linux/arch/x86/include/asm/tlbflush.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_TLBFLUSH_H
   3#define _ASM_X86_TLBFLUSH_H
   4
   5#include <linux/mm.h>
   6#include <linux/sched.h>
   7
   8#include <asm/processor.h>
   9#include <asm/cpufeature.h>
  10#include <asm/special_insns.h>
  11#include <asm/smp.h>
  12#include <asm/invpcid.h>
  13#include <asm/pti.h>
  14#include <asm/processor-flags.h>
  15
  16/*
  17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  18 * to what is traditionally called ASID on the RISC processors.
  19 *
  20 * We don't use the traditional ASID implementation, where each process/mm gets
  21 * its own ASID and flush/restart when we run out of ASID space.
  22 *
  23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  24 * that came by on this CPU, allowing cheaper switch_mm between processes on
  25 * this CPU.
  26 *
  27 * We end up with different spaces for different things. To avoid confusion we
  28 * use different names for each of them:
  29 *
  30 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  31 *         the canonical identifier for an mm
  32 *
  33 * kPCID - [1, TLB_NR_DYN_ASIDS]
  34 *         the value we write into the PCID part of CR3; corresponds to the
  35 *         ASID+1, because PCID 0 is special.
  36 *
  37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  38 *         for KPTI each mm has two address spaces and thus needs two
  39 *         PCID values, but we can still do with a single ASID denomination
  40 *         for each mm. Corresponds to kPCID + 2048.
  41 *
  42 */
  43
  44/* There are 12 bits of space for ASIDS in CR3 */
  45#define CR3_HW_ASID_BITS                12
  46
  47/*
  48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  49 * user/kernel switches
  50 */
  51#ifdef CONFIG_PAGE_TABLE_ISOLATION
  52# define PTI_CONSUMED_PCID_BITS 1
  53#else
  54# define PTI_CONSUMED_PCID_BITS 0
  55#endif
  56
  57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  58
  59/*
  60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  61 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  62 * use by non-PCID-aware users.
  63 */
  64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
  65
  66/*
  67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
  68 * lines.
  69 */
  70#define TLB_NR_DYN_ASIDS        6
  71
  72/*
  73 * Given @asid, compute kPCID
  74 */
  75static inline u16 kern_pcid(u16 asid)
  76{
  77        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  78
  79#ifdef CONFIG_PAGE_TABLE_ISOLATION
  80        /*
  81         * Make sure that the dynamic ASID space does not confict with the
  82         * bit we are using to switch between user and kernel ASIDs.
  83         */
  84        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
  85
  86        /*
  87         * The ASID being passed in here should have respected the
  88         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
  89         */
  90        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
  91#endif
  92        /*
  93         * The dynamically-assigned ASIDs that get passed in are small
  94         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
  95         * so do not bother to clear it.
  96         *
  97         * If PCID is on, ASID-aware code paths put the ASID+1 into the
  98         * PCID bits.  This serves two purposes.  It prevents a nasty
  99         * situation in which PCID-unaware code saves CR3, loads some other
 100         * value (with PCID == 0), and then restores CR3, thus corrupting
 101         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 102         * that any bugs involving loading a PCID-enabled CR3 with
 103         * CR4.PCIDE off will trigger deterministically.
 104         */
 105        return asid + 1;
 106}
 107
 108/*
 109 * Given @asid, compute uPCID
 110 */
 111static inline u16 user_pcid(u16 asid)
 112{
 113        u16 ret = kern_pcid(asid);
 114#ifdef CONFIG_PAGE_TABLE_ISOLATION
 115        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 116#endif
 117        return ret;
 118}
 119
 120struct pgd_t;
 121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 122{
 123        if (static_cpu_has(X86_FEATURE_PCID)) {
 124                return __sme_pa(pgd) | kern_pcid(asid);
 125        } else {
 126                VM_WARN_ON_ONCE(asid != 0);
 127                return __sme_pa(pgd);
 128        }
 129}
 130
 131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 132{
 133        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 134        /*
 135         * Use boot_cpu_has() instead of this_cpu_has() as this function
 136         * might be called during early boot. This should work even after
 137         * boot because all CPU's the have same capabilities:
 138         */
 139        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 140        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 141}
 142
 143#ifdef CONFIG_PARAVIRT
 144#include <asm/paravirt.h>
 145#else
 146#define __flush_tlb() __native_flush_tlb()
 147#define __flush_tlb_global() __native_flush_tlb_global()
 148#define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
 149#endif
 150
 151struct tlb_context {
 152        u64 ctx_id;
 153        u64 tlb_gen;
 154};
 155
 156struct tlb_state {
 157        /*
 158         * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
 159         * are on.  This means that it may not match current->active_mm,
 160         * which will contain the previous user mm when we're in lazy TLB
 161         * mode even if we've already switched back to swapper_pg_dir.
 162         *
 163         * During switch_mm_irqs_off(), loaded_mm will be set to
 164         * LOADED_MM_SWITCHING during the brief interrupts-off window
 165         * when CR3 and loaded_mm would otherwise be inconsistent.  This
 166         * is for nmi_uaccess_okay()'s benefit.
 167         */
 168        struct mm_struct *loaded_mm;
 169
 170#define LOADED_MM_SWITCHING ((struct mm_struct *)1UL)
 171
 172        /* Last user mm for optimizing IBPB */
 173        union {
 174                struct mm_struct        *last_user_mm;
 175                unsigned long           last_user_mm_ibpb;
 176        };
 177
 178        u16 loaded_mm_asid;
 179        u16 next_asid;
 180
 181        /*
 182         * We can be in one of several states:
 183         *
 184         *  - Actively using an mm.  Our CPU's bit will be set in
 185         *    mm_cpumask(loaded_mm) and is_lazy == false;
 186         *
 187         *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
 188         *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
 189         *
 190         *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
 191         *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
 192         *    We're heuristically guessing that the CR3 load we
 193         *    skipped more than makes up for the overhead added by
 194         *    lazy mode.
 195         */
 196        bool is_lazy;
 197
 198        /*
 199         * If set we changed the page tables in such a way that we
 200         * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
 201         * This tells us to go invalidate all the non-loaded ctxs[]
 202         * on the next context switch.
 203         *
 204         * The current ctx was kept up-to-date as it ran and does not
 205         * need to be invalidated.
 206         */
 207        bool invalidate_other;
 208
 209        /*
 210         * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
 211         * the corresponding user PCID needs a flush next time we
 212         * switch to it; see SWITCH_TO_USER_CR3.
 213         */
 214        unsigned short user_pcid_flush_mask;
 215
 216        /*
 217         * Access to this CR4 shadow and to H/W CR4 is protected by
 218         * disabling interrupts when modifying either one.
 219         */
 220        unsigned long cr4;
 221
 222        /*
 223         * This is a list of all contexts that might exist in the TLB.
 224         * There is one per ASID that we use, and the ASID (what the
 225         * CPU calls PCID) is the index into ctxts.
 226         *
 227         * For each context, ctx_id indicates which mm the TLB's user
 228         * entries came from.  As an invariant, the TLB will never
 229         * contain entries that are out-of-date as when that mm reached
 230         * the tlb_gen in the list.
 231         *
 232         * To be clear, this means that it's legal for the TLB code to
 233         * flush the TLB without updating tlb_gen.  This can happen
 234         * (for now, at least) due to paravirt remote flushes.
 235         *
 236         * NB: context 0 is a bit special, since it's also used by
 237         * various bits of init code.  This is fine -- code that
 238         * isn't aware of PCID will end up harmlessly flushing
 239         * context 0.
 240         */
 241        struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
 242};
 243DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
 244
 245/*
 246 * Blindly accessing user memory from NMI context can be dangerous
 247 * if we're in the middle of switching the current user task or
 248 * switching the loaded mm.  It can also be dangerous if we
 249 * interrupted some kernel code that was temporarily using a
 250 * different mm.
 251 */
 252static inline bool nmi_uaccess_okay(void)
 253{
 254        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 255        struct mm_struct *current_mm = current->mm;
 256
 257        VM_WARN_ON_ONCE(!loaded_mm);
 258
 259        /*
 260         * The condition we want to check is
 261         * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
 262         * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
 263         * is supposed to be reasonably fast.
 264         *
 265         * Instead, we check the almost equivalent but somewhat conservative
 266         * condition below, and we rely on the fact that switch_mm_irqs_off()
 267         * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
 268         */
 269        if (loaded_mm != current_mm)
 270                return false;
 271
 272        VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
 273
 274        return true;
 275}
 276
 277#define nmi_uaccess_okay nmi_uaccess_okay
 278
 279/* Initialize cr4 shadow for this CPU. */
 280static inline void cr4_init_shadow(void)
 281{
 282        this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
 283}
 284
 285static inline void __cr4_set(unsigned long cr4)
 286{
 287        lockdep_assert_irqs_disabled();
 288        this_cpu_write(cpu_tlbstate.cr4, cr4);
 289        __write_cr4(cr4);
 290}
 291
 292/* Set in this cpu's CR4. */
 293static inline void cr4_set_bits(unsigned long mask)
 294{
 295        unsigned long cr4, flags;
 296
 297        local_irq_save(flags);
 298        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 299        if ((cr4 | mask) != cr4)
 300                __cr4_set(cr4 | mask);
 301        local_irq_restore(flags);
 302}
 303
 304/* Clear in this cpu's CR4. */
 305static inline void cr4_clear_bits(unsigned long mask)
 306{
 307        unsigned long cr4, flags;
 308
 309        local_irq_save(flags);
 310        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 311        if ((cr4 & ~mask) != cr4)
 312                __cr4_set(cr4 & ~mask);
 313        local_irq_restore(flags);
 314}
 315
 316static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 317{
 318        unsigned long cr4;
 319
 320        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 321        __cr4_set(cr4 ^ mask);
 322}
 323
 324/* Read the CR4 shadow. */
 325static inline unsigned long cr4_read_shadow(void)
 326{
 327        return this_cpu_read(cpu_tlbstate.cr4);
 328}
 329
 330/*
 331 * Mark all other ASIDs as invalid, preserves the current.
 332 */
 333static inline void invalidate_other_asid(void)
 334{
 335        this_cpu_write(cpu_tlbstate.invalidate_other, true);
 336}
 337
 338/*
 339 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 340 * enable and PPro Global page enable), so that any CPU's that boot
 341 * up after us can get the correct flags.  This should only be used
 342 * during boot on the boot cpu.
 343 */
 344extern unsigned long mmu_cr4_features;
 345extern u32 *trampoline_cr4_features;
 346
 347static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 348{
 349        mmu_cr4_features |= mask;
 350        if (trampoline_cr4_features)
 351                *trampoline_cr4_features = mmu_cr4_features;
 352        cr4_set_bits(mask);
 353}
 354
 355extern void initialize_tlbstate_and_flush(void);
 356
 357/*
 358 * Given an ASID, flush the corresponding user ASID.  We can delay this
 359 * until the next time we switch to it.
 360 *
 361 * See SWITCH_TO_USER_CR3.
 362 */
 363static inline void invalidate_user_asid(u16 asid)
 364{
 365        /* There is no user ASID if address space separation is off */
 366        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 367                return;
 368
 369        /*
 370         * We only have a single ASID if PCID is off and the CR3
 371         * write will have flushed it.
 372         */
 373        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 374                return;
 375
 376        if (!static_cpu_has(X86_FEATURE_PTI))
 377                return;
 378
 379        __set_bit(kern_pcid(asid),
 380                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 381}
 382
 383/*
 384 * flush the entire current user mapping
 385 */
 386static inline void __native_flush_tlb(void)
 387{
 388        /*
 389         * Preemption or interrupts must be disabled to protect the access
 390         * to the per CPU variable and to prevent being preempted between
 391         * read_cr3() and write_cr3().
 392         */
 393        WARN_ON_ONCE(preemptible());
 394
 395        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 396
 397        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
 398        native_write_cr3(__native_read_cr3());
 399}
 400
 401/*
 402 * flush everything
 403 */
 404static inline void __native_flush_tlb_global(void)
 405{
 406        unsigned long cr4, flags;
 407
 408        if (static_cpu_has(X86_FEATURE_INVPCID)) {
 409                /*
 410                 * Using INVPCID is considerably faster than a pair of writes
 411                 * to CR4 sandwiched inside an IRQ flag save/restore.
 412                 *
 413                 * Note, this works with CR4.PCIDE=0 or 1.
 414                 */
 415                invpcid_flush_all();
 416                return;
 417        }
 418
 419        /*
 420         * Read-modify-write to CR4 - protect it from preemption and
 421         * from interrupts. (Use the raw variant because this code can
 422         * be called from deep inside debugging code.)
 423         */
 424        raw_local_irq_save(flags);
 425
 426        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 427        /* toggle PGE */
 428        native_write_cr4(cr4 ^ X86_CR4_PGE);
 429        /* write old PGE again and flush TLBs */
 430        native_write_cr4(cr4);
 431
 432        raw_local_irq_restore(flags);
 433}
 434
 435/*
 436 * flush one page in the user mapping
 437 */
 438static inline void __native_flush_tlb_one_user(unsigned long addr)
 439{
 440        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 441
 442        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
 443
 444        if (!static_cpu_has(X86_FEATURE_PTI))
 445                return;
 446
 447        /*
 448         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
 449         * Just use invalidate_user_asid() in case we are called early.
 450         */
 451        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
 452                invalidate_user_asid(loaded_mm_asid);
 453        else
 454                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
 455}
 456
 457/*
 458 * flush everything
 459 */
 460static inline void __flush_tlb_all(void)
 461{
 462        /*
 463         * This is to catch users with enabled preemption and the PGE feature
 464         * and don't trigger the warning in __native_flush_tlb().
 465         */
 466        VM_WARN_ON_ONCE(preemptible());
 467
 468        if (boot_cpu_has(X86_FEATURE_PGE)) {
 469                __flush_tlb_global();
 470        } else {
 471                /*
 472                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
 473                 */
 474                __flush_tlb();
 475        }
 476}
 477
 478/*
 479 * flush one page in the kernel mapping
 480 */
 481static inline void __flush_tlb_one_kernel(unsigned long addr)
 482{
 483        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 484
 485        /*
 486         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
 487         * paravirt equivalent.  Even with PCID, this is sufficient: we only
 488         * use PCID if we also use global PTEs for the kernel mapping, and
 489         * INVLPG flushes global translations across all address spaces.
 490         *
 491         * If PTI is on, then the kernel is mapped with non-global PTEs, and
 492         * __flush_tlb_one_user() will flush the given address for the current
 493         * kernel address space and for its usermode counterpart, but it does
 494         * not flush it for other address spaces.
 495         */
 496        __flush_tlb_one_user(addr);
 497
 498        if (!static_cpu_has(X86_FEATURE_PTI))
 499                return;
 500
 501        /*
 502         * See above.  We need to propagate the flush to all other address
 503         * spaces.  In principle, we only need to propagate it to kernelmode
 504         * address spaces, but the extra bookkeeping we would need is not
 505         * worth it.
 506         */
 507        invalidate_other_asid();
 508}
 509
 510#define TLB_FLUSH_ALL   -1UL
 511
 512/*
 513 * TLB flushing:
 514 *
 515 *  - flush_tlb_all() flushes all processes TLBs
 516 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 517 *  - flush_tlb_page(vma, vmaddr) flushes one page
 518 *  - flush_tlb_range(vma, start, end) flushes a range of pages
 519 *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
 520 *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
 521 *
 522 * ..but the i386 has somewhat limited tlb flushing capabilities,
 523 * and page-granular flushes are available only on i486 and up.
 524 */
 525struct flush_tlb_info {
 526        /*
 527         * We support several kinds of flushes.
 528         *
 529         * - Fully flush a single mm.  .mm will be set, .end will be
 530         *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
 531         *   which the IPI sender is trying to catch us up.
 532         *
 533         * - Partially flush a single mm.  .mm will be set, .start and
 534         *   .end will indicate the range, and .new_tlb_gen will be set
 535         *   such that the changes between generation .new_tlb_gen-1 and
 536         *   .new_tlb_gen are entirely contained in the indicated range.
 537         *
 538         * - Fully flush all mms whose tlb_gens have been updated.  .mm
 539         *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
 540         *   will be zero.
 541         */
 542        struct mm_struct        *mm;
 543        unsigned long           start;
 544        unsigned long           end;
 545        u64                     new_tlb_gen;
 546        unsigned int            stride_shift;
 547        bool                    freed_tables;
 548};
 549
 550#define local_flush_tlb() __flush_tlb()
 551
 552#define flush_tlb_mm(mm)                                                \
 553                flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
 554
 555#define flush_tlb_range(vma, start, end)                                \
 556        flush_tlb_mm_range((vma)->vm_mm, start, end,                    \
 557                           ((vma)->vm_flags & VM_HUGETLB)               \
 558                                ? huge_page_shift(hstate_vma(vma))      \
 559                                : PAGE_SHIFT, false)
 560
 561extern void flush_tlb_all(void);
 562extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 563                                unsigned long end, unsigned int stride_shift,
 564                                bool freed_tables);
 565extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
 566
 567static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
 568{
 569        flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
 570}
 571
 572void native_flush_tlb_others(const struct cpumask *cpumask,
 573                             const struct flush_tlb_info *info);
 574
 575static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
 576{
 577        /*
 578         * Bump the generation count.  This also serves as a full barrier
 579         * that synchronizes with switch_mm(): callers are required to order
 580         * their read of mm_cpumask after their writes to the paging
 581         * structures.
 582         */
 583        return atomic64_inc_return(&mm->context.tlb_gen);
 584}
 585
 586static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
 587                                        struct mm_struct *mm)
 588{
 589        inc_mm_tlb_gen(mm);
 590        cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
 591}
 592
 593extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
 594
 595#ifndef CONFIG_PARAVIRT
 596#define flush_tlb_others(mask, info)    \
 597        native_flush_tlb_others(mask, info)
 598
 599#define paravirt_tlb_remove_table(tlb, page) \
 600        tlb_remove_page(tlb, (void *)(page))
 601#endif
 602
 603#endif /* _ASM_X86_TLBFLUSH_H */
 604