linux/arch/x86/kernel/process_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *      Gareth Hughes <gareth@valinux.com>, May 2000
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/task.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/fs.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/elfcore.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/reboot.h>
  29#include <linux/mc146818rtc.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/ptrace.h>
  33#include <linux/personality.h>
  34#include <linux/percpu.h>
  35#include <linux/prctl.h>
  36#include <linux/ftrace.h>
  37#include <linux/uaccess.h>
  38#include <linux/io.h>
  39#include <linux/kdebug.h>
  40#include <linux/syscalls.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/ldt.h>
  44#include <asm/processor.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/desc.h>
  47
  48#include <linux/err.h>
  49
  50#include <asm/tlbflush.h>
  51#include <asm/cpu.h>
  52#include <asm/syscalls.h>
  53#include <asm/debugreg.h>
  54#include <asm/switch_to.h>
  55#include <asm/vm86.h>
  56#include <asm/resctrl_sched.h>
  57#include <asm/proto.h>
  58
  59#include "process.h"
  60
  61void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
  62{
  63        unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  64        unsigned long d0, d1, d2, d3, d6, d7;
  65        unsigned long sp;
  66        unsigned short ss, gs;
  67
  68        if (user_mode(regs)) {
  69                sp = regs->sp;
  70                ss = regs->ss;
  71                gs = get_user_gs(regs);
  72        } else {
  73                sp = kernel_stack_pointer(regs);
  74                savesegment(ss, ss);
  75                savesegment(gs, gs);
  76        }
  77
  78        show_ip(regs, KERN_DEFAULT);
  79
  80        printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  81                regs->ax, regs->bx, regs->cx, regs->dx);
  82        printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  83                regs->si, regs->di, regs->bp, sp);
  84        printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
  85               (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
  86
  87        if (mode != SHOW_REGS_ALL)
  88                return;
  89
  90        cr0 = read_cr0();
  91        cr2 = read_cr2();
  92        cr3 = __read_cr3();
  93        cr4 = __read_cr4();
  94        printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  95                        cr0, cr2, cr3, cr4);
  96
  97        get_debugreg(d0, 0);
  98        get_debugreg(d1, 1);
  99        get_debugreg(d2, 2);
 100        get_debugreg(d3, 3);
 101        get_debugreg(d6, 6);
 102        get_debugreg(d7, 7);
 103
 104        /* Only print out debug registers if they are in their non-default state. */
 105        if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 106            (d6 == DR6_RESERVED) && (d7 == 0x400))
 107                return;
 108
 109        printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 110                        d0, d1, d2, d3);
 111        printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
 112                        d6, d7);
 113}
 114
 115void release_thread(struct task_struct *dead_task)
 116{
 117        BUG_ON(dead_task->mm);
 118        release_vm86_irqs(dead_task);
 119}
 120
 121int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
 122        unsigned long arg, struct task_struct *p, unsigned long tls)
 123{
 124        struct pt_regs *childregs = task_pt_regs(p);
 125        struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
 126        struct inactive_task_frame *frame = &fork_frame->frame;
 127        struct task_struct *tsk;
 128        int err;
 129
 130        /*
 131         * For a new task use the RESET flags value since there is no before.
 132         * All the status flags are zero; DF and all the system flags must also
 133         * be 0, specifically IF must be 0 because we context switch to the new
 134         * task with interrupts disabled.
 135         */
 136        frame->flags = X86_EFLAGS_FIXED;
 137        frame->bp = 0;
 138        frame->ret_addr = (unsigned long) ret_from_fork;
 139        p->thread.sp = (unsigned long) fork_frame;
 140        p->thread.sp0 = (unsigned long) (childregs+1);
 141        memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 142
 143        if (unlikely(p->flags & PF_KTHREAD)) {
 144                /* kernel thread */
 145                memset(childregs, 0, sizeof(struct pt_regs));
 146                frame->bx = sp;         /* function */
 147                frame->di = arg;
 148                p->thread.io_bitmap_ptr = NULL;
 149                return 0;
 150        }
 151        frame->bx = 0;
 152        *childregs = *current_pt_regs();
 153        childregs->ax = 0;
 154        if (sp)
 155                childregs->sp = sp;
 156
 157        task_user_gs(p) = get_user_gs(current_pt_regs());
 158
 159        p->thread.io_bitmap_ptr = NULL;
 160        tsk = current;
 161        err = -ENOMEM;
 162
 163        if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 164                p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 165                                                IO_BITMAP_BYTES, GFP_KERNEL);
 166                if (!p->thread.io_bitmap_ptr) {
 167                        p->thread.io_bitmap_max = 0;
 168                        return -ENOMEM;
 169                }
 170                set_tsk_thread_flag(p, TIF_IO_BITMAP);
 171        }
 172
 173        err = 0;
 174
 175        /*
 176         * Set a new TLS for the child thread?
 177         */
 178        if (clone_flags & CLONE_SETTLS)
 179                err = do_set_thread_area(p, -1,
 180                        (struct user_desc __user *)tls, 0);
 181
 182        if (err && p->thread.io_bitmap_ptr) {
 183                kfree(p->thread.io_bitmap_ptr);
 184                p->thread.io_bitmap_max = 0;
 185        }
 186        return err;
 187}
 188
 189void
 190start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 191{
 192        set_user_gs(regs, 0);
 193        regs->fs                = 0;
 194        regs->ds                = __USER_DS;
 195        regs->es                = __USER_DS;
 196        regs->ss                = __USER_DS;
 197        regs->cs                = __USER_CS;
 198        regs->ip                = new_ip;
 199        regs->sp                = new_sp;
 200        regs->flags             = X86_EFLAGS_IF;
 201        force_iret();
 202}
 203EXPORT_SYMBOL_GPL(start_thread);
 204
 205
 206/*
 207 *      switch_to(x,y) should switch tasks from x to y.
 208 *
 209 * We fsave/fwait so that an exception goes off at the right time
 210 * (as a call from the fsave or fwait in effect) rather than to
 211 * the wrong process. Lazy FP saving no longer makes any sense
 212 * with modern CPU's, and this simplifies a lot of things (SMP
 213 * and UP become the same).
 214 *
 215 * NOTE! We used to use the x86 hardware context switching. The
 216 * reason for not using it any more becomes apparent when you
 217 * try to recover gracefully from saved state that is no longer
 218 * valid (stale segment register values in particular). With the
 219 * hardware task-switch, there is no way to fix up bad state in
 220 * a reasonable manner.
 221 *
 222 * The fact that Intel documents the hardware task-switching to
 223 * be slow is a fairly red herring - this code is not noticeably
 224 * faster. However, there _is_ some room for improvement here,
 225 * so the performance issues may eventually be a valid point.
 226 * More important, however, is the fact that this allows us much
 227 * more flexibility.
 228 *
 229 * The return value (in %ax) will be the "prev" task after
 230 * the task-switch, and shows up in ret_from_fork in entry.S,
 231 * for example.
 232 */
 233__visible __notrace_funcgraph struct task_struct *
 234__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 235{
 236        struct thread_struct *prev = &prev_p->thread,
 237                             *next = &next_p->thread;
 238        struct fpu *prev_fpu = &prev->fpu;
 239        struct fpu *next_fpu = &next->fpu;
 240        int cpu = smp_processor_id();
 241
 242        /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 243
 244        if (!test_thread_flag(TIF_NEED_FPU_LOAD))
 245                switch_fpu_prepare(prev_fpu, cpu);
 246
 247        /*
 248         * Save away %gs. No need to save %fs, as it was saved on the
 249         * stack on entry.  No need to save %es and %ds, as those are
 250         * always kernel segments while inside the kernel.  Doing this
 251         * before setting the new TLS descriptors avoids the situation
 252         * where we temporarily have non-reloadable segments in %fs
 253         * and %gs.  This could be an issue if the NMI handler ever
 254         * used %fs or %gs (it does not today), or if the kernel is
 255         * running inside of a hypervisor layer.
 256         */
 257        lazy_save_gs(prev->gs);
 258
 259        /*
 260         * Load the per-thread Thread-Local Storage descriptor.
 261         */
 262        load_TLS(next, cpu);
 263
 264        /*
 265         * Restore IOPL if needed.  In normal use, the flags restore
 266         * in the switch assembly will handle this.  But if the kernel
 267         * is running virtualized at a non-zero CPL, the popf will
 268         * not restore flags, so it must be done in a separate step.
 269         */
 270        if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 271                set_iopl_mask(next->iopl);
 272
 273        switch_to_extra(prev_p, next_p);
 274
 275        /*
 276         * Leave lazy mode, flushing any hypercalls made here.
 277         * This must be done before restoring TLS segments so
 278         * the GDT and LDT are properly updated.
 279         */
 280        arch_end_context_switch(next_p);
 281
 282        /*
 283         * Reload esp0 and cpu_current_top_of_stack.  This changes
 284         * current_thread_info().  Refresh the SYSENTER configuration in
 285         * case prev or next is vm86.
 286         */
 287        update_task_stack(next_p);
 288        refresh_sysenter_cs(next);
 289        this_cpu_write(cpu_current_top_of_stack,
 290                       (unsigned long)task_stack_page(next_p) +
 291                       THREAD_SIZE);
 292
 293        /*
 294         * Restore %gs if needed (which is common)
 295         */
 296        if (prev->gs | next->gs)
 297                lazy_load_gs(next->gs);
 298
 299        this_cpu_write(current_task, next_p);
 300
 301        switch_fpu_finish(next_fpu);
 302
 303        /* Load the Intel cache allocation PQR MSR. */
 304        resctrl_sched_in();
 305
 306        return prev_p;
 307}
 308
 309SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 310{
 311        return do_arch_prctl_common(current, option, arg2);
 312}
 313