linux/arch/x86/mm/pageattr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18
  19#include <asm/e820/api.h>
  20#include <asm/processor.h>
  21#include <asm/tlbflush.h>
  22#include <asm/sections.h>
  23#include <asm/setup.h>
  24#include <linux/uaccess.h>
  25#include <asm/pgalloc.h>
  26#include <asm/proto.h>
  27#include <asm/pat.h>
  28#include <asm/set_memory.h>
  29
  30#include "mm_internal.h"
  31
  32/*
  33 * The current flushing context - we pass it instead of 5 arguments:
  34 */
  35struct cpa_data {
  36        unsigned long   *vaddr;
  37        pgd_t           *pgd;
  38        pgprot_t        mask_set;
  39        pgprot_t        mask_clr;
  40        unsigned long   numpages;
  41        unsigned long   curpage;
  42        unsigned long   pfn;
  43        unsigned int    flags;
  44        unsigned int    force_split             : 1,
  45                        force_static_prot       : 1;
  46        struct page     **pages;
  47};
  48
  49enum cpa_warn {
  50        CPA_CONFLICT,
  51        CPA_PROTECT,
  52        CPA_DETECT,
  53};
  54
  55static const int cpa_warn_level = CPA_PROTECT;
  56
  57/*
  58 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  59 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  60 * entries change the page attribute in parallel to some other cpu
  61 * splitting a large page entry along with changing the attribute.
  62 */
  63static DEFINE_SPINLOCK(cpa_lock);
  64
  65#define CPA_FLUSHTLB 1
  66#define CPA_ARRAY 2
  67#define CPA_PAGES_ARRAY 4
  68#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  69
  70#ifdef CONFIG_PROC_FS
  71static unsigned long direct_pages_count[PG_LEVEL_NUM];
  72
  73void update_page_count(int level, unsigned long pages)
  74{
  75        /* Protect against CPA */
  76        spin_lock(&pgd_lock);
  77        direct_pages_count[level] += pages;
  78        spin_unlock(&pgd_lock);
  79}
  80
  81static void split_page_count(int level)
  82{
  83        if (direct_pages_count[level] == 0)
  84                return;
  85
  86        direct_pages_count[level]--;
  87        direct_pages_count[level - 1] += PTRS_PER_PTE;
  88}
  89
  90void arch_report_meminfo(struct seq_file *m)
  91{
  92        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  93                        direct_pages_count[PG_LEVEL_4K] << 2);
  94#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  95        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  96                        direct_pages_count[PG_LEVEL_2M] << 11);
  97#else
  98        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  99                        direct_pages_count[PG_LEVEL_2M] << 12);
 100#endif
 101        if (direct_gbpages)
 102                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 103                        direct_pages_count[PG_LEVEL_1G] << 20);
 104}
 105#else
 106static inline void split_page_count(int level) { }
 107#endif
 108
 109#ifdef CONFIG_X86_CPA_STATISTICS
 110
 111static unsigned long cpa_1g_checked;
 112static unsigned long cpa_1g_sameprot;
 113static unsigned long cpa_1g_preserved;
 114static unsigned long cpa_2m_checked;
 115static unsigned long cpa_2m_sameprot;
 116static unsigned long cpa_2m_preserved;
 117static unsigned long cpa_4k_install;
 118
 119static inline void cpa_inc_1g_checked(void)
 120{
 121        cpa_1g_checked++;
 122}
 123
 124static inline void cpa_inc_2m_checked(void)
 125{
 126        cpa_2m_checked++;
 127}
 128
 129static inline void cpa_inc_4k_install(void)
 130{
 131        cpa_4k_install++;
 132}
 133
 134static inline void cpa_inc_lp_sameprot(int level)
 135{
 136        if (level == PG_LEVEL_1G)
 137                cpa_1g_sameprot++;
 138        else
 139                cpa_2m_sameprot++;
 140}
 141
 142static inline void cpa_inc_lp_preserved(int level)
 143{
 144        if (level == PG_LEVEL_1G)
 145                cpa_1g_preserved++;
 146        else
 147                cpa_2m_preserved++;
 148}
 149
 150static int cpastats_show(struct seq_file *m, void *p)
 151{
 152        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 153        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 154        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 155        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 156        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 157        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 158        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 159        return 0;
 160}
 161
 162static int cpastats_open(struct inode *inode, struct file *file)
 163{
 164        return single_open(file, cpastats_show, NULL);
 165}
 166
 167static const struct file_operations cpastats_fops = {
 168        .open           = cpastats_open,
 169        .read           = seq_read,
 170        .llseek         = seq_lseek,
 171        .release        = single_release,
 172};
 173
 174static int __init cpa_stats_init(void)
 175{
 176        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 177                            &cpastats_fops);
 178        return 0;
 179}
 180late_initcall(cpa_stats_init);
 181#else
 182static inline void cpa_inc_1g_checked(void) { }
 183static inline void cpa_inc_2m_checked(void) { }
 184static inline void cpa_inc_4k_install(void) { }
 185static inline void cpa_inc_lp_sameprot(int level) { }
 186static inline void cpa_inc_lp_preserved(int level) { }
 187#endif
 188
 189
 190static inline int
 191within(unsigned long addr, unsigned long start, unsigned long end)
 192{
 193        return addr >= start && addr < end;
 194}
 195
 196static inline int
 197within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 198{
 199        return addr >= start && addr <= end;
 200}
 201
 202#ifdef CONFIG_X86_64
 203
 204static inline unsigned long highmap_start_pfn(void)
 205{
 206        return __pa_symbol(_text) >> PAGE_SHIFT;
 207}
 208
 209static inline unsigned long highmap_end_pfn(void)
 210{
 211        /* Do not reference physical address outside the kernel. */
 212        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 213}
 214
 215static bool __cpa_pfn_in_highmap(unsigned long pfn)
 216{
 217        /*
 218         * Kernel text has an alias mapping at a high address, known
 219         * here as "highmap".
 220         */
 221        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 222}
 223
 224#else
 225
 226static bool __cpa_pfn_in_highmap(unsigned long pfn)
 227{
 228        /* There is no highmap on 32-bit */
 229        return false;
 230}
 231
 232#endif
 233
 234/*
 235 * See set_mce_nospec().
 236 *
 237 * Machine check recovery code needs to change cache mode of poisoned pages to
 238 * UC to avoid speculative access logging another error. But passing the
 239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 240 * speculative access. So we cheat and flip the top bit of the address. This
 241 * works fine for the code that updates the page tables. But at the end of the
 242 * process we need to flush the TLB and cache and the non-canonical address
 243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 244 *
 245 * But in the common case we already have a canonical address. This code
 246 * will fix the top bit if needed and is a no-op otherwise.
 247 */
 248static inline unsigned long fix_addr(unsigned long addr)
 249{
 250#ifdef CONFIG_X86_64
 251        return (long)(addr << 1) >> 1;
 252#else
 253        return addr;
 254#endif
 255}
 256
 257static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 258{
 259        if (cpa->flags & CPA_PAGES_ARRAY) {
 260                struct page *page = cpa->pages[idx];
 261
 262                if (unlikely(PageHighMem(page)))
 263                        return 0;
 264
 265                return (unsigned long)page_address(page);
 266        }
 267
 268        if (cpa->flags & CPA_ARRAY)
 269                return cpa->vaddr[idx];
 270
 271        return *cpa->vaddr + idx * PAGE_SIZE;
 272}
 273
 274/*
 275 * Flushing functions
 276 */
 277
 278static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 279{
 280        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 281        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 282        void *vend = vaddr + size;
 283
 284        if (p >= vend)
 285                return;
 286
 287        for (; p < vend; p += clflush_size)
 288                clflushopt(p);
 289}
 290
 291/**
 292 * clflush_cache_range - flush a cache range with clflush
 293 * @vaddr:      virtual start address
 294 * @size:       number of bytes to flush
 295 *
 296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 297 * SFENCE to avoid ordering issues.
 298 */
 299void clflush_cache_range(void *vaddr, unsigned int size)
 300{
 301        mb();
 302        clflush_cache_range_opt(vaddr, size);
 303        mb();
 304}
 305EXPORT_SYMBOL_GPL(clflush_cache_range);
 306
 307void arch_invalidate_pmem(void *addr, size_t size)
 308{
 309        clflush_cache_range(addr, size);
 310}
 311EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 312
 313static void __cpa_flush_all(void *arg)
 314{
 315        unsigned long cache = (unsigned long)arg;
 316
 317        /*
 318         * Flush all to work around Errata in early athlons regarding
 319         * large page flushing.
 320         */
 321        __flush_tlb_all();
 322
 323        if (cache && boot_cpu_data.x86 >= 4)
 324                wbinvd();
 325}
 326
 327static void cpa_flush_all(unsigned long cache)
 328{
 329        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 330
 331        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 332}
 333
 334void __cpa_flush_tlb(void *data)
 335{
 336        struct cpa_data *cpa = data;
 337        unsigned int i;
 338
 339        for (i = 0; i < cpa->numpages; i++)
 340                __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 341}
 342
 343static void cpa_flush(struct cpa_data *data, int cache)
 344{
 345        struct cpa_data *cpa = data;
 346        unsigned int i;
 347
 348        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 349
 350        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 351                cpa_flush_all(cache);
 352                return;
 353        }
 354
 355        if (cpa->numpages <= tlb_single_page_flush_ceiling)
 356                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 357        else
 358                flush_tlb_all();
 359
 360        if (!cache)
 361                return;
 362
 363        mb();
 364        for (i = 0; i < cpa->numpages; i++) {
 365                unsigned long addr = __cpa_addr(cpa, i);
 366                unsigned int level;
 367
 368                pte_t *pte = lookup_address(addr, &level);
 369
 370                /*
 371                 * Only flush present addresses:
 372                 */
 373                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 374                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 375        }
 376        mb();
 377}
 378
 379static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 380                     unsigned long r2_start, unsigned long r2_end)
 381{
 382        return (r1_start <= r2_end && r1_end >= r2_start) ||
 383                (r2_start <= r1_end && r2_end >= r1_start);
 384}
 385
 386#ifdef CONFIG_PCI_BIOS
 387/*
 388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 389 * based config access (CONFIG_PCI_GOBIOS) support.
 390 */
 391#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 392#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 393
 394static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 395{
 396        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 397                return _PAGE_NX;
 398        return 0;
 399}
 400#else
 401static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 402{
 403        return 0;
 404}
 405#endif
 406
 407/*
 408 * The .rodata section needs to be read-only. Using the pfn catches all
 409 * aliases.  This also includes __ro_after_init, so do not enforce until
 410 * kernel_set_to_readonly is true.
 411 */
 412static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 413{
 414        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 415
 416        /*
 417         * Note: __end_rodata is at page aligned and not inclusive, so
 418         * subtract 1 to get the last enforced PFN in the rodata area.
 419         */
 420        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 421
 422        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 423                return _PAGE_RW;
 424        return 0;
 425}
 426
 427/*
 428 * Protect kernel text against becoming non executable by forbidding
 429 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 430 * out of which the kernel actually executes.  Do not protect the low
 431 * mapping.
 432 *
 433 * This does not cover __inittext since that is gone after boot.
 434 */
 435static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 436{
 437        unsigned long t_end = (unsigned long)_etext - 1;
 438        unsigned long t_start = (unsigned long)_text;
 439
 440        if (overlaps(start, end, t_start, t_end))
 441                return _PAGE_NX;
 442        return 0;
 443}
 444
 445#if defined(CONFIG_X86_64)
 446/*
 447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 448 * kernel text mappings for the large page aligned text, rodata sections
 449 * will be always read-only. For the kernel identity mappings covering the
 450 * holes caused by this alignment can be anything that user asks.
 451 *
 452 * This will preserve the large page mappings for kernel text/data at no
 453 * extra cost.
 454 */
 455static pgprotval_t protect_kernel_text_ro(unsigned long start,
 456                                          unsigned long end)
 457{
 458        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 459        unsigned long t_start = (unsigned long)_text;
 460        unsigned int level;
 461
 462        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 463                return 0;
 464        /*
 465         * Don't enforce the !RW mapping for the kernel text mapping, if
 466         * the current mapping is already using small page mapping.  No
 467         * need to work hard to preserve large page mappings in this case.
 468         *
 469         * This also fixes the Linux Xen paravirt guest boot failure caused
 470         * by unexpected read-only mappings for kernel identity
 471         * mappings. In this paravirt guest case, the kernel text mapping
 472         * and the kernel identity mapping share the same page-table pages,
 473         * so the protections for kernel text and identity mappings have to
 474         * be the same.
 475         */
 476        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 477                return _PAGE_RW;
 478        return 0;
 479}
 480#else
 481static pgprotval_t protect_kernel_text_ro(unsigned long start,
 482                                          unsigned long end)
 483{
 484        return 0;
 485}
 486#endif
 487
 488static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 489{
 490        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 491}
 492
 493static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 494                                  unsigned long start, unsigned long end,
 495                                  unsigned long pfn, const char *txt)
 496{
 497        static const char *lvltxt[] = {
 498                [CPA_CONFLICT]  = "conflict",
 499                [CPA_PROTECT]   = "protect",
 500                [CPA_DETECT]    = "detect",
 501        };
 502
 503        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 504                return;
 505
 506        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 507                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 508                (unsigned long long)val);
 509}
 510
 511/*
 512 * Certain areas of memory on x86 require very specific protection flags,
 513 * for example the BIOS area or kernel text. Callers don't always get this
 514 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 515 * checks and fixes these known static required protection bits.
 516 */
 517static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 518                                          unsigned long pfn, unsigned long npg,
 519                                          int warnlvl)
 520{
 521        pgprotval_t forbidden, res;
 522        unsigned long end;
 523
 524        /*
 525         * There is no point in checking RW/NX conflicts when the requested
 526         * mapping is setting the page !PRESENT.
 527         */
 528        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 529                return prot;
 530
 531        /* Operate on the virtual address */
 532        end = start + npg * PAGE_SIZE - 1;
 533
 534        res = protect_kernel_text(start, end);
 535        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 536        forbidden = res;
 537
 538        res = protect_kernel_text_ro(start, end);
 539        check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 540        forbidden |= res;
 541
 542        /* Check the PFN directly */
 543        res = protect_pci_bios(pfn, pfn + npg - 1);
 544        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 545        forbidden |= res;
 546
 547        res = protect_rodata(pfn, pfn + npg - 1);
 548        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 549        forbidden |= res;
 550
 551        return __pgprot(pgprot_val(prot) & ~forbidden);
 552}
 553
 554/*
 555 * Lookup the page table entry for a virtual address in a specific pgd.
 556 * Return a pointer to the entry and the level of the mapping.
 557 */
 558pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 559                             unsigned int *level)
 560{
 561        p4d_t *p4d;
 562        pud_t *pud;
 563        pmd_t *pmd;
 564
 565        *level = PG_LEVEL_NONE;
 566
 567        if (pgd_none(*pgd))
 568                return NULL;
 569
 570        p4d = p4d_offset(pgd, address);
 571        if (p4d_none(*p4d))
 572                return NULL;
 573
 574        *level = PG_LEVEL_512G;
 575        if (p4d_large(*p4d) || !p4d_present(*p4d))
 576                return (pte_t *)p4d;
 577
 578        pud = pud_offset(p4d, address);
 579        if (pud_none(*pud))
 580                return NULL;
 581
 582        *level = PG_LEVEL_1G;
 583        if (pud_large(*pud) || !pud_present(*pud))
 584                return (pte_t *)pud;
 585
 586        pmd = pmd_offset(pud, address);
 587        if (pmd_none(*pmd))
 588                return NULL;
 589
 590        *level = PG_LEVEL_2M;
 591        if (pmd_large(*pmd) || !pmd_present(*pmd))
 592                return (pte_t *)pmd;
 593
 594        *level = PG_LEVEL_4K;
 595
 596        return pte_offset_kernel(pmd, address);
 597}
 598
 599/*
 600 * Lookup the page table entry for a virtual address. Return a pointer
 601 * to the entry and the level of the mapping.
 602 *
 603 * Note: We return pud and pmd either when the entry is marked large
 604 * or when the present bit is not set. Otherwise we would return a
 605 * pointer to a nonexisting mapping.
 606 */
 607pte_t *lookup_address(unsigned long address, unsigned int *level)
 608{
 609        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 610}
 611EXPORT_SYMBOL_GPL(lookup_address);
 612
 613static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 614                                  unsigned int *level)
 615{
 616        if (cpa->pgd)
 617                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 618                                               address, level);
 619
 620        return lookup_address(address, level);
 621}
 622
 623/*
 624 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 625 * or NULL if not present.
 626 */
 627pmd_t *lookup_pmd_address(unsigned long address)
 628{
 629        pgd_t *pgd;
 630        p4d_t *p4d;
 631        pud_t *pud;
 632
 633        pgd = pgd_offset_k(address);
 634        if (pgd_none(*pgd))
 635                return NULL;
 636
 637        p4d = p4d_offset(pgd, address);
 638        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 639                return NULL;
 640
 641        pud = pud_offset(p4d, address);
 642        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 643                return NULL;
 644
 645        return pmd_offset(pud, address);
 646}
 647
 648/*
 649 * This is necessary because __pa() does not work on some
 650 * kinds of memory, like vmalloc() or the alloc_remap()
 651 * areas on 32-bit NUMA systems.  The percpu areas can
 652 * end up in this kind of memory, for instance.
 653 *
 654 * This could be optimized, but it is only intended to be
 655 * used at inititalization time, and keeping it
 656 * unoptimized should increase the testing coverage for
 657 * the more obscure platforms.
 658 */
 659phys_addr_t slow_virt_to_phys(void *__virt_addr)
 660{
 661        unsigned long virt_addr = (unsigned long)__virt_addr;
 662        phys_addr_t phys_addr;
 663        unsigned long offset;
 664        enum pg_level level;
 665        pte_t *pte;
 666
 667        pte = lookup_address(virt_addr, &level);
 668        BUG_ON(!pte);
 669
 670        /*
 671         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 672         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 673         * make 32-PAE kernel work correctly.
 674         */
 675        switch (level) {
 676        case PG_LEVEL_1G:
 677                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 678                offset = virt_addr & ~PUD_PAGE_MASK;
 679                break;
 680        case PG_LEVEL_2M:
 681                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 682                offset = virt_addr & ~PMD_PAGE_MASK;
 683                break;
 684        default:
 685                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 686                offset = virt_addr & ~PAGE_MASK;
 687        }
 688
 689        return (phys_addr_t)(phys_addr | offset);
 690}
 691EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 692
 693/*
 694 * Set the new pmd in all the pgds we know about:
 695 */
 696static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 697{
 698        /* change init_mm */
 699        set_pte_atomic(kpte, pte);
 700#ifdef CONFIG_X86_32
 701        if (!SHARED_KERNEL_PMD) {
 702                struct page *page;
 703
 704                list_for_each_entry(page, &pgd_list, lru) {
 705                        pgd_t *pgd;
 706                        p4d_t *p4d;
 707                        pud_t *pud;
 708                        pmd_t *pmd;
 709
 710                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 711                        p4d = p4d_offset(pgd, address);
 712                        pud = pud_offset(p4d, address);
 713                        pmd = pmd_offset(pud, address);
 714                        set_pte_atomic((pte_t *)pmd, pte);
 715                }
 716        }
 717#endif
 718}
 719
 720static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 721{
 722        /*
 723         * _PAGE_GLOBAL means "global page" for present PTEs.
 724         * But, it is also used to indicate _PAGE_PROTNONE
 725         * for non-present PTEs.
 726         *
 727         * This ensures that a _PAGE_GLOBAL PTE going from
 728         * present to non-present is not confused as
 729         * _PAGE_PROTNONE.
 730         */
 731        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 732                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 733
 734        return prot;
 735}
 736
 737static int __should_split_large_page(pte_t *kpte, unsigned long address,
 738                                     struct cpa_data *cpa)
 739{
 740        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 741        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 742        pte_t new_pte, *tmp;
 743        enum pg_level level;
 744
 745        /*
 746         * Check for races, another CPU might have split this page
 747         * up already:
 748         */
 749        tmp = _lookup_address_cpa(cpa, address, &level);
 750        if (tmp != kpte)
 751                return 1;
 752
 753        switch (level) {
 754        case PG_LEVEL_2M:
 755                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 756                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 757                cpa_inc_2m_checked();
 758                break;
 759        case PG_LEVEL_1G:
 760                old_prot = pud_pgprot(*(pud_t *)kpte);
 761                old_pfn = pud_pfn(*(pud_t *)kpte);
 762                cpa_inc_1g_checked();
 763                break;
 764        default:
 765                return -EINVAL;
 766        }
 767
 768        psize = page_level_size(level);
 769        pmask = page_level_mask(level);
 770
 771        /*
 772         * Calculate the number of pages, which fit into this large
 773         * page starting at address:
 774         */
 775        lpaddr = (address + psize) & pmask;
 776        numpages = (lpaddr - address) >> PAGE_SHIFT;
 777        if (numpages < cpa->numpages)
 778                cpa->numpages = numpages;
 779
 780        /*
 781         * We are safe now. Check whether the new pgprot is the same:
 782         * Convert protection attributes to 4k-format, as cpa->mask* are set
 783         * up accordingly.
 784         */
 785
 786        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 787        req_prot = pgprot_large_2_4k(old_prot);
 788
 789        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 790        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 791
 792        /*
 793         * req_prot is in format of 4k pages. It must be converted to large
 794         * page format: the caching mode includes the PAT bit located at
 795         * different bit positions in the two formats.
 796         */
 797        req_prot = pgprot_4k_2_large(req_prot);
 798        req_prot = pgprot_clear_protnone_bits(req_prot);
 799        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 800                pgprot_val(req_prot) |= _PAGE_PSE;
 801
 802        /*
 803         * old_pfn points to the large page base pfn. So we need to add the
 804         * offset of the virtual address:
 805         */
 806        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 807        cpa->pfn = pfn;
 808
 809        /*
 810         * Calculate the large page base address and the number of 4K pages
 811         * in the large page
 812         */
 813        lpaddr = address & pmask;
 814        numpages = psize >> PAGE_SHIFT;
 815
 816        /*
 817         * Sanity check that the existing mapping is correct versus the static
 818         * protections. static_protections() guards against !PRESENT, so no
 819         * extra conditional required here.
 820         */
 821        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 822                                      CPA_CONFLICT);
 823
 824        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 825                /*
 826                 * Split the large page and tell the split code to
 827                 * enforce static protections.
 828                 */
 829                cpa->force_static_prot = 1;
 830                return 1;
 831        }
 832
 833        /*
 834         * Optimization: If the requested pgprot is the same as the current
 835         * pgprot, then the large page can be preserved and no updates are
 836         * required independent of alignment and length of the requested
 837         * range. The above already established that the current pgprot is
 838         * correct, which in consequence makes the requested pgprot correct
 839         * as well if it is the same. The static protection scan below will
 840         * not come to a different conclusion.
 841         */
 842        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 843                cpa_inc_lp_sameprot(level);
 844                return 0;
 845        }
 846
 847        /*
 848         * If the requested range does not cover the full page, split it up
 849         */
 850        if (address != lpaddr || cpa->numpages != numpages)
 851                return 1;
 852
 853        /*
 854         * Check whether the requested pgprot is conflicting with a static
 855         * protection requirement in the large page.
 856         */
 857        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 858                                      CPA_DETECT);
 859
 860        /*
 861         * If there is a conflict, split the large page.
 862         *
 863         * There used to be a 4k wise evaluation trying really hard to
 864         * preserve the large pages, but experimentation has shown, that this
 865         * does not help at all. There might be corner cases which would
 866         * preserve one large page occasionally, but it's really not worth the
 867         * extra code and cycles for the common case.
 868         */
 869        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 870                return 1;
 871
 872        /* All checks passed. Update the large page mapping. */
 873        new_pte = pfn_pte(old_pfn, new_prot);
 874        __set_pmd_pte(kpte, address, new_pte);
 875        cpa->flags |= CPA_FLUSHTLB;
 876        cpa_inc_lp_preserved(level);
 877        return 0;
 878}
 879
 880static int should_split_large_page(pte_t *kpte, unsigned long address,
 881                                   struct cpa_data *cpa)
 882{
 883        int do_split;
 884
 885        if (cpa->force_split)
 886                return 1;
 887
 888        spin_lock(&pgd_lock);
 889        do_split = __should_split_large_page(kpte, address, cpa);
 890        spin_unlock(&pgd_lock);
 891
 892        return do_split;
 893}
 894
 895static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 896                          pgprot_t ref_prot, unsigned long address,
 897                          unsigned long size)
 898{
 899        unsigned int npg = PFN_DOWN(size);
 900        pgprot_t prot;
 901
 902        /*
 903         * If should_split_large_page() discovered an inconsistent mapping,
 904         * remove the invalid protection in the split mapping.
 905         */
 906        if (!cpa->force_static_prot)
 907                goto set;
 908
 909        prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
 910
 911        if (pgprot_val(prot) == pgprot_val(ref_prot))
 912                goto set;
 913
 914        /*
 915         * If this is splitting a PMD, fix it up. PUD splits cannot be
 916         * fixed trivially as that would require to rescan the newly
 917         * installed PMD mappings after returning from split_large_page()
 918         * so an eventual further split can allocate the necessary PTE
 919         * pages. Warn for now and revisit it in case this actually
 920         * happens.
 921         */
 922        if (size == PAGE_SIZE)
 923                ref_prot = prot;
 924        else
 925                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 926set:
 927        set_pte(pte, pfn_pte(pfn, ref_prot));
 928}
 929
 930static int
 931__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 932                   struct page *base)
 933{
 934        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 935        pte_t *pbase = (pte_t *)page_address(base);
 936        unsigned int i, level;
 937        pgprot_t ref_prot;
 938        pte_t *tmp;
 939
 940        spin_lock(&pgd_lock);
 941        /*
 942         * Check for races, another CPU might have split this page
 943         * up for us already:
 944         */
 945        tmp = _lookup_address_cpa(cpa, address, &level);
 946        if (tmp != kpte) {
 947                spin_unlock(&pgd_lock);
 948                return 1;
 949        }
 950
 951        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 952
 953        switch (level) {
 954        case PG_LEVEL_2M:
 955                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 956                /*
 957                 * Clear PSE (aka _PAGE_PAT) and move
 958                 * PAT bit to correct position.
 959                 */
 960                ref_prot = pgprot_large_2_4k(ref_prot);
 961                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 962                lpaddr = address & PMD_MASK;
 963                lpinc = PAGE_SIZE;
 964                break;
 965
 966        case PG_LEVEL_1G:
 967                ref_prot = pud_pgprot(*(pud_t *)kpte);
 968                ref_pfn = pud_pfn(*(pud_t *)kpte);
 969                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 970                lpaddr = address & PUD_MASK;
 971                lpinc = PMD_SIZE;
 972                /*
 973                 * Clear the PSE flags if the PRESENT flag is not set
 974                 * otherwise pmd_present/pmd_huge will return true
 975                 * even on a non present pmd.
 976                 */
 977                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 978                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
 979                break;
 980
 981        default:
 982                spin_unlock(&pgd_lock);
 983                return 1;
 984        }
 985
 986        ref_prot = pgprot_clear_protnone_bits(ref_prot);
 987
 988        /*
 989         * Get the target pfn from the original entry:
 990         */
 991        pfn = ref_pfn;
 992        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
 993                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
 994
 995        if (virt_addr_valid(address)) {
 996                unsigned long pfn = PFN_DOWN(__pa(address));
 997
 998                if (pfn_range_is_mapped(pfn, pfn + 1))
 999                        split_page_count(level);
1000        }
1001
1002        /*
1003         * Install the new, split up pagetable.
1004         *
1005         * We use the standard kernel pagetable protections for the new
1006         * pagetable protections, the actual ptes set above control the
1007         * primary protection behavior:
1008         */
1009        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1010
1011        /*
1012         * Do a global flush tlb after splitting the large page
1013         * and before we do the actual change page attribute in the PTE.
1014         *
1015         * Without this, we violate the TLB application note, that says:
1016         * "The TLBs may contain both ordinary and large-page
1017         *  translations for a 4-KByte range of linear addresses. This
1018         *  may occur if software modifies the paging structures so that
1019         *  the page size used for the address range changes. If the two
1020         *  translations differ with respect to page frame or attributes
1021         *  (e.g., permissions), processor behavior is undefined and may
1022         *  be implementation-specific."
1023         *
1024         * We do this global tlb flush inside the cpa_lock, so that we
1025         * don't allow any other cpu, with stale tlb entries change the
1026         * page attribute in parallel, that also falls into the
1027         * just split large page entry.
1028         */
1029        flush_tlb_all();
1030        spin_unlock(&pgd_lock);
1031
1032        return 0;
1033}
1034
1035static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1036                            unsigned long address)
1037{
1038        struct page *base;
1039
1040        if (!debug_pagealloc_enabled())
1041                spin_unlock(&cpa_lock);
1042        base = alloc_pages(GFP_KERNEL, 0);
1043        if (!debug_pagealloc_enabled())
1044                spin_lock(&cpa_lock);
1045        if (!base)
1046                return -ENOMEM;
1047
1048        if (__split_large_page(cpa, kpte, address, base))
1049                __free_page(base);
1050
1051        return 0;
1052}
1053
1054static bool try_to_free_pte_page(pte_t *pte)
1055{
1056        int i;
1057
1058        for (i = 0; i < PTRS_PER_PTE; i++)
1059                if (!pte_none(pte[i]))
1060                        return false;
1061
1062        free_page((unsigned long)pte);
1063        return true;
1064}
1065
1066static bool try_to_free_pmd_page(pmd_t *pmd)
1067{
1068        int i;
1069
1070        for (i = 0; i < PTRS_PER_PMD; i++)
1071                if (!pmd_none(pmd[i]))
1072                        return false;
1073
1074        free_page((unsigned long)pmd);
1075        return true;
1076}
1077
1078static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1079{
1080        pte_t *pte = pte_offset_kernel(pmd, start);
1081
1082        while (start < end) {
1083                set_pte(pte, __pte(0));
1084
1085                start += PAGE_SIZE;
1086                pte++;
1087        }
1088
1089        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1090                pmd_clear(pmd);
1091                return true;
1092        }
1093        return false;
1094}
1095
1096static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1097                              unsigned long start, unsigned long end)
1098{
1099        if (unmap_pte_range(pmd, start, end))
1100                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1101                        pud_clear(pud);
1102}
1103
1104static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1105{
1106        pmd_t *pmd = pmd_offset(pud, start);
1107
1108        /*
1109         * Not on a 2MB page boundary?
1110         */
1111        if (start & (PMD_SIZE - 1)) {
1112                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1113                unsigned long pre_end = min_t(unsigned long, end, next_page);
1114
1115                __unmap_pmd_range(pud, pmd, start, pre_end);
1116
1117                start = pre_end;
1118                pmd++;
1119        }
1120
1121        /*
1122         * Try to unmap in 2M chunks.
1123         */
1124        while (end - start >= PMD_SIZE) {
1125                if (pmd_large(*pmd))
1126                        pmd_clear(pmd);
1127                else
1128                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1129
1130                start += PMD_SIZE;
1131                pmd++;
1132        }
1133
1134        /*
1135         * 4K leftovers?
1136         */
1137        if (start < end)
1138                return __unmap_pmd_range(pud, pmd, start, end);
1139
1140        /*
1141         * Try again to free the PMD page if haven't succeeded above.
1142         */
1143        if (!pud_none(*pud))
1144                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1145                        pud_clear(pud);
1146}
1147
1148static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1149{
1150        pud_t *pud = pud_offset(p4d, start);
1151
1152        /*
1153         * Not on a GB page boundary?
1154         */
1155        if (start & (PUD_SIZE - 1)) {
1156                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1157                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1158
1159                unmap_pmd_range(pud, start, pre_end);
1160
1161                start = pre_end;
1162                pud++;
1163        }
1164
1165        /*
1166         * Try to unmap in 1G chunks?
1167         */
1168        while (end - start >= PUD_SIZE) {
1169
1170                if (pud_large(*pud))
1171                        pud_clear(pud);
1172                else
1173                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1174
1175                start += PUD_SIZE;
1176                pud++;
1177        }
1178
1179        /*
1180         * 2M leftovers?
1181         */
1182        if (start < end)
1183                unmap_pmd_range(pud, start, end);
1184
1185        /*
1186         * No need to try to free the PUD page because we'll free it in
1187         * populate_pgd's error path
1188         */
1189}
1190
1191static int alloc_pte_page(pmd_t *pmd)
1192{
1193        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1194        if (!pte)
1195                return -1;
1196
1197        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1198        return 0;
1199}
1200
1201static int alloc_pmd_page(pud_t *pud)
1202{
1203        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1204        if (!pmd)
1205                return -1;
1206
1207        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1208        return 0;
1209}
1210
1211static void populate_pte(struct cpa_data *cpa,
1212                         unsigned long start, unsigned long end,
1213                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1214{
1215        pte_t *pte;
1216
1217        pte = pte_offset_kernel(pmd, start);
1218
1219        pgprot = pgprot_clear_protnone_bits(pgprot);
1220
1221        while (num_pages-- && start < end) {
1222                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1223
1224                start    += PAGE_SIZE;
1225                cpa->pfn++;
1226                pte++;
1227        }
1228}
1229
1230static long populate_pmd(struct cpa_data *cpa,
1231                         unsigned long start, unsigned long end,
1232                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1233{
1234        long cur_pages = 0;
1235        pmd_t *pmd;
1236        pgprot_t pmd_pgprot;
1237
1238        /*
1239         * Not on a 2M boundary?
1240         */
1241        if (start & (PMD_SIZE - 1)) {
1242                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1243                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1244
1245                pre_end   = min_t(unsigned long, pre_end, next_page);
1246                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1247                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1248
1249                /*
1250                 * Need a PTE page?
1251                 */
1252                pmd = pmd_offset(pud, start);
1253                if (pmd_none(*pmd))
1254                        if (alloc_pte_page(pmd))
1255                                return -1;
1256
1257                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1258
1259                start = pre_end;
1260        }
1261
1262        /*
1263         * We mapped them all?
1264         */
1265        if (num_pages == cur_pages)
1266                return cur_pages;
1267
1268        pmd_pgprot = pgprot_4k_2_large(pgprot);
1269
1270        while (end - start >= PMD_SIZE) {
1271
1272                /*
1273                 * We cannot use a 1G page so allocate a PMD page if needed.
1274                 */
1275                if (pud_none(*pud))
1276                        if (alloc_pmd_page(pud))
1277                                return -1;
1278
1279                pmd = pmd_offset(pud, start);
1280
1281                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1282                                        canon_pgprot(pmd_pgprot))));
1283
1284                start     += PMD_SIZE;
1285                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1286                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1287        }
1288
1289        /*
1290         * Map trailing 4K pages.
1291         */
1292        if (start < end) {
1293                pmd = pmd_offset(pud, start);
1294                if (pmd_none(*pmd))
1295                        if (alloc_pte_page(pmd))
1296                                return -1;
1297
1298                populate_pte(cpa, start, end, num_pages - cur_pages,
1299                             pmd, pgprot);
1300        }
1301        return num_pages;
1302}
1303
1304static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1305                        pgprot_t pgprot)
1306{
1307        pud_t *pud;
1308        unsigned long end;
1309        long cur_pages = 0;
1310        pgprot_t pud_pgprot;
1311
1312        end = start + (cpa->numpages << PAGE_SHIFT);
1313
1314        /*
1315         * Not on a Gb page boundary? => map everything up to it with
1316         * smaller pages.
1317         */
1318        if (start & (PUD_SIZE - 1)) {
1319                unsigned long pre_end;
1320                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1321
1322                pre_end   = min_t(unsigned long, end, next_page);
1323                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1324                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1325
1326                pud = pud_offset(p4d, start);
1327
1328                /*
1329                 * Need a PMD page?
1330                 */
1331                if (pud_none(*pud))
1332                        if (alloc_pmd_page(pud))
1333                                return -1;
1334
1335                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1336                                         pud, pgprot);
1337                if (cur_pages < 0)
1338                        return cur_pages;
1339
1340                start = pre_end;
1341        }
1342
1343        /* We mapped them all? */
1344        if (cpa->numpages == cur_pages)
1345                return cur_pages;
1346
1347        pud = pud_offset(p4d, start);
1348        pud_pgprot = pgprot_4k_2_large(pgprot);
1349
1350        /*
1351         * Map everything starting from the Gb boundary, possibly with 1G pages
1352         */
1353        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1354                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1355                                   canon_pgprot(pud_pgprot))));
1356
1357                start     += PUD_SIZE;
1358                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1359                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1360                pud++;
1361        }
1362
1363        /* Map trailing leftover */
1364        if (start < end) {
1365                long tmp;
1366
1367                pud = pud_offset(p4d, start);
1368                if (pud_none(*pud))
1369                        if (alloc_pmd_page(pud))
1370                                return -1;
1371
1372                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1373                                   pud, pgprot);
1374                if (tmp < 0)
1375                        return cur_pages;
1376
1377                cur_pages += tmp;
1378        }
1379        return cur_pages;
1380}
1381
1382/*
1383 * Restrictions for kernel page table do not necessarily apply when mapping in
1384 * an alternate PGD.
1385 */
1386static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1387{
1388        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1389        pud_t *pud = NULL;      /* shut up gcc */
1390        p4d_t *p4d;
1391        pgd_t *pgd_entry;
1392        long ret;
1393
1394        pgd_entry = cpa->pgd + pgd_index(addr);
1395
1396        if (pgd_none(*pgd_entry)) {
1397                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1398                if (!p4d)
1399                        return -1;
1400
1401                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1402        }
1403
1404        /*
1405         * Allocate a PUD page and hand it down for mapping.
1406         */
1407        p4d = p4d_offset(pgd_entry, addr);
1408        if (p4d_none(*p4d)) {
1409                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1410                if (!pud)
1411                        return -1;
1412
1413                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1414        }
1415
1416        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1417        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1418
1419        ret = populate_pud(cpa, addr, p4d, pgprot);
1420        if (ret < 0) {
1421                /*
1422                 * Leave the PUD page in place in case some other CPU or thread
1423                 * already found it, but remove any useless entries we just
1424                 * added to it.
1425                 */
1426                unmap_pud_range(p4d, addr,
1427                                addr + (cpa->numpages << PAGE_SHIFT));
1428                return ret;
1429        }
1430
1431        cpa->numpages = ret;
1432        return 0;
1433}
1434
1435static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1436                               int primary)
1437{
1438        if (cpa->pgd) {
1439                /*
1440                 * Right now, we only execute this code path when mapping
1441                 * the EFI virtual memory map regions, no other users
1442                 * provide a ->pgd value. This may change in the future.
1443                 */
1444                return populate_pgd(cpa, vaddr);
1445        }
1446
1447        /*
1448         * Ignore all non primary paths.
1449         */
1450        if (!primary) {
1451                cpa->numpages = 1;
1452                return 0;
1453        }
1454
1455        /*
1456         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1457         * to have holes.
1458         * Also set numpages to '1' indicating that we processed cpa req for
1459         * one virtual address page and its pfn. TBD: numpages can be set based
1460         * on the initial value and the level returned by lookup_address().
1461         */
1462        if (within(vaddr, PAGE_OFFSET,
1463                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1464                cpa->numpages = 1;
1465                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1466                return 0;
1467
1468        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1469                /* Faults in the highmap are OK, so do not warn: */
1470                return -EFAULT;
1471        } else {
1472                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1473                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1474                        *cpa->vaddr);
1475
1476                return -EFAULT;
1477        }
1478}
1479
1480static int __change_page_attr(struct cpa_data *cpa, int primary)
1481{
1482        unsigned long address;
1483        int do_split, err;
1484        unsigned int level;
1485        pte_t *kpte, old_pte;
1486
1487        address = __cpa_addr(cpa, cpa->curpage);
1488repeat:
1489        kpte = _lookup_address_cpa(cpa, address, &level);
1490        if (!kpte)
1491                return __cpa_process_fault(cpa, address, primary);
1492
1493        old_pte = *kpte;
1494        if (pte_none(old_pte))
1495                return __cpa_process_fault(cpa, address, primary);
1496
1497        if (level == PG_LEVEL_4K) {
1498                pte_t new_pte;
1499                pgprot_t new_prot = pte_pgprot(old_pte);
1500                unsigned long pfn = pte_pfn(old_pte);
1501
1502                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1503                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1504
1505                cpa_inc_4k_install();
1506                new_prot = static_protections(new_prot, address, pfn, 1,
1507                                              CPA_PROTECT);
1508
1509                new_prot = pgprot_clear_protnone_bits(new_prot);
1510
1511                /*
1512                 * We need to keep the pfn from the existing PTE,
1513                 * after all we're only going to change it's attributes
1514                 * not the memory it points to
1515                 */
1516                new_pte = pfn_pte(pfn, new_prot);
1517                cpa->pfn = pfn;
1518                /*
1519                 * Do we really change anything ?
1520                 */
1521                if (pte_val(old_pte) != pte_val(new_pte)) {
1522                        set_pte_atomic(kpte, new_pte);
1523                        cpa->flags |= CPA_FLUSHTLB;
1524                }
1525                cpa->numpages = 1;
1526                return 0;
1527        }
1528
1529        /*
1530         * Check, whether we can keep the large page intact
1531         * and just change the pte:
1532         */
1533        do_split = should_split_large_page(kpte, address, cpa);
1534        /*
1535         * When the range fits into the existing large page,
1536         * return. cp->numpages and cpa->tlbflush have been updated in
1537         * try_large_page:
1538         */
1539        if (do_split <= 0)
1540                return do_split;
1541
1542        /*
1543         * We have to split the large page:
1544         */
1545        err = split_large_page(cpa, kpte, address);
1546        if (!err)
1547                goto repeat;
1548
1549        return err;
1550}
1551
1552static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1553
1554static int cpa_process_alias(struct cpa_data *cpa)
1555{
1556        struct cpa_data alias_cpa;
1557        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1558        unsigned long vaddr;
1559        int ret;
1560
1561        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1562                return 0;
1563
1564        /*
1565         * No need to redo, when the primary call touched the direct
1566         * mapping already:
1567         */
1568        vaddr = __cpa_addr(cpa, cpa->curpage);
1569        if (!(within(vaddr, PAGE_OFFSET,
1570                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1571
1572                alias_cpa = *cpa;
1573                alias_cpa.vaddr = &laddr;
1574                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1575                alias_cpa.curpage = 0;
1576
1577                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1578                if (ret)
1579                        return ret;
1580        }
1581
1582#ifdef CONFIG_X86_64
1583        /*
1584         * If the primary call didn't touch the high mapping already
1585         * and the physical address is inside the kernel map, we need
1586         * to touch the high mapped kernel as well:
1587         */
1588        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1589            __cpa_pfn_in_highmap(cpa->pfn)) {
1590                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1591                                               __START_KERNEL_map - phys_base;
1592                alias_cpa = *cpa;
1593                alias_cpa.vaddr = &temp_cpa_vaddr;
1594                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1595                alias_cpa.curpage = 0;
1596
1597                /*
1598                 * The high mapping range is imprecise, so ignore the
1599                 * return value.
1600                 */
1601                __change_page_attr_set_clr(&alias_cpa, 0);
1602        }
1603#endif
1604
1605        return 0;
1606}
1607
1608static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1609{
1610        unsigned long numpages = cpa->numpages;
1611        unsigned long rempages = numpages;
1612        int ret = 0;
1613
1614        while (rempages) {
1615                /*
1616                 * Store the remaining nr of pages for the large page
1617                 * preservation check.
1618                 */
1619                cpa->numpages = rempages;
1620                /* for array changes, we can't use large page */
1621                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1622                        cpa->numpages = 1;
1623
1624                if (!debug_pagealloc_enabled())
1625                        spin_lock(&cpa_lock);
1626                ret = __change_page_attr(cpa, checkalias);
1627                if (!debug_pagealloc_enabled())
1628                        spin_unlock(&cpa_lock);
1629                if (ret)
1630                        goto out;
1631
1632                if (checkalias) {
1633                        ret = cpa_process_alias(cpa);
1634                        if (ret)
1635                                goto out;
1636                }
1637
1638                /*
1639                 * Adjust the number of pages with the result of the
1640                 * CPA operation. Either a large page has been
1641                 * preserved or a single page update happened.
1642                 */
1643                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1644                rempages -= cpa->numpages;
1645                cpa->curpage += cpa->numpages;
1646        }
1647
1648out:
1649        /* Restore the original numpages */
1650        cpa->numpages = numpages;
1651        return ret;
1652}
1653
1654static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1655                                    pgprot_t mask_set, pgprot_t mask_clr,
1656                                    int force_split, int in_flag,
1657                                    struct page **pages)
1658{
1659        struct cpa_data cpa;
1660        int ret, cache, checkalias;
1661
1662        memset(&cpa, 0, sizeof(cpa));
1663
1664        /*
1665         * Check, if we are requested to set a not supported
1666         * feature.  Clearing non-supported features is OK.
1667         */
1668        mask_set = canon_pgprot(mask_set);
1669
1670        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1671                return 0;
1672
1673        /* Ensure we are PAGE_SIZE aligned */
1674        if (in_flag & CPA_ARRAY) {
1675                int i;
1676                for (i = 0; i < numpages; i++) {
1677                        if (addr[i] & ~PAGE_MASK) {
1678                                addr[i] &= PAGE_MASK;
1679                                WARN_ON_ONCE(1);
1680                        }
1681                }
1682        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1683                /*
1684                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1685                 * No need to check in that case
1686                 */
1687                if (*addr & ~PAGE_MASK) {
1688                        *addr &= PAGE_MASK;
1689                        /*
1690                         * People should not be passing in unaligned addresses:
1691                         */
1692                        WARN_ON_ONCE(1);
1693                }
1694        }
1695
1696        /* Must avoid aliasing mappings in the highmem code */
1697        kmap_flush_unused();
1698
1699        vm_unmap_aliases();
1700
1701        cpa.vaddr = addr;
1702        cpa.pages = pages;
1703        cpa.numpages = numpages;
1704        cpa.mask_set = mask_set;
1705        cpa.mask_clr = mask_clr;
1706        cpa.flags = 0;
1707        cpa.curpage = 0;
1708        cpa.force_split = force_split;
1709
1710        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1711                cpa.flags |= in_flag;
1712
1713        /* No alias checking for _NX bit modifications */
1714        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1715        /* Has caller explicitly disabled alias checking? */
1716        if (in_flag & CPA_NO_CHECK_ALIAS)
1717                checkalias = 0;
1718
1719        ret = __change_page_attr_set_clr(&cpa, checkalias);
1720
1721        /*
1722         * Check whether we really changed something:
1723         */
1724        if (!(cpa.flags & CPA_FLUSHTLB))
1725                goto out;
1726
1727        /*
1728         * No need to flush, when we did not set any of the caching
1729         * attributes:
1730         */
1731        cache = !!pgprot2cachemode(mask_set);
1732
1733        /*
1734         * On error; flush everything to be sure.
1735         */
1736        if (ret) {
1737                cpa_flush_all(cache);
1738                goto out;
1739        }
1740
1741        cpa_flush(&cpa, cache);
1742out:
1743        return ret;
1744}
1745
1746static inline int change_page_attr_set(unsigned long *addr, int numpages,
1747                                       pgprot_t mask, int array)
1748{
1749        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1750                (array ? CPA_ARRAY : 0), NULL);
1751}
1752
1753static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1754                                         pgprot_t mask, int array)
1755{
1756        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1757                (array ? CPA_ARRAY : 0), NULL);
1758}
1759
1760static inline int cpa_set_pages_array(struct page **pages, int numpages,
1761                                       pgprot_t mask)
1762{
1763        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1764                CPA_PAGES_ARRAY, pages);
1765}
1766
1767static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1768                                         pgprot_t mask)
1769{
1770        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1771                CPA_PAGES_ARRAY, pages);
1772}
1773
1774int _set_memory_uc(unsigned long addr, int numpages)
1775{
1776        /*
1777         * for now UC MINUS. see comments in ioremap_nocache()
1778         * If you really need strong UC use ioremap_uc(), but note
1779         * that you cannot override IO areas with set_memory_*() as
1780         * these helpers cannot work with IO memory.
1781         */
1782        return change_page_attr_set(&addr, numpages,
1783                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1784                                    0);
1785}
1786
1787int set_memory_uc(unsigned long addr, int numpages)
1788{
1789        int ret;
1790
1791        /*
1792         * for now UC MINUS. see comments in ioremap_nocache()
1793         */
1794        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1795                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1796        if (ret)
1797                goto out_err;
1798
1799        ret = _set_memory_uc(addr, numpages);
1800        if (ret)
1801                goto out_free;
1802
1803        return 0;
1804
1805out_free:
1806        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1807out_err:
1808        return ret;
1809}
1810EXPORT_SYMBOL(set_memory_uc);
1811
1812static int _set_memory_array(unsigned long *addr, int numpages,
1813                enum page_cache_mode new_type)
1814{
1815        enum page_cache_mode set_type;
1816        int i, j;
1817        int ret;
1818
1819        for (i = 0; i < numpages; i++) {
1820                ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1821                                        new_type, NULL);
1822                if (ret)
1823                        goto out_free;
1824        }
1825
1826        /* If WC, set to UC- first and then WC */
1827        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1828                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
1829
1830        ret = change_page_attr_set(addr, numpages,
1831                                   cachemode2pgprot(set_type), 1);
1832
1833        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1834                ret = change_page_attr_set_clr(addr, numpages,
1835                                               cachemode2pgprot(
1836                                                _PAGE_CACHE_MODE_WC),
1837                                               __pgprot(_PAGE_CACHE_MASK),
1838                                               0, CPA_ARRAY, NULL);
1839        if (ret)
1840                goto out_free;
1841
1842        return 0;
1843
1844out_free:
1845        for (j = 0; j < i; j++)
1846                free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1847
1848        return ret;
1849}
1850
1851int set_memory_array_uc(unsigned long *addr, int numpages)
1852{
1853        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1854}
1855EXPORT_SYMBOL(set_memory_array_uc);
1856
1857int set_memory_array_wc(unsigned long *addr, int numpages)
1858{
1859        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1860}
1861EXPORT_SYMBOL(set_memory_array_wc);
1862
1863int set_memory_array_wt(unsigned long *addr, int numpages)
1864{
1865        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1866}
1867EXPORT_SYMBOL_GPL(set_memory_array_wt);
1868
1869int _set_memory_wc(unsigned long addr, int numpages)
1870{
1871        int ret;
1872
1873        ret = change_page_attr_set(&addr, numpages,
1874                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1875                                   0);
1876        if (!ret) {
1877                ret = change_page_attr_set_clr(&addr, numpages,
1878                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879                                               __pgprot(_PAGE_CACHE_MASK),
1880                                               0, 0, NULL);
1881        }
1882        return ret;
1883}
1884
1885int set_memory_wc(unsigned long addr, int numpages)
1886{
1887        int ret;
1888
1889        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890                _PAGE_CACHE_MODE_WC, NULL);
1891        if (ret)
1892                return ret;
1893
1894        ret = _set_memory_wc(addr, numpages);
1895        if (ret)
1896                free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1897
1898        return ret;
1899}
1900EXPORT_SYMBOL(set_memory_wc);
1901
1902int _set_memory_wt(unsigned long addr, int numpages)
1903{
1904        return change_page_attr_set(&addr, numpages,
1905                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1906}
1907
1908int set_memory_wt(unsigned long addr, int numpages)
1909{
1910        int ret;
1911
1912        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1913                              _PAGE_CACHE_MODE_WT, NULL);
1914        if (ret)
1915                return ret;
1916
1917        ret = _set_memory_wt(addr, numpages);
1918        if (ret)
1919                free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1920
1921        return ret;
1922}
1923EXPORT_SYMBOL_GPL(set_memory_wt);
1924
1925int _set_memory_wb(unsigned long addr, int numpages)
1926{
1927        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1928        return change_page_attr_clear(&addr, numpages,
1929                                      __pgprot(_PAGE_CACHE_MASK), 0);
1930}
1931
1932int set_memory_wb(unsigned long addr, int numpages)
1933{
1934        int ret;
1935
1936        ret = _set_memory_wb(addr, numpages);
1937        if (ret)
1938                return ret;
1939
1940        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1941        return 0;
1942}
1943EXPORT_SYMBOL(set_memory_wb);
1944
1945int set_memory_array_wb(unsigned long *addr, int numpages)
1946{
1947        int i;
1948        int ret;
1949
1950        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1951        ret = change_page_attr_clear(addr, numpages,
1952                                      __pgprot(_PAGE_CACHE_MASK), 1);
1953        if (ret)
1954                return ret;
1955
1956        for (i = 0; i < numpages; i++)
1957                free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1958
1959        return 0;
1960}
1961EXPORT_SYMBOL(set_memory_array_wb);
1962
1963int set_memory_x(unsigned long addr, int numpages)
1964{
1965        if (!(__supported_pte_mask & _PAGE_NX))
1966                return 0;
1967
1968        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1969}
1970EXPORT_SYMBOL(set_memory_x);
1971
1972int set_memory_nx(unsigned long addr, int numpages)
1973{
1974        if (!(__supported_pte_mask & _PAGE_NX))
1975                return 0;
1976
1977        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1978}
1979EXPORT_SYMBOL(set_memory_nx);
1980
1981int set_memory_ro(unsigned long addr, int numpages)
1982{
1983        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1984}
1985
1986int set_memory_rw(unsigned long addr, int numpages)
1987{
1988        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1989}
1990
1991int set_memory_np(unsigned long addr, int numpages)
1992{
1993        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1994}
1995
1996int set_memory_np_noalias(unsigned long addr, int numpages)
1997{
1998        int cpa_flags = CPA_NO_CHECK_ALIAS;
1999
2000        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2001                                        __pgprot(_PAGE_PRESENT), 0,
2002                                        cpa_flags, NULL);
2003}
2004
2005int set_memory_4k(unsigned long addr, int numpages)
2006{
2007        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2008                                        __pgprot(0), 1, 0, NULL);
2009}
2010
2011int set_memory_nonglobal(unsigned long addr, int numpages)
2012{
2013        return change_page_attr_clear(&addr, numpages,
2014                                      __pgprot(_PAGE_GLOBAL), 0);
2015}
2016
2017int set_memory_global(unsigned long addr, int numpages)
2018{
2019        return change_page_attr_set(&addr, numpages,
2020                                    __pgprot(_PAGE_GLOBAL), 0);
2021}
2022
2023static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2024{
2025        struct cpa_data cpa;
2026        int ret;
2027
2028        /* Nothing to do if memory encryption is not active */
2029        if (!mem_encrypt_active())
2030                return 0;
2031
2032        /* Should not be working on unaligned addresses */
2033        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2034                addr &= PAGE_MASK;
2035
2036        memset(&cpa, 0, sizeof(cpa));
2037        cpa.vaddr = &addr;
2038        cpa.numpages = numpages;
2039        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2040        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2041        cpa.pgd = init_mm.pgd;
2042
2043        /* Must avoid aliasing mappings in the highmem code */
2044        kmap_flush_unused();
2045        vm_unmap_aliases();
2046
2047        /*
2048         * Before changing the encryption attribute, we need to flush caches.
2049         */
2050        cpa_flush(&cpa, 1);
2051
2052        ret = __change_page_attr_set_clr(&cpa, 1);
2053
2054        /*
2055         * After changing the encryption attribute, we need to flush TLBs again
2056         * in case any speculative TLB caching occurred (but no need to flush
2057         * caches again).  We could just use cpa_flush_all(), but in case TLB
2058         * flushing gets optimized in the cpa_flush() path use the same logic
2059         * as above.
2060         */
2061        cpa_flush(&cpa, 0);
2062
2063        return ret;
2064}
2065
2066int set_memory_encrypted(unsigned long addr, int numpages)
2067{
2068        return __set_memory_enc_dec(addr, numpages, true);
2069}
2070EXPORT_SYMBOL_GPL(set_memory_encrypted);
2071
2072int set_memory_decrypted(unsigned long addr, int numpages)
2073{
2074        return __set_memory_enc_dec(addr, numpages, false);
2075}
2076EXPORT_SYMBOL_GPL(set_memory_decrypted);
2077
2078int set_pages_uc(struct page *page, int numpages)
2079{
2080        unsigned long addr = (unsigned long)page_address(page);
2081
2082        return set_memory_uc(addr, numpages);
2083}
2084EXPORT_SYMBOL(set_pages_uc);
2085
2086static int _set_pages_array(struct page **pages, int numpages,
2087                enum page_cache_mode new_type)
2088{
2089        unsigned long start;
2090        unsigned long end;
2091        enum page_cache_mode set_type;
2092        int i;
2093        int free_idx;
2094        int ret;
2095
2096        for (i = 0; i < numpages; i++) {
2097                if (PageHighMem(pages[i]))
2098                        continue;
2099                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2100                end = start + PAGE_SIZE;
2101                if (reserve_memtype(start, end, new_type, NULL))
2102                        goto err_out;
2103        }
2104
2105        /* If WC, set to UC- first and then WC */
2106        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2107                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2108
2109        ret = cpa_set_pages_array(pages, numpages,
2110                                  cachemode2pgprot(set_type));
2111        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2112                ret = change_page_attr_set_clr(NULL, numpages,
2113                                               cachemode2pgprot(
2114                                                _PAGE_CACHE_MODE_WC),
2115                                               __pgprot(_PAGE_CACHE_MASK),
2116                                               0, CPA_PAGES_ARRAY, pages);
2117        if (ret)
2118                goto err_out;
2119        return 0; /* Success */
2120err_out:
2121        free_idx = i;
2122        for (i = 0; i < free_idx; i++) {
2123                if (PageHighMem(pages[i]))
2124                        continue;
2125                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2126                end = start + PAGE_SIZE;
2127                free_memtype(start, end);
2128        }
2129        return -EINVAL;
2130}
2131
2132int set_pages_array_uc(struct page **pages, int numpages)
2133{
2134        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2135}
2136EXPORT_SYMBOL(set_pages_array_uc);
2137
2138int set_pages_array_wc(struct page **pages, int numpages)
2139{
2140        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2141}
2142EXPORT_SYMBOL(set_pages_array_wc);
2143
2144int set_pages_array_wt(struct page **pages, int numpages)
2145{
2146        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2147}
2148EXPORT_SYMBOL_GPL(set_pages_array_wt);
2149
2150int set_pages_wb(struct page *page, int numpages)
2151{
2152        unsigned long addr = (unsigned long)page_address(page);
2153
2154        return set_memory_wb(addr, numpages);
2155}
2156EXPORT_SYMBOL(set_pages_wb);
2157
2158int set_pages_array_wb(struct page **pages, int numpages)
2159{
2160        int retval;
2161        unsigned long start;
2162        unsigned long end;
2163        int i;
2164
2165        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2166        retval = cpa_clear_pages_array(pages, numpages,
2167                        __pgprot(_PAGE_CACHE_MASK));
2168        if (retval)
2169                return retval;
2170
2171        for (i = 0; i < numpages; i++) {
2172                if (PageHighMem(pages[i]))
2173                        continue;
2174                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2175                end = start + PAGE_SIZE;
2176                free_memtype(start, end);
2177        }
2178
2179        return 0;
2180}
2181EXPORT_SYMBOL(set_pages_array_wb);
2182
2183int set_pages_x(struct page *page, int numpages)
2184{
2185        unsigned long addr = (unsigned long)page_address(page);
2186
2187        return set_memory_x(addr, numpages);
2188}
2189EXPORT_SYMBOL(set_pages_x);
2190
2191int set_pages_nx(struct page *page, int numpages)
2192{
2193        unsigned long addr = (unsigned long)page_address(page);
2194
2195        return set_memory_nx(addr, numpages);
2196}
2197EXPORT_SYMBOL(set_pages_nx);
2198
2199int set_pages_ro(struct page *page, int numpages)
2200{
2201        unsigned long addr = (unsigned long)page_address(page);
2202
2203        return set_memory_ro(addr, numpages);
2204}
2205
2206int set_pages_rw(struct page *page, int numpages)
2207{
2208        unsigned long addr = (unsigned long)page_address(page);
2209
2210        return set_memory_rw(addr, numpages);
2211}
2212
2213static int __set_pages_p(struct page *page, int numpages)
2214{
2215        unsigned long tempaddr = (unsigned long) page_address(page);
2216        struct cpa_data cpa = { .vaddr = &tempaddr,
2217                                .pgd = NULL,
2218                                .numpages = numpages,
2219                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2220                                .mask_clr = __pgprot(0),
2221                                .flags = 0};
2222
2223        /*
2224         * No alias checking needed for setting present flag. otherwise,
2225         * we may need to break large pages for 64-bit kernel text
2226         * mappings (this adds to complexity if we want to do this from
2227         * atomic context especially). Let's keep it simple!
2228         */
2229        return __change_page_attr_set_clr(&cpa, 0);
2230}
2231
2232static int __set_pages_np(struct page *page, int numpages)
2233{
2234        unsigned long tempaddr = (unsigned long) page_address(page);
2235        struct cpa_data cpa = { .vaddr = &tempaddr,
2236                                .pgd = NULL,
2237                                .numpages = numpages,
2238                                .mask_set = __pgprot(0),
2239                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2240                                .flags = 0};
2241
2242        /*
2243         * No alias checking needed for setting not present flag. otherwise,
2244         * we may need to break large pages for 64-bit kernel text
2245         * mappings (this adds to complexity if we want to do this from
2246         * atomic context especially). Let's keep it simple!
2247         */
2248        return __change_page_attr_set_clr(&cpa, 0);
2249}
2250
2251int set_direct_map_invalid_noflush(struct page *page)
2252{
2253        return __set_pages_np(page, 1);
2254}
2255
2256int set_direct_map_default_noflush(struct page *page)
2257{
2258        return __set_pages_p(page, 1);
2259}
2260
2261void __kernel_map_pages(struct page *page, int numpages, int enable)
2262{
2263        if (PageHighMem(page))
2264                return;
2265        if (!enable) {
2266                debug_check_no_locks_freed(page_address(page),
2267                                           numpages * PAGE_SIZE);
2268        }
2269
2270        /*
2271         * The return value is ignored as the calls cannot fail.
2272         * Large pages for identity mappings are not used at boot time
2273         * and hence no memory allocations during large page split.
2274         */
2275        if (enable)
2276                __set_pages_p(page, numpages);
2277        else
2278                __set_pages_np(page, numpages);
2279
2280        /*
2281         * We should perform an IPI and flush all tlbs,
2282         * but that can deadlock->flush only current cpu.
2283         * Preemption needs to be disabled around __flush_tlb_all() due to
2284         * CR3 reload in __native_flush_tlb().
2285         */
2286        preempt_disable();
2287        __flush_tlb_all();
2288        preempt_enable();
2289
2290        arch_flush_lazy_mmu_mode();
2291}
2292
2293#ifdef CONFIG_HIBERNATION
2294bool kernel_page_present(struct page *page)
2295{
2296        unsigned int level;
2297        pte_t *pte;
2298
2299        if (PageHighMem(page))
2300                return false;
2301
2302        pte = lookup_address((unsigned long)page_address(page), &level);
2303        return (pte_val(*pte) & _PAGE_PRESENT);
2304}
2305#endif /* CONFIG_HIBERNATION */
2306
2307int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2308                                   unsigned numpages, unsigned long page_flags)
2309{
2310        int retval = -EINVAL;
2311
2312        struct cpa_data cpa = {
2313                .vaddr = &address,
2314                .pfn = pfn,
2315                .pgd = pgd,
2316                .numpages = numpages,
2317                .mask_set = __pgprot(0),
2318                .mask_clr = __pgprot(0),
2319                .flags = 0,
2320        };
2321
2322        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2323
2324        if (!(__supported_pte_mask & _PAGE_NX))
2325                goto out;
2326
2327        if (!(page_flags & _PAGE_NX))
2328                cpa.mask_clr = __pgprot(_PAGE_NX);
2329
2330        if (!(page_flags & _PAGE_RW))
2331                cpa.mask_clr = __pgprot(_PAGE_RW);
2332
2333        if (!(page_flags & _PAGE_ENC))
2334                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2335
2336        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2337
2338        retval = __change_page_attr_set_clr(&cpa, 0);
2339        __flush_tlb_all();
2340
2341out:
2342        return retval;
2343}
2344
2345/*
2346 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2347 * function shouldn't be used in an SMP environment. Presently, it's used only
2348 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2349 */
2350int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2351                                     unsigned long numpages)
2352{
2353        int retval;
2354
2355        /*
2356         * The typical sequence for unmapping is to find a pte through
2357         * lookup_address_in_pgd() (ideally, it should never return NULL because
2358         * the address is already mapped) and change it's protections. As pfn is
2359         * the *target* of a mapping, it's not useful while unmapping.
2360         */
2361        struct cpa_data cpa = {
2362                .vaddr          = &address,
2363                .pfn            = 0,
2364                .pgd            = pgd,
2365                .numpages       = numpages,
2366                .mask_set       = __pgprot(0),
2367                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2368                .flags          = 0,
2369        };
2370
2371        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2372
2373        retval = __change_page_attr_set_clr(&cpa, 0);
2374        __flush_tlb_all();
2375
2376        return retval;
2377}
2378
2379/*
2380 * The testcases use internal knowledge of the implementation that shouldn't
2381 * be exposed to the rest of the kernel. Include these directly here.
2382 */
2383#ifdef CONFIG_CPA_DEBUG
2384#include "pageattr-test.c"
2385#endif
2386