linux/arch/x86/kernel/cpu/mce/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Machine check handler.
   4 *
   5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
   6 * Rest from unknown author(s).
   7 * 2004 Andi Kleen. Rewrote most of it.
   8 * Copyright 2008 Intel Corporation
   9 * Author: Andi Kleen
  10 */
  11
  12#include <linux/thread_info.h>
  13#include <linux/capability.h>
  14#include <linux/miscdevice.h>
  15#include <linux/ratelimit.h>
  16#include <linux/rcupdate.h>
  17#include <linux/kobject.h>
  18#include <linux/uaccess.h>
  19#include <linux/kdebug.h>
  20#include <linux/kernel.h>
  21#include <linux/percpu.h>
  22#include <linux/string.h>
  23#include <linux/device.h>
  24#include <linux/syscore_ops.h>
  25#include <linux/delay.h>
  26#include <linux/ctype.h>
  27#include <linux/sched.h>
  28#include <linux/sysfs.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/kmod.h>
  33#include <linux/poll.h>
  34#include <linux/nmi.h>
  35#include <linux/cpu.h>
  36#include <linux/ras.h>
  37#include <linux/smp.h>
  38#include <linux/fs.h>
  39#include <linux/mm.h>
  40#include <linux/debugfs.h>
  41#include <linux/irq_work.h>
  42#include <linux/export.h>
  43#include <linux/jump_label.h>
  44#include <linux/set_memory.h>
  45
  46#include <asm/intel-family.h>
  47#include <asm/processor.h>
  48#include <asm/traps.h>
  49#include <asm/tlbflush.h>
  50#include <asm/mce.h>
  51#include <asm/msr.h>
  52#include <asm/reboot.h>
  53
  54#include "internal.h"
  55
  56static DEFINE_MUTEX(mce_log_mutex);
  57
  58/* sysfs synchronization */
  59static DEFINE_MUTEX(mce_sysfs_mutex);
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/mce.h>
  63
  64#define SPINUNIT                100     /* 100ns */
  65
  66DEFINE_PER_CPU(unsigned, mce_exception_count);
  67
  68struct mce_bank *mce_banks __read_mostly;
  69struct mce_vendor_flags mce_flags __read_mostly;
  70
  71struct mca_config mca_cfg __read_mostly = {
  72        .bootlog  = -1,
  73        /*
  74         * Tolerant levels:
  75         * 0: always panic on uncorrected errors, log corrected errors
  76         * 1: panic or SIGBUS on uncorrected errors, log corrected errors
  77         * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
  78         * 3: never panic or SIGBUS, log all errors (for testing only)
  79         */
  80        .tolerant = 1,
  81        .monarch_timeout = -1
  82};
  83
  84static DEFINE_PER_CPU(struct mce, mces_seen);
  85static unsigned long mce_need_notify;
  86static int cpu_missing;
  87
  88/*
  89 * MCA banks polled by the period polling timer for corrected events.
  90 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
  91 */
  92DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
  93        [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
  94};
  95
  96/*
  97 * MCA banks controlled through firmware first for corrected errors.
  98 * This is a global list of banks for which we won't enable CMCI and we
  99 * won't poll. Firmware controls these banks and is responsible for
 100 * reporting corrected errors through GHES. Uncorrected/recoverable
 101 * errors are still notified through a machine check.
 102 */
 103mce_banks_t mce_banks_ce_disabled;
 104
 105static struct work_struct mce_work;
 106static struct irq_work mce_irq_work;
 107
 108static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
 109
 110/*
 111 * CPU/chipset specific EDAC code can register a notifier call here to print
 112 * MCE errors in a human-readable form.
 113 */
 114BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
 115
 116/* Do initial initialization of a struct mce */
 117void mce_setup(struct mce *m)
 118{
 119        memset(m, 0, sizeof(struct mce));
 120        m->cpu = m->extcpu = smp_processor_id();
 121        /* need the internal __ version to avoid deadlocks */
 122        m->time = __ktime_get_real_seconds();
 123        m->cpuvendor = boot_cpu_data.x86_vendor;
 124        m->cpuid = cpuid_eax(1);
 125        m->socketid = cpu_data(m->extcpu).phys_proc_id;
 126        m->apicid = cpu_data(m->extcpu).initial_apicid;
 127        rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
 128
 129        if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
 130                rdmsrl(MSR_PPIN, m->ppin);
 131
 132        m->microcode = boot_cpu_data.microcode;
 133}
 134
 135DEFINE_PER_CPU(struct mce, injectm);
 136EXPORT_PER_CPU_SYMBOL_GPL(injectm);
 137
 138void mce_log(struct mce *m)
 139{
 140        if (!mce_gen_pool_add(m))
 141                irq_work_queue(&mce_irq_work);
 142}
 143
 144void mce_inject_log(struct mce *m)
 145{
 146        mutex_lock(&mce_log_mutex);
 147        mce_log(m);
 148        mutex_unlock(&mce_log_mutex);
 149}
 150EXPORT_SYMBOL_GPL(mce_inject_log);
 151
 152static struct notifier_block mce_srao_nb;
 153
 154/*
 155 * We run the default notifier if we have only the SRAO, the first and the
 156 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
 157 * notifiers registered on the chain.
 158 */
 159#define NUM_DEFAULT_NOTIFIERS   3
 160static atomic_t num_notifiers;
 161
 162void mce_register_decode_chain(struct notifier_block *nb)
 163{
 164        if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
 165                return;
 166
 167        atomic_inc(&num_notifiers);
 168
 169        blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
 170}
 171EXPORT_SYMBOL_GPL(mce_register_decode_chain);
 172
 173void mce_unregister_decode_chain(struct notifier_block *nb)
 174{
 175        atomic_dec(&num_notifiers);
 176
 177        blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
 178}
 179EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
 180
 181static inline u32 ctl_reg(int bank)
 182{
 183        return MSR_IA32_MCx_CTL(bank);
 184}
 185
 186static inline u32 status_reg(int bank)
 187{
 188        return MSR_IA32_MCx_STATUS(bank);
 189}
 190
 191static inline u32 addr_reg(int bank)
 192{
 193        return MSR_IA32_MCx_ADDR(bank);
 194}
 195
 196static inline u32 misc_reg(int bank)
 197{
 198        return MSR_IA32_MCx_MISC(bank);
 199}
 200
 201static inline u32 smca_ctl_reg(int bank)
 202{
 203        return MSR_AMD64_SMCA_MCx_CTL(bank);
 204}
 205
 206static inline u32 smca_status_reg(int bank)
 207{
 208        return MSR_AMD64_SMCA_MCx_STATUS(bank);
 209}
 210
 211static inline u32 smca_addr_reg(int bank)
 212{
 213        return MSR_AMD64_SMCA_MCx_ADDR(bank);
 214}
 215
 216static inline u32 smca_misc_reg(int bank)
 217{
 218        return MSR_AMD64_SMCA_MCx_MISC(bank);
 219}
 220
 221struct mca_msr_regs msr_ops = {
 222        .ctl    = ctl_reg,
 223        .status = status_reg,
 224        .addr   = addr_reg,
 225        .misc   = misc_reg
 226};
 227
 228static void __print_mce(struct mce *m)
 229{
 230        pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
 231                 m->extcpu,
 232                 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
 233                 m->mcgstatus, m->bank, m->status);
 234
 235        if (m->ip) {
 236                pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
 237                        !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
 238                        m->cs, m->ip);
 239
 240                if (m->cs == __KERNEL_CS)
 241                        pr_cont("{%pS}", (void *)(unsigned long)m->ip);
 242                pr_cont("\n");
 243        }
 244
 245        pr_emerg(HW_ERR "TSC %llx ", m->tsc);
 246        if (m->addr)
 247                pr_cont("ADDR %llx ", m->addr);
 248        if (m->misc)
 249                pr_cont("MISC %llx ", m->misc);
 250
 251        if (mce_flags.smca) {
 252                if (m->synd)
 253                        pr_cont("SYND %llx ", m->synd);
 254                if (m->ipid)
 255                        pr_cont("IPID %llx ", m->ipid);
 256        }
 257
 258        pr_cont("\n");
 259        /*
 260         * Note this output is parsed by external tools and old fields
 261         * should not be changed.
 262         */
 263        pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
 264                m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
 265                m->microcode);
 266}
 267
 268static void print_mce(struct mce *m)
 269{
 270        __print_mce(m);
 271
 272        if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
 273                pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
 274}
 275
 276#define PANIC_TIMEOUT 5 /* 5 seconds */
 277
 278static atomic_t mce_panicked;
 279
 280static int fake_panic;
 281static atomic_t mce_fake_panicked;
 282
 283/* Panic in progress. Enable interrupts and wait for final IPI */
 284static void wait_for_panic(void)
 285{
 286        long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
 287
 288        preempt_disable();
 289        local_irq_enable();
 290        while (timeout-- > 0)
 291                udelay(1);
 292        if (panic_timeout == 0)
 293                panic_timeout = mca_cfg.panic_timeout;
 294        panic("Panicing machine check CPU died");
 295}
 296
 297static void mce_panic(const char *msg, struct mce *final, char *exp)
 298{
 299        int apei_err = 0;
 300        struct llist_node *pending;
 301        struct mce_evt_llist *l;
 302
 303        if (!fake_panic) {
 304                /*
 305                 * Make sure only one CPU runs in machine check panic
 306                 */
 307                if (atomic_inc_return(&mce_panicked) > 1)
 308                        wait_for_panic();
 309                barrier();
 310
 311                bust_spinlocks(1);
 312                console_verbose();
 313        } else {
 314                /* Don't log too much for fake panic */
 315                if (atomic_inc_return(&mce_fake_panicked) > 1)
 316                        return;
 317        }
 318        pending = mce_gen_pool_prepare_records();
 319        /* First print corrected ones that are still unlogged */
 320        llist_for_each_entry(l, pending, llnode) {
 321                struct mce *m = &l->mce;
 322                if (!(m->status & MCI_STATUS_UC)) {
 323                        print_mce(m);
 324                        if (!apei_err)
 325                                apei_err = apei_write_mce(m);
 326                }
 327        }
 328        /* Now print uncorrected but with the final one last */
 329        llist_for_each_entry(l, pending, llnode) {
 330                struct mce *m = &l->mce;
 331                if (!(m->status & MCI_STATUS_UC))
 332                        continue;
 333                if (!final || mce_cmp(m, final)) {
 334                        print_mce(m);
 335                        if (!apei_err)
 336                                apei_err = apei_write_mce(m);
 337                }
 338        }
 339        if (final) {
 340                print_mce(final);
 341                if (!apei_err)
 342                        apei_err = apei_write_mce(final);
 343        }
 344        if (cpu_missing)
 345                pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
 346        if (exp)
 347                pr_emerg(HW_ERR "Machine check: %s\n", exp);
 348        if (!fake_panic) {
 349                if (panic_timeout == 0)
 350                        panic_timeout = mca_cfg.panic_timeout;
 351                panic(msg);
 352        } else
 353                pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
 354}
 355
 356/* Support code for software error injection */
 357
 358static int msr_to_offset(u32 msr)
 359{
 360        unsigned bank = __this_cpu_read(injectm.bank);
 361
 362        if (msr == mca_cfg.rip_msr)
 363                return offsetof(struct mce, ip);
 364        if (msr == msr_ops.status(bank))
 365                return offsetof(struct mce, status);
 366        if (msr == msr_ops.addr(bank))
 367                return offsetof(struct mce, addr);
 368        if (msr == msr_ops.misc(bank))
 369                return offsetof(struct mce, misc);
 370        if (msr == MSR_IA32_MCG_STATUS)
 371                return offsetof(struct mce, mcgstatus);
 372        return -1;
 373}
 374
 375/* MSR access wrappers used for error injection */
 376static u64 mce_rdmsrl(u32 msr)
 377{
 378        u64 v;
 379
 380        if (__this_cpu_read(injectm.finished)) {
 381                int offset = msr_to_offset(msr);
 382
 383                if (offset < 0)
 384                        return 0;
 385                return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
 386        }
 387
 388        if (rdmsrl_safe(msr, &v)) {
 389                WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
 390                /*
 391                 * Return zero in case the access faulted. This should
 392                 * not happen normally but can happen if the CPU does
 393                 * something weird, or if the code is buggy.
 394                 */
 395                v = 0;
 396        }
 397
 398        return v;
 399}
 400
 401static void mce_wrmsrl(u32 msr, u64 v)
 402{
 403        if (__this_cpu_read(injectm.finished)) {
 404                int offset = msr_to_offset(msr);
 405
 406                if (offset >= 0)
 407                        *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
 408                return;
 409        }
 410        wrmsrl(msr, v);
 411}
 412
 413/*
 414 * Collect all global (w.r.t. this processor) status about this machine
 415 * check into our "mce" struct so that we can use it later to assess
 416 * the severity of the problem as we read per-bank specific details.
 417 */
 418static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
 419{
 420        mce_setup(m);
 421
 422        m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
 423        if (regs) {
 424                /*
 425                 * Get the address of the instruction at the time of
 426                 * the machine check error.
 427                 */
 428                if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
 429                        m->ip = regs->ip;
 430                        m->cs = regs->cs;
 431
 432                        /*
 433                         * When in VM86 mode make the cs look like ring 3
 434                         * always. This is a lie, but it's better than passing
 435                         * the additional vm86 bit around everywhere.
 436                         */
 437                        if (v8086_mode(regs))
 438                                m->cs |= 3;
 439                }
 440                /* Use accurate RIP reporting if available. */
 441                if (mca_cfg.rip_msr)
 442                        m->ip = mce_rdmsrl(mca_cfg.rip_msr);
 443        }
 444}
 445
 446int mce_available(struct cpuinfo_x86 *c)
 447{
 448        if (mca_cfg.disabled)
 449                return 0;
 450        return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
 451}
 452
 453static void mce_schedule_work(void)
 454{
 455        if (!mce_gen_pool_empty())
 456                schedule_work(&mce_work);
 457}
 458
 459static void mce_irq_work_cb(struct irq_work *entry)
 460{
 461        mce_schedule_work();
 462}
 463
 464/*
 465 * Check if the address reported by the CPU is in a format we can parse.
 466 * It would be possible to add code for most other cases, but all would
 467 * be somewhat complicated (e.g. segment offset would require an instruction
 468 * parser). So only support physical addresses up to page granuality for now.
 469 */
 470int mce_usable_address(struct mce *m)
 471{
 472        if (!(m->status & MCI_STATUS_ADDRV))
 473                return 0;
 474
 475        /* Checks after this one are Intel-specific: */
 476        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 477                return 1;
 478
 479        if (!(m->status & MCI_STATUS_MISCV))
 480                return 0;
 481
 482        if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
 483                return 0;
 484
 485        if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
 486                return 0;
 487
 488        return 1;
 489}
 490EXPORT_SYMBOL_GPL(mce_usable_address);
 491
 492bool mce_is_memory_error(struct mce *m)
 493{
 494        if (m->cpuvendor == X86_VENDOR_AMD ||
 495            m->cpuvendor == X86_VENDOR_HYGON) {
 496                return amd_mce_is_memory_error(m);
 497        } else if (m->cpuvendor == X86_VENDOR_INTEL) {
 498                /*
 499                 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
 500                 *
 501                 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
 502                 * indicating a memory error. Bit 8 is used for indicating a
 503                 * cache hierarchy error. The combination of bit 2 and bit 3
 504                 * is used for indicating a `generic' cache hierarchy error
 505                 * But we can't just blindly check the above bits, because if
 506                 * bit 11 is set, then it is a bus/interconnect error - and
 507                 * either way the above bits just gives more detail on what
 508                 * bus/interconnect error happened. Note that bit 12 can be
 509                 * ignored, as it's the "filter" bit.
 510                 */
 511                return (m->status & 0xef80) == BIT(7) ||
 512                       (m->status & 0xef00) == BIT(8) ||
 513                       (m->status & 0xeffc) == 0xc;
 514        }
 515
 516        return false;
 517}
 518EXPORT_SYMBOL_GPL(mce_is_memory_error);
 519
 520bool mce_is_correctable(struct mce *m)
 521{
 522        if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
 523                return false;
 524
 525        if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
 526                return false;
 527
 528        if (m->status & MCI_STATUS_UC)
 529                return false;
 530
 531        return true;
 532}
 533EXPORT_SYMBOL_GPL(mce_is_correctable);
 534
 535static bool cec_add_mce(struct mce *m)
 536{
 537        if (!m)
 538                return false;
 539
 540        /* We eat only correctable DRAM errors with usable addresses. */
 541        if (mce_is_memory_error(m) &&
 542            mce_is_correctable(m)  &&
 543            mce_usable_address(m))
 544                if (!cec_add_elem(m->addr >> PAGE_SHIFT))
 545                        return true;
 546
 547        return false;
 548}
 549
 550static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
 551                              void *data)
 552{
 553        struct mce *m = (struct mce *)data;
 554
 555        if (!m)
 556                return NOTIFY_DONE;
 557
 558        if (cec_add_mce(m))
 559                return NOTIFY_STOP;
 560
 561        /* Emit the trace record: */
 562        trace_mce_record(m);
 563
 564        set_bit(0, &mce_need_notify);
 565
 566        mce_notify_irq();
 567
 568        return NOTIFY_DONE;
 569}
 570
 571static struct notifier_block first_nb = {
 572        .notifier_call  = mce_first_notifier,
 573        .priority       = MCE_PRIO_FIRST,
 574};
 575
 576static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
 577                                void *data)
 578{
 579        struct mce *mce = (struct mce *)data;
 580        unsigned long pfn;
 581
 582        if (!mce)
 583                return NOTIFY_DONE;
 584
 585        if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
 586                pfn = mce->addr >> PAGE_SHIFT;
 587                if (!memory_failure(pfn, 0))
 588                        set_mce_nospec(pfn);
 589        }
 590
 591        return NOTIFY_OK;
 592}
 593static struct notifier_block mce_srao_nb = {
 594        .notifier_call  = srao_decode_notifier,
 595        .priority       = MCE_PRIO_SRAO,
 596};
 597
 598static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
 599                                void *data)
 600{
 601        struct mce *m = (struct mce *)data;
 602
 603        if (!m)
 604                return NOTIFY_DONE;
 605
 606        if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
 607                return NOTIFY_DONE;
 608
 609        __print_mce(m);
 610
 611        return NOTIFY_DONE;
 612}
 613
 614static struct notifier_block mce_default_nb = {
 615        .notifier_call  = mce_default_notifier,
 616        /* lowest prio, we want it to run last. */
 617        .priority       = MCE_PRIO_LOWEST,
 618};
 619
 620/*
 621 * Read ADDR and MISC registers.
 622 */
 623static void mce_read_aux(struct mce *m, int i)
 624{
 625        if (m->status & MCI_STATUS_MISCV)
 626                m->misc = mce_rdmsrl(msr_ops.misc(i));
 627
 628        if (m->status & MCI_STATUS_ADDRV) {
 629                m->addr = mce_rdmsrl(msr_ops.addr(i));
 630
 631                /*
 632                 * Mask the reported address by the reported granularity.
 633                 */
 634                if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
 635                        u8 shift = MCI_MISC_ADDR_LSB(m->misc);
 636                        m->addr >>= shift;
 637                        m->addr <<= shift;
 638                }
 639
 640                /*
 641                 * Extract [55:<lsb>] where lsb is the least significant
 642                 * *valid* bit of the address bits.
 643                 */
 644                if (mce_flags.smca) {
 645                        u8 lsb = (m->addr >> 56) & 0x3f;
 646
 647                        m->addr &= GENMASK_ULL(55, lsb);
 648                }
 649        }
 650
 651        if (mce_flags.smca) {
 652                m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
 653
 654                if (m->status & MCI_STATUS_SYNDV)
 655                        m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
 656        }
 657}
 658
 659DEFINE_PER_CPU(unsigned, mce_poll_count);
 660
 661/*
 662 * Poll for corrected events or events that happened before reset.
 663 * Those are just logged through /dev/mcelog.
 664 *
 665 * This is executed in standard interrupt context.
 666 *
 667 * Note: spec recommends to panic for fatal unsignalled
 668 * errors here. However this would be quite problematic --
 669 * we would need to reimplement the Monarch handling and
 670 * it would mess up the exclusion between exception handler
 671 * and poll handler -- * so we skip this for now.
 672 * These cases should not happen anyways, or only when the CPU
 673 * is already totally * confused. In this case it's likely it will
 674 * not fully execute the machine check handler either.
 675 */
 676bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
 677{
 678        bool error_seen = false;
 679        struct mce m;
 680        int i;
 681
 682        this_cpu_inc(mce_poll_count);
 683
 684        mce_gather_info(&m, NULL);
 685
 686        if (flags & MCP_TIMESTAMP)
 687                m.tsc = rdtsc();
 688
 689        for (i = 0; i < mca_cfg.banks; i++) {
 690                if (!mce_banks[i].ctl || !test_bit(i, *b))
 691                        continue;
 692
 693                m.misc = 0;
 694                m.addr = 0;
 695                m.bank = i;
 696
 697                barrier();
 698                m.status = mce_rdmsrl(msr_ops.status(i));
 699
 700                /* If this entry is not valid, ignore it */
 701                if (!(m.status & MCI_STATUS_VAL))
 702                        continue;
 703
 704                /*
 705                 * If we are logging everything (at CPU online) or this
 706                 * is a corrected error, then we must log it.
 707                 */
 708                if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
 709                        goto log_it;
 710
 711                /*
 712                 * Newer Intel systems that support software error
 713                 * recovery need to make additional checks. Other
 714                 * CPUs should skip over uncorrected errors, but log
 715                 * everything else.
 716                 */
 717                if (!mca_cfg.ser) {
 718                        if (m.status & MCI_STATUS_UC)
 719                                continue;
 720                        goto log_it;
 721                }
 722
 723                /* Log "not enabled" (speculative) errors */
 724                if (!(m.status & MCI_STATUS_EN))
 725                        goto log_it;
 726
 727                /*
 728                 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
 729                 * UC == 1 && PCC == 0 && S == 0
 730                 */
 731                if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
 732                        goto log_it;
 733
 734                /*
 735                 * Skip anything else. Presumption is that our read of this
 736                 * bank is racing with a machine check. Leave the log alone
 737                 * for do_machine_check() to deal with it.
 738                 */
 739                continue;
 740
 741log_it:
 742                error_seen = true;
 743
 744                mce_read_aux(&m, i);
 745
 746                m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
 747
 748                /*
 749                 * Don't get the IP here because it's unlikely to
 750                 * have anything to do with the actual error location.
 751                 */
 752                if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
 753                        mce_log(&m);
 754                else if (mce_usable_address(&m)) {
 755                        /*
 756                         * Although we skipped logging this, we still want
 757                         * to take action. Add to the pool so the registered
 758                         * notifiers will see it.
 759                         */
 760                        if (!mce_gen_pool_add(&m))
 761                                mce_schedule_work();
 762                }
 763
 764                /*
 765                 * Clear state for this bank.
 766                 */
 767                mce_wrmsrl(msr_ops.status(i), 0);
 768        }
 769
 770        /*
 771         * Don't clear MCG_STATUS here because it's only defined for
 772         * exceptions.
 773         */
 774
 775        sync_core();
 776
 777        return error_seen;
 778}
 779EXPORT_SYMBOL_GPL(machine_check_poll);
 780
 781/*
 782 * Do a quick check if any of the events requires a panic.
 783 * This decides if we keep the events around or clear them.
 784 */
 785static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
 786                          struct pt_regs *regs)
 787{
 788        char *tmp;
 789        int i;
 790
 791        for (i = 0; i < mca_cfg.banks; i++) {
 792                m->status = mce_rdmsrl(msr_ops.status(i));
 793                if (!(m->status & MCI_STATUS_VAL))
 794                        continue;
 795
 796                __set_bit(i, validp);
 797                if (quirk_no_way_out)
 798                        quirk_no_way_out(i, m, regs);
 799
 800                if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
 801                        m->bank = i;
 802                        mce_read_aux(m, i);
 803                        *msg = tmp;
 804                        return 1;
 805                }
 806        }
 807        return 0;
 808}
 809
 810/*
 811 * Variable to establish order between CPUs while scanning.
 812 * Each CPU spins initially until executing is equal its number.
 813 */
 814static atomic_t mce_executing;
 815
 816/*
 817 * Defines order of CPUs on entry. First CPU becomes Monarch.
 818 */
 819static atomic_t mce_callin;
 820
 821/*
 822 * Check if a timeout waiting for other CPUs happened.
 823 */
 824static int mce_timed_out(u64 *t, const char *msg)
 825{
 826        /*
 827         * The others already did panic for some reason.
 828         * Bail out like in a timeout.
 829         * rmb() to tell the compiler that system_state
 830         * might have been modified by someone else.
 831         */
 832        rmb();
 833        if (atomic_read(&mce_panicked))
 834                wait_for_panic();
 835        if (!mca_cfg.monarch_timeout)
 836                goto out;
 837        if ((s64)*t < SPINUNIT) {
 838                if (mca_cfg.tolerant <= 1)
 839                        mce_panic(msg, NULL, NULL);
 840                cpu_missing = 1;
 841                return 1;
 842        }
 843        *t -= SPINUNIT;
 844out:
 845        touch_nmi_watchdog();
 846        return 0;
 847}
 848
 849/*
 850 * The Monarch's reign.  The Monarch is the CPU who entered
 851 * the machine check handler first. It waits for the others to
 852 * raise the exception too and then grades them. When any
 853 * error is fatal panic. Only then let the others continue.
 854 *
 855 * The other CPUs entering the MCE handler will be controlled by the
 856 * Monarch. They are called Subjects.
 857 *
 858 * This way we prevent any potential data corruption in a unrecoverable case
 859 * and also makes sure always all CPU's errors are examined.
 860 *
 861 * Also this detects the case of a machine check event coming from outer
 862 * space (not detected by any CPUs) In this case some external agent wants
 863 * us to shut down, so panic too.
 864 *
 865 * The other CPUs might still decide to panic if the handler happens
 866 * in a unrecoverable place, but in this case the system is in a semi-stable
 867 * state and won't corrupt anything by itself. It's ok to let the others
 868 * continue for a bit first.
 869 *
 870 * All the spin loops have timeouts; when a timeout happens a CPU
 871 * typically elects itself to be Monarch.
 872 */
 873static void mce_reign(void)
 874{
 875        int cpu;
 876        struct mce *m = NULL;
 877        int global_worst = 0;
 878        char *msg = NULL;
 879        char *nmsg = NULL;
 880
 881        /*
 882         * This CPU is the Monarch and the other CPUs have run
 883         * through their handlers.
 884         * Grade the severity of the errors of all the CPUs.
 885         */
 886        for_each_possible_cpu(cpu) {
 887                int severity = mce_severity(&per_cpu(mces_seen, cpu),
 888                                            mca_cfg.tolerant,
 889                                            &nmsg, true);
 890                if (severity > global_worst) {
 891                        msg = nmsg;
 892                        global_worst = severity;
 893                        m = &per_cpu(mces_seen, cpu);
 894                }
 895        }
 896
 897        /*
 898         * Cannot recover? Panic here then.
 899         * This dumps all the mces in the log buffer and stops the
 900         * other CPUs.
 901         */
 902        if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
 903                mce_panic("Fatal machine check", m, msg);
 904
 905        /*
 906         * For UC somewhere we let the CPU who detects it handle it.
 907         * Also must let continue the others, otherwise the handling
 908         * CPU could deadlock on a lock.
 909         */
 910
 911        /*
 912         * No machine check event found. Must be some external
 913         * source or one CPU is hung. Panic.
 914         */
 915        if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
 916                mce_panic("Fatal machine check from unknown source", NULL, NULL);
 917
 918        /*
 919         * Now clear all the mces_seen so that they don't reappear on
 920         * the next mce.
 921         */
 922        for_each_possible_cpu(cpu)
 923                memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
 924}
 925
 926static atomic_t global_nwo;
 927
 928/*
 929 * Start of Monarch synchronization. This waits until all CPUs have
 930 * entered the exception handler and then determines if any of them
 931 * saw a fatal event that requires panic. Then it executes them
 932 * in the entry order.
 933 * TBD double check parallel CPU hotunplug
 934 */
 935static int mce_start(int *no_way_out)
 936{
 937        int order;
 938        int cpus = num_online_cpus();
 939        u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
 940
 941        if (!timeout)
 942                return -1;
 943
 944        atomic_add(*no_way_out, &global_nwo);
 945        /*
 946         * Rely on the implied barrier below, such that global_nwo
 947         * is updated before mce_callin.
 948         */
 949        order = atomic_inc_return(&mce_callin);
 950
 951        /*
 952         * Wait for everyone.
 953         */
 954        while (atomic_read(&mce_callin) != cpus) {
 955                if (mce_timed_out(&timeout,
 956                                  "Timeout: Not all CPUs entered broadcast exception handler")) {
 957                        atomic_set(&global_nwo, 0);
 958                        return -1;
 959                }
 960                ndelay(SPINUNIT);
 961        }
 962
 963        /*
 964         * mce_callin should be read before global_nwo
 965         */
 966        smp_rmb();
 967
 968        if (order == 1) {
 969                /*
 970                 * Monarch: Starts executing now, the others wait.
 971                 */
 972                atomic_set(&mce_executing, 1);
 973        } else {
 974                /*
 975                 * Subject: Now start the scanning loop one by one in
 976                 * the original callin order.
 977                 * This way when there are any shared banks it will be
 978                 * only seen by one CPU before cleared, avoiding duplicates.
 979                 */
 980                while (atomic_read(&mce_executing) < order) {
 981                        if (mce_timed_out(&timeout,
 982                                          "Timeout: Subject CPUs unable to finish machine check processing")) {
 983                                atomic_set(&global_nwo, 0);
 984                                return -1;
 985                        }
 986                        ndelay(SPINUNIT);
 987                }
 988        }
 989
 990        /*
 991         * Cache the global no_way_out state.
 992         */
 993        *no_way_out = atomic_read(&global_nwo);
 994
 995        return order;
 996}
 997
 998/*
 999 * Synchronize between CPUs after main scanning loop.
1000 * This invokes the bulk of the Monarch processing.
1001 */
1002static int mce_end(int order)
1003{
1004        int ret = -1;
1005        u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1006
1007        if (!timeout)
1008                goto reset;
1009        if (order < 0)
1010                goto reset;
1011
1012        /*
1013         * Allow others to run.
1014         */
1015        atomic_inc(&mce_executing);
1016
1017        if (order == 1) {
1018                /* CHECKME: Can this race with a parallel hotplug? */
1019                int cpus = num_online_cpus();
1020
1021                /*
1022                 * Monarch: Wait for everyone to go through their scanning
1023                 * loops.
1024                 */
1025                while (atomic_read(&mce_executing) <= cpus) {
1026                        if (mce_timed_out(&timeout,
1027                                          "Timeout: Monarch CPU unable to finish machine check processing"))
1028                                goto reset;
1029                        ndelay(SPINUNIT);
1030                }
1031
1032                mce_reign();
1033                barrier();
1034                ret = 0;
1035        } else {
1036                /*
1037                 * Subject: Wait for Monarch to finish.
1038                 */
1039                while (atomic_read(&mce_executing) != 0) {
1040                        if (mce_timed_out(&timeout,
1041                                          "Timeout: Monarch CPU did not finish machine check processing"))
1042                                goto reset;
1043                        ndelay(SPINUNIT);
1044                }
1045
1046                /*
1047                 * Don't reset anything. That's done by the Monarch.
1048                 */
1049                return 0;
1050        }
1051
1052        /*
1053         * Reset all global state.
1054         */
1055reset:
1056        atomic_set(&global_nwo, 0);
1057        atomic_set(&mce_callin, 0);
1058        barrier();
1059
1060        /*
1061         * Let others run again.
1062         */
1063        atomic_set(&mce_executing, 0);
1064        return ret;
1065}
1066
1067static void mce_clear_state(unsigned long *toclear)
1068{
1069        int i;
1070
1071        for (i = 0; i < mca_cfg.banks; i++) {
1072                if (test_bit(i, toclear))
1073                        mce_wrmsrl(msr_ops.status(i), 0);
1074        }
1075}
1076
1077static int do_memory_failure(struct mce *m)
1078{
1079        int flags = MF_ACTION_REQUIRED;
1080        int ret;
1081
1082        pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1083        if (!(m->mcgstatus & MCG_STATUS_RIPV))
1084                flags |= MF_MUST_KILL;
1085        ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1086        if (ret)
1087                pr_err("Memory error not recovered");
1088        else
1089                set_mce_nospec(m->addr >> PAGE_SHIFT);
1090        return ret;
1091}
1092
1093
1094/*
1095 * Cases where we avoid rendezvous handler timeout:
1096 * 1) If this CPU is offline.
1097 *
1098 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1099 *  skip those CPUs which remain looping in the 1st kernel - see
1100 *  crash_nmi_callback().
1101 *
1102 * Note: there still is a small window between kexec-ing and the new,
1103 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1104 * might not get handled properly.
1105 */
1106static bool __mc_check_crashing_cpu(int cpu)
1107{
1108        if (cpu_is_offline(cpu) ||
1109            (crashing_cpu != -1 && crashing_cpu != cpu)) {
1110                u64 mcgstatus;
1111
1112                mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1113                if (mcgstatus & MCG_STATUS_RIPV) {
1114                        mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1115                        return true;
1116                }
1117        }
1118        return false;
1119}
1120
1121static void __mc_scan_banks(struct mce *m, struct mce *final,
1122                            unsigned long *toclear, unsigned long *valid_banks,
1123                            int no_way_out, int *worst)
1124{
1125        struct mca_config *cfg = &mca_cfg;
1126        int severity, i;
1127
1128        for (i = 0; i < cfg->banks; i++) {
1129                __clear_bit(i, toclear);
1130                if (!test_bit(i, valid_banks))
1131                        continue;
1132
1133                if (!mce_banks[i].ctl)
1134                        continue;
1135
1136                m->misc = 0;
1137                m->addr = 0;
1138                m->bank = i;
1139
1140                m->status = mce_rdmsrl(msr_ops.status(i));
1141                if (!(m->status & MCI_STATUS_VAL))
1142                        continue;
1143
1144                /*
1145                 * Corrected or non-signaled errors are handled by
1146                 * machine_check_poll(). Leave them alone, unless this panics.
1147                 */
1148                if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1149                        !no_way_out)
1150                        continue;
1151
1152                /* Set taint even when machine check was not enabled. */
1153                add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1154
1155                severity = mce_severity(m, cfg->tolerant, NULL, true);
1156
1157                /*
1158                 * When machine check was for corrected/deferred handler don't
1159                 * touch, unless we're panicking.
1160                 */
1161                if ((severity == MCE_KEEP_SEVERITY ||
1162                     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1163                        continue;
1164
1165                __set_bit(i, toclear);
1166
1167                /* Machine check event was not enabled. Clear, but ignore. */
1168                if (severity == MCE_NO_SEVERITY)
1169                        continue;
1170
1171                mce_read_aux(m, i);
1172
1173                /* assuming valid severity level != 0 */
1174                m->severity = severity;
1175
1176                mce_log(m);
1177
1178                if (severity > *worst) {
1179                        *final = *m;
1180                        *worst = severity;
1181                }
1182        }
1183
1184        /* mce_clear_state will clear *final, save locally for use later */
1185        *m = *final;
1186}
1187
1188/*
1189 * The actual machine check handler. This only handles real
1190 * exceptions when something got corrupted coming in through int 18.
1191 *
1192 * This is executed in NMI context not subject to normal locking rules. This
1193 * implies that most kernel services cannot be safely used. Don't even
1194 * think about putting a printk in there!
1195 *
1196 * On Intel systems this is entered on all CPUs in parallel through
1197 * MCE broadcast. However some CPUs might be broken beyond repair,
1198 * so be always careful when synchronizing with others.
1199 */
1200void do_machine_check(struct pt_regs *regs, long error_code)
1201{
1202        DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1203        DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1204        struct mca_config *cfg = &mca_cfg;
1205        int cpu = smp_processor_id();
1206        char *msg = "Unknown";
1207        struct mce m, *final;
1208        int worst = 0;
1209
1210        /*
1211         * Establish sequential order between the CPUs entering the machine
1212         * check handler.
1213         */
1214        int order = -1;
1215
1216        /*
1217         * If no_way_out gets set, there is no safe way to recover from this
1218         * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1219         */
1220        int no_way_out = 0;
1221
1222        /*
1223         * If kill_it gets set, there might be a way to recover from this
1224         * error.
1225         */
1226        int kill_it = 0;
1227
1228        /*
1229         * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1230         * on Intel.
1231         */
1232        int lmce = 1;
1233
1234        if (__mc_check_crashing_cpu(cpu))
1235                return;
1236
1237        ist_enter(regs);
1238
1239        this_cpu_inc(mce_exception_count);
1240
1241        mce_gather_info(&m, regs);
1242        m.tsc = rdtsc();
1243
1244        final = this_cpu_ptr(&mces_seen);
1245        *final = m;
1246
1247        memset(valid_banks, 0, sizeof(valid_banks));
1248        no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1249
1250        barrier();
1251
1252        /*
1253         * When no restart IP might need to kill or panic.
1254         * Assume the worst for now, but if we find the
1255         * severity is MCE_AR_SEVERITY we have other options.
1256         */
1257        if (!(m.mcgstatus & MCG_STATUS_RIPV))
1258                kill_it = 1;
1259
1260        /*
1261         * Check if this MCE is signaled to only this logical processor,
1262         * on Intel only.
1263         */
1264        if (m.cpuvendor == X86_VENDOR_INTEL)
1265                lmce = m.mcgstatus & MCG_STATUS_LMCES;
1266
1267        /*
1268         * Local machine check may already know that we have to panic.
1269         * Broadcast machine check begins rendezvous in mce_start()
1270         * Go through all banks in exclusion of the other CPUs. This way we
1271         * don't report duplicated events on shared banks because the first one
1272         * to see it will clear it.
1273         */
1274        if (lmce) {
1275                if (no_way_out)
1276                        mce_panic("Fatal local machine check", &m, msg);
1277        } else {
1278                order = mce_start(&no_way_out);
1279        }
1280
1281        __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1282
1283        if (!no_way_out)
1284                mce_clear_state(toclear);
1285
1286        /*
1287         * Do most of the synchronization with other CPUs.
1288         * When there's any problem use only local no_way_out state.
1289         */
1290        if (!lmce) {
1291                if (mce_end(order) < 0)
1292                        no_way_out = worst >= MCE_PANIC_SEVERITY;
1293        } else {
1294                /*
1295                 * If there was a fatal machine check we should have
1296                 * already called mce_panic earlier in this function.
1297                 * Since we re-read the banks, we might have found
1298                 * something new. Check again to see if we found a
1299                 * fatal error. We call "mce_severity()" again to
1300                 * make sure we have the right "msg".
1301                 */
1302                if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1303                        mce_severity(&m, cfg->tolerant, &msg, true);
1304                        mce_panic("Local fatal machine check!", &m, msg);
1305                }
1306        }
1307
1308        /*
1309         * If tolerant is at an insane level we drop requests to kill
1310         * processes and continue even when there is no way out.
1311         */
1312        if (cfg->tolerant == 3)
1313                kill_it = 0;
1314        else if (no_way_out)
1315                mce_panic("Fatal machine check on current CPU", &m, msg);
1316
1317        if (worst > 0)
1318                irq_work_queue(&mce_irq_work);
1319
1320        mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1321
1322        sync_core();
1323
1324        if (worst != MCE_AR_SEVERITY && !kill_it)
1325                goto out_ist;
1326
1327        /* Fault was in user mode and we need to take some action */
1328        if ((m.cs & 3) == 3) {
1329                ist_begin_non_atomic(regs);
1330                local_irq_enable();
1331
1332                if (kill_it || do_memory_failure(&m))
1333                        force_sig(SIGBUS, current);
1334                local_irq_disable();
1335                ist_end_non_atomic();
1336        } else {
1337                if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1338                        mce_panic("Failed kernel mode recovery", &m, NULL);
1339        }
1340
1341out_ist:
1342        ist_exit(regs);
1343}
1344EXPORT_SYMBOL_GPL(do_machine_check);
1345
1346#ifndef CONFIG_MEMORY_FAILURE
1347int memory_failure(unsigned long pfn, int flags)
1348{
1349        /* mce_severity() should not hand us an ACTION_REQUIRED error */
1350        BUG_ON(flags & MF_ACTION_REQUIRED);
1351        pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1352               "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1353               pfn);
1354
1355        return 0;
1356}
1357#endif
1358
1359/*
1360 * Periodic polling timer for "silent" machine check errors.  If the
1361 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1362 * errors, poll 2x slower (up to check_interval seconds).
1363 */
1364static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1365
1366static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1367static DEFINE_PER_CPU(struct timer_list, mce_timer);
1368
1369static unsigned long mce_adjust_timer_default(unsigned long interval)
1370{
1371        return interval;
1372}
1373
1374static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1375
1376static void __start_timer(struct timer_list *t, unsigned long interval)
1377{
1378        unsigned long when = jiffies + interval;
1379        unsigned long flags;
1380
1381        local_irq_save(flags);
1382
1383        if (!timer_pending(t) || time_before(when, t->expires))
1384                mod_timer(t, round_jiffies(when));
1385
1386        local_irq_restore(flags);
1387}
1388
1389static void mce_timer_fn(struct timer_list *t)
1390{
1391        struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1392        unsigned long iv;
1393
1394        WARN_ON(cpu_t != t);
1395
1396        iv = __this_cpu_read(mce_next_interval);
1397
1398        if (mce_available(this_cpu_ptr(&cpu_info))) {
1399                machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1400
1401                if (mce_intel_cmci_poll()) {
1402                        iv = mce_adjust_timer(iv);
1403                        goto done;
1404                }
1405        }
1406
1407        /*
1408         * Alert userspace if needed. If we logged an MCE, reduce the polling
1409         * interval, otherwise increase the polling interval.
1410         */
1411        if (mce_notify_irq())
1412                iv = max(iv / 2, (unsigned long) HZ/100);
1413        else
1414                iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1415
1416done:
1417        __this_cpu_write(mce_next_interval, iv);
1418        __start_timer(t, iv);
1419}
1420
1421/*
1422 * Ensure that the timer is firing in @interval from now.
1423 */
1424void mce_timer_kick(unsigned long interval)
1425{
1426        struct timer_list *t = this_cpu_ptr(&mce_timer);
1427        unsigned long iv = __this_cpu_read(mce_next_interval);
1428
1429        __start_timer(t, interval);
1430
1431        if (interval < iv)
1432                __this_cpu_write(mce_next_interval, interval);
1433}
1434
1435/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1436static void mce_timer_delete_all(void)
1437{
1438        int cpu;
1439
1440        for_each_online_cpu(cpu)
1441                del_timer_sync(&per_cpu(mce_timer, cpu));
1442}
1443
1444/*
1445 * Notify the user(s) about new machine check events.
1446 * Can be called from interrupt context, but not from machine check/NMI
1447 * context.
1448 */
1449int mce_notify_irq(void)
1450{
1451        /* Not more than two messages every minute */
1452        static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1453
1454        if (test_and_clear_bit(0, &mce_need_notify)) {
1455                mce_work_trigger();
1456
1457                if (__ratelimit(&ratelimit))
1458                        pr_info(HW_ERR "Machine check events logged\n");
1459
1460                return 1;
1461        }
1462        return 0;
1463}
1464EXPORT_SYMBOL_GPL(mce_notify_irq);
1465
1466static int __mcheck_cpu_mce_banks_init(void)
1467{
1468        int i;
1469
1470        mce_banks = kcalloc(MAX_NR_BANKS, sizeof(struct mce_bank), GFP_KERNEL);
1471        if (!mce_banks)
1472                return -ENOMEM;
1473
1474        for (i = 0; i < MAX_NR_BANKS; i++) {
1475                struct mce_bank *b = &mce_banks[i];
1476
1477                b->ctl = -1ULL;
1478                b->init = 1;
1479        }
1480        return 0;
1481}
1482
1483/*
1484 * Initialize Machine Checks for a CPU.
1485 */
1486static int __mcheck_cpu_cap_init(void)
1487{
1488        u64 cap;
1489        u8 b;
1490
1491        rdmsrl(MSR_IA32_MCG_CAP, cap);
1492
1493        b = cap & MCG_BANKCNT_MASK;
1494        if (WARN_ON_ONCE(b > MAX_NR_BANKS))
1495                b = MAX_NR_BANKS;
1496
1497        mca_cfg.banks = max(mca_cfg.banks, b);
1498
1499        if (!mce_banks) {
1500                int err = __mcheck_cpu_mce_banks_init();
1501                if (err)
1502                        return err;
1503        }
1504
1505        /* Use accurate RIP reporting if available. */
1506        if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1507                mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1508
1509        if (cap & MCG_SER_P)
1510                mca_cfg.ser = 1;
1511
1512        return 0;
1513}
1514
1515static void __mcheck_cpu_init_generic(void)
1516{
1517        enum mcp_flags m_fl = 0;
1518        mce_banks_t all_banks;
1519        u64 cap;
1520
1521        if (!mca_cfg.bootlog)
1522                m_fl = MCP_DONTLOG;
1523
1524        /*
1525         * Log the machine checks left over from the previous reset.
1526         */
1527        bitmap_fill(all_banks, MAX_NR_BANKS);
1528        machine_check_poll(MCP_UC | m_fl, &all_banks);
1529
1530        cr4_set_bits(X86_CR4_MCE);
1531
1532        rdmsrl(MSR_IA32_MCG_CAP, cap);
1533        if (cap & MCG_CTL_P)
1534                wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1535}
1536
1537static void __mcheck_cpu_init_clear_banks(void)
1538{
1539        int i;
1540
1541        for (i = 0; i < mca_cfg.banks; i++) {
1542                struct mce_bank *b = &mce_banks[i];
1543
1544                if (!b->init)
1545                        continue;
1546                wrmsrl(msr_ops.ctl(i), b->ctl);
1547                wrmsrl(msr_ops.status(i), 0);
1548        }
1549}
1550
1551/*
1552 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1553 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1554 * Vol 3B Table 15-20). But this confuses both the code that determines
1555 * whether the machine check occurred in kernel or user mode, and also
1556 * the severity assessment code. Pretend that EIPV was set, and take the
1557 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1558 */
1559static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1560{
1561        if (bank != 0)
1562                return;
1563        if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1564                return;
1565        if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1566                          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1567                          MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1568                          MCACOD)) !=
1569                         (MCI_STATUS_UC|MCI_STATUS_EN|
1570                          MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1571                          MCI_STATUS_AR|MCACOD_INSTR))
1572                return;
1573
1574        m->mcgstatus |= MCG_STATUS_EIPV;
1575        m->ip = regs->ip;
1576        m->cs = regs->cs;
1577}
1578
1579/* Add per CPU specific workarounds here */
1580static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1581{
1582        struct mca_config *cfg = &mca_cfg;
1583
1584        if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1585                pr_info("unknown CPU type - not enabling MCE support\n");
1586                return -EOPNOTSUPP;
1587        }
1588
1589        /* This should be disabled by the BIOS, but isn't always */
1590        if (c->x86_vendor == X86_VENDOR_AMD) {
1591                if (c->x86 == 15 && cfg->banks > 4) {
1592                        /*
1593                         * disable GART TBL walk error reporting, which
1594                         * trips off incorrectly with the IOMMU & 3ware
1595                         * & Cerberus:
1596                         */
1597                        clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1598                }
1599                if (c->x86 < 0x11 && cfg->bootlog < 0) {
1600                        /*
1601                         * Lots of broken BIOS around that don't clear them
1602                         * by default and leave crap in there. Don't log:
1603                         */
1604                        cfg->bootlog = 0;
1605                }
1606                /*
1607                 * Various K7s with broken bank 0 around. Always disable
1608                 * by default.
1609                 */
1610                if (c->x86 == 6 && cfg->banks > 0)
1611                        mce_banks[0].ctl = 0;
1612
1613                /*
1614                 * overflow_recov is supported for F15h Models 00h-0fh
1615                 * even though we don't have a CPUID bit for it.
1616                 */
1617                if (c->x86 == 0x15 && c->x86_model <= 0xf)
1618                        mce_flags.overflow_recov = 1;
1619
1620        }
1621
1622        if (c->x86_vendor == X86_VENDOR_INTEL) {
1623                /*
1624                 * SDM documents that on family 6 bank 0 should not be written
1625                 * because it aliases to another special BIOS controlled
1626                 * register.
1627                 * But it's not aliased anymore on model 0x1a+
1628                 * Don't ignore bank 0 completely because there could be a
1629                 * valid event later, merely don't write CTL0.
1630                 */
1631
1632                if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1633                        mce_banks[0].init = 0;
1634
1635                /*
1636                 * All newer Intel systems support MCE broadcasting. Enable
1637                 * synchronization with a one second timeout.
1638                 */
1639                if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1640                        cfg->monarch_timeout < 0)
1641                        cfg->monarch_timeout = USEC_PER_SEC;
1642
1643                /*
1644                 * There are also broken BIOSes on some Pentium M and
1645                 * earlier systems:
1646                 */
1647                if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1648                        cfg->bootlog = 0;
1649
1650                if (c->x86 == 6 && c->x86_model == 45)
1651                        quirk_no_way_out = quirk_sandybridge_ifu;
1652        }
1653        if (cfg->monarch_timeout < 0)
1654                cfg->monarch_timeout = 0;
1655        if (cfg->bootlog != 0)
1656                cfg->panic_timeout = 30;
1657
1658        return 0;
1659}
1660
1661static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1662{
1663        if (c->x86 != 5)
1664                return 0;
1665
1666        switch (c->x86_vendor) {
1667        case X86_VENDOR_INTEL:
1668                intel_p5_mcheck_init(c);
1669                return 1;
1670                break;
1671        case X86_VENDOR_CENTAUR:
1672                winchip_mcheck_init(c);
1673                return 1;
1674                break;
1675        default:
1676                return 0;
1677        }
1678
1679        return 0;
1680}
1681
1682/*
1683 * Init basic CPU features needed for early decoding of MCEs.
1684 */
1685static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1686{
1687        if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1688                mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1689                mce_flags.succor         = !!cpu_has(c, X86_FEATURE_SUCCOR);
1690                mce_flags.smca           = !!cpu_has(c, X86_FEATURE_SMCA);
1691
1692                if (mce_flags.smca) {
1693                        msr_ops.ctl     = smca_ctl_reg;
1694                        msr_ops.status  = smca_status_reg;
1695                        msr_ops.addr    = smca_addr_reg;
1696                        msr_ops.misc    = smca_misc_reg;
1697                }
1698        }
1699}
1700
1701static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1702{
1703        struct mca_config *cfg = &mca_cfg;
1704
1705         /*
1706          * All newer Centaur CPUs support MCE broadcasting. Enable
1707          * synchronization with a one second timeout.
1708          */
1709        if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1710             c->x86 > 6) {
1711                if (cfg->monarch_timeout < 0)
1712                        cfg->monarch_timeout = USEC_PER_SEC;
1713        }
1714}
1715
1716static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1717{
1718        switch (c->x86_vendor) {
1719        case X86_VENDOR_INTEL:
1720                mce_intel_feature_init(c);
1721                mce_adjust_timer = cmci_intel_adjust_timer;
1722                break;
1723
1724        case X86_VENDOR_AMD: {
1725                mce_amd_feature_init(c);
1726                break;
1727                }
1728
1729        case X86_VENDOR_HYGON:
1730                mce_hygon_feature_init(c);
1731                break;
1732
1733        case X86_VENDOR_CENTAUR:
1734                mce_centaur_feature_init(c);
1735                break;
1736
1737        default:
1738                break;
1739        }
1740}
1741
1742static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1743{
1744        switch (c->x86_vendor) {
1745        case X86_VENDOR_INTEL:
1746                mce_intel_feature_clear(c);
1747                break;
1748        default:
1749                break;
1750        }
1751}
1752
1753static void mce_start_timer(struct timer_list *t)
1754{
1755        unsigned long iv = check_interval * HZ;
1756
1757        if (mca_cfg.ignore_ce || !iv)
1758                return;
1759
1760        this_cpu_write(mce_next_interval, iv);
1761        __start_timer(t, iv);
1762}
1763
1764static void __mcheck_cpu_setup_timer(void)
1765{
1766        struct timer_list *t = this_cpu_ptr(&mce_timer);
1767
1768        timer_setup(t, mce_timer_fn, TIMER_PINNED);
1769}
1770
1771static void __mcheck_cpu_init_timer(void)
1772{
1773        struct timer_list *t = this_cpu_ptr(&mce_timer);
1774
1775        timer_setup(t, mce_timer_fn, TIMER_PINNED);
1776        mce_start_timer(t);
1777}
1778
1779bool filter_mce(struct mce *m)
1780{
1781        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1782                return amd_filter_mce(m);
1783
1784        return false;
1785}
1786
1787/* Handle unconfigured int18 (should never happen) */
1788static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1789{
1790        pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1791               smp_processor_id());
1792}
1793
1794/* Call the installed machine check handler for this CPU setup. */
1795void (*machine_check_vector)(struct pt_regs *, long error_code) =
1796                                                unexpected_machine_check;
1797
1798dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1799{
1800        machine_check_vector(regs, error_code);
1801}
1802
1803/*
1804 * Called for each booted CPU to set up machine checks.
1805 * Must be called with preempt off:
1806 */
1807void mcheck_cpu_init(struct cpuinfo_x86 *c)
1808{
1809        if (mca_cfg.disabled)
1810                return;
1811
1812        if (__mcheck_cpu_ancient_init(c))
1813                return;
1814
1815        if (!mce_available(c))
1816                return;
1817
1818        if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1819                mca_cfg.disabled = 1;
1820                return;
1821        }
1822
1823        if (mce_gen_pool_init()) {
1824                mca_cfg.disabled = 1;
1825                pr_emerg("Couldn't allocate MCE records pool!\n");
1826                return;
1827        }
1828
1829        machine_check_vector = do_machine_check;
1830
1831        __mcheck_cpu_init_early(c);
1832        __mcheck_cpu_init_generic();
1833        __mcheck_cpu_init_vendor(c);
1834        __mcheck_cpu_init_clear_banks();
1835        __mcheck_cpu_setup_timer();
1836}
1837
1838/*
1839 * Called for each booted CPU to clear some machine checks opt-ins
1840 */
1841void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1842{
1843        if (mca_cfg.disabled)
1844                return;
1845
1846        if (!mce_available(c))
1847                return;
1848
1849        /*
1850         * Possibly to clear general settings generic to x86
1851         * __mcheck_cpu_clear_generic(c);
1852         */
1853        __mcheck_cpu_clear_vendor(c);
1854
1855}
1856
1857static void __mce_disable_bank(void *arg)
1858{
1859        int bank = *((int *)arg);
1860        __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1861        cmci_disable_bank(bank);
1862}
1863
1864void mce_disable_bank(int bank)
1865{
1866        if (bank >= mca_cfg.banks) {
1867                pr_warn(FW_BUG
1868                        "Ignoring request to disable invalid MCA bank %d.\n",
1869                        bank);
1870                return;
1871        }
1872        set_bit(bank, mce_banks_ce_disabled);
1873        on_each_cpu(__mce_disable_bank, &bank, 1);
1874}
1875
1876/*
1877 * mce=off Disables machine check
1878 * mce=no_cmci Disables CMCI
1879 * mce=no_lmce Disables LMCE
1880 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1881 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1882 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1883 *      monarchtimeout is how long to wait for other CPUs on machine
1884 *      check, or 0 to not wait
1885 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1886        and older.
1887 * mce=nobootlog Don't log MCEs from before booting.
1888 * mce=bios_cmci_threshold Don't program the CMCI threshold
1889 * mce=recovery force enable memcpy_mcsafe()
1890 */
1891static int __init mcheck_enable(char *str)
1892{
1893        struct mca_config *cfg = &mca_cfg;
1894
1895        if (*str == 0) {
1896                enable_p5_mce();
1897                return 1;
1898        }
1899        if (*str == '=')
1900                str++;
1901        if (!strcmp(str, "off"))
1902                cfg->disabled = 1;
1903        else if (!strcmp(str, "no_cmci"))
1904                cfg->cmci_disabled = true;
1905        else if (!strcmp(str, "no_lmce"))
1906                cfg->lmce_disabled = 1;
1907        else if (!strcmp(str, "dont_log_ce"))
1908                cfg->dont_log_ce = true;
1909        else if (!strcmp(str, "ignore_ce"))
1910                cfg->ignore_ce = true;
1911        else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1912                cfg->bootlog = (str[0] == 'b');
1913        else if (!strcmp(str, "bios_cmci_threshold"))
1914                cfg->bios_cmci_threshold = 1;
1915        else if (!strcmp(str, "recovery"))
1916                cfg->recovery = 1;
1917        else if (isdigit(str[0])) {
1918                if (get_option(&str, &cfg->tolerant) == 2)
1919                        get_option(&str, &(cfg->monarch_timeout));
1920        } else {
1921                pr_info("mce argument %s ignored. Please use /sys\n", str);
1922                return 0;
1923        }
1924        return 1;
1925}
1926__setup("mce", mcheck_enable);
1927
1928int __init mcheck_init(void)
1929{
1930        mcheck_intel_therm_init();
1931        mce_register_decode_chain(&first_nb);
1932        mce_register_decode_chain(&mce_srao_nb);
1933        mce_register_decode_chain(&mce_default_nb);
1934        mcheck_vendor_init_severity();
1935
1936        INIT_WORK(&mce_work, mce_gen_pool_process);
1937        init_irq_work(&mce_irq_work, mce_irq_work_cb);
1938
1939        return 0;
1940}
1941
1942/*
1943 * mce_syscore: PM support
1944 */
1945
1946/*
1947 * Disable machine checks on suspend and shutdown. We can't really handle
1948 * them later.
1949 */
1950static void mce_disable_error_reporting(void)
1951{
1952        int i;
1953
1954        for (i = 0; i < mca_cfg.banks; i++) {
1955                struct mce_bank *b = &mce_banks[i];
1956
1957                if (b->init)
1958                        wrmsrl(msr_ops.ctl(i), 0);
1959        }
1960        return;
1961}
1962
1963static void vendor_disable_error_reporting(void)
1964{
1965        /*
1966         * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
1967         * are socket-wide.
1968         * Disabling them for just a single offlined CPU is bad, since it will
1969         * inhibit reporting for all shared resources on the socket like the
1970         * last level cache (LLC), the integrated memory controller (iMC), etc.
1971         */
1972        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1973            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
1974            boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1975                return;
1976
1977        mce_disable_error_reporting();
1978}
1979
1980static int mce_syscore_suspend(void)
1981{
1982        vendor_disable_error_reporting();
1983        return 0;
1984}
1985
1986static void mce_syscore_shutdown(void)
1987{
1988        vendor_disable_error_reporting();
1989}
1990
1991/*
1992 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1993 * Only one CPU is active at this time, the others get re-added later using
1994 * CPU hotplug:
1995 */
1996static void mce_syscore_resume(void)
1997{
1998        __mcheck_cpu_init_generic();
1999        __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2000        __mcheck_cpu_init_clear_banks();
2001}
2002
2003static struct syscore_ops mce_syscore_ops = {
2004        .suspend        = mce_syscore_suspend,
2005        .shutdown       = mce_syscore_shutdown,
2006        .resume         = mce_syscore_resume,
2007};
2008
2009/*
2010 * mce_device: Sysfs support
2011 */
2012
2013static void mce_cpu_restart(void *data)
2014{
2015        if (!mce_available(raw_cpu_ptr(&cpu_info)))
2016                return;
2017        __mcheck_cpu_init_generic();
2018        __mcheck_cpu_init_clear_banks();
2019        __mcheck_cpu_init_timer();
2020}
2021
2022/* Reinit MCEs after user configuration changes */
2023static void mce_restart(void)
2024{
2025        mce_timer_delete_all();
2026        on_each_cpu(mce_cpu_restart, NULL, 1);
2027}
2028
2029/* Toggle features for corrected errors */
2030static void mce_disable_cmci(void *data)
2031{
2032        if (!mce_available(raw_cpu_ptr(&cpu_info)))
2033                return;
2034        cmci_clear();
2035}
2036
2037static void mce_enable_ce(void *all)
2038{
2039        if (!mce_available(raw_cpu_ptr(&cpu_info)))
2040                return;
2041        cmci_reenable();
2042        cmci_recheck();
2043        if (all)
2044                __mcheck_cpu_init_timer();
2045}
2046
2047static struct bus_type mce_subsys = {
2048        .name           = "machinecheck",
2049        .dev_name       = "machinecheck",
2050};
2051
2052DEFINE_PER_CPU(struct device *, mce_device);
2053
2054static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2055{
2056        return container_of(attr, struct mce_bank, attr);
2057}
2058
2059static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2060                         char *buf)
2061{
2062        return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2063}
2064
2065static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2066                        const char *buf, size_t size)
2067{
2068        u64 new;
2069
2070        if (kstrtou64(buf, 0, &new) < 0)
2071                return -EINVAL;
2072
2073        attr_to_bank(attr)->ctl = new;
2074        mce_restart();
2075
2076        return size;
2077}
2078
2079static ssize_t set_ignore_ce(struct device *s,
2080                             struct device_attribute *attr,
2081                             const char *buf, size_t size)
2082{
2083        u64 new;
2084
2085        if (kstrtou64(buf, 0, &new) < 0)
2086                return -EINVAL;
2087
2088        mutex_lock(&mce_sysfs_mutex);
2089        if (mca_cfg.ignore_ce ^ !!new) {
2090                if (new) {
2091                        /* disable ce features */
2092                        mce_timer_delete_all();
2093                        on_each_cpu(mce_disable_cmci, NULL, 1);
2094                        mca_cfg.ignore_ce = true;
2095                } else {
2096                        /* enable ce features */
2097                        mca_cfg.ignore_ce = false;
2098                        on_each_cpu(mce_enable_ce, (void *)1, 1);
2099                }
2100        }
2101        mutex_unlock(&mce_sysfs_mutex);
2102
2103        return size;
2104}
2105
2106static ssize_t set_cmci_disabled(struct device *s,
2107                                 struct device_attribute *attr,
2108                                 const char *buf, size_t size)
2109{
2110        u64 new;
2111
2112        if (kstrtou64(buf, 0, &new) < 0)
2113                return -EINVAL;
2114
2115        mutex_lock(&mce_sysfs_mutex);
2116        if (mca_cfg.cmci_disabled ^ !!new) {
2117                if (new) {
2118                        /* disable cmci */
2119                        on_each_cpu(mce_disable_cmci, NULL, 1);
2120                        mca_cfg.cmci_disabled = true;
2121                } else {
2122                        /* enable cmci */
2123                        mca_cfg.cmci_disabled = false;
2124                        on_each_cpu(mce_enable_ce, NULL, 1);
2125                }
2126        }
2127        mutex_unlock(&mce_sysfs_mutex);
2128
2129        return size;
2130}
2131
2132static ssize_t store_int_with_restart(struct device *s,
2133                                      struct device_attribute *attr,
2134                                      const char *buf, size_t size)
2135{
2136        unsigned long old_check_interval = check_interval;
2137        ssize_t ret = device_store_ulong(s, attr, buf, size);
2138
2139        if (check_interval == old_check_interval)
2140                return ret;
2141
2142        mutex_lock(&mce_sysfs_mutex);
2143        mce_restart();
2144        mutex_unlock(&mce_sysfs_mutex);
2145
2146        return ret;
2147}
2148
2149static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2150static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2151static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2152
2153static struct dev_ext_attribute dev_attr_check_interval = {
2154        __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2155        &check_interval
2156};
2157
2158static struct dev_ext_attribute dev_attr_ignore_ce = {
2159        __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2160        &mca_cfg.ignore_ce
2161};
2162
2163static struct dev_ext_attribute dev_attr_cmci_disabled = {
2164        __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2165        &mca_cfg.cmci_disabled
2166};
2167
2168static struct device_attribute *mce_device_attrs[] = {
2169        &dev_attr_tolerant.attr,
2170        &dev_attr_check_interval.attr,
2171#ifdef CONFIG_X86_MCELOG_LEGACY
2172        &dev_attr_trigger,
2173#endif
2174        &dev_attr_monarch_timeout.attr,
2175        &dev_attr_dont_log_ce.attr,
2176        &dev_attr_ignore_ce.attr,
2177        &dev_attr_cmci_disabled.attr,
2178        NULL
2179};
2180
2181static cpumask_var_t mce_device_initialized;
2182
2183static void mce_device_release(struct device *dev)
2184{
2185        kfree(dev);
2186}
2187
2188/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2189static int mce_device_create(unsigned int cpu)
2190{
2191        struct device *dev;
2192        int err;
2193        int i, j;
2194
2195        if (!mce_available(&boot_cpu_data))
2196                return -EIO;
2197
2198        dev = per_cpu(mce_device, cpu);
2199        if (dev)
2200                return 0;
2201
2202        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2203        if (!dev)
2204                return -ENOMEM;
2205        dev->id  = cpu;
2206        dev->bus = &mce_subsys;
2207        dev->release = &mce_device_release;
2208
2209        err = device_register(dev);
2210        if (err) {
2211                put_device(dev);
2212                return err;
2213        }
2214
2215        for (i = 0; mce_device_attrs[i]; i++) {
2216                err = device_create_file(dev, mce_device_attrs[i]);
2217                if (err)
2218                        goto error;
2219        }
2220        for (j = 0; j < mca_cfg.banks; j++) {
2221                err = device_create_file(dev, &mce_banks[j].attr);
2222                if (err)
2223                        goto error2;
2224        }
2225        cpumask_set_cpu(cpu, mce_device_initialized);
2226        per_cpu(mce_device, cpu) = dev;
2227
2228        return 0;
2229error2:
2230        while (--j >= 0)
2231                device_remove_file(dev, &mce_banks[j].attr);
2232error:
2233        while (--i >= 0)
2234                device_remove_file(dev, mce_device_attrs[i]);
2235
2236        device_unregister(dev);
2237
2238        return err;
2239}
2240
2241static void mce_device_remove(unsigned int cpu)
2242{
2243        struct device *dev = per_cpu(mce_device, cpu);
2244        int i;
2245
2246        if (!cpumask_test_cpu(cpu, mce_device_initialized))
2247                return;
2248
2249        for (i = 0; mce_device_attrs[i]; i++)
2250                device_remove_file(dev, mce_device_attrs[i]);
2251
2252        for (i = 0; i < mca_cfg.banks; i++)
2253                device_remove_file(dev, &mce_banks[i].attr);
2254
2255        device_unregister(dev);
2256        cpumask_clear_cpu(cpu, mce_device_initialized);
2257        per_cpu(mce_device, cpu) = NULL;
2258}
2259
2260/* Make sure there are no machine checks on offlined CPUs. */
2261static void mce_disable_cpu(void)
2262{
2263        if (!mce_available(raw_cpu_ptr(&cpu_info)))
2264                return;
2265
2266        if (!cpuhp_tasks_frozen)
2267                cmci_clear();
2268
2269        vendor_disable_error_reporting();
2270}
2271
2272static void mce_reenable_cpu(void)
2273{
2274        int i;
2275
2276        if (!mce_available(raw_cpu_ptr(&cpu_info)))
2277                return;
2278
2279        if (!cpuhp_tasks_frozen)
2280                cmci_reenable();
2281        for (i = 0; i < mca_cfg.banks; i++) {
2282                struct mce_bank *b = &mce_banks[i];
2283
2284                if (b->init)
2285                        wrmsrl(msr_ops.ctl(i), b->ctl);
2286        }
2287}
2288
2289static int mce_cpu_dead(unsigned int cpu)
2290{
2291        mce_intel_hcpu_update(cpu);
2292
2293        /* intentionally ignoring frozen here */
2294        if (!cpuhp_tasks_frozen)
2295                cmci_rediscover();
2296        return 0;
2297}
2298
2299static int mce_cpu_online(unsigned int cpu)
2300{
2301        struct timer_list *t = this_cpu_ptr(&mce_timer);
2302        int ret;
2303
2304        mce_device_create(cpu);
2305
2306        ret = mce_threshold_create_device(cpu);
2307        if (ret) {
2308                mce_device_remove(cpu);
2309                return ret;
2310        }
2311        mce_reenable_cpu();
2312        mce_start_timer(t);
2313        return 0;
2314}
2315
2316static int mce_cpu_pre_down(unsigned int cpu)
2317{
2318        struct timer_list *t = this_cpu_ptr(&mce_timer);
2319
2320        mce_disable_cpu();
2321        del_timer_sync(t);
2322        mce_threshold_remove_device(cpu);
2323        mce_device_remove(cpu);
2324        return 0;
2325}
2326
2327static __init void mce_init_banks(void)
2328{
2329        int i;
2330
2331        for (i = 0; i < mca_cfg.banks; i++) {
2332                struct mce_bank *b = &mce_banks[i];
2333                struct device_attribute *a = &b->attr;
2334
2335                sysfs_attr_init(&a->attr);
2336                a->attr.name    = b->attrname;
2337                snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2338
2339                a->attr.mode    = 0644;
2340                a->show         = show_bank;
2341                a->store        = set_bank;
2342        }
2343}
2344
2345static __init int mcheck_init_device(void)
2346{
2347        int err;
2348
2349        /*
2350         * Check if we have a spare virtual bit. This will only become
2351         * a problem if/when we move beyond 5-level page tables.
2352         */
2353        MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2354
2355        if (!mce_available(&boot_cpu_data)) {
2356                err = -EIO;
2357                goto err_out;
2358        }
2359
2360        if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2361                err = -ENOMEM;
2362                goto err_out;
2363        }
2364
2365        mce_init_banks();
2366
2367        err = subsys_system_register(&mce_subsys, NULL);
2368        if (err)
2369                goto err_out_mem;
2370
2371        err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2372                                mce_cpu_dead);
2373        if (err)
2374                goto err_out_mem;
2375
2376        err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2377                                mce_cpu_online, mce_cpu_pre_down);
2378        if (err < 0)
2379                goto err_out_online;
2380
2381        register_syscore_ops(&mce_syscore_ops);
2382
2383        return 0;
2384
2385err_out_online:
2386        cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2387
2388err_out_mem:
2389        free_cpumask_var(mce_device_initialized);
2390
2391err_out:
2392        pr_err("Unable to init MCE device (rc: %d)\n", err);
2393
2394        return err;
2395}
2396device_initcall_sync(mcheck_init_device);
2397
2398/*
2399 * Old style boot options parsing. Only for compatibility.
2400 */
2401static int __init mcheck_disable(char *str)
2402{
2403        mca_cfg.disabled = 1;
2404        return 1;
2405}
2406__setup("nomce", mcheck_disable);
2407
2408#ifdef CONFIG_DEBUG_FS
2409struct dentry *mce_get_debugfs_dir(void)
2410{
2411        static struct dentry *dmce;
2412
2413        if (!dmce)
2414                dmce = debugfs_create_dir("mce", NULL);
2415
2416        return dmce;
2417}
2418
2419static void mce_reset(void)
2420{
2421        cpu_missing = 0;
2422        atomic_set(&mce_fake_panicked, 0);
2423        atomic_set(&mce_executing, 0);
2424        atomic_set(&mce_callin, 0);
2425        atomic_set(&global_nwo, 0);
2426}
2427
2428static int fake_panic_get(void *data, u64 *val)
2429{
2430        *val = fake_panic;
2431        return 0;
2432}
2433
2434static int fake_panic_set(void *data, u64 val)
2435{
2436        mce_reset();
2437        fake_panic = val;
2438        return 0;
2439}
2440
2441DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2442                         "%llu\n");
2443
2444static int __init mcheck_debugfs_init(void)
2445{
2446        struct dentry *dmce, *ffake_panic;
2447
2448        dmce = mce_get_debugfs_dir();
2449        if (!dmce)
2450                return -ENOMEM;
2451        ffake_panic = debugfs_create_file_unsafe("fake_panic", 0444, dmce,
2452                                                 NULL, &fake_panic_fops);
2453        if (!ffake_panic)
2454                return -ENOMEM;
2455
2456        return 0;
2457}
2458#else
2459static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2460#endif
2461
2462DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2463EXPORT_SYMBOL_GPL(mcsafe_key);
2464
2465static int __init mcheck_late_init(void)
2466{
2467        pr_info("Using %d MCE banks\n", mca_cfg.banks);
2468
2469        if (mca_cfg.recovery)
2470                static_branch_inc(&mcsafe_key);
2471
2472        mcheck_debugfs_init();
2473        cec_init();
2474
2475        /*
2476         * Flush out everything that has been logged during early boot, now that
2477         * everything has been initialized (workqueues, decoders, ...).
2478         */
2479        mce_schedule_work();
2480
2481        return 0;
2482}
2483late_initcall(mcheck_late_init);
2484