linux/arch/x86/kernel/machine_kexec_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * handle transition of Linux booting another kernel
   4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt)     "kexec: " fmt
   8
   9#include <linux/mm.h>
  10#include <linux/kexec.h>
  11#include <linux/string.h>
  12#include <linux/gfp.h>
  13#include <linux/reboot.h>
  14#include <linux/numa.h>
  15#include <linux/ftrace.h>
  16#include <linux/io.h>
  17#include <linux/suspend.h>
  18#include <linux/vmalloc.h>
  19
  20#include <asm/init.h>
  21#include <asm/pgtable.h>
  22#include <asm/tlbflush.h>
  23#include <asm/mmu_context.h>
  24#include <asm/io_apic.h>
  25#include <asm/debugreg.h>
  26#include <asm/kexec-bzimage64.h>
  27#include <asm/setup.h>
  28#include <asm/set_memory.h>
  29
  30#ifdef CONFIG_KEXEC_FILE
  31const struct kexec_file_ops * const kexec_file_loaders[] = {
  32                &kexec_bzImage64_ops,
  33                NULL
  34};
  35#endif
  36
  37static void free_transition_pgtable(struct kimage *image)
  38{
  39        free_page((unsigned long)image->arch.p4d);
  40        image->arch.p4d = NULL;
  41        free_page((unsigned long)image->arch.pud);
  42        image->arch.pud = NULL;
  43        free_page((unsigned long)image->arch.pmd);
  44        image->arch.pmd = NULL;
  45        free_page((unsigned long)image->arch.pte);
  46        image->arch.pte = NULL;
  47}
  48
  49static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
  50{
  51        p4d_t *p4d;
  52        pud_t *pud;
  53        pmd_t *pmd;
  54        pte_t *pte;
  55        unsigned long vaddr, paddr;
  56        int result = -ENOMEM;
  57
  58        vaddr = (unsigned long)relocate_kernel;
  59        paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
  60        pgd += pgd_index(vaddr);
  61        if (!pgd_present(*pgd)) {
  62                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
  63                if (!p4d)
  64                        goto err;
  65                image->arch.p4d = p4d;
  66                set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
  67        }
  68        p4d = p4d_offset(pgd, vaddr);
  69        if (!p4d_present(*p4d)) {
  70                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
  71                if (!pud)
  72                        goto err;
  73                image->arch.pud = pud;
  74                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
  75        }
  76        pud = pud_offset(p4d, vaddr);
  77        if (!pud_present(*pud)) {
  78                pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
  79                if (!pmd)
  80                        goto err;
  81                image->arch.pmd = pmd;
  82                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  83        }
  84        pmd = pmd_offset(pud, vaddr);
  85        if (!pmd_present(*pmd)) {
  86                pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
  87                if (!pte)
  88                        goto err;
  89                image->arch.pte = pte;
  90                set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
  91        }
  92        pte = pte_offset_kernel(pmd, vaddr);
  93        set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
  94        return 0;
  95err:
  96        return result;
  97}
  98
  99static void *alloc_pgt_page(void *data)
 100{
 101        struct kimage *image = (struct kimage *)data;
 102        struct page *page;
 103        void *p = NULL;
 104
 105        page = kimage_alloc_control_pages(image, 0);
 106        if (page) {
 107                p = page_address(page);
 108                clear_page(p);
 109        }
 110
 111        return p;
 112}
 113
 114static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 115{
 116        struct x86_mapping_info info = {
 117                .alloc_pgt_page = alloc_pgt_page,
 118                .context        = image,
 119                .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
 120                .kernpg_flag    = _KERNPG_TABLE_NOENC,
 121        };
 122        unsigned long mstart, mend;
 123        pgd_t *level4p;
 124        int result;
 125        int i;
 126
 127        level4p = (pgd_t *)__va(start_pgtable);
 128        clear_page(level4p);
 129
 130        if (direct_gbpages)
 131                info.direct_gbpages = true;
 132
 133        for (i = 0; i < nr_pfn_mapped; i++) {
 134                mstart = pfn_mapped[i].start << PAGE_SHIFT;
 135                mend   = pfn_mapped[i].end << PAGE_SHIFT;
 136
 137                result = kernel_ident_mapping_init(&info,
 138                                                 level4p, mstart, mend);
 139                if (result)
 140                        return result;
 141        }
 142
 143        /*
 144         * segments's mem ranges could be outside 0 ~ max_pfn,
 145         * for example when jump back to original kernel from kexeced kernel.
 146         * or first kernel is booted with user mem map, and second kernel
 147         * could be loaded out of that range.
 148         */
 149        for (i = 0; i < image->nr_segments; i++) {
 150                mstart = image->segment[i].mem;
 151                mend   = mstart + image->segment[i].memsz;
 152
 153                result = kernel_ident_mapping_init(&info,
 154                                                 level4p, mstart, mend);
 155
 156                if (result)
 157                        return result;
 158        }
 159
 160        return init_transition_pgtable(image, level4p);
 161}
 162
 163static void set_idt(void *newidt, u16 limit)
 164{
 165        struct desc_ptr curidt;
 166
 167        /* x86-64 supports unaliged loads & stores */
 168        curidt.size    = limit;
 169        curidt.address = (unsigned long)newidt;
 170
 171        __asm__ __volatile__ (
 172                "lidtq %0\n"
 173                : : "m" (curidt)
 174                );
 175};
 176
 177
 178static void set_gdt(void *newgdt, u16 limit)
 179{
 180        struct desc_ptr curgdt;
 181
 182        /* x86-64 supports unaligned loads & stores */
 183        curgdt.size    = limit;
 184        curgdt.address = (unsigned long)newgdt;
 185
 186        __asm__ __volatile__ (
 187                "lgdtq %0\n"
 188                : : "m" (curgdt)
 189                );
 190};
 191
 192static void load_segments(void)
 193{
 194        __asm__ __volatile__ (
 195                "\tmovl %0,%%ds\n"
 196                "\tmovl %0,%%es\n"
 197                "\tmovl %0,%%ss\n"
 198                "\tmovl %0,%%fs\n"
 199                "\tmovl %0,%%gs\n"
 200                : : "a" (__KERNEL_DS) : "memory"
 201                );
 202}
 203
 204#ifdef CONFIG_KEXEC_FILE
 205/* Update purgatory as needed after various image segments have been prepared */
 206static int arch_update_purgatory(struct kimage *image)
 207{
 208        int ret = 0;
 209
 210        if (!image->file_mode)
 211                return 0;
 212
 213        /* Setup copying of backup region */
 214        if (image->type == KEXEC_TYPE_CRASH) {
 215                ret = kexec_purgatory_get_set_symbol(image,
 216                                "purgatory_backup_dest",
 217                                &image->arch.backup_load_addr,
 218                                sizeof(image->arch.backup_load_addr), 0);
 219                if (ret)
 220                        return ret;
 221
 222                ret = kexec_purgatory_get_set_symbol(image,
 223                                "purgatory_backup_src",
 224                                &image->arch.backup_src_start,
 225                                sizeof(image->arch.backup_src_start), 0);
 226                if (ret)
 227                        return ret;
 228
 229                ret = kexec_purgatory_get_set_symbol(image,
 230                                "purgatory_backup_sz",
 231                                &image->arch.backup_src_sz,
 232                                sizeof(image->arch.backup_src_sz), 0);
 233                if (ret)
 234                        return ret;
 235        }
 236
 237        return ret;
 238}
 239#else /* !CONFIG_KEXEC_FILE */
 240static inline int arch_update_purgatory(struct kimage *image)
 241{
 242        return 0;
 243}
 244#endif /* CONFIG_KEXEC_FILE */
 245
 246int machine_kexec_prepare(struct kimage *image)
 247{
 248        unsigned long start_pgtable;
 249        int result;
 250
 251        /* Calculate the offsets */
 252        start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 253
 254        /* Setup the identity mapped 64bit page table */
 255        result = init_pgtable(image, start_pgtable);
 256        if (result)
 257                return result;
 258
 259        /* update purgatory as needed */
 260        result = arch_update_purgatory(image);
 261        if (result)
 262                return result;
 263
 264        return 0;
 265}
 266
 267void machine_kexec_cleanup(struct kimage *image)
 268{
 269        free_transition_pgtable(image);
 270}
 271
 272/*
 273 * Do not allocate memory (or fail in any way) in machine_kexec().
 274 * We are past the point of no return, committed to rebooting now.
 275 */
 276void machine_kexec(struct kimage *image)
 277{
 278        unsigned long page_list[PAGES_NR];
 279        void *control_page;
 280        int save_ftrace_enabled;
 281
 282#ifdef CONFIG_KEXEC_JUMP
 283        if (image->preserve_context)
 284                save_processor_state();
 285#endif
 286
 287        save_ftrace_enabled = __ftrace_enabled_save();
 288
 289        /* Interrupts aren't acceptable while we reboot */
 290        local_irq_disable();
 291        hw_breakpoint_disable();
 292
 293        if (image->preserve_context) {
 294#ifdef CONFIG_X86_IO_APIC
 295                /*
 296                 * We need to put APICs in legacy mode so that we can
 297                 * get timer interrupts in second kernel. kexec/kdump
 298                 * paths already have calls to restore_boot_irq_mode()
 299                 * in one form or other. kexec jump path also need one.
 300                 */
 301                clear_IO_APIC();
 302                restore_boot_irq_mode();
 303#endif
 304        }
 305
 306        control_page = page_address(image->control_code_page) + PAGE_SIZE;
 307        memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 308
 309        page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 310        page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 311        page_list[PA_TABLE_PAGE] =
 312          (unsigned long)__pa(page_address(image->control_code_page));
 313
 314        if (image->type == KEXEC_TYPE_DEFAULT)
 315                page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 316                                                << PAGE_SHIFT);
 317
 318        /*
 319         * The segment registers are funny things, they have both a
 320         * visible and an invisible part.  Whenever the visible part is
 321         * set to a specific selector, the invisible part is loaded
 322         * with from a table in memory.  At no other time is the
 323         * descriptor table in memory accessed.
 324         *
 325         * I take advantage of this here by force loading the
 326         * segments, before I zap the gdt with an invalid value.
 327         */
 328        load_segments();
 329        /*
 330         * The gdt & idt are now invalid.
 331         * If you want to load them you must set up your own idt & gdt.
 332         */
 333        set_gdt(phys_to_virt(0), 0);
 334        set_idt(phys_to_virt(0), 0);
 335
 336        /* now call it */
 337        image->start = relocate_kernel((unsigned long)image->head,
 338                                       (unsigned long)page_list,
 339                                       image->start,
 340                                       image->preserve_context,
 341                                       sme_active());
 342
 343#ifdef CONFIG_KEXEC_JUMP
 344        if (image->preserve_context)
 345                restore_processor_state();
 346#endif
 347
 348        __ftrace_enabled_restore(save_ftrace_enabled);
 349}
 350
 351void arch_crash_save_vmcoreinfo(void)
 352{
 353        u64 sme_mask = sme_me_mask;
 354
 355        VMCOREINFO_NUMBER(phys_base);
 356        VMCOREINFO_SYMBOL(init_top_pgt);
 357        vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
 358                        pgtable_l5_enabled());
 359
 360#ifdef CONFIG_NUMA
 361        VMCOREINFO_SYMBOL(node_data);
 362        VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 363#endif
 364        vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
 365                              kaslr_offset());
 366        VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
 367        VMCOREINFO_NUMBER(sme_mask);
 368}
 369
 370/* arch-dependent functionality related to kexec file-based syscall */
 371
 372#ifdef CONFIG_KEXEC_FILE
 373void *arch_kexec_kernel_image_load(struct kimage *image)
 374{
 375        vfree(image->arch.elf_headers);
 376        image->arch.elf_headers = NULL;
 377
 378        if (!image->fops || !image->fops->load)
 379                return ERR_PTR(-ENOEXEC);
 380
 381        return image->fops->load(image, image->kernel_buf,
 382                                 image->kernel_buf_len, image->initrd_buf,
 383                                 image->initrd_buf_len, image->cmdline_buf,
 384                                 image->cmdline_buf_len);
 385}
 386
 387/*
 388 * Apply purgatory relocations.
 389 *
 390 * @pi:         Purgatory to be relocated.
 391 * @section:    Section relocations applying to.
 392 * @relsec:     Section containing RELAs.
 393 * @symtabsec:  Corresponding symtab.
 394 *
 395 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 396 */
 397int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
 398                                     Elf_Shdr *section, const Elf_Shdr *relsec,
 399                                     const Elf_Shdr *symtabsec)
 400{
 401        unsigned int i;
 402        Elf64_Rela *rel;
 403        Elf64_Sym *sym;
 404        void *location;
 405        unsigned long address, sec_base, value;
 406        const char *strtab, *name, *shstrtab;
 407        const Elf_Shdr *sechdrs;
 408
 409        /* String & section header string table */
 410        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 411        strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
 412        shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
 413
 414        rel = (void *)pi->ehdr + relsec->sh_offset;
 415
 416        pr_debug("Applying relocate section %s to %u\n",
 417                 shstrtab + relsec->sh_name, relsec->sh_info);
 418
 419        for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
 420
 421                /*
 422                 * rel[i].r_offset contains byte offset from beginning
 423                 * of section to the storage unit affected.
 424                 *
 425                 * This is location to update. This is temporary buffer
 426                 * where section is currently loaded. This will finally be
 427                 * loaded to a different address later, pointed to by
 428                 * ->sh_addr. kexec takes care of moving it
 429                 *  (kexec_load_segment()).
 430                 */
 431                location = pi->purgatory_buf;
 432                location += section->sh_offset;
 433                location += rel[i].r_offset;
 434
 435                /* Final address of the location */
 436                address = section->sh_addr + rel[i].r_offset;
 437
 438                /*
 439                 * rel[i].r_info contains information about symbol table index
 440                 * w.r.t which relocation must be made and type of relocation
 441                 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 442                 * these respectively.
 443                 */
 444                sym = (void *)pi->ehdr + symtabsec->sh_offset;
 445                sym += ELF64_R_SYM(rel[i].r_info);
 446
 447                if (sym->st_name)
 448                        name = strtab + sym->st_name;
 449                else
 450                        name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 451
 452                pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 453                         name, sym->st_info, sym->st_shndx, sym->st_value,
 454                         sym->st_size);
 455
 456                if (sym->st_shndx == SHN_UNDEF) {
 457                        pr_err("Undefined symbol: %s\n", name);
 458                        return -ENOEXEC;
 459                }
 460
 461                if (sym->st_shndx == SHN_COMMON) {
 462                        pr_err("symbol '%s' in common section\n", name);
 463                        return -ENOEXEC;
 464                }
 465
 466                if (sym->st_shndx == SHN_ABS)
 467                        sec_base = 0;
 468                else if (sym->st_shndx >= pi->ehdr->e_shnum) {
 469                        pr_err("Invalid section %d for symbol %s\n",
 470                               sym->st_shndx, name);
 471                        return -ENOEXEC;
 472                } else
 473                        sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
 474
 475                value = sym->st_value;
 476                value += sec_base;
 477                value += rel[i].r_addend;
 478
 479                switch (ELF64_R_TYPE(rel[i].r_info)) {
 480                case R_X86_64_NONE:
 481                        break;
 482                case R_X86_64_64:
 483                        *(u64 *)location = value;
 484                        break;
 485                case R_X86_64_32:
 486                        *(u32 *)location = value;
 487                        if (value != *(u32 *)location)
 488                                goto overflow;
 489                        break;
 490                case R_X86_64_32S:
 491                        *(s32 *)location = value;
 492                        if ((s64)value != *(s32 *)location)
 493                                goto overflow;
 494                        break;
 495                case R_X86_64_PC32:
 496                case R_X86_64_PLT32:
 497                        value -= (u64)address;
 498                        *(u32 *)location = value;
 499                        break;
 500                default:
 501                        pr_err("Unknown rela relocation: %llu\n",
 502                               ELF64_R_TYPE(rel[i].r_info));
 503                        return -ENOEXEC;
 504                }
 505        }
 506        return 0;
 507
 508overflow:
 509        pr_err("Overflow in relocation type %d value 0x%lx\n",
 510               (int)ELF64_R_TYPE(rel[i].r_info), value);
 511        return -ENOEXEC;
 512}
 513#endif /* CONFIG_KEXEC_FILE */
 514
 515static int
 516kexec_mark_range(unsigned long start, unsigned long end, bool protect)
 517{
 518        struct page *page;
 519        unsigned int nr_pages;
 520
 521        /*
 522         * For physical range: [start, end]. We must skip the unassigned
 523         * crashk resource with zero-valued "end" member.
 524         */
 525        if (!end || start > end)
 526                return 0;
 527
 528        page = pfn_to_page(start >> PAGE_SHIFT);
 529        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 530        if (protect)
 531                return set_pages_ro(page, nr_pages);
 532        else
 533                return set_pages_rw(page, nr_pages);
 534}
 535
 536static void kexec_mark_crashkres(bool protect)
 537{
 538        unsigned long control;
 539
 540        kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
 541
 542        /* Don't touch the control code page used in crash_kexec().*/
 543        control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
 544        /* Control code page is located in the 2nd page. */
 545        kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
 546        control += KEXEC_CONTROL_PAGE_SIZE;
 547        kexec_mark_range(control, crashk_res.end, protect);
 548}
 549
 550void arch_kexec_protect_crashkres(void)
 551{
 552        kexec_mark_crashkres(true);
 553}
 554
 555void arch_kexec_unprotect_crashkres(void)
 556{
 557        kexec_mark_crashkres(false);
 558}
 559
 560int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
 561{
 562        /*
 563         * If SME is active we need to be sure that kexec pages are
 564         * not encrypted because when we boot to the new kernel the
 565         * pages won't be accessed encrypted (initially).
 566         */
 567        return set_memory_decrypted((unsigned long)vaddr, pages);
 568}
 569
 570void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
 571{
 572        /*
 573         * If SME is active we need to reset the pages back to being
 574         * an encrypted mapping before freeing them.
 575         */
 576        set_memory_encrypted((unsigned long)vaddr, pages);
 577}
 578