_sig_fault(SIGBUS, BUS_ADRERR,
2191                                (void __user *)sun4v_get_vaddr(regs), 0, current);
2192                return true;
2193        }
2194
2195        /* Default to doing nothing */
2196        return false;
2197}
2198
2199/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2200 * Log the event, clear the first word of the entry, and die.
2201 */
2202void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2203{
2204        struct sun4v_error_entry *ent, local_copy;
2205        struct trap_per_cpu *tb;
2206        unsigned long paddr;
2207        int cpu;
2208
2209        cpu = get_cpu();
2210
2211        tb = &trap_block[cpu];
2212        paddr = tb->nonresum_kernel_buf_pa + offset;
2213        ent = __va(paddr);
2214
2215        memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2216
2217        /* We have a local copy now, so release the entry.  */
2218        ent->err_handle = 0;
2219        wmb();
2220
2221        put_cpu();
2222
2223        if (!(regs->tstate & TSTATE_PRIV) &&
2224            sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2225                /* DON'T PANIC: This userspace error was handled. */
2226                return;
2227        }
2228
2229#ifdef CONFIG_PCI
2230        /* Check for the special PCI poke sequence. */
2231        if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2232                pci_poke_faulted = 1;
2233                regs->tpc += 4;
2234                regs->tnpc = regs->tpc + 4;
2235                return;
2236        }
2237#endif
2238
2239        sun4v_log_error(regs, &local_copy, cpu,
2240                        KERN_EMERG "NON-RESUMABLE ERROR",
2241                        &sun4v_nonresum_oflow_cnt);
2242
2243        panic("Non-resumable error.");
2244}
2245
2246/* If we try to printk() we'll probably make matters worse, by trying
2247 * to retake locks this cpu already holds or causing more errors. So
2248 * just bump a counter, and we'll report these counter bumps above.
2249 */
2250void sun4v_nonresum_overflow(struct pt_regs *regs)
2251{
2252        /* XXX Actually even this can make not that much sense.  Perhaps
2253         * XXX we should just pull the plug and panic directly from here?
2254         */
2255        atomic_inc(&sun4v_nonresum_oflow_cnt);
2256}
2257
2258static void sun4v_tlb_error(struct pt_regs *regs)
2259{
2260        die_if_kernel("TLB/TSB error", regs);
2261}
2262
2263unsigned long sun4v_err_itlb_vaddr;
2264unsigned long sun4v_err_itlb_ctx;
2265unsigned long sun4v_err_itlb_pte;
2266unsigned long sun4v_err_itlb_error;
2267
2268void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2269{
2270        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2271
2272        printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2273               regs->tpc, tl);
2274        printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2275        printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2276        printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2277               (void *) regs->u_regs[UREG_I7]);
2278        printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2279               "pte[%lx] error[%lx]\n",
2280               sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2281               sun4v_err_itlb_pte, sun4v_err_itlb_error);
2282
2283        sun4v_tlb_error(regs);
2284}
2285
2286unsigned long sun4v_err_dtlb_vaddr;
2287unsigned long sun4v_err_dtlb_ctx;
2288unsigned long sun4v_err_dtlb_pte;
2289unsigned long sun4v_err_dtlb_error;
2290
2291void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2292{
2293        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2294
2295        printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2296               regs->tpc, tl);
2297        printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2298        printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2299        printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2300               (void *) regs->u_regs[UREG_I7]);
2301        printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2302               "pte[%lx] error[%lx]\n",
2303               sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2304               sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2305
2306        sun4v_tlb_error(regs);
2307}
2308
2309void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2310{
2311        printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2312               err, op);
2313}
2314
2315void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2316{
2317        printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2318               err, op);
2319}
2320
2321static void do_fpe_common(struct pt_regs *regs)
2322{
2323        if (regs->tstate & TSTATE_PRIV) {
2324                regs->tpc = regs->tnpc;
2325                regs->tnpc += 4;
2326        } else {
2327                unsigned long fsr = current_thread_info()->xfsr[0];
2328                int code;
2329
2330                if (test_thread_flag(TIF_32BIT)) {
2331                        regs->tpc &= 0xffffffff;
2332                        regs->tnpc &= 0xffffffff;
2333                }
2334                code = FPE_FLTUNK;
2335                if ((fsr & 0x1c000) == (1 << 14)) {
2336                        if (fsr & 0x10)
2337                                code = FPE_FLTINV;
2338                        else if (fsr & 0x08)
2339                                code = FPE_FLTOVF;
2340                        else if (fsr & 0x04)
2341                                code = FPE_FLTUND;
2342                        else if (fsr & 0x02)
2343                                code = FPE_FLTDIV;
2344                        else if (fsr & 0x01)
2345                                code = FPE_FLTRES;
2346                }
2347                force_sig_fault(SIGFPE, code,
2348                                (void __user *)regs->tpc, 0, current);
2349        }
2350}
2351
2352void do_fpieee(struct pt_regs *regs)
2353{
2354        enum ctx_state prev_state = exception_enter();
2355
2356        if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2357                       0, 0x24, SIGFPE) == NOTIFY_STOP)
2358                goto out;
2359
2360        do_fpe_common(regs);
2361out:
2362        exception_exit(prev_state);
2363}
2364
2365void do_fpother(struct pt_regs *regs)
2366{
2367        enum ctx_state prev_state = exception_enter();
2368        struct fpustate *f = FPUSTATE;
2369        int ret = 0;
2370
2371        if (notify_die(DIE_TRAP, "fpu exception other", regs,
2372                       0, 0x25, SIGFPE) == NOTIFY_STOP)
2373                goto out;
2374
2375        switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2376        case (2 << 14): /* unfinished_FPop */
2377        case (3 << 14): /* unimplemented_FPop */
2378                ret = do_mathemu(regs, f, false);
2379                break;
2380        }
2381        if (ret)
2382                goto out;
2383        do_fpe_common(regs);
2384out:
2385        exception_exit(prev_state);
2386}
2387
2388void do_tof(struct pt_regs *regs)
2389{
2390        enum ctx_state prev_state = exception_enter();
2391
2392        if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2393                       0, 0x26, SIGEMT) == NOTIFY_STOP)
2394                goto out;
2395
2396        if (regs->tstate & TSTATE_PRIV)
2397                die_if_kernel("Penguin overflow trap from kernel mode", regs);
2398        if (test_thread_flag(TIF_32BIT)) {
2399                regs->tpc &= 0xffffffff;
2400                regs->tnpc &= 0xffffffff;
2401        }
2402        force_sig_fault(SIGEMT, EMT_TAGOVF,
2403                        (void __user *)regs->tpc, 0, current);
2404out:
2405        exception_exit(prev_state);
2406}
2407
2408void do_div0(struct pt_regs *regs)
2409{
2410        enum ctx_state prev_state = exception_enter();
2411
2412        if (notify_die(DIE_TRAP, "integer division by zero", regs,
2413                       0, 0x28, SIGFPE) == NOTIFY_STOP)
2414                goto out;
2415
2416        if (regs->tstate & TSTATE_PRIV)
2417                die_if_kernel("TL0: Kernel divide by zero.", regs);
2418        if (test_thread_flag(TIF_32BIT)) {
2419                regs->tpc &= 0xffffffff;
2420                regs->tnpc &= 0xffffffff;
2421        }
2422        force_sig_fault(SIGFPE, FPE_INTDIV,
2423                        (void __user *)regs->tpc, 0, current);
2424out:
2425        exception_exit(prev_state);
2426}
2427
2428static void instruction_dump(unsigned int *pc)
2429{
2430        int i;
2431
2432        if ((((unsigned long) pc) & 3))
2433                return;
2434
2435        printk("Instruction DUMP:");
2436        for (i = -3; i < 6; i++)
2437                printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2438        printk("\n");
2439}
2440
2441static void user_instruction_dump(unsigned int __user *pc)
2442{
2443        int i;
2444        unsigned int buf[9];
2445        
2446        if ((((unsigned long) pc) & 3))
2447                return;
2448                
2449        if (copy_from_user(buf, pc - 3, sizeof(buf)))
2450                return;
2451
2452        printk("Instruction DUMP:");
2453        for (i = 0; i < 9; i++)
2454                printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2455        printk("\n");
2456}
2457
2458void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2459{
2460        unsigned long fp, ksp;
2461        struct thread_info *tp;
2462        int count = 0;
2463#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2464        int graph = 0;
2465#endif
2466
2467        ksp = (unsigned long) _ksp;
2468        if (!tsk)
2469                tsk = current;
2470        tp = task_thread_info(tsk);
2471        if (ksp == 0UL) {
2472                if (tsk == current)
2473                        asm("mov %%fp, %0" : "=r" (ksp));
2474                else
2475                        ksp = tp->ksp;
2476        }
2477        if (tp == current_thread_info())
2478                flushw_all();
2479
2480        fp = ksp + STACK_BIAS;
2481
2482        printk("Call Trace:\n");
2483        do {
2484                struct sparc_stackf *sf;
2485                struct pt_regs *regs;
2486                unsigned long pc;
2487
2488                if (!kstack_valid(tp, fp))
2489                        break;
2490                sf = (struct sparc_stackf *) fp;
2491                regs = (struct pt_regs *) (sf + 1);
2492
2493                if (kstack_is_trap_frame(tp, regs)) {
2494                        if (!(regs->tstate & TSTATE_PRIV))
2495                                break;
2496                        pc = regs->tpc;
2497                        fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2498                } else {
2499                        pc = sf->callers_pc;
2500                        fp = (unsigned long)sf->fp + STACK_BIAS;
2501                }
2502
2503                printk(" [%016lx] %pS\n", pc, (void *) pc);
2504#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2505                if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2506                        struct ftrace_ret_stack *ret_stack;
2507                        ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2508                        if (ret_stack) {
2509                                pc = ret_stack->ret;
2510                                printk(" [%016lx] %pS\n", pc, (void *) pc);
2511                                graph++;
2512                        }
2513                }
2514#endif
2515        } while (++count < 16);
2516}
2517
2518static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2519{
2520        unsigned long fp = rw->ins[6];
2521
2522        if (!fp)
2523                return NULL;
2524
2525        return (struct reg_window *) (fp + STACK_BIAS);
2526}
2527
2528void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2529{
2530        static int die_counter;
2531        int count = 0;
2532        
2533        /* Amuse the user. */
2534        printk(
2535"              \\|/ ____ \\|/\n"
2536"              \"@'/ .. \\`@\"\n"
2537"              /_| \\__/ |_\\\n"
2538"                 \\__U_/\n");
2539
2540        printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2541        notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2542        __asm__ __volatile__("flushw");
2543        show_regs(regs);
2544        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2545        if (regs->tstate & TSTATE_PRIV) {
2546                struct thread_info *tp = current_thread_info();
2547                struct reg_window *rw = (struct reg_window *)
2548                        (regs->u_regs[UREG_FP] + STACK_BIAS);
2549
2550                /* Stop the back trace when we hit userland or we
2551                 * find some badly aligned kernel stack.
2552                 */
2553                while (rw &&
2554                       count++ < 30 &&
2555                       kstack_valid(tp, (unsigned long) rw)) {
2556                        printk("Caller[%016lx]: %pS\n", rw->ins[7],
2557                               (void *) rw->ins[7]);
2558
2559                        rw = kernel_stack_up(rw);
2560                }
2561                instruction_dump ((unsigned int *) regs->tpc);
2562        } else {
2563                if (test_thread_flag(TIF_32BIT)) {
2564                        regs->tpc &= 0xffffffff;
2565                        regs->tnpc &= 0xffffffff;
2566                }
2567                user_instruction_dump ((unsigned int __user *) regs->tpc);
2568        }
2569        if (panic_on_oops)
2570                panic("Fatal exception");
2571        if (regs->tstate & TSTATE_PRIV)
2572                do_exit(SIGKILL);
2573        do_exit(SIGSEGV);
2574}
2575EXPORT_SYMBOL(die_if_kernel);
2576
2577#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2578#define VIS_OPCODE_VAL  ((0x2 << 30) | (0x36 << 19))
2579
2580void do_illegal_instruction(struct pt_regs *regs)
2581{
2582        enum ctx_state prev_state = exception_enter();
2583        unsigned long pc = regs->tpc;
2584        unsigned long tstate = regs->tstate;
2585        u32 insn;
2586
2587        if (notify_die(DIE_TRAP, "illegal instruction", regs,
2588                       0, 0x10, SIGILL) == NOTIFY_STOP)
2589                goto out;
2590
2591        if (tstate & TSTATE_PRIV)
2592                die_if_kernel("Kernel illegal instruction", regs);
2593        if (test_thread_flag(TIF_32BIT))
2594                pc = (u32)pc;
2595        if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2596                if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2597                        if (handle_popc(insn, regs))
2598                                goto out;
2599                } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2600                        if (handle_ldf_stq(insn, regs))
2601                                goto out;
2602                } else if (tlb_type == hypervisor) {
2603                        if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2604                                if (!vis_emul(regs, insn))
2605                                        goto out;
2606                        } else {
2607                                struct fpustate *f = FPUSTATE;
2608
2609                                /* On UltraSPARC T2 and later, FPU insns which
2610                                 * are not implemented in HW signal an illegal
2611                                 * instruction trap and do not set the FP Trap
2612                                 * Trap in the %fsr to unimplemented_FPop.
2613                                 */
2614                                if (do_mathemu(regs, f, true))
2615                                        goto out;
2616                        }
2617                }
2618        }
2619        force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0, current);
2620out:
2621        exception_exit(prev_state);
2622}
2623
2624void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2625{
2626        enum ctx_state prev_state = exception_enter();
2627
2628        if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2629                       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2630                goto out;
2631
2632        if (regs->tstate & TSTATE_PRIV) {
2633                kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2634                goto out;
2635        }
2636        if (is_no_fault_exception(regs))
2637                return;
2638
2639        force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0, current);
2640out:
2641        exception_exit(prev_state);
2642}
2643
2644void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2645{
2646        if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2647                       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2648                return;
2649
2650        if (regs->tstate & TSTATE_PRIV) {
2651                kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2652                return;
2653        }
2654        if (is_no_fault_exception(regs))
2655                return;
2656
2657        force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0, current);
2658}
2659
2660/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2661 * tag mismatch.
2662 *
2663 * ADI version tag mismatch on a load from memory always results in a
2664 * precise exception. Tag mismatch on a store to memory will result in
2665 * precise exception if MCDPER or PMCDPER is set to 1.
2666 */
2667void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2668                                      unsigned long context)
2669{
2670        if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2671                       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2672                return;
2673
2674        if (regs->tstate & TSTATE_PRIV) {
2675                /* MCD exception could happen because the task was running
2676                 * a system call with MCD enabled and passed a non-versioned
2677                 * pointer or pointer with bad version tag to  the system
2678                 * call.
2679                 */
2680                const struct exception_table_entry *entry;
2681
2682                entry = search_exception_tables(regs->tpc);
2683                if (entry) {
2684                        /* Looks like a bad syscall parameter */
2685#ifdef DEBUG_EXCEPTIONS
2686                        pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2687                                 regs->tpc);
2688                        pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2689                                 regs->tpc, entry->fixup);
2690#endif
2691                        regs->tpc = entry->fixup;
2692                        regs->tnpc = regs->tpc + 4;
2693                        return;
2694                }
2695                pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2696                         __func__, addr, context);
2697                die_if_kernel("MCD precise", regs);
2698        }
2699
2700        if (test_thread_flag(TIF_32BIT)) {
2701                regs->tpc &= 0xffffffff;
2702                regs->tnpc &= 0xffffffff;
2703        }
2704        force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
2705}
2706
2707void do_privop(struct pt_regs *regs)
2708{
2709        enum ctx_state prev_state = exception_enter();
2710
2711        if (notify_die(DIE_TRAP, "privileged operation", regs,
2712                       0, 0x11, SIGILL) == NOTIFY_STOP)
2713                goto out;
2714
2715        if (test_thread_flag(TIF_32BIT)) {
2716                regs->tpc &= 0xffffffff;
2717                regs->tnpc &= 0xffffffff;
2718        }
2719        force_sig_fault(SIGILL, ILL_PRVOPC,
2720                        (void __user *)regs->tpc, 0, current);
2721out:
2722        exception_exit(prev_state);
2723}
2724
2725void do_privact(struct pt_regs *regs)
2726{
2727        do_privop(regs);
2728}
2729
2730/* Trap level 1 stuff or other traps we should never see... */
2731void do_cee(struct pt_regs *regs)
2732{
2733        exception_enter();
2734        die_if_kernel("TL0: Cache Error Exception", regs);
2735}
2736
2737void do_div0_tl1(struct pt_regs *regs)
2738{
2739        exception_enter();
2740        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2741        die_if_kernel("TL1: DIV0 Exception", regs);
2742}
2743
2744void do_fpieee_tl1(struct pt_regs *regs)
2745{
2746        exception_enter();
2747        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2748        die_if_kernel("TL1: FPU IEEE Exception", regs);
2749}
2750
2751void do_fpother_tl1(struct pt_regs *regs)
2752{
2753        exception_enter();
2754        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2755        die_if_kernel("TL1: FPU Other Exception", regs);
2756}
2757
2758void do_ill_tl1(struct pt_regs *regs)
2759{
2760        exception_enter();
2761        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2762        die_if_kernel("TL1: Illegal Instruction Exception", regs);
2763}
2764
2765void do_irq_tl1(struct pt_regs *regs)
2766{
2767        exception_enter();
2768        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2769        die_if_kernel("TL1: IRQ Exception", regs);
2770}
2771
2772void do_lddfmna_tl1(struct pt_regs *regs)
2773{
2774        exception_enter();
2775        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2776        die_if_kernel("TL1: LDDF Exception", regs);
2777}
2778
2779void do_stdfmna_tl1(struct pt_regs *regs)
2780{
2781        exception_enter();
2782        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2783        die_if_kernel("TL1: STDF Exception", regs);
2784}
2785
2786void do_paw(struct pt_regs *regs)
2787{
2788        exception_enter();
2789        die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2790}
2791
2792void do_paw_tl1(struct pt_regs *regs)
2793{
2794        exception_enter();
2795        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2796        die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2797}
2798
2799void do_vaw(struct pt_regs *regs)
2800{
2801        exception_enter();
2802        die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2803}
2804
2805void do_vaw_tl1(struct pt_regs *regs)
2806{
2807        exception_enter();
2808        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2809        die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2810}
2811
2812void do_tof_tl1(struct pt_regs *regs)
2813{
2814        exception_enter();
2815        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2816        die_if_kernel("TL1: Tag Overflow Exception", regs);
2817}
2818
2819void do_getpsr(struct pt_regs *regs)
2820{
2821        regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2822        regs->tpc   = regs->tnpc;
2823        regs->tnpc += 4;
2824        if (test_thread_flag(TIF_32BIT)) {
2825                regs->tpc &= 0xffffffff;
2826                regs->tnpc &= 0xffffffff;
2827        }
2828}
2829
2830u64 cpu_mondo_counter[NR_CPUS] = {0};
2831struct trap_per_cpu trap_block[NR_CPUS];
2832EXPORT_SYMBOL(trap_block);
2833
2834/* This can get invoked before sched_init() so play it super safe
2835 * and use hard_smp_processor_id().
2836 */
2837void notrace init_cur_cpu_trap(struct thread_info *t)
2838{
2839        int cpu = hard_smp_processor_id();
2840        struct trap_per_cpu *p = &trap_block[cpu];
2841
2842        p->thread = t;
2843        p->pgd_paddr = 0;
2844}
2845
2846extern void thread_info_offsets_are_bolixed_dave(void);
2847extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2848extern void tsb_config_offsets_are_bolixed_dave(void);
2849
2850/* Only invoked on boot processor. */
2851void __init trap_init(void)
2852{
2853        /* Compile time sanity check. */
2854        BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2855                     TI_FLAGS != offsetof(struct thread_info, flags) ||
2856                     TI_CPU != offsetof(struct thread_info, cpu) ||
2857                     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2858                     TI_KSP != offsetof(struct thread_info, ksp) ||
2859                     TI_FAULT_ADDR != offsetof(struct thread_info,
2860                                               fault_address) ||
2861                     TI_KREGS != offsetof(struct thread_info, kregs) ||
2862                     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2863                     TI_REG_WINDOW != offsetof(struct thread_info,
2864                                               reg_window) ||
2865                     TI_RWIN_SPTRS != offsetof(struct thread_info,
2866                                               rwbuf_stkptrs) ||
2867                     TI_GSR != offsetof(struct thread_info, gsr) ||
2868                     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2869                     TI_PRE_COUNT != offsetof(struct thread_info,
2870                                              preempt_count) ||
2871                     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2872                     TI_CURRENT_DS != offsetof(struct thread_info,
2873                                                current_ds) ||
2874                     TI_KUNA_REGS != offsetof(struct thread_info,
2875                                              kern_una_regs) ||
2876                     TI_KUNA_INSN != offsetof(struct thread_info,
2877                                              kern_una_insn) ||
2878                     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2879                     (TI_FPREGS & (64 - 1)));
2880
2881        BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2882                                                     thread) ||
2883                     (TRAP_PER_CPU_PGD_PADDR !=
2884                      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2885                     (TRAP_PER_CPU_CPU_MONDO_PA !=
2886                      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2887                     (TRAP_PER_CPU_DEV_MONDO_PA !=
2888                      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2889                     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2890                      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2891                     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2892                      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2893                     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2894                      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2895                     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2896                      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2897                     (TRAP_PER_CPU_FAULT_INFO !=
2898                      offsetof(struct trap_per_cpu, fault_info)) ||
2899                     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2900                      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2901                     (TRAP_PER_CPU_CPU_LIST_PA !=
2902                      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2903                     (TRAP_PER_CPU_TSB_HUGE !=
2904                      offsetof(struct trap_per_cpu, tsb_huge)) ||
2905                     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2906                      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2907                     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2908                      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2909                     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2910                      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2911                     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2912                      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2913                     (TRAP_PER_CPU_RESUM_QMASK !=
2914                      offsetof(struct trap_per_cpu, resum_qmask)) ||
2915                     (TRAP_PER_CPU_NONRESUM_QMASK !=
2916                      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2917                     (TRAP_PER_CPU_PER_CPU_BASE !=
2918                      offsetof(struct trap_per_cpu, __per_cpu_base)));
2919
2920        BUILD_BUG_ON((TSB_CONFIG_TSB !=
2921                      offsetof(struct tsb_config, tsb)) ||
2922                     (TSB_CONFIG_RSS_LIMIT !=
2923                      offsetof(struct tsb_config, tsb_rss_limit)) ||
2924                     (TSB_CONFIG_NENTRIES !=
2925                      offsetof(struct tsb_config, tsb_nentries)) ||
2926                     (TSB_CONFIG_REG_VAL !=
2927                      offsetof(struct tsb_config, tsb_reg_val)) ||
2928                     (TSB_CONFIG_MAP_VADDR !=
2929                      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2930                     (TSB_CONFIG_MAP_PTE !=
2931                      offsetof(struct tsb_config, tsb_map_pte)));
2932
2933        /* Attach to the address space of init_task.  On SMP we
2934         * do this in smp.c:smp_callin for other cpus.
2935         */
2936        mmgrab(&init_mm);
2937        current->active_mm = &init_mm;
2938}
2939