linux/block/blk-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *      -  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/backing-dev.h>
  18#include <linux/bio.h>
  19#include <linux/blkdev.h>
  20#include <linux/blk-mq.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/string.h>
  25#include <linux/init.h>
  26#include <linux/completion.h>
  27#include <linux/slab.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/fault-inject.h>
  32#include <linux/list_sort.h>
  33#include <linux/delay.h>
  34#include <linux/ratelimit.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/blk-cgroup.h>
  37#include <linux/debugfs.h>
  38#include <linux/bpf.h>
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/block.h>
  42
  43#include "blk.h"
  44#include "blk-mq.h"
  45#include "blk-mq-sched.h"
  46#include "blk-pm.h"
  47#include "blk-rq-qos.h"
  48
  49#ifdef CONFIG_DEBUG_FS
  50struct dentry *blk_debugfs_root;
  51#endif
  52
  53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  54EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  58
  59DEFINE_IDA(blk_queue_ida);
  60
  61/*
  62 * For queue allocation
  63 */
  64struct kmem_cache *blk_requestq_cachep;
  65
  66/*
  67 * Controlling structure to kblockd
  68 */
  69static struct workqueue_struct *kblockd_workqueue;
  70
  71/**
  72 * blk_queue_flag_set - atomically set a queue flag
  73 * @flag: flag to be set
  74 * @q: request queue
  75 */
  76void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  77{
  78        set_bit(flag, &q->queue_flags);
  79}
  80EXPORT_SYMBOL(blk_queue_flag_set);
  81
  82/**
  83 * blk_queue_flag_clear - atomically clear a queue flag
  84 * @flag: flag to be cleared
  85 * @q: request queue
  86 */
  87void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  88{
  89        clear_bit(flag, &q->queue_flags);
  90}
  91EXPORT_SYMBOL(blk_queue_flag_clear);
  92
  93/**
  94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  95 * @flag: flag to be set
  96 * @q: request queue
  97 *
  98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
  99 * the flag was already set.
 100 */
 101bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 102{
 103        return test_and_set_bit(flag, &q->queue_flags);
 104}
 105EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 106
 107void blk_rq_init(struct request_queue *q, struct request *rq)
 108{
 109        memset(rq, 0, sizeof(*rq));
 110
 111        INIT_LIST_HEAD(&rq->queuelist);
 112        rq->q = q;
 113        rq->__sector = (sector_t) -1;
 114        INIT_HLIST_NODE(&rq->hash);
 115        RB_CLEAR_NODE(&rq->rb_node);
 116        rq->tag = -1;
 117        rq->internal_tag = -1;
 118        rq->start_time_ns = ktime_get_ns();
 119        rq->part = NULL;
 120}
 121EXPORT_SYMBOL(blk_rq_init);
 122
 123static const struct {
 124        int             errno;
 125        const char      *name;
 126} blk_errors[] = {
 127        [BLK_STS_OK]            = { 0,          "" },
 128        [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
 129        [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
 130        [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
 131        [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
 132        [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
 133        [BLK_STS_NEXUS]         = { -EBADE,     "critical nexus" },
 134        [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
 135        [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
 136        [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
 137        [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
 138        [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
 139
 140        /* device mapper special case, should not leak out: */
 141        [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
 142
 143        /* everything else not covered above: */
 144        [BLK_STS_IOERR]         = { -EIO,       "I/O" },
 145};
 146
 147blk_status_t errno_to_blk_status(int errno)
 148{
 149        int i;
 150
 151        for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 152                if (blk_errors[i].errno == errno)
 153                        return (__force blk_status_t)i;
 154        }
 155
 156        return BLK_STS_IOERR;
 157}
 158EXPORT_SYMBOL_GPL(errno_to_blk_status);
 159
 160int blk_status_to_errno(blk_status_t status)
 161{
 162        int idx = (__force int)status;
 163
 164        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 165                return -EIO;
 166        return blk_errors[idx].errno;
 167}
 168EXPORT_SYMBOL_GPL(blk_status_to_errno);
 169
 170static void print_req_error(struct request *req, blk_status_t status)
 171{
 172        int idx = (__force int)status;
 173
 174        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 175                return;
 176
 177        printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
 178                                __func__, blk_errors[idx].name,
 179                                req->rq_disk ?  req->rq_disk->disk_name : "?",
 180                                (unsigned long long)blk_rq_pos(req),
 181                                req->cmd_flags);
 182}
 183
 184static void req_bio_endio(struct request *rq, struct bio *bio,
 185                          unsigned int nbytes, blk_status_t error)
 186{
 187        if (error)
 188                bio->bi_status = error;
 189
 190        if (unlikely(rq->rq_flags & RQF_QUIET))
 191                bio_set_flag(bio, BIO_QUIET);
 192
 193        bio_advance(bio, nbytes);
 194
 195        /* don't actually finish bio if it's part of flush sequence */
 196        if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 197                bio_endio(bio);
 198}
 199
 200void blk_dump_rq_flags(struct request *rq, char *msg)
 201{
 202        printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 203                rq->rq_disk ? rq->rq_disk->disk_name : "?",
 204                (unsigned long long) rq->cmd_flags);
 205
 206        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 207               (unsigned long long)blk_rq_pos(rq),
 208               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 209        printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 210               rq->bio, rq->biotail, blk_rq_bytes(rq));
 211}
 212EXPORT_SYMBOL(blk_dump_rq_flags);
 213
 214/**
 215 * blk_sync_queue - cancel any pending callbacks on a queue
 216 * @q: the queue
 217 *
 218 * Description:
 219 *     The block layer may perform asynchronous callback activity
 220 *     on a queue, such as calling the unplug function after a timeout.
 221 *     A block device may call blk_sync_queue to ensure that any
 222 *     such activity is cancelled, thus allowing it to release resources
 223 *     that the callbacks might use. The caller must already have made sure
 224 *     that its ->make_request_fn will not re-add plugging prior to calling
 225 *     this function.
 226 *
 227 *     This function does not cancel any asynchronous activity arising
 228 *     out of elevator or throttling code. That would require elevator_exit()
 229 *     and blkcg_exit_queue() to be called with queue lock initialized.
 230 *
 231 */
 232void blk_sync_queue(struct request_queue *q)
 233{
 234        del_timer_sync(&q->timeout);
 235        cancel_work_sync(&q->timeout_work);
 236}
 237EXPORT_SYMBOL(blk_sync_queue);
 238
 239/**
 240 * blk_set_pm_only - increment pm_only counter
 241 * @q: request queue pointer
 242 */
 243void blk_set_pm_only(struct request_queue *q)
 244{
 245        atomic_inc(&q->pm_only);
 246}
 247EXPORT_SYMBOL_GPL(blk_set_pm_only);
 248
 249void blk_clear_pm_only(struct request_queue *q)
 250{
 251        int pm_only;
 252
 253        pm_only = atomic_dec_return(&q->pm_only);
 254        WARN_ON_ONCE(pm_only < 0);
 255        if (pm_only == 0)
 256                wake_up_all(&q->mq_freeze_wq);
 257}
 258EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 259
 260void blk_put_queue(struct request_queue *q)
 261{
 262        kobject_put(&q->kobj);
 263}
 264EXPORT_SYMBOL(blk_put_queue);
 265
 266void blk_set_queue_dying(struct request_queue *q)
 267{
 268        blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 269
 270        /*
 271         * When queue DYING flag is set, we need to block new req
 272         * entering queue, so we call blk_freeze_queue_start() to
 273         * prevent I/O from crossing blk_queue_enter().
 274         */
 275        blk_freeze_queue_start(q);
 276
 277        if (queue_is_mq(q))
 278                blk_mq_wake_waiters(q);
 279
 280        /* Make blk_queue_enter() reexamine the DYING flag. */
 281        wake_up_all(&q->mq_freeze_wq);
 282}
 283EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 284
 285/**
 286 * blk_cleanup_queue - shutdown a request queue
 287 * @q: request queue to shutdown
 288 *
 289 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 290 * put it.  All future requests will be failed immediately with -ENODEV.
 291 */
 292void blk_cleanup_queue(struct request_queue *q)
 293{
 294        /* mark @q DYING, no new request or merges will be allowed afterwards */
 295        mutex_lock(&q->sysfs_lock);
 296        blk_set_queue_dying(q);
 297
 298        blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 299        blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 300        blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 301        mutex_unlock(&q->sysfs_lock);
 302
 303        /*
 304         * Drain all requests queued before DYING marking. Set DEAD flag to
 305         * prevent that q->request_fn() gets invoked after draining finished.
 306         */
 307        blk_freeze_queue(q);
 308
 309        rq_qos_exit(q);
 310
 311        blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
 312
 313        /* for synchronous bio-based driver finish in-flight integrity i/o */
 314        blk_flush_integrity();
 315
 316        /* @q won't process any more request, flush async actions */
 317        del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 318        blk_sync_queue(q);
 319
 320        if (queue_is_mq(q))
 321                blk_mq_exit_queue(q);
 322
 323        /*
 324         * In theory, request pool of sched_tags belongs to request queue.
 325         * However, the current implementation requires tag_set for freeing
 326         * requests, so free the pool now.
 327         *
 328         * Queue has become frozen, there can't be any in-queue requests, so
 329         * it is safe to free requests now.
 330         */
 331        mutex_lock(&q->sysfs_lock);
 332        if (q->elevator)
 333                blk_mq_sched_free_requests(q);
 334        mutex_unlock(&q->sysfs_lock);
 335
 336        percpu_ref_exit(&q->q_usage_counter);
 337
 338        /* @q is and will stay empty, shutdown and put */
 339        blk_put_queue(q);
 340}
 341EXPORT_SYMBOL(blk_cleanup_queue);
 342
 343struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 344{
 345        return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 346}
 347EXPORT_SYMBOL(blk_alloc_queue);
 348
 349/**
 350 * blk_queue_enter() - try to increase q->q_usage_counter
 351 * @q: request queue pointer
 352 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 353 */
 354int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 355{
 356        const bool pm = flags & BLK_MQ_REQ_PREEMPT;
 357
 358        while (true) {
 359                bool success = false;
 360
 361                rcu_read_lock();
 362                if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 363                        /*
 364                         * The code that increments the pm_only counter is
 365                         * responsible for ensuring that that counter is
 366                         * globally visible before the queue is unfrozen.
 367                         */
 368                        if (pm || !blk_queue_pm_only(q)) {
 369                                success = true;
 370                        } else {
 371                                percpu_ref_put(&q->q_usage_counter);
 372                        }
 373                }
 374                rcu_read_unlock();
 375
 376                if (success)
 377                        return 0;
 378
 379                if (flags & BLK_MQ_REQ_NOWAIT)
 380                        return -EBUSY;
 381
 382                /*
 383                 * read pair of barrier in blk_freeze_queue_start(),
 384                 * we need to order reading __PERCPU_REF_DEAD flag of
 385                 * .q_usage_counter and reading .mq_freeze_depth or
 386                 * queue dying flag, otherwise the following wait may
 387                 * never return if the two reads are reordered.
 388                 */
 389                smp_rmb();
 390
 391                wait_event(q->mq_freeze_wq,
 392                           (!q->mq_freeze_depth &&
 393                            (pm || (blk_pm_request_resume(q),
 394                                    !blk_queue_pm_only(q)))) ||
 395                           blk_queue_dying(q));
 396                if (blk_queue_dying(q))
 397                        return -ENODEV;
 398        }
 399}
 400
 401void blk_queue_exit(struct request_queue *q)
 402{
 403        percpu_ref_put(&q->q_usage_counter);
 404}
 405
 406static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 407{
 408        struct request_queue *q =
 409                container_of(ref, struct request_queue, q_usage_counter);
 410
 411        wake_up_all(&q->mq_freeze_wq);
 412}
 413
 414static void blk_rq_timed_out_timer(struct timer_list *t)
 415{
 416        struct request_queue *q = from_timer(q, t, timeout);
 417
 418        kblockd_schedule_work(&q->timeout_work);
 419}
 420
 421static void blk_timeout_work(struct work_struct *work)
 422{
 423}
 424
 425/**
 426 * blk_alloc_queue_node - allocate a request queue
 427 * @gfp_mask: memory allocation flags
 428 * @node_id: NUMA node to allocate memory from
 429 */
 430struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 431{
 432        struct request_queue *q;
 433        int ret;
 434
 435        q = kmem_cache_alloc_node(blk_requestq_cachep,
 436                                gfp_mask | __GFP_ZERO, node_id);
 437        if (!q)
 438                return NULL;
 439
 440        INIT_LIST_HEAD(&q->queue_head);
 441        q->last_merge = NULL;
 442
 443        q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 444        if (q->id < 0)
 445                goto fail_q;
 446
 447        ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
 448        if (ret)
 449                goto fail_id;
 450
 451        q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
 452        if (!q->backing_dev_info)
 453                goto fail_split;
 454
 455        q->stats = blk_alloc_queue_stats();
 456        if (!q->stats)
 457                goto fail_stats;
 458
 459        q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
 460        q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
 461        q->backing_dev_info->name = "block";
 462        q->node = node_id;
 463
 464        timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
 465                    laptop_mode_timer_fn, 0);
 466        timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 467        INIT_WORK(&q->timeout_work, blk_timeout_work);
 468        INIT_LIST_HEAD(&q->icq_list);
 469#ifdef CONFIG_BLK_CGROUP
 470        INIT_LIST_HEAD(&q->blkg_list);
 471#endif
 472
 473        kobject_init(&q->kobj, &blk_queue_ktype);
 474
 475#ifdef CONFIG_BLK_DEV_IO_TRACE
 476        mutex_init(&q->blk_trace_mutex);
 477#endif
 478        mutex_init(&q->sysfs_lock);
 479        spin_lock_init(&q->queue_lock);
 480
 481        init_waitqueue_head(&q->mq_freeze_wq);
 482        mutex_init(&q->mq_freeze_lock);
 483
 484        /*
 485         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 486         * See blk_register_queue() for details.
 487         */
 488        if (percpu_ref_init(&q->q_usage_counter,
 489                                blk_queue_usage_counter_release,
 490                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 491                goto fail_bdi;
 492
 493        if (blkcg_init_queue(q))
 494                goto fail_ref;
 495
 496        return q;
 497
 498fail_ref:
 499        percpu_ref_exit(&q->q_usage_counter);
 500fail_bdi:
 501        blk_free_queue_stats(q->stats);
 502fail_stats:
 503        bdi_put(q->backing_dev_info);
 504fail_split:
 505        bioset_exit(&q->bio_split);
 506fail_id:
 507        ida_simple_remove(&blk_queue_ida, q->id);
 508fail_q:
 509        kmem_cache_free(blk_requestq_cachep, q);
 510        return NULL;
 511}
 512EXPORT_SYMBOL(blk_alloc_queue_node);
 513
 514bool blk_get_queue(struct request_queue *q)
 515{
 516        if (likely(!blk_queue_dying(q))) {
 517                __blk_get_queue(q);
 518                return true;
 519        }
 520
 521        return false;
 522}
 523EXPORT_SYMBOL(blk_get_queue);
 524
 525/**
 526 * blk_get_request - allocate a request
 527 * @q: request queue to allocate a request for
 528 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 529 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 530 */
 531struct request *blk_get_request(struct request_queue *q, unsigned int op,
 532                                blk_mq_req_flags_t flags)
 533{
 534        struct request *req;
 535
 536        WARN_ON_ONCE(op & REQ_NOWAIT);
 537        WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
 538
 539        req = blk_mq_alloc_request(q, op, flags);
 540        if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
 541                q->mq_ops->initialize_rq_fn(req);
 542
 543        return req;
 544}
 545EXPORT_SYMBOL(blk_get_request);
 546
 547void blk_put_request(struct request *req)
 548{
 549        blk_mq_free_request(req);
 550}
 551EXPORT_SYMBOL(blk_put_request);
 552
 553bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
 554                            struct bio *bio)
 555{
 556        const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 557
 558        if (!ll_back_merge_fn(q, req, bio))
 559                return false;
 560
 561        trace_block_bio_backmerge(q, req, bio);
 562
 563        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 564                blk_rq_set_mixed_merge(req);
 565
 566        req->biotail->bi_next = bio;
 567        req->biotail = bio;
 568        req->__data_len += bio->bi_iter.bi_size;
 569
 570        blk_account_io_start(req, false);
 571        return true;
 572}
 573
 574bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
 575                             struct bio *bio)
 576{
 577        const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 578
 579        if (!ll_front_merge_fn(q, req, bio))
 580                return false;
 581
 582        trace_block_bio_frontmerge(q, req, bio);
 583
 584        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 585                blk_rq_set_mixed_merge(req);
 586
 587        bio->bi_next = req->bio;
 588        req->bio = bio;
 589
 590        req->__sector = bio->bi_iter.bi_sector;
 591        req->__data_len += bio->bi_iter.bi_size;
 592
 593        blk_account_io_start(req, false);
 594        return true;
 595}
 596
 597bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
 598                struct bio *bio)
 599{
 600        unsigned short segments = blk_rq_nr_discard_segments(req);
 601
 602        if (segments >= queue_max_discard_segments(q))
 603                goto no_merge;
 604        if (blk_rq_sectors(req) + bio_sectors(bio) >
 605            blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 606                goto no_merge;
 607
 608        req->biotail->bi_next = bio;
 609        req->biotail = bio;
 610        req->__data_len += bio->bi_iter.bi_size;
 611        req->nr_phys_segments = segments + 1;
 612
 613        blk_account_io_start(req, false);
 614        return true;
 615no_merge:
 616        req_set_nomerge(q, req);
 617        return false;
 618}
 619
 620/**
 621 * blk_attempt_plug_merge - try to merge with %current's plugged list
 622 * @q: request_queue new bio is being queued at
 623 * @bio: new bio being queued
 624 * @same_queue_rq: pointer to &struct request that gets filled in when
 625 * another request associated with @q is found on the plug list
 626 * (optional, may be %NULL)
 627 *
 628 * Determine whether @bio being queued on @q can be merged with a request
 629 * on %current's plugged list.  Returns %true if merge was successful,
 630 * otherwise %false.
 631 *
 632 * Plugging coalesces IOs from the same issuer for the same purpose without
 633 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 634 * than scheduling, and the request, while may have elvpriv data, is not
 635 * added on the elevator at this point.  In addition, we don't have
 636 * reliable access to the elevator outside queue lock.  Only check basic
 637 * merging parameters without querying the elevator.
 638 *
 639 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 640 */
 641bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 642                            struct request **same_queue_rq)
 643{
 644        struct blk_plug *plug;
 645        struct request *rq;
 646        struct list_head *plug_list;
 647
 648        plug = current->plug;
 649        if (!plug)
 650                return false;
 651
 652        plug_list = &plug->mq_list;
 653
 654        list_for_each_entry_reverse(rq, plug_list, queuelist) {
 655                bool merged = false;
 656
 657                if (rq->q == q && same_queue_rq) {
 658                        /*
 659                         * Only blk-mq multiple hardware queues case checks the
 660                         * rq in the same queue, there should be only one such
 661                         * rq in a queue
 662                         **/
 663                        *same_queue_rq = rq;
 664                }
 665
 666                if (rq->q != q || !blk_rq_merge_ok(rq, bio))
 667                        continue;
 668
 669                switch (blk_try_merge(rq, bio)) {
 670                case ELEVATOR_BACK_MERGE:
 671                        merged = bio_attempt_back_merge(q, rq, bio);
 672                        break;
 673                case ELEVATOR_FRONT_MERGE:
 674                        merged = bio_attempt_front_merge(q, rq, bio);
 675                        break;
 676                case ELEVATOR_DISCARD_MERGE:
 677                        merged = bio_attempt_discard_merge(q, rq, bio);
 678                        break;
 679                default:
 680                        break;
 681                }
 682
 683                if (merged)
 684                        return true;
 685        }
 686
 687        return false;
 688}
 689
 690void blk_init_request_from_bio(struct request *req, struct bio *bio)
 691{
 692        if (bio->bi_opf & REQ_RAHEAD)
 693                req->cmd_flags |= REQ_FAILFAST_MASK;
 694
 695        req->__sector = bio->bi_iter.bi_sector;
 696        req->ioprio = bio_prio(bio);
 697        req->write_hint = bio->bi_write_hint;
 698        blk_rq_bio_prep(req->q, req, bio);
 699}
 700EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
 701
 702static void handle_bad_sector(struct bio *bio, sector_t maxsector)
 703{
 704        char b[BDEVNAME_SIZE];
 705
 706        printk(KERN_INFO "attempt to access beyond end of device\n");
 707        printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
 708                        bio_devname(bio, b), bio->bi_opf,
 709                        (unsigned long long)bio_end_sector(bio),
 710                        (long long)maxsector);
 711}
 712
 713#ifdef CONFIG_FAIL_MAKE_REQUEST
 714
 715static DECLARE_FAULT_ATTR(fail_make_request);
 716
 717static int __init setup_fail_make_request(char *str)
 718{
 719        return setup_fault_attr(&fail_make_request, str);
 720}
 721__setup("fail_make_request=", setup_fail_make_request);
 722
 723static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
 724{
 725        return part->make_it_fail && should_fail(&fail_make_request, bytes);
 726}
 727
 728static int __init fail_make_request_debugfs(void)
 729{
 730        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 731                                                NULL, &fail_make_request);
 732
 733        return PTR_ERR_OR_ZERO(dir);
 734}
 735
 736late_initcall(fail_make_request_debugfs);
 737
 738#else /* CONFIG_FAIL_MAKE_REQUEST */
 739
 740static inline bool should_fail_request(struct hd_struct *part,
 741                                        unsigned int bytes)
 742{
 743        return false;
 744}
 745
 746#endif /* CONFIG_FAIL_MAKE_REQUEST */
 747
 748static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
 749{
 750        const int op = bio_op(bio);
 751
 752        if (part->policy && op_is_write(op)) {
 753                char b[BDEVNAME_SIZE];
 754
 755                if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 756                        return false;
 757
 758                WARN_ONCE(1,
 759                       "generic_make_request: Trying to write "
 760                        "to read-only block-device %s (partno %d)\n",
 761                        bio_devname(bio, b), part->partno);
 762                /* Older lvm-tools actually trigger this */
 763                return false;
 764        }
 765
 766        return false;
 767}
 768
 769static noinline int should_fail_bio(struct bio *bio)
 770{
 771        if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
 772                return -EIO;
 773        return 0;
 774}
 775ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 776
 777/*
 778 * Check whether this bio extends beyond the end of the device or partition.
 779 * This may well happen - the kernel calls bread() without checking the size of
 780 * the device, e.g., when mounting a file system.
 781 */
 782static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
 783{
 784        unsigned int nr_sectors = bio_sectors(bio);
 785
 786        if (nr_sectors && maxsector &&
 787            (nr_sectors > maxsector ||
 788             bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 789                handle_bad_sector(bio, maxsector);
 790                return -EIO;
 791        }
 792        return 0;
 793}
 794
 795/*
 796 * Remap block n of partition p to block n+start(p) of the disk.
 797 */
 798static inline int blk_partition_remap(struct bio *bio)
 799{
 800        struct hd_struct *p;
 801        int ret = -EIO;
 802
 803        rcu_read_lock();
 804        p = __disk_get_part(bio->bi_disk, bio->bi_partno);
 805        if (unlikely(!p))
 806                goto out;
 807        if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 808                goto out;
 809        if (unlikely(bio_check_ro(bio, p)))
 810                goto out;
 811
 812        /*
 813         * Zone reset does not include bi_size so bio_sectors() is always 0.
 814         * Include a test for the reset op code and perform the remap if needed.
 815         */
 816        if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
 817                if (bio_check_eod(bio, part_nr_sects_read(p)))
 818                        goto out;
 819                bio->bi_iter.bi_sector += p->start_sect;
 820                trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
 821                                      bio->bi_iter.bi_sector - p->start_sect);
 822        }
 823        bio->bi_partno = 0;
 824        ret = 0;
 825out:
 826        rcu_read_unlock();
 827        return ret;
 828}
 829
 830static noinline_for_stack bool
 831generic_make_request_checks(struct bio *bio)
 832{
 833        struct request_queue *q;
 834        int nr_sectors = bio_sectors(bio);
 835        blk_status_t status = BLK_STS_IOERR;
 836        char b[BDEVNAME_SIZE];
 837
 838        might_sleep();
 839
 840        q = bio->bi_disk->queue;
 841        if (unlikely(!q)) {
 842                printk(KERN_ERR
 843                       "generic_make_request: Trying to access "
 844                        "nonexistent block-device %s (%Lu)\n",
 845                        bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
 846                goto end_io;
 847        }
 848
 849        /*
 850         * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 851         * if queue is not a request based queue.
 852         */
 853        if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
 854                goto not_supported;
 855
 856        if (should_fail_bio(bio))
 857                goto end_io;
 858
 859        if (bio->bi_partno) {
 860                if (unlikely(blk_partition_remap(bio)))
 861                        goto end_io;
 862        } else {
 863                if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
 864                        goto end_io;
 865                if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
 866                        goto end_io;
 867        }
 868
 869        /*
 870         * Filter flush bio's early so that make_request based
 871         * drivers without flush support don't have to worry
 872         * about them.
 873         */
 874        if (op_is_flush(bio->bi_opf) &&
 875            !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 876                bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 877                if (!nr_sectors) {
 878                        status = BLK_STS_OK;
 879                        goto end_io;
 880                }
 881        }
 882
 883        if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 884                bio->bi_opf &= ~REQ_HIPRI;
 885
 886        switch (bio_op(bio)) {
 887        case REQ_OP_DISCARD:
 888                if (!blk_queue_discard(q))
 889                        goto not_supported;
 890                break;
 891        case REQ_OP_SECURE_ERASE:
 892                if (!blk_queue_secure_erase(q))
 893                        goto not_supported;
 894                break;
 895        case REQ_OP_WRITE_SAME:
 896                if (!q->limits.max_write_same_sectors)
 897                        goto not_supported;
 898                break;
 899        case REQ_OP_ZONE_RESET:
 900                if (!blk_queue_is_zoned(q))
 901                        goto not_supported;
 902                break;
 903        case REQ_OP_WRITE_ZEROES:
 904                if (!q->limits.max_write_zeroes_sectors)
 905                        goto not_supported;
 906                break;
 907        default:
 908                break;
 909        }
 910
 911        /*
 912         * Various block parts want %current->io_context and lazy ioc
 913         * allocation ends up trading a lot of pain for a small amount of
 914         * memory.  Just allocate it upfront.  This may fail and block
 915         * layer knows how to live with it.
 916         */
 917        create_io_context(GFP_ATOMIC, q->node);
 918
 919        if (!blkcg_bio_issue_check(q, bio))
 920                return false;
 921
 922        if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 923                trace_block_bio_queue(q, bio);
 924                /* Now that enqueuing has been traced, we need to trace
 925                 * completion as well.
 926                 */
 927                bio_set_flag(bio, BIO_TRACE_COMPLETION);
 928        }
 929        return true;
 930
 931not_supported:
 932        status = BLK_STS_NOTSUPP;
 933end_io:
 934        bio->bi_status = status;
 935        bio_endio(bio);
 936        return false;
 937}
 938
 939/**
 940 * generic_make_request - hand a buffer to its device driver for I/O
 941 * @bio:  The bio describing the location in memory and on the device.
 942 *
 943 * generic_make_request() is used to make I/O requests of block
 944 * devices. It is passed a &struct bio, which describes the I/O that needs
 945 * to be done.
 946 *
 947 * generic_make_request() does not return any status.  The
 948 * success/failure status of the request, along with notification of
 949 * completion, is delivered asynchronously through the bio->bi_end_io
 950 * function described (one day) else where.
 951 *
 952 * The caller of generic_make_request must make sure that bi_io_vec
 953 * are set to describe the memory buffer, and that bi_dev and bi_sector are
 954 * set to describe the device address, and the
 955 * bi_end_io and optionally bi_private are set to describe how
 956 * completion notification should be signaled.
 957 *
 958 * generic_make_request and the drivers it calls may use bi_next if this
 959 * bio happens to be merged with someone else, and may resubmit the bio to
 960 * a lower device by calling into generic_make_request recursively, which
 961 * means the bio should NOT be touched after the call to ->make_request_fn.
 962 */
 963blk_qc_t generic_make_request(struct bio *bio)
 964{
 965        /*
 966         * bio_list_on_stack[0] contains bios submitted by the current
 967         * make_request_fn.
 968         * bio_list_on_stack[1] contains bios that were submitted before
 969         * the current make_request_fn, but that haven't been processed
 970         * yet.
 971         */
 972        struct bio_list bio_list_on_stack[2];
 973        blk_qc_t ret = BLK_QC_T_NONE;
 974
 975        if (!generic_make_request_checks(bio))
 976                goto out;
 977
 978        /*
 979         * We only want one ->make_request_fn to be active at a time, else
 980         * stack usage with stacked devices could be a problem.  So use
 981         * current->bio_list to keep a list of requests submited by a
 982         * make_request_fn function.  current->bio_list is also used as a
 983         * flag to say if generic_make_request is currently active in this
 984         * task or not.  If it is NULL, then no make_request is active.  If
 985         * it is non-NULL, then a make_request is active, and new requests
 986         * should be added at the tail
 987         */
 988        if (current->bio_list) {
 989                bio_list_add(&current->bio_list[0], bio);
 990                goto out;
 991        }
 992
 993        /* following loop may be a bit non-obvious, and so deserves some
 994         * explanation.
 995         * Before entering the loop, bio->bi_next is NULL (as all callers
 996         * ensure that) so we have a list with a single bio.
 997         * We pretend that we have just taken it off a longer list, so
 998         * we assign bio_list to a pointer to the bio_list_on_stack,
 999         * thus initialising the bio_list of new bios to be
1000         * added.  ->make_request() may indeed add some more bios
1001         * through a recursive call to generic_make_request.  If it
1002         * did, we find a non-NULL value in bio_list and re-enter the loop
1003         * from the top.  In this case we really did just take the bio
1004         * of the top of the list (no pretending) and so remove it from
1005         * bio_list, and call into ->make_request() again.
1006         */
1007        BUG_ON(bio->bi_next);
1008        bio_list_init(&bio_list_on_stack[0]);
1009        current->bio_list = bio_list_on_stack;
1010        do {
1011                struct request_queue *q = bio->bi_disk->queue;
1012                blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1013                        BLK_MQ_REQ_NOWAIT : 0;
1014
1015                if (likely(blk_queue_enter(q, flags) == 0)) {
1016                        struct bio_list lower, same;
1017
1018                        /* Create a fresh bio_list for all subordinate requests */
1019                        bio_list_on_stack[1] = bio_list_on_stack[0];
1020                        bio_list_init(&bio_list_on_stack[0]);
1021                        ret = q->make_request_fn(q, bio);
1022
1023                        blk_queue_exit(q);
1024
1025                        /* sort new bios into those for a lower level
1026                         * and those for the same level
1027                         */
1028                        bio_list_init(&lower);
1029                        bio_list_init(&same);
1030                        while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1031                                if (q == bio->bi_disk->queue)
1032                                        bio_list_add(&same, bio);
1033                                else
1034                                        bio_list_add(&lower, bio);
1035                        /* now assemble so we handle the lowest level first */
1036                        bio_list_merge(&bio_list_on_stack[0], &lower);
1037                        bio_list_merge(&bio_list_on_stack[0], &same);
1038                        bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1039                } else {
1040                        if (unlikely(!blk_queue_dying(q) &&
1041                                        (bio->bi_opf & REQ_NOWAIT)))
1042                                bio_wouldblock_error(bio);
1043                        else
1044                                bio_io_error(bio);
1045                }
1046                bio = bio_list_pop(&bio_list_on_stack[0]);
1047        } while (bio);
1048        current->bio_list = NULL; /* deactivate */
1049
1050out:
1051        return ret;
1052}
1053EXPORT_SYMBOL(generic_make_request);
1054
1055/**
1056 * direct_make_request - hand a buffer directly to its device driver for I/O
1057 * @bio:  The bio describing the location in memory and on the device.
1058 *
1059 * This function behaves like generic_make_request(), but does not protect
1060 * against recursion.  Must only be used if the called driver is known
1061 * to not call generic_make_request (or direct_make_request) again from
1062 * its make_request function.  (Calling direct_make_request again from
1063 * a workqueue is perfectly fine as that doesn't recurse).
1064 */
1065blk_qc_t direct_make_request(struct bio *bio)
1066{
1067        struct request_queue *q = bio->bi_disk->queue;
1068        bool nowait = bio->bi_opf & REQ_NOWAIT;
1069        blk_qc_t ret;
1070
1071        if (!generic_make_request_checks(bio))
1072                return BLK_QC_T_NONE;
1073
1074        if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1075                if (nowait && !blk_queue_dying(q))
1076                        bio->bi_status = BLK_STS_AGAIN;
1077                else
1078                        bio->bi_status = BLK_STS_IOERR;
1079                bio_endio(bio);
1080                return BLK_QC_T_NONE;
1081        }
1082
1083        ret = q->make_request_fn(q, bio);
1084        blk_queue_exit(q);
1085        return ret;
1086}
1087EXPORT_SYMBOL_GPL(direct_make_request);
1088
1089/**
1090 * submit_bio - submit a bio to the block device layer for I/O
1091 * @bio: The &struct bio which describes the I/O
1092 *
1093 * submit_bio() is very similar in purpose to generic_make_request(), and
1094 * uses that function to do most of the work. Both are fairly rough
1095 * interfaces; @bio must be presetup and ready for I/O.
1096 *
1097 */
1098blk_qc_t submit_bio(struct bio *bio)
1099{
1100        /*
1101         * If it's a regular read/write or a barrier with data attached,
1102         * go through the normal accounting stuff before submission.
1103         */
1104        if (bio_has_data(bio)) {
1105                unsigned int count;
1106
1107                if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1108                        count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1109                else
1110                        count = bio_sectors(bio);
1111
1112                if (op_is_write(bio_op(bio))) {
1113                        count_vm_events(PGPGOUT, count);
1114                } else {
1115                        task_io_account_read(bio->bi_iter.bi_size);
1116                        count_vm_events(PGPGIN, count);
1117                }
1118
1119                if (unlikely(block_dump)) {
1120                        char b[BDEVNAME_SIZE];
1121                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1122                        current->comm, task_pid_nr(current),
1123                                op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1124                                (unsigned long long)bio->bi_iter.bi_sector,
1125                                bio_devname(bio, b), count);
1126                }
1127        }
1128
1129        return generic_make_request(bio);
1130}
1131EXPORT_SYMBOL(submit_bio);
1132
1133/**
1134 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1135 *                              for new the queue limits
1136 * @q:  the queue
1137 * @rq: the request being checked
1138 *
1139 * Description:
1140 *    @rq may have been made based on weaker limitations of upper-level queues
1141 *    in request stacking drivers, and it may violate the limitation of @q.
1142 *    Since the block layer and the underlying device driver trust @rq
1143 *    after it is inserted to @q, it should be checked against @q before
1144 *    the insertion using this generic function.
1145 *
1146 *    Request stacking drivers like request-based dm may change the queue
1147 *    limits when retrying requests on other queues. Those requests need
1148 *    to be checked against the new queue limits again during dispatch.
1149 */
1150static int blk_cloned_rq_check_limits(struct request_queue *q,
1151                                      struct request *rq)
1152{
1153        if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1154                printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1155                        __func__, blk_rq_sectors(rq),
1156                        blk_queue_get_max_sectors(q, req_op(rq)));
1157                return -EIO;
1158        }
1159
1160        /*
1161         * queue's settings related to segment counting like q->bounce_pfn
1162         * may differ from that of other stacking queues.
1163         * Recalculate it to check the request correctly on this queue's
1164         * limitation.
1165         */
1166        blk_recalc_rq_segments(rq);
1167        if (rq->nr_phys_segments > queue_max_segments(q)) {
1168                printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1169                        __func__, rq->nr_phys_segments, queue_max_segments(q));
1170                return -EIO;
1171        }
1172
1173        return 0;
1174}
1175
1176/**
1177 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1178 * @q:  the queue to submit the request
1179 * @rq: the request being queued
1180 */
1181blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1182{
1183        if (blk_cloned_rq_check_limits(q, rq))
1184                return BLK_STS_IOERR;
1185
1186        if (rq->rq_disk &&
1187            should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1188                return BLK_STS_IOERR;
1189
1190        if (blk_queue_io_stat(q))
1191                blk_account_io_start(rq, true);
1192
1193        /*
1194         * Since we have a scheduler attached on the top device,
1195         * bypass a potential scheduler on the bottom device for
1196         * insert.
1197         */
1198        return blk_mq_request_issue_directly(rq, true);
1199}
1200EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1201
1202/**
1203 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1204 * @rq: request to examine
1205 *
1206 * Description:
1207 *     A request could be merge of IOs which require different failure
1208 *     handling.  This function determines the number of bytes which
1209 *     can be failed from the beginning of the request without
1210 *     crossing into area which need to be retried further.
1211 *
1212 * Return:
1213 *     The number of bytes to fail.
1214 */
1215unsigned int blk_rq_err_bytes(const struct request *rq)
1216{
1217        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1218        unsigned int bytes = 0;
1219        struct bio *bio;
1220
1221        if (!(rq->rq_flags & RQF_MIXED_MERGE))
1222                return blk_rq_bytes(rq);
1223
1224        /*
1225         * Currently the only 'mixing' which can happen is between
1226         * different fastfail types.  We can safely fail portions
1227         * which have all the failfast bits that the first one has -
1228         * the ones which are at least as eager to fail as the first
1229         * one.
1230         */
1231        for (bio = rq->bio; bio; bio = bio->bi_next) {
1232                if ((bio->bi_opf & ff) != ff)
1233                        break;
1234                bytes += bio->bi_iter.bi_size;
1235        }
1236
1237        /* this could lead to infinite loop */
1238        BUG_ON(blk_rq_bytes(rq) && !bytes);
1239        return bytes;
1240}
1241EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1242
1243void blk_account_io_completion(struct request *req, unsigned int bytes)
1244{
1245        if (blk_do_io_stat(req)) {
1246                const int sgrp = op_stat_group(req_op(req));
1247                struct hd_struct *part;
1248
1249                part_stat_lock();
1250                part = req->part;
1251                part_stat_add(part, sectors[sgrp], bytes >> 9);
1252                part_stat_unlock();
1253        }
1254}
1255
1256void blk_account_io_done(struct request *req, u64 now)
1257{
1258        /*
1259         * Account IO completion.  flush_rq isn't accounted as a
1260         * normal IO on queueing nor completion.  Accounting the
1261         * containing request is enough.
1262         */
1263        if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1264                const int sgrp = op_stat_group(req_op(req));
1265                struct hd_struct *part;
1266
1267                part_stat_lock();
1268                part = req->part;
1269
1270                update_io_ticks(part, jiffies);
1271                part_stat_inc(part, ios[sgrp]);
1272                part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1273                part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1274                part_dec_in_flight(req->q, part, rq_data_dir(req));
1275
1276                hd_struct_put(part);
1277                part_stat_unlock();
1278        }
1279}
1280
1281void blk_account_io_start(struct request *rq, bool new_io)
1282{
1283        struct hd_struct *part;
1284        int rw = rq_data_dir(rq);
1285
1286        if (!blk_do_io_stat(rq))
1287                return;
1288
1289        part_stat_lock();
1290
1291        if (!new_io) {
1292                part = rq->part;
1293                part_stat_inc(part, merges[rw]);
1294        } else {
1295                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1296                if (!hd_struct_try_get(part)) {
1297                        /*
1298                         * The partition is already being removed,
1299                         * the request will be accounted on the disk only
1300                         *
1301                         * We take a reference on disk->part0 although that
1302                         * partition will never be deleted, so we can treat
1303                         * it as any other partition.
1304                         */
1305                        part = &rq->rq_disk->part0;
1306                        hd_struct_get(part);
1307                }
1308                part_inc_in_flight(rq->q, part, rw);
1309                rq->part = part;
1310        }
1311
1312        update_io_ticks(part, jiffies);
1313
1314        part_stat_unlock();
1315}
1316
1317/*
1318 * Steal bios from a request and add them to a bio list.
1319 * The request must not have been partially completed before.
1320 */
1321void blk_steal_bios(struct bio_list *list, struct request *rq)
1322{
1323        if (rq->bio) {
1324                if (list->tail)
1325                        list->tail->bi_next = rq->bio;
1326                else
1327                        list->head = rq->bio;
1328                list->tail = rq->biotail;
1329
1330                rq->bio = NULL;
1331                rq->biotail = NULL;
1332        }
1333
1334        rq->__data_len = 0;
1335}
1336EXPORT_SYMBOL_GPL(blk_steal_bios);
1337
1338/**
1339 * blk_update_request - Special helper function for request stacking drivers
1340 * @req:      the request being processed
1341 * @error:    block status code
1342 * @nr_bytes: number of bytes to complete @req
1343 *
1344 * Description:
1345 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1346 *     the request structure even if @req doesn't have leftover.
1347 *     If @req has leftover, sets it up for the next range of segments.
1348 *
1349 *     This special helper function is only for request stacking drivers
1350 *     (e.g. request-based dm) so that they can handle partial completion.
1351 *     Actual device drivers should use blk_end_request instead.
1352 *
1353 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1354 *     %false return from this function.
1355 *
1356 * Note:
1357 *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1358 *      blk_rq_bytes() and in blk_update_request().
1359 *
1360 * Return:
1361 *     %false - this request doesn't have any more data
1362 *     %true  - this request has more data
1363 **/
1364bool blk_update_request(struct request *req, blk_status_t error,
1365                unsigned int nr_bytes)
1366{
1367        int total_bytes;
1368
1369        trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1370
1371        if (!req->bio)
1372                return false;
1373
1374        if (unlikely(error && !blk_rq_is_passthrough(req) &&
1375                     !(req->rq_flags & RQF_QUIET)))
1376                print_req_error(req, error);
1377
1378        blk_account_io_completion(req, nr_bytes);
1379
1380        total_bytes = 0;
1381        while (req->bio) {
1382                struct bio *bio = req->bio;
1383                unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1384
1385                if (bio_bytes == bio->bi_iter.bi_size)
1386                        req->bio = bio->bi_next;
1387
1388                /* Completion has already been traced */
1389                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1390                req_bio_endio(req, bio, bio_bytes, error);
1391
1392                total_bytes += bio_bytes;
1393                nr_bytes -= bio_bytes;
1394
1395                if (!nr_bytes)
1396                        break;
1397        }
1398
1399        /*
1400         * completely done
1401         */
1402        if (!req->bio) {
1403                /*
1404                 * Reset counters so that the request stacking driver
1405                 * can find how many bytes remain in the request
1406                 * later.
1407                 */
1408                req->__data_len = 0;
1409                return false;
1410        }
1411
1412        req->__data_len -= total_bytes;
1413
1414        /* update sector only for requests with clear definition of sector */
1415        if (!blk_rq_is_passthrough(req))
1416                req->__sector += total_bytes >> 9;
1417
1418        /* mixed attributes always follow the first bio */
1419        if (req->rq_flags & RQF_MIXED_MERGE) {
1420                req->cmd_flags &= ~REQ_FAILFAST_MASK;
1421                req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1422        }
1423
1424        if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1425                /*
1426                 * If total number of sectors is less than the first segment
1427                 * size, something has gone terribly wrong.
1428                 */
1429                if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1430                        blk_dump_rq_flags(req, "request botched");
1431                        req->__data_len = blk_rq_cur_bytes(req);
1432                }
1433
1434                /* recalculate the number of segments */
1435                blk_recalc_rq_segments(req);
1436        }
1437
1438        return true;
1439}
1440EXPORT_SYMBOL_GPL(blk_update_request);
1441
1442void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1443                     struct bio *bio)
1444{
1445        if (bio_has_data(bio))
1446                rq->nr_phys_segments = bio_phys_segments(q, bio);
1447        else if (bio_op(bio) == REQ_OP_DISCARD)
1448                rq->nr_phys_segments = 1;
1449
1450        rq->__data_len = bio->bi_iter.bi_size;
1451        rq->bio = rq->biotail = bio;
1452
1453        if (bio->bi_disk)
1454                rq->rq_disk = bio->bi_disk;
1455}
1456
1457#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1458/**
1459 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1460 * @rq: the request to be flushed
1461 *
1462 * Description:
1463 *     Flush all pages in @rq.
1464 */
1465void rq_flush_dcache_pages(struct request *rq)
1466{
1467        struct req_iterator iter;
1468        struct bio_vec bvec;
1469
1470        rq_for_each_segment(bvec, rq, iter)
1471                flush_dcache_page(bvec.bv_page);
1472}
1473EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1474#endif
1475
1476/**
1477 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1478 * @q : the queue of the device being checked
1479 *
1480 * Description:
1481 *    Check if underlying low-level drivers of a device are busy.
1482 *    If the drivers want to export their busy state, they must set own
1483 *    exporting function using blk_queue_lld_busy() first.
1484 *
1485 *    Basically, this function is used only by request stacking drivers
1486 *    to stop dispatching requests to underlying devices when underlying
1487 *    devices are busy.  This behavior helps more I/O merging on the queue
1488 *    of the request stacking driver and prevents I/O throughput regression
1489 *    on burst I/O load.
1490 *
1491 * Return:
1492 *    0 - Not busy (The request stacking driver should dispatch request)
1493 *    1 - Busy (The request stacking driver should stop dispatching request)
1494 */
1495int blk_lld_busy(struct request_queue *q)
1496{
1497        if (queue_is_mq(q) && q->mq_ops->busy)
1498                return q->mq_ops->busy(q);
1499
1500        return 0;
1501}
1502EXPORT_SYMBOL_GPL(blk_lld_busy);
1503
1504/**
1505 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1506 * @rq: the clone request to be cleaned up
1507 *
1508 * Description:
1509 *     Free all bios in @rq for a cloned request.
1510 */
1511void blk_rq_unprep_clone(struct request *rq)
1512{
1513        struct bio *bio;
1514
1515        while ((bio = rq->bio) != NULL) {
1516                rq->bio = bio->bi_next;
1517
1518                bio_put(bio);
1519        }
1520}
1521EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1522
1523/*
1524 * Copy attributes of the original request to the clone request.
1525 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1526 */
1527static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1528{
1529        dst->__sector = blk_rq_pos(src);
1530        dst->__data_len = blk_rq_bytes(src);
1531        if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1532                dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1533                dst->special_vec = src->special_vec;
1534        }
1535        dst->nr_phys_segments = src->nr_phys_segments;
1536        dst->ioprio = src->ioprio;
1537        dst->extra_len = src->extra_len;
1538}
1539
1540/**
1541 * blk_rq_prep_clone - Helper function to setup clone request
1542 * @rq: the request to be setup
1543 * @rq_src: original request to be cloned
1544 * @bs: bio_set that bios for clone are allocated from
1545 * @gfp_mask: memory allocation mask for bio
1546 * @bio_ctr: setup function to be called for each clone bio.
1547 *           Returns %0 for success, non %0 for failure.
1548 * @data: private data to be passed to @bio_ctr
1549 *
1550 * Description:
1551 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1552 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1553 *     are not copied, and copying such parts is the caller's responsibility.
1554 *     Also, pages which the original bios are pointing to are not copied
1555 *     and the cloned bios just point same pages.
1556 *     So cloned bios must be completed before original bios, which means
1557 *     the caller must complete @rq before @rq_src.
1558 */
1559int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1560                      struct bio_set *bs, gfp_t gfp_mask,
1561                      int (*bio_ctr)(struct bio *, struct bio *, void *),
1562                      void *data)
1563{
1564        struct bio *bio, *bio_src;
1565
1566        if (!bs)
1567                bs = &fs_bio_set;
1568
1569        __rq_for_each_bio(bio_src, rq_src) {
1570                bio = bio_clone_fast(bio_src, gfp_mask, bs);
1571                if (!bio)
1572                        goto free_and_out;
1573
1574                if (bio_ctr && bio_ctr(bio, bio_src, data))
1575                        goto free_and_out;
1576
1577                if (rq->bio) {
1578                        rq->biotail->bi_next = bio;
1579                        rq->biotail = bio;
1580                } else
1581                        rq->bio = rq->biotail = bio;
1582        }
1583
1584        __blk_rq_prep_clone(rq, rq_src);
1585
1586        return 0;
1587
1588free_and_out:
1589        if (bio)
1590                bio_put(bio);
1591        blk_rq_unprep_clone(rq);
1592
1593        return -ENOMEM;
1594}
1595EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1596
1597int kblockd_schedule_work(struct work_struct *work)
1598{
1599        return queue_work(kblockd_workqueue, work);
1600}
1601EXPORT_SYMBOL(kblockd_schedule_work);
1602
1603int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1604{
1605        return queue_work_on(cpu, kblockd_workqueue, work);
1606}
1607EXPORT_SYMBOL(kblockd_schedule_work_on);
1608
1609int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1610                                unsigned long delay)
1611{
1612        return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1613}
1614EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1615
1616/**
1617 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1618 * @plug:       The &struct blk_plug that needs to be initialized
1619 *
1620 * Description:
1621 *   blk_start_plug() indicates to the block layer an intent by the caller
1622 *   to submit multiple I/O requests in a batch.  The block layer may use
1623 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1624 *   is called.  However, the block layer may choose to submit requests
1625 *   before a call to blk_finish_plug() if the number of queued I/Os
1626 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1627 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1628 *   the task schedules (see below).
1629 *
1630 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1631 *   pending I/O should the task end up blocking between blk_start_plug() and
1632 *   blk_finish_plug(). This is important from a performance perspective, but
1633 *   also ensures that we don't deadlock. For instance, if the task is blocking
1634 *   for a memory allocation, memory reclaim could end up wanting to free a
1635 *   page belonging to that request that is currently residing in our private
1636 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1637 *   this kind of deadlock.
1638 */
1639void blk_start_plug(struct blk_plug *plug)
1640{
1641        struct task_struct *tsk = current;
1642
1643        /*
1644         * If this is a nested plug, don't actually assign it.
1645         */
1646        if (tsk->plug)
1647                return;
1648
1649        INIT_LIST_HEAD(&plug->mq_list);
1650        INIT_LIST_HEAD(&plug->cb_list);
1651        plug->rq_count = 0;
1652        plug->multiple_queues = false;
1653
1654        /*
1655         * Store ordering should not be needed here, since a potential
1656         * preempt will imply a full memory barrier
1657         */
1658        tsk->plug = plug;
1659}
1660EXPORT_SYMBOL(blk_start_plug);
1661
1662static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1663{
1664        LIST_HEAD(callbacks);
1665
1666        while (!list_empty(&plug->cb_list)) {
1667                list_splice_init(&plug->cb_list, &callbacks);
1668
1669                while (!list_empty(&callbacks)) {
1670                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
1671                                                          struct blk_plug_cb,
1672                                                          list);
1673                        list_del(&cb->list);
1674                        cb->callback(cb, from_schedule);
1675                }
1676        }
1677}
1678
1679struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1680                                      int size)
1681{
1682        struct blk_plug *plug = current->plug;
1683        struct blk_plug_cb *cb;
1684
1685        if (!plug)
1686                return NULL;
1687
1688        list_for_each_entry(cb, &plug->cb_list, list)
1689                if (cb->callback == unplug && cb->data == data)
1690                        return cb;
1691
1692        /* Not currently on the callback list */
1693        BUG_ON(size < sizeof(*cb));
1694        cb = kzalloc(size, GFP_ATOMIC);
1695        if (cb) {
1696                cb->data = data;
1697                cb->callback = unplug;
1698                list_add(&cb->list, &plug->cb_list);
1699        }
1700        return cb;
1701}
1702EXPORT_SYMBOL(blk_check_plugged);
1703
1704void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1705{
1706        flush_plug_callbacks(plug, from_schedule);
1707
1708        if (!list_empty(&plug->mq_list))
1709                blk_mq_flush_plug_list(plug, from_schedule);
1710}
1711
1712/**
1713 * blk_finish_plug - mark the end of a batch of submitted I/O
1714 * @plug:       The &struct blk_plug passed to blk_start_plug()
1715 *
1716 * Description:
1717 * Indicate that a batch of I/O submissions is complete.  This function
1718 * must be paired with an initial call to blk_start_plug().  The intent
1719 * is to allow the block layer to optimize I/O submission.  See the
1720 * documentation for blk_start_plug() for more information.
1721 */
1722void blk_finish_plug(struct blk_plug *plug)
1723{
1724        if (plug != current->plug)
1725                return;
1726        blk_flush_plug_list(plug, false);
1727
1728        current->plug = NULL;
1729}
1730EXPORT_SYMBOL(blk_finish_plug);
1731
1732int __init blk_dev_init(void)
1733{
1734        BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1735        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1736                        FIELD_SIZEOF(struct request, cmd_flags));
1737        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1738                        FIELD_SIZEOF(struct bio, bi_opf));
1739
1740        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1741        kblockd_workqueue = alloc_workqueue("kblockd",
1742                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1743        if (!kblockd_workqueue)
1744                panic("Failed to create kblockd\n");
1745
1746        blk_requestq_cachep = kmem_cache_create("request_queue",
1747                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1748
1749#ifdef CONFIG_DEBUG_FS
1750        blk_debugfs_root = debugfs_create_dir("block", NULL);
1751#endif
1752
1753        return 0;
1754}
1755