linux/block/blk-mq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29
  30#include <trace/events/block.h>
  31
  32#include <linux/blk-mq.h>
  33#include "blk.h"
  34#include "blk-mq.h"
  35#include "blk-mq-debugfs.h"
  36#include "blk-mq-tag.h"
  37#include "blk-pm.h"
  38#include "blk-stat.h"
  39#include "blk-mq-sched.h"
  40#include "blk-rq-qos.h"
  41
  42static void blk_mq_poll_stats_start(struct request_queue *q);
  43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  44
  45static int blk_mq_poll_stats_bkt(const struct request *rq)
  46{
  47        int ddir, bytes, bucket;
  48
  49        ddir = rq_data_dir(rq);
  50        bytes = blk_rq_bytes(rq);
  51
  52        bucket = ddir + 2*(ilog2(bytes) - 9);
  53
  54        if (bucket < 0)
  55                return -1;
  56        else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  57                return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  58
  59        return bucket;
  60}
  61
  62/*
  63 * Check if any of the ctx, dispatch list or elevator
  64 * have pending work in this hardware queue.
  65 */
  66static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  67{
  68        return !list_empty_careful(&hctx->dispatch) ||
  69                sbitmap_any_bit_set(&hctx->ctx_map) ||
  70                        blk_mq_sched_has_work(hctx);
  71}
  72
  73/*
  74 * Mark this ctx as having pending work in this hardware queue
  75 */
  76static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  77                                     struct blk_mq_ctx *ctx)
  78{
  79        const int bit = ctx->index_hw[hctx->type];
  80
  81        if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  82                sbitmap_set_bit(&hctx->ctx_map, bit);
  83}
  84
  85static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  86                                      struct blk_mq_ctx *ctx)
  87{
  88        const int bit = ctx->index_hw[hctx->type];
  89
  90        sbitmap_clear_bit(&hctx->ctx_map, bit);
  91}
  92
  93struct mq_inflight {
  94        struct hd_struct *part;
  95        unsigned int *inflight;
  96};
  97
  98static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
  99                                  struct request *rq, void *priv,
 100                                  bool reserved)
 101{
 102        struct mq_inflight *mi = priv;
 103
 104        /*
 105         * index[0] counts the specific partition that was asked for.
 106         */
 107        if (rq->part == mi->part)
 108                mi->inflight[0]++;
 109
 110        return true;
 111}
 112
 113unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 114{
 115        unsigned inflight[2];
 116        struct mq_inflight mi = { .part = part, .inflight = inflight, };
 117
 118        inflight[0] = inflight[1] = 0;
 119        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 120
 121        return inflight[0];
 122}
 123
 124static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 125                                     struct request *rq, void *priv,
 126                                     bool reserved)
 127{
 128        struct mq_inflight *mi = priv;
 129
 130        if (rq->part == mi->part)
 131                mi->inflight[rq_data_dir(rq)]++;
 132
 133        return true;
 134}
 135
 136void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 137                         unsigned int inflight[2])
 138{
 139        struct mq_inflight mi = { .part = part, .inflight = inflight, };
 140
 141        inflight[0] = inflight[1] = 0;
 142        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 143}
 144
 145void blk_freeze_queue_start(struct request_queue *q)
 146{
 147        mutex_lock(&q->mq_freeze_lock);
 148        if (++q->mq_freeze_depth == 1) {
 149                percpu_ref_kill(&q->q_usage_counter);
 150                mutex_unlock(&q->mq_freeze_lock);
 151                if (queue_is_mq(q))
 152                        blk_mq_run_hw_queues(q, false);
 153        } else {
 154                mutex_unlock(&q->mq_freeze_lock);
 155        }
 156}
 157EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 158
 159void blk_mq_freeze_queue_wait(struct request_queue *q)
 160{
 161        wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 162}
 163EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 164
 165int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 166                                     unsigned long timeout)
 167{
 168        return wait_event_timeout(q->mq_freeze_wq,
 169                                        percpu_ref_is_zero(&q->q_usage_counter),
 170                                        timeout);
 171}
 172EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 173
 174/*
 175 * Guarantee no request is in use, so we can change any data structure of
 176 * the queue afterward.
 177 */
 178void blk_freeze_queue(struct request_queue *q)
 179{
 180        /*
 181         * In the !blk_mq case we are only calling this to kill the
 182         * q_usage_counter, otherwise this increases the freeze depth
 183         * and waits for it to return to zero.  For this reason there is
 184         * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 185         * exported to drivers as the only user for unfreeze is blk_mq.
 186         */
 187        blk_freeze_queue_start(q);
 188        blk_mq_freeze_queue_wait(q);
 189}
 190
 191void blk_mq_freeze_queue(struct request_queue *q)
 192{
 193        /*
 194         * ...just an alias to keep freeze and unfreeze actions balanced
 195         * in the blk_mq_* namespace
 196         */
 197        blk_freeze_queue(q);
 198}
 199EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 200
 201void blk_mq_unfreeze_queue(struct request_queue *q)
 202{
 203        mutex_lock(&q->mq_freeze_lock);
 204        q->mq_freeze_depth--;
 205        WARN_ON_ONCE(q->mq_freeze_depth < 0);
 206        if (!q->mq_freeze_depth) {
 207                percpu_ref_resurrect(&q->q_usage_counter);
 208                wake_up_all(&q->mq_freeze_wq);
 209        }
 210        mutex_unlock(&q->mq_freeze_lock);
 211}
 212EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 213
 214/*
 215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 216 * mpt3sas driver such that this function can be removed.
 217 */
 218void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 219{
 220        blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 221}
 222EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 223
 224/**
 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 226 * @q: request queue.
 227 *
 228 * Note: this function does not prevent that the struct request end_io()
 229 * callback function is invoked. Once this function is returned, we make
 230 * sure no dispatch can happen until the queue is unquiesced via
 231 * blk_mq_unquiesce_queue().
 232 */
 233void blk_mq_quiesce_queue(struct request_queue *q)
 234{
 235        struct blk_mq_hw_ctx *hctx;
 236        unsigned int i;
 237        bool rcu = false;
 238
 239        blk_mq_quiesce_queue_nowait(q);
 240
 241        queue_for_each_hw_ctx(q, hctx, i) {
 242                if (hctx->flags & BLK_MQ_F_BLOCKING)
 243                        synchronize_srcu(hctx->srcu);
 244                else
 245                        rcu = true;
 246        }
 247        if (rcu)
 248                synchronize_rcu();
 249}
 250EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 251
 252/*
 253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 254 * @q: request queue.
 255 *
 256 * This function recovers queue into the state before quiescing
 257 * which is done by blk_mq_quiesce_queue.
 258 */
 259void blk_mq_unquiesce_queue(struct request_queue *q)
 260{
 261        blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 262
 263        /* dispatch requests which are inserted during quiescing */
 264        blk_mq_run_hw_queues(q, true);
 265}
 266EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 267
 268void blk_mq_wake_waiters(struct request_queue *q)
 269{
 270        struct blk_mq_hw_ctx *hctx;
 271        unsigned int i;
 272
 273        queue_for_each_hw_ctx(q, hctx, i)
 274                if (blk_mq_hw_queue_mapped(hctx))
 275                        blk_mq_tag_wakeup_all(hctx->tags, true);
 276}
 277
 278bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 279{
 280        return blk_mq_has_free_tags(hctx->tags);
 281}
 282EXPORT_SYMBOL(blk_mq_can_queue);
 283
 284/*
 285 * Only need start/end time stamping if we have stats enabled, or using
 286 * an IO scheduler.
 287 */
 288static inline bool blk_mq_need_time_stamp(struct request *rq)
 289{
 290        return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
 291}
 292
 293static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 294                unsigned int tag, unsigned int op)
 295{
 296        struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 297        struct request *rq = tags->static_rqs[tag];
 298        req_flags_t rq_flags = 0;
 299
 300        if (data->flags & BLK_MQ_REQ_INTERNAL) {
 301                rq->tag = -1;
 302                rq->internal_tag = tag;
 303        } else {
 304                if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
 305                        rq_flags = RQF_MQ_INFLIGHT;
 306                        atomic_inc(&data->hctx->nr_active);
 307                }
 308                rq->tag = tag;
 309                rq->internal_tag = -1;
 310                data->hctx->tags->rqs[rq->tag] = rq;
 311        }
 312
 313        /* csd/requeue_work/fifo_time is initialized before use */
 314        rq->q = data->q;
 315        rq->mq_ctx = data->ctx;
 316        rq->mq_hctx = data->hctx;
 317        rq->rq_flags = rq_flags;
 318        rq->cmd_flags = op;
 319        if (data->flags & BLK_MQ_REQ_PREEMPT)
 320                rq->rq_flags |= RQF_PREEMPT;
 321        if (blk_queue_io_stat(data->q))
 322                rq->rq_flags |= RQF_IO_STAT;
 323        INIT_LIST_HEAD(&rq->queuelist);
 324        INIT_HLIST_NODE(&rq->hash);
 325        RB_CLEAR_NODE(&rq->rb_node);
 326        rq->rq_disk = NULL;
 327        rq->part = NULL;
 328        if (blk_mq_need_time_stamp(rq))
 329                rq->start_time_ns = ktime_get_ns();
 330        else
 331                rq->start_time_ns = 0;
 332        rq->io_start_time_ns = 0;
 333        rq->nr_phys_segments = 0;
 334#if defined(CONFIG_BLK_DEV_INTEGRITY)
 335        rq->nr_integrity_segments = 0;
 336#endif
 337        /* tag was already set */
 338        rq->extra_len = 0;
 339        WRITE_ONCE(rq->deadline, 0);
 340
 341        rq->timeout = 0;
 342
 343        rq->end_io = NULL;
 344        rq->end_io_data = NULL;
 345
 346        data->ctx->rq_dispatched[op_is_sync(op)]++;
 347        refcount_set(&rq->ref, 1);
 348        return rq;
 349}
 350
 351static struct request *blk_mq_get_request(struct request_queue *q,
 352                                          struct bio *bio,
 353                                          struct blk_mq_alloc_data *data)
 354{
 355        struct elevator_queue *e = q->elevator;
 356        struct request *rq;
 357        unsigned int tag;
 358        bool put_ctx_on_error = false;
 359
 360        blk_queue_enter_live(q);
 361        data->q = q;
 362        if (likely(!data->ctx)) {
 363                data->ctx = blk_mq_get_ctx(q);
 364                put_ctx_on_error = true;
 365        }
 366        if (likely(!data->hctx))
 367                data->hctx = blk_mq_map_queue(q, data->cmd_flags,
 368                                                data->ctx);
 369        if (data->cmd_flags & REQ_NOWAIT)
 370                data->flags |= BLK_MQ_REQ_NOWAIT;
 371
 372        if (e) {
 373                data->flags |= BLK_MQ_REQ_INTERNAL;
 374
 375                /*
 376                 * Flush requests are special and go directly to the
 377                 * dispatch list. Don't include reserved tags in the
 378                 * limiting, as it isn't useful.
 379                 */
 380                if (!op_is_flush(data->cmd_flags) &&
 381                    e->type->ops.limit_depth &&
 382                    !(data->flags & BLK_MQ_REQ_RESERVED))
 383                        e->type->ops.limit_depth(data->cmd_flags, data);
 384        } else {
 385                blk_mq_tag_busy(data->hctx);
 386        }
 387
 388        tag = blk_mq_get_tag(data);
 389        if (tag == BLK_MQ_TAG_FAIL) {
 390                if (put_ctx_on_error) {
 391                        blk_mq_put_ctx(data->ctx);
 392                        data->ctx = NULL;
 393                }
 394                blk_queue_exit(q);
 395                return NULL;
 396        }
 397
 398        rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
 399        if (!op_is_flush(data->cmd_flags)) {
 400                rq->elv.icq = NULL;
 401                if (e && e->type->ops.prepare_request) {
 402                        if (e->type->icq_cache)
 403                                blk_mq_sched_assign_ioc(rq);
 404
 405                        e->type->ops.prepare_request(rq, bio);
 406                        rq->rq_flags |= RQF_ELVPRIV;
 407                }
 408        }
 409        data->hctx->queued++;
 410        return rq;
 411}
 412
 413struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 414                blk_mq_req_flags_t flags)
 415{
 416        struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 417        struct request *rq;
 418        int ret;
 419
 420        ret = blk_queue_enter(q, flags);
 421        if (ret)
 422                return ERR_PTR(ret);
 423
 424        rq = blk_mq_get_request(q, NULL, &alloc_data);
 425        blk_queue_exit(q);
 426
 427        if (!rq)
 428                return ERR_PTR(-EWOULDBLOCK);
 429
 430        blk_mq_put_ctx(alloc_data.ctx);
 431
 432        rq->__data_len = 0;
 433        rq->__sector = (sector_t) -1;
 434        rq->bio = rq->biotail = NULL;
 435        return rq;
 436}
 437EXPORT_SYMBOL(blk_mq_alloc_request);
 438
 439struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 440        unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 441{
 442        struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 443        struct request *rq;
 444        unsigned int cpu;
 445        int ret;
 446
 447        /*
 448         * If the tag allocator sleeps we could get an allocation for a
 449         * different hardware context.  No need to complicate the low level
 450         * allocator for this for the rare use case of a command tied to
 451         * a specific queue.
 452         */
 453        if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 454                return ERR_PTR(-EINVAL);
 455
 456        if (hctx_idx >= q->nr_hw_queues)
 457                return ERR_PTR(-EIO);
 458
 459        ret = blk_queue_enter(q, flags);
 460        if (ret)
 461                return ERR_PTR(ret);
 462
 463        /*
 464         * Check if the hardware context is actually mapped to anything.
 465         * If not tell the caller that it should skip this queue.
 466         */
 467        alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 468        if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 469                blk_queue_exit(q);
 470                return ERR_PTR(-EXDEV);
 471        }
 472        cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 473        alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 474
 475        rq = blk_mq_get_request(q, NULL, &alloc_data);
 476        blk_queue_exit(q);
 477
 478        if (!rq)
 479                return ERR_PTR(-EWOULDBLOCK);
 480
 481        return rq;
 482}
 483EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 484
 485static void __blk_mq_free_request(struct request *rq)
 486{
 487        struct request_queue *q = rq->q;
 488        struct blk_mq_ctx *ctx = rq->mq_ctx;
 489        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 490        const int sched_tag = rq->internal_tag;
 491
 492        blk_pm_mark_last_busy(rq);
 493        rq->mq_hctx = NULL;
 494        if (rq->tag != -1)
 495                blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 496        if (sched_tag != -1)
 497                blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 498        blk_mq_sched_restart(hctx);
 499        blk_queue_exit(q);
 500}
 501
 502void blk_mq_free_request(struct request *rq)
 503{
 504        struct request_queue *q = rq->q;
 505        struct elevator_queue *e = q->elevator;
 506        struct blk_mq_ctx *ctx = rq->mq_ctx;
 507        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 508
 509        if (rq->rq_flags & RQF_ELVPRIV) {
 510                if (e && e->type->ops.finish_request)
 511                        e->type->ops.finish_request(rq);
 512                if (rq->elv.icq) {
 513                        put_io_context(rq->elv.icq->ioc);
 514                        rq->elv.icq = NULL;
 515                }
 516        }
 517
 518        ctx->rq_completed[rq_is_sync(rq)]++;
 519        if (rq->rq_flags & RQF_MQ_INFLIGHT)
 520                atomic_dec(&hctx->nr_active);
 521
 522        if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 523                laptop_io_completion(q->backing_dev_info);
 524
 525        rq_qos_done(q, rq);
 526
 527        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 528        if (refcount_dec_and_test(&rq->ref))
 529                __blk_mq_free_request(rq);
 530}
 531EXPORT_SYMBOL_GPL(blk_mq_free_request);
 532
 533inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 534{
 535        u64 now = 0;
 536
 537        if (blk_mq_need_time_stamp(rq))
 538                now = ktime_get_ns();
 539
 540        if (rq->rq_flags & RQF_STATS) {
 541                blk_mq_poll_stats_start(rq->q);
 542                blk_stat_add(rq, now);
 543        }
 544
 545        if (rq->internal_tag != -1)
 546                blk_mq_sched_completed_request(rq, now);
 547
 548        blk_account_io_done(rq, now);
 549
 550        if (rq->end_io) {
 551                rq_qos_done(rq->q, rq);
 552                rq->end_io(rq, error);
 553        } else {
 554                blk_mq_free_request(rq);
 555        }
 556}
 557EXPORT_SYMBOL(__blk_mq_end_request);
 558
 559void blk_mq_end_request(struct request *rq, blk_status_t error)
 560{
 561        if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 562                BUG();
 563        __blk_mq_end_request(rq, error);
 564}
 565EXPORT_SYMBOL(blk_mq_end_request);
 566
 567static void __blk_mq_complete_request_remote(void *data)
 568{
 569        struct request *rq = data;
 570        struct request_queue *q = rq->q;
 571
 572        q->mq_ops->complete(rq);
 573}
 574
 575static void __blk_mq_complete_request(struct request *rq)
 576{
 577        struct blk_mq_ctx *ctx = rq->mq_ctx;
 578        struct request_queue *q = rq->q;
 579        bool shared = false;
 580        int cpu;
 581
 582        WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 583        /*
 584         * Most of single queue controllers, there is only one irq vector
 585         * for handling IO completion, and the only irq's affinity is set
 586         * as all possible CPUs. On most of ARCHs, this affinity means the
 587         * irq is handled on one specific CPU.
 588         *
 589         * So complete IO reqeust in softirq context in case of single queue
 590         * for not degrading IO performance by irqsoff latency.
 591         */
 592        if (q->nr_hw_queues == 1) {
 593                __blk_complete_request(rq);
 594                return;
 595        }
 596
 597        /*
 598         * For a polled request, always complete locallly, it's pointless
 599         * to redirect the completion.
 600         */
 601        if ((rq->cmd_flags & REQ_HIPRI) ||
 602            !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
 603                q->mq_ops->complete(rq);
 604                return;
 605        }
 606
 607        cpu = get_cpu();
 608        if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
 609                shared = cpus_share_cache(cpu, ctx->cpu);
 610
 611        if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 612                rq->csd.func = __blk_mq_complete_request_remote;
 613                rq->csd.info = rq;
 614                rq->csd.flags = 0;
 615                smp_call_function_single_async(ctx->cpu, &rq->csd);
 616        } else {
 617                q->mq_ops->complete(rq);
 618        }
 619        put_cpu();
 620}
 621
 622static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 623        __releases(hctx->srcu)
 624{
 625        if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 626                rcu_read_unlock();
 627        else
 628                srcu_read_unlock(hctx->srcu, srcu_idx);
 629}
 630
 631static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 632        __acquires(hctx->srcu)
 633{
 634        if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 635                /* shut up gcc false positive */
 636                *srcu_idx = 0;
 637                rcu_read_lock();
 638        } else
 639                *srcu_idx = srcu_read_lock(hctx->srcu);
 640}
 641
 642/**
 643 * blk_mq_complete_request - end I/O on a request
 644 * @rq:         the request being processed
 645 *
 646 * Description:
 647 *      Ends all I/O on a request. It does not handle partial completions.
 648 *      The actual completion happens out-of-order, through a IPI handler.
 649 **/
 650bool blk_mq_complete_request(struct request *rq)
 651{
 652        if (unlikely(blk_should_fake_timeout(rq->q)))
 653                return false;
 654        __blk_mq_complete_request(rq);
 655        return true;
 656}
 657EXPORT_SYMBOL(blk_mq_complete_request);
 658
 659void blk_mq_complete_request_sync(struct request *rq)
 660{
 661        WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 662        rq->q->mq_ops->complete(rq);
 663}
 664EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
 665
 666int blk_mq_request_started(struct request *rq)
 667{
 668        return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 669}
 670EXPORT_SYMBOL_GPL(blk_mq_request_started);
 671
 672void blk_mq_start_request(struct request *rq)
 673{
 674        struct request_queue *q = rq->q;
 675
 676        blk_mq_sched_started_request(rq);
 677
 678        trace_block_rq_issue(q, rq);
 679
 680        if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 681                rq->io_start_time_ns = ktime_get_ns();
 682#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 683                rq->throtl_size = blk_rq_sectors(rq);
 684#endif
 685                rq->rq_flags |= RQF_STATS;
 686                rq_qos_issue(q, rq);
 687        }
 688
 689        WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 690
 691        blk_add_timer(rq);
 692        WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 693
 694        if (q->dma_drain_size && blk_rq_bytes(rq)) {
 695                /*
 696                 * Make sure space for the drain appears.  We know we can do
 697                 * this because max_hw_segments has been adjusted to be one
 698                 * fewer than the device can handle.
 699                 */
 700                rq->nr_phys_segments++;
 701        }
 702}
 703EXPORT_SYMBOL(blk_mq_start_request);
 704
 705static void __blk_mq_requeue_request(struct request *rq)
 706{
 707        struct request_queue *q = rq->q;
 708
 709        blk_mq_put_driver_tag(rq);
 710
 711        trace_block_rq_requeue(q, rq);
 712        rq_qos_requeue(q, rq);
 713
 714        if (blk_mq_request_started(rq)) {
 715                WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 716                rq->rq_flags &= ~RQF_TIMED_OUT;
 717                if (q->dma_drain_size && blk_rq_bytes(rq))
 718                        rq->nr_phys_segments--;
 719        }
 720}
 721
 722void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 723{
 724        __blk_mq_requeue_request(rq);
 725
 726        /* this request will be re-inserted to io scheduler queue */
 727        blk_mq_sched_requeue_request(rq);
 728
 729        BUG_ON(!list_empty(&rq->queuelist));
 730        blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 731}
 732EXPORT_SYMBOL(blk_mq_requeue_request);
 733
 734static void blk_mq_requeue_work(struct work_struct *work)
 735{
 736        struct request_queue *q =
 737                container_of(work, struct request_queue, requeue_work.work);
 738        LIST_HEAD(rq_list);
 739        struct request *rq, *next;
 740
 741        spin_lock_irq(&q->requeue_lock);
 742        list_splice_init(&q->requeue_list, &rq_list);
 743        spin_unlock_irq(&q->requeue_lock);
 744
 745        list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 746                if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 747                        continue;
 748
 749                rq->rq_flags &= ~RQF_SOFTBARRIER;
 750                list_del_init(&rq->queuelist);
 751                /*
 752                 * If RQF_DONTPREP, rq has contained some driver specific
 753                 * data, so insert it to hctx dispatch list to avoid any
 754                 * merge.
 755                 */
 756                if (rq->rq_flags & RQF_DONTPREP)
 757                        blk_mq_request_bypass_insert(rq, false);
 758                else
 759                        blk_mq_sched_insert_request(rq, true, false, false);
 760        }
 761
 762        while (!list_empty(&rq_list)) {
 763                rq = list_entry(rq_list.next, struct request, queuelist);
 764                list_del_init(&rq->queuelist);
 765                blk_mq_sched_insert_request(rq, false, false, false);
 766        }
 767
 768        blk_mq_run_hw_queues(q, false);
 769}
 770
 771void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 772                                bool kick_requeue_list)
 773{
 774        struct request_queue *q = rq->q;
 775        unsigned long flags;
 776
 777        /*
 778         * We abuse this flag that is otherwise used by the I/O scheduler to
 779         * request head insertion from the workqueue.
 780         */
 781        BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 782
 783        spin_lock_irqsave(&q->requeue_lock, flags);
 784        if (at_head) {
 785                rq->rq_flags |= RQF_SOFTBARRIER;
 786                list_add(&rq->queuelist, &q->requeue_list);
 787        } else {
 788                list_add_tail(&rq->queuelist, &q->requeue_list);
 789        }
 790        spin_unlock_irqrestore(&q->requeue_lock, flags);
 791
 792        if (kick_requeue_list)
 793                blk_mq_kick_requeue_list(q);
 794}
 795
 796void blk_mq_kick_requeue_list(struct request_queue *q)
 797{
 798        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 799}
 800EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 801
 802void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 803                                    unsigned long msecs)
 804{
 805        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 806                                    msecs_to_jiffies(msecs));
 807}
 808EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 809
 810struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 811{
 812        if (tag < tags->nr_tags) {
 813                prefetch(tags->rqs[tag]);
 814                return tags->rqs[tag];
 815        }
 816
 817        return NULL;
 818}
 819EXPORT_SYMBOL(blk_mq_tag_to_rq);
 820
 821static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 822                               void *priv, bool reserved)
 823{
 824        /*
 825         * If we find a request that is inflight and the queue matches,
 826         * we know the queue is busy. Return false to stop the iteration.
 827         */
 828        if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
 829                bool *busy = priv;
 830
 831                *busy = true;
 832                return false;
 833        }
 834
 835        return true;
 836}
 837
 838bool blk_mq_queue_inflight(struct request_queue *q)
 839{
 840        bool busy = false;
 841
 842        blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 843        return busy;
 844}
 845EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 846
 847static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 848{
 849        req->rq_flags |= RQF_TIMED_OUT;
 850        if (req->q->mq_ops->timeout) {
 851                enum blk_eh_timer_return ret;
 852
 853                ret = req->q->mq_ops->timeout(req, reserved);
 854                if (ret == BLK_EH_DONE)
 855                        return;
 856                WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 857        }
 858
 859        blk_add_timer(req);
 860}
 861
 862static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 863{
 864        unsigned long deadline;
 865
 866        if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 867                return false;
 868        if (rq->rq_flags & RQF_TIMED_OUT)
 869                return false;
 870
 871        deadline = READ_ONCE(rq->deadline);
 872        if (time_after_eq(jiffies, deadline))
 873                return true;
 874
 875        if (*next == 0)
 876                *next = deadline;
 877        else if (time_after(*next, deadline))
 878                *next = deadline;
 879        return false;
 880}
 881
 882static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 883                struct request *rq, void *priv, bool reserved)
 884{
 885        unsigned long *next = priv;
 886
 887        /*
 888         * Just do a quick check if it is expired before locking the request in
 889         * so we're not unnecessarilly synchronizing across CPUs.
 890         */
 891        if (!blk_mq_req_expired(rq, next))
 892                return true;
 893
 894        /*
 895         * We have reason to believe the request may be expired. Take a
 896         * reference on the request to lock this request lifetime into its
 897         * currently allocated context to prevent it from being reallocated in
 898         * the event the completion by-passes this timeout handler.
 899         *
 900         * If the reference was already released, then the driver beat the
 901         * timeout handler to posting a natural completion.
 902         */
 903        if (!refcount_inc_not_zero(&rq->ref))
 904                return true;
 905
 906        /*
 907         * The request is now locked and cannot be reallocated underneath the
 908         * timeout handler's processing. Re-verify this exact request is truly
 909         * expired; if it is not expired, then the request was completed and
 910         * reallocated as a new request.
 911         */
 912        if (blk_mq_req_expired(rq, next))
 913                blk_mq_rq_timed_out(rq, reserved);
 914        if (refcount_dec_and_test(&rq->ref))
 915                __blk_mq_free_request(rq);
 916
 917        return true;
 918}
 919
 920static void blk_mq_timeout_work(struct work_struct *work)
 921{
 922        struct request_queue *q =
 923                container_of(work, struct request_queue, timeout_work);
 924        unsigned long next = 0;
 925        struct blk_mq_hw_ctx *hctx;
 926        int i;
 927
 928        /* A deadlock might occur if a request is stuck requiring a
 929         * timeout at the same time a queue freeze is waiting
 930         * completion, since the timeout code would not be able to
 931         * acquire the queue reference here.
 932         *
 933         * That's why we don't use blk_queue_enter here; instead, we use
 934         * percpu_ref_tryget directly, because we need to be able to
 935         * obtain a reference even in the short window between the queue
 936         * starting to freeze, by dropping the first reference in
 937         * blk_freeze_queue_start, and the moment the last request is
 938         * consumed, marked by the instant q_usage_counter reaches
 939         * zero.
 940         */
 941        if (!percpu_ref_tryget(&q->q_usage_counter))
 942                return;
 943
 944        blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 945
 946        if (next != 0) {
 947                mod_timer(&q->timeout, next);
 948        } else {
 949                /*
 950                 * Request timeouts are handled as a forward rolling timer. If
 951                 * we end up here it means that no requests are pending and
 952                 * also that no request has been pending for a while. Mark
 953                 * each hctx as idle.
 954                 */
 955                queue_for_each_hw_ctx(q, hctx, i) {
 956                        /* the hctx may be unmapped, so check it here */
 957                        if (blk_mq_hw_queue_mapped(hctx))
 958                                blk_mq_tag_idle(hctx);
 959                }
 960        }
 961        blk_queue_exit(q);
 962}
 963
 964struct flush_busy_ctx_data {
 965        struct blk_mq_hw_ctx *hctx;
 966        struct list_head *list;
 967};
 968
 969static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 970{
 971        struct flush_busy_ctx_data *flush_data = data;
 972        struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 973        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 974        enum hctx_type type = hctx->type;
 975
 976        spin_lock(&ctx->lock);
 977        list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
 978        sbitmap_clear_bit(sb, bitnr);
 979        spin_unlock(&ctx->lock);
 980        return true;
 981}
 982
 983/*
 984 * Process software queues that have been marked busy, splicing them
 985 * to the for-dispatch
 986 */
 987void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 988{
 989        struct flush_busy_ctx_data data = {
 990                .hctx = hctx,
 991                .list = list,
 992        };
 993
 994        sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
 995}
 996EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
 997
 998struct dispatch_rq_data {
 999        struct blk_mq_hw_ctx *hctx;
1000        struct request *rq;
1001};
1002
1003static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1004                void *data)
1005{
1006        struct dispatch_rq_data *dispatch_data = data;
1007        struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1008        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1009        enum hctx_type type = hctx->type;
1010
1011        spin_lock(&ctx->lock);
1012        if (!list_empty(&ctx->rq_lists[type])) {
1013                dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1014                list_del_init(&dispatch_data->rq->queuelist);
1015                if (list_empty(&ctx->rq_lists[type]))
1016                        sbitmap_clear_bit(sb, bitnr);
1017        }
1018        spin_unlock(&ctx->lock);
1019
1020        return !dispatch_data->rq;
1021}
1022
1023struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1024                                        struct blk_mq_ctx *start)
1025{
1026        unsigned off = start ? start->index_hw[hctx->type] : 0;
1027        struct dispatch_rq_data data = {
1028                .hctx = hctx,
1029                .rq   = NULL,
1030        };
1031
1032        __sbitmap_for_each_set(&hctx->ctx_map, off,
1033                               dispatch_rq_from_ctx, &data);
1034
1035        return data.rq;
1036}
1037
1038static inline unsigned int queued_to_index(unsigned int queued)
1039{
1040        if (!queued)
1041                return 0;
1042
1043        return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1044}
1045
1046bool blk_mq_get_driver_tag(struct request *rq)
1047{
1048        struct blk_mq_alloc_data data = {
1049                .q = rq->q,
1050                .hctx = rq->mq_hctx,
1051                .flags = BLK_MQ_REQ_NOWAIT,
1052                .cmd_flags = rq->cmd_flags,
1053        };
1054        bool shared;
1055
1056        if (rq->tag != -1)
1057                goto done;
1058
1059        if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1060                data.flags |= BLK_MQ_REQ_RESERVED;
1061
1062        shared = blk_mq_tag_busy(data.hctx);
1063        rq->tag = blk_mq_get_tag(&data);
1064        if (rq->tag >= 0) {
1065                if (shared) {
1066                        rq->rq_flags |= RQF_MQ_INFLIGHT;
1067                        atomic_inc(&data.hctx->nr_active);
1068                }
1069                data.hctx->tags->rqs[rq->tag] = rq;
1070        }
1071
1072done:
1073        return rq->tag != -1;
1074}
1075
1076static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1077                                int flags, void *key)
1078{
1079        struct blk_mq_hw_ctx *hctx;
1080
1081        hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1082
1083        spin_lock(&hctx->dispatch_wait_lock);
1084        if (!list_empty(&wait->entry)) {
1085                struct sbitmap_queue *sbq;
1086
1087                list_del_init(&wait->entry);
1088                sbq = &hctx->tags->bitmap_tags;
1089                atomic_dec(&sbq->ws_active);
1090        }
1091        spin_unlock(&hctx->dispatch_wait_lock);
1092
1093        blk_mq_run_hw_queue(hctx, true);
1094        return 1;
1095}
1096
1097/*
1098 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1099 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1100 * restart. For both cases, take care to check the condition again after
1101 * marking us as waiting.
1102 */
1103static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1104                                 struct request *rq)
1105{
1106        struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1107        struct wait_queue_head *wq;
1108        wait_queue_entry_t *wait;
1109        bool ret;
1110
1111        if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1112                blk_mq_sched_mark_restart_hctx(hctx);
1113
1114                /*
1115                 * It's possible that a tag was freed in the window between the
1116                 * allocation failure and adding the hardware queue to the wait
1117                 * queue.
1118                 *
1119                 * Don't clear RESTART here, someone else could have set it.
1120                 * At most this will cost an extra queue run.
1121                 */
1122                return blk_mq_get_driver_tag(rq);
1123        }
1124
1125        wait = &hctx->dispatch_wait;
1126        if (!list_empty_careful(&wait->entry))
1127                return false;
1128
1129        wq = &bt_wait_ptr(sbq, hctx)->wait;
1130
1131        spin_lock_irq(&wq->lock);
1132        spin_lock(&hctx->dispatch_wait_lock);
1133        if (!list_empty(&wait->entry)) {
1134                spin_unlock(&hctx->dispatch_wait_lock);
1135                spin_unlock_irq(&wq->lock);
1136                return false;
1137        }
1138
1139        atomic_inc(&sbq->ws_active);
1140        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1141        __add_wait_queue(wq, wait);
1142
1143        /*
1144         * It's possible that a tag was freed in the window between the
1145         * allocation failure and adding the hardware queue to the wait
1146         * queue.
1147         */
1148        ret = blk_mq_get_driver_tag(rq);
1149        if (!ret) {
1150                spin_unlock(&hctx->dispatch_wait_lock);
1151                spin_unlock_irq(&wq->lock);
1152                return false;
1153        }
1154
1155        /*
1156         * We got a tag, remove ourselves from the wait queue to ensure
1157         * someone else gets the wakeup.
1158         */
1159        list_del_init(&wait->entry);
1160        atomic_dec(&sbq->ws_active);
1161        spin_unlock(&hctx->dispatch_wait_lock);
1162        spin_unlock_irq(&wq->lock);
1163
1164        return true;
1165}
1166
1167#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1168#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1169/*
1170 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1171 * - EWMA is one simple way to compute running average value
1172 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1173 * - take 4 as factor for avoiding to get too small(0) result, and this
1174 *   factor doesn't matter because EWMA decreases exponentially
1175 */
1176static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1177{
1178        unsigned int ewma;
1179
1180        if (hctx->queue->elevator)
1181                return;
1182
1183        ewma = hctx->dispatch_busy;
1184
1185        if (!ewma && !busy)
1186                return;
1187
1188        ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1189        if (busy)
1190                ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1191        ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1192
1193        hctx->dispatch_busy = ewma;
1194}
1195
1196#define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1197
1198/*
1199 * Returns true if we did some work AND can potentially do more.
1200 */
1201bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202                             bool got_budget)
1203{
1204        struct blk_mq_hw_ctx *hctx;
1205        struct request *rq, *nxt;
1206        bool no_tag = false;
1207        int errors, queued;
1208        blk_status_t ret = BLK_STS_OK;
1209
1210        if (list_empty(list))
1211                return false;
1212
1213        WARN_ON(!list_is_singular(list) && got_budget);
1214
1215        /*
1216         * Now process all the entries, sending them to the driver.
1217         */
1218        errors = queued = 0;
1219        do {
1220                struct blk_mq_queue_data bd;
1221
1222                rq = list_first_entry(list, struct request, queuelist);
1223
1224                hctx = rq->mq_hctx;
1225                if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1226                        break;
1227
1228                if (!blk_mq_get_driver_tag(rq)) {
1229                        /*
1230                         * The initial allocation attempt failed, so we need to
1231                         * rerun the hardware queue when a tag is freed. The
1232                         * waitqueue takes care of that. If the queue is run
1233                         * before we add this entry back on the dispatch list,
1234                         * we'll re-run it below.
1235                         */
1236                        if (!blk_mq_mark_tag_wait(hctx, rq)) {
1237                                blk_mq_put_dispatch_budget(hctx);
1238                                /*
1239                                 * For non-shared tags, the RESTART check
1240                                 * will suffice.
1241                                 */
1242                                if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1243                                        no_tag = true;
1244                                break;
1245                        }
1246                }
1247
1248                list_del_init(&rq->queuelist);
1249
1250                bd.rq = rq;
1251
1252                /*
1253                 * Flag last if we have no more requests, or if we have more
1254                 * but can't assign a driver tag to it.
1255                 */
1256                if (list_empty(list))
1257                        bd.last = true;
1258                else {
1259                        nxt = list_first_entry(list, struct request, queuelist);
1260                        bd.last = !blk_mq_get_driver_tag(nxt);
1261                }
1262
1263                ret = q->mq_ops->queue_rq(hctx, &bd);
1264                if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1265                        /*
1266                         * If an I/O scheduler has been configured and we got a
1267                         * driver tag for the next request already, free it
1268                         * again.
1269                         */
1270                        if (!list_empty(list)) {
1271                                nxt = list_first_entry(list, struct request, queuelist);
1272                                blk_mq_put_driver_tag(nxt);
1273                        }
1274                        list_add(&rq->queuelist, list);
1275                        __blk_mq_requeue_request(rq);
1276                        break;
1277                }
1278
1279                if (unlikely(ret != BLK_STS_OK)) {
1280                        errors++;
1281                        blk_mq_end_request(rq, BLK_STS_IOERR);
1282                        continue;
1283                }
1284
1285                queued++;
1286        } while (!list_empty(list));
1287
1288        hctx->dispatched[queued_to_index(queued)]++;
1289
1290        /*
1291         * Any items that need requeuing? Stuff them into hctx->dispatch,
1292         * that is where we will continue on next queue run.
1293         */
1294        if (!list_empty(list)) {
1295                bool needs_restart;
1296
1297                /*
1298                 * If we didn't flush the entire list, we could have told
1299                 * the driver there was more coming, but that turned out to
1300                 * be a lie.
1301                 */
1302                if (q->mq_ops->commit_rqs)
1303                        q->mq_ops->commit_rqs(hctx);
1304
1305                spin_lock(&hctx->lock);
1306                list_splice_init(list, &hctx->dispatch);
1307                spin_unlock(&hctx->lock);
1308
1309                /*
1310                 * If SCHED_RESTART was set by the caller of this function and
1311                 * it is no longer set that means that it was cleared by another
1312                 * thread and hence that a queue rerun is needed.
1313                 *
1314                 * If 'no_tag' is set, that means that we failed getting
1315                 * a driver tag with an I/O scheduler attached. If our dispatch
1316                 * waitqueue is no longer active, ensure that we run the queue
1317                 * AFTER adding our entries back to the list.
1318                 *
1319                 * If no I/O scheduler has been configured it is possible that
1320                 * the hardware queue got stopped and restarted before requests
1321                 * were pushed back onto the dispatch list. Rerun the queue to
1322                 * avoid starvation. Notes:
1323                 * - blk_mq_run_hw_queue() checks whether or not a queue has
1324                 *   been stopped before rerunning a queue.
1325                 * - Some but not all block drivers stop a queue before
1326                 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1327                 *   and dm-rq.
1328                 *
1329                 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1330                 * bit is set, run queue after a delay to avoid IO stalls
1331                 * that could otherwise occur if the queue is idle.
1332                 */
1333                needs_restart = blk_mq_sched_needs_restart(hctx);
1334                if (!needs_restart ||
1335                    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1336                        blk_mq_run_hw_queue(hctx, true);
1337                else if (needs_restart && (ret == BLK_STS_RESOURCE))
1338                        blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1339
1340                blk_mq_update_dispatch_busy(hctx, true);
1341                return false;
1342        } else
1343                blk_mq_update_dispatch_busy(hctx, false);
1344
1345        /*
1346         * If the host/device is unable to accept more work, inform the
1347         * caller of that.
1348         */
1349        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1350                return false;
1351
1352        return (queued + errors) != 0;
1353}
1354
1355static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1356{
1357        int srcu_idx;
1358
1359        /*
1360         * We should be running this queue from one of the CPUs that
1361         * are mapped to it.
1362         *
1363         * There are at least two related races now between setting
1364         * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1365         * __blk_mq_run_hw_queue():
1366         *
1367         * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1368         *   but later it becomes online, then this warning is harmless
1369         *   at all
1370         *
1371         * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1372         *   but later it becomes offline, then the warning can't be
1373         *   triggered, and we depend on blk-mq timeout handler to
1374         *   handle dispatched requests to this hctx
1375         */
1376        if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1377                cpu_online(hctx->next_cpu)) {
1378                printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1379                        raw_smp_processor_id(),
1380                        cpumask_empty(hctx->cpumask) ? "inactive": "active");
1381                dump_stack();
1382        }
1383
1384        /*
1385         * We can't run the queue inline with ints disabled. Ensure that
1386         * we catch bad users of this early.
1387         */
1388        WARN_ON_ONCE(in_interrupt());
1389
1390        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1391
1392        hctx_lock(hctx, &srcu_idx);
1393        blk_mq_sched_dispatch_requests(hctx);
1394        hctx_unlock(hctx, srcu_idx);
1395}
1396
1397static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1398{
1399        int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1400
1401        if (cpu >= nr_cpu_ids)
1402                cpu = cpumask_first(hctx->cpumask);
1403        return cpu;
1404}
1405
1406/*
1407 * It'd be great if the workqueue API had a way to pass
1408 * in a mask and had some smarts for more clever placement.
1409 * For now we just round-robin here, switching for every
1410 * BLK_MQ_CPU_WORK_BATCH queued items.
1411 */
1412static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1413{
1414        bool tried = false;
1415        int next_cpu = hctx->next_cpu;
1416
1417        if (hctx->queue->nr_hw_queues == 1)
1418                return WORK_CPU_UNBOUND;
1419
1420        if (--hctx->next_cpu_batch <= 0) {
1421select_cpu:
1422                next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1423                                cpu_online_mask);
1424                if (next_cpu >= nr_cpu_ids)
1425                        next_cpu = blk_mq_first_mapped_cpu(hctx);
1426                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1427        }
1428
1429        /*
1430         * Do unbound schedule if we can't find a online CPU for this hctx,
1431         * and it should only happen in the path of handling CPU DEAD.
1432         */
1433        if (!cpu_online(next_cpu)) {
1434                if (!tried) {
1435                        tried = true;
1436                        goto select_cpu;
1437                }
1438
1439                /*
1440                 * Make sure to re-select CPU next time once after CPUs
1441                 * in hctx->cpumask become online again.
1442                 */
1443                hctx->next_cpu = next_cpu;
1444                hctx->next_cpu_batch = 1;
1445                return WORK_CPU_UNBOUND;
1446        }
1447
1448        hctx->next_cpu = next_cpu;
1449        return next_cpu;
1450}
1451
1452static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1453                                        unsigned long msecs)
1454{
1455        if (unlikely(blk_mq_hctx_stopped(hctx)))
1456                return;
1457
1458        if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1459                int cpu = get_cpu();
1460                if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1461                        __blk_mq_run_hw_queue(hctx);
1462                        put_cpu();
1463                        return;
1464                }
1465
1466                put_cpu();
1467        }
1468
1469        kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1470                                    msecs_to_jiffies(msecs));
1471}
1472
1473void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1474{
1475        __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1476}
1477EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1478
1479bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1480{
1481        int srcu_idx;
1482        bool need_run;
1483
1484        /*
1485         * When queue is quiesced, we may be switching io scheduler, or
1486         * updating nr_hw_queues, or other things, and we can't run queue
1487         * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1488         *
1489         * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1490         * quiesced.
1491         */
1492        hctx_lock(hctx, &srcu_idx);
1493        need_run = !blk_queue_quiesced(hctx->queue) &&
1494                blk_mq_hctx_has_pending(hctx);
1495        hctx_unlock(hctx, srcu_idx);
1496
1497        if (need_run) {
1498                __blk_mq_delay_run_hw_queue(hctx, async, 0);
1499                return true;
1500        }
1501
1502        return false;
1503}
1504EXPORT_SYMBOL(blk_mq_run_hw_queue);
1505
1506void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1507{
1508        struct blk_mq_hw_ctx *hctx;
1509        int i;
1510
1511        queue_for_each_hw_ctx(q, hctx, i) {
1512                if (blk_mq_hctx_stopped(hctx))
1513                        continue;
1514
1515                blk_mq_run_hw_queue(hctx, async);
1516        }
1517}
1518EXPORT_SYMBOL(blk_mq_run_hw_queues);
1519
1520/**
1521 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1522 * @q: request queue.
1523 *
1524 * The caller is responsible for serializing this function against
1525 * blk_mq_{start,stop}_hw_queue().
1526 */
1527bool blk_mq_queue_stopped(struct request_queue *q)
1528{
1529        struct blk_mq_hw_ctx *hctx;
1530        int i;
1531
1532        queue_for_each_hw_ctx(q, hctx, i)
1533                if (blk_mq_hctx_stopped(hctx))
1534                        return true;
1535
1536        return false;
1537}
1538EXPORT_SYMBOL(blk_mq_queue_stopped);
1539
1540/*
1541 * This function is often used for pausing .queue_rq() by driver when
1542 * there isn't enough resource or some conditions aren't satisfied, and
1543 * BLK_STS_RESOURCE is usually returned.
1544 *
1545 * We do not guarantee that dispatch can be drained or blocked
1546 * after blk_mq_stop_hw_queue() returns. Please use
1547 * blk_mq_quiesce_queue() for that requirement.
1548 */
1549void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1550{
1551        cancel_delayed_work(&hctx->run_work);
1552
1553        set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1554}
1555EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1556
1557/*
1558 * This function is often used for pausing .queue_rq() by driver when
1559 * there isn't enough resource or some conditions aren't satisfied, and
1560 * BLK_STS_RESOURCE is usually returned.
1561 *
1562 * We do not guarantee that dispatch can be drained or blocked
1563 * after blk_mq_stop_hw_queues() returns. Please use
1564 * blk_mq_quiesce_queue() for that requirement.
1565 */
1566void blk_mq_stop_hw_queues(struct request_queue *q)
1567{
1568        struct blk_mq_hw_ctx *hctx;
1569        int i;
1570
1571        queue_for_each_hw_ctx(q, hctx, i)
1572                blk_mq_stop_hw_queue(hctx);
1573}
1574EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1575
1576void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1577{
1578        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579
1580        blk_mq_run_hw_queue(hctx, false);
1581}
1582EXPORT_SYMBOL(blk_mq_start_hw_queue);
1583
1584void blk_mq_start_hw_queues(struct request_queue *q)
1585{
1586        struct blk_mq_hw_ctx *hctx;
1587        int i;
1588
1589        queue_for_each_hw_ctx(q, hctx, i)
1590                blk_mq_start_hw_queue(hctx);
1591}
1592EXPORT_SYMBOL(blk_mq_start_hw_queues);
1593
1594void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1595{
1596        if (!blk_mq_hctx_stopped(hctx))
1597                return;
1598
1599        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1600        blk_mq_run_hw_queue(hctx, async);
1601}
1602EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1603
1604void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1605{
1606        struct blk_mq_hw_ctx *hctx;
1607        int i;
1608
1609        queue_for_each_hw_ctx(q, hctx, i)
1610                blk_mq_start_stopped_hw_queue(hctx, async);
1611}
1612EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1613
1614static void blk_mq_run_work_fn(struct work_struct *work)
1615{
1616        struct blk_mq_hw_ctx *hctx;
1617
1618        hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1619
1620        /*
1621         * If we are stopped, don't run the queue.
1622         */
1623        if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1624                return;
1625
1626        __blk_mq_run_hw_queue(hctx);
1627}
1628
1629static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1630                                            struct request *rq,
1631                                            bool at_head)
1632{
1633        struct blk_mq_ctx *ctx = rq->mq_ctx;
1634        enum hctx_type type = hctx->type;
1635
1636        lockdep_assert_held(&ctx->lock);
1637
1638        trace_block_rq_insert(hctx->queue, rq);
1639
1640        if (at_head)
1641                list_add(&rq->queuelist, &ctx->rq_lists[type]);
1642        else
1643                list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1644}
1645
1646void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1647                             bool at_head)
1648{
1649        struct blk_mq_ctx *ctx = rq->mq_ctx;
1650
1651        lockdep_assert_held(&ctx->lock);
1652
1653        __blk_mq_insert_req_list(hctx, rq, at_head);
1654        blk_mq_hctx_mark_pending(hctx, ctx);
1655}
1656
1657/*
1658 * Should only be used carefully, when the caller knows we want to
1659 * bypass a potential IO scheduler on the target device.
1660 */
1661void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1662{
1663        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1664
1665        spin_lock(&hctx->lock);
1666        list_add_tail(&rq->queuelist, &hctx->dispatch);
1667        spin_unlock(&hctx->lock);
1668
1669        if (run_queue)
1670                blk_mq_run_hw_queue(hctx, false);
1671}
1672
1673void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1674                            struct list_head *list)
1675
1676{
1677        struct request *rq;
1678        enum hctx_type type = hctx->type;
1679
1680        /*
1681         * preemption doesn't flush plug list, so it's possible ctx->cpu is
1682         * offline now
1683         */
1684        list_for_each_entry(rq, list, queuelist) {
1685                BUG_ON(rq->mq_ctx != ctx);
1686                trace_block_rq_insert(hctx->queue, rq);
1687        }
1688
1689        spin_lock(&ctx->lock);
1690        list_splice_tail_init(list, &ctx->rq_lists[type]);
1691        blk_mq_hctx_mark_pending(hctx, ctx);
1692        spin_unlock(&ctx->lock);
1693}
1694
1695static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1696{
1697        struct request *rqa = container_of(a, struct request, queuelist);
1698        struct request *rqb = container_of(b, struct request, queuelist);
1699
1700        if (rqa->mq_ctx < rqb->mq_ctx)
1701                return -1;
1702        else if (rqa->mq_ctx > rqb->mq_ctx)
1703                return 1;
1704        else if (rqa->mq_hctx < rqb->mq_hctx)
1705                return -1;
1706        else if (rqa->mq_hctx > rqb->mq_hctx)
1707                return 1;
1708
1709        return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1710}
1711
1712void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1713{
1714        struct blk_mq_hw_ctx *this_hctx;
1715        struct blk_mq_ctx *this_ctx;
1716        struct request_queue *this_q;
1717        struct request *rq;
1718        LIST_HEAD(list);
1719        LIST_HEAD(rq_list);
1720        unsigned int depth;
1721
1722        list_splice_init(&plug->mq_list, &list);
1723
1724        if (plug->rq_count > 2 && plug->multiple_queues)
1725                list_sort(NULL, &list, plug_rq_cmp);
1726
1727        plug->rq_count = 0;
1728
1729        this_q = NULL;
1730        this_hctx = NULL;
1731        this_ctx = NULL;
1732        depth = 0;
1733
1734        while (!list_empty(&list)) {
1735                rq = list_entry_rq(list.next);
1736                list_del_init(&rq->queuelist);
1737                BUG_ON(!rq->q);
1738                if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1739                        if (this_hctx) {
1740                                trace_block_unplug(this_q, depth, !from_schedule);
1741                                blk_mq_sched_insert_requests(this_hctx, this_ctx,
1742                                                                &rq_list,
1743                                                                from_schedule);
1744                        }
1745
1746                        this_q = rq->q;
1747                        this_ctx = rq->mq_ctx;
1748                        this_hctx = rq->mq_hctx;
1749                        depth = 0;
1750                }
1751
1752                depth++;
1753                list_add_tail(&rq->queuelist, &rq_list);
1754        }
1755
1756        /*
1757         * If 'this_hctx' is set, we know we have entries to complete
1758         * on 'rq_list'. Do those.
1759         */
1760        if (this_hctx) {
1761                trace_block_unplug(this_q, depth, !from_schedule);
1762                blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1763                                                from_schedule);
1764        }
1765}
1766
1767static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1768{
1769        blk_init_request_from_bio(rq, bio);
1770
1771        blk_account_io_start(rq, true);
1772}
1773
1774static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1775                                            struct request *rq,
1776                                            blk_qc_t *cookie, bool last)
1777{
1778        struct request_queue *q = rq->q;
1779        struct blk_mq_queue_data bd = {
1780                .rq = rq,
1781                .last = last,
1782        };
1783        blk_qc_t new_cookie;
1784        blk_status_t ret;
1785
1786        new_cookie = request_to_qc_t(hctx, rq);
1787
1788        /*
1789         * For OK queue, we are done. For error, caller may kill it.
1790         * Any other error (busy), just add it to our list as we
1791         * previously would have done.
1792         */
1793        ret = q->mq_ops->queue_rq(hctx, &bd);
1794        switch (ret) {
1795        case BLK_STS_OK:
1796                blk_mq_update_dispatch_busy(hctx, false);
1797                *cookie = new_cookie;
1798                break;
1799        case BLK_STS_RESOURCE:
1800        case BLK_STS_DEV_RESOURCE:
1801                blk_mq_update_dispatch_busy(hctx, true);
1802                __blk_mq_requeue_request(rq);
1803                break;
1804        default:
1805                blk_mq_update_dispatch_busy(hctx, false);
1806                *cookie = BLK_QC_T_NONE;
1807                break;
1808        }
1809
1810        return ret;
1811}
1812
1813static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814                                                struct request *rq,
1815                                                blk_qc_t *cookie,
1816                                                bool bypass_insert, bool last)
1817{
1818        struct request_queue *q = rq->q;
1819        bool run_queue = true;
1820
1821        /*
1822         * RCU or SRCU read lock is needed before checking quiesced flag.
1823         *
1824         * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825         * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826         * and avoid driver to try to dispatch again.
1827         */
1828        if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1829                run_queue = false;
1830                bypass_insert = false;
1831                goto insert;
1832        }
1833
1834        if (q->elevator && !bypass_insert)
1835                goto insert;
1836
1837        if (!blk_mq_get_dispatch_budget(hctx))
1838                goto insert;
1839
1840        if (!blk_mq_get_driver_tag(rq)) {
1841                blk_mq_put_dispatch_budget(hctx);
1842                goto insert;
1843        }
1844
1845        return __blk_mq_issue_directly(hctx, rq, cookie, last);
1846insert:
1847        if (bypass_insert)
1848                return BLK_STS_RESOURCE;
1849
1850        blk_mq_request_bypass_insert(rq, run_queue);
1851        return BLK_STS_OK;
1852}
1853
1854static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855                struct request *rq, blk_qc_t *cookie)
1856{
1857        blk_status_t ret;
1858        int srcu_idx;
1859
1860        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1861
1862        hctx_lock(hctx, &srcu_idx);
1863
1864        ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866                blk_mq_request_bypass_insert(rq, true);
1867        else if (ret != BLK_STS_OK)
1868                blk_mq_end_request(rq, ret);
1869
1870        hctx_unlock(hctx, srcu_idx);
1871}
1872
1873blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1874{
1875        blk_status_t ret;
1876        int srcu_idx;
1877        blk_qc_t unused_cookie;
1878        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879
1880        hctx_lock(hctx, &srcu_idx);
1881        ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882        hctx_unlock(hctx, srcu_idx);
1883
1884        return ret;
1885}
1886
1887void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888                struct list_head *list)
1889{
1890        while (!list_empty(list)) {
1891                blk_status_t ret;
1892                struct request *rq = list_first_entry(list, struct request,
1893                                queuelist);
1894
1895                list_del_init(&rq->queuelist);
1896                ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897                if (ret != BLK_STS_OK) {
1898                        if (ret == BLK_STS_RESOURCE ||
1899                                        ret == BLK_STS_DEV_RESOURCE) {
1900                                blk_mq_request_bypass_insert(rq,
1901                                                        list_empty(list));
1902                                break;
1903                        }
1904                        blk_mq_end_request(rq, ret);
1905                }
1906        }
1907
1908        /*
1909         * If we didn't flush the entire list, we could have told
1910         * the driver there was more coming, but that turned out to
1911         * be a lie.
1912         */
1913        if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914                hctx->queue->mq_ops->commit_rqs(hctx);
1915}
1916
1917static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1918{
1919        list_add_tail(&rq->queuelist, &plug->mq_list);
1920        plug->rq_count++;
1921        if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922                struct request *tmp;
1923
1924                tmp = list_first_entry(&plug->mq_list, struct request,
1925                                                queuelist);
1926                if (tmp->q != rq->q)
1927                        plug->multiple_queues = true;
1928        }
1929}
1930
1931static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1932{
1933        const int is_sync = op_is_sync(bio->bi_opf);
1934        const int is_flush_fua = op_is_flush(bio->bi_opf);
1935        struct blk_mq_alloc_data data = { .flags = 0};
1936        struct request *rq;
1937        struct blk_plug *plug;
1938        struct request *same_queue_rq = NULL;
1939        blk_qc_t cookie;
1940
1941        blk_queue_bounce(q, &bio);
1942
1943        blk_queue_split(q, &bio);
1944
1945        if (!bio_integrity_prep(bio))
1946                return BLK_QC_T_NONE;
1947
1948        if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949            blk_attempt_plug_merge(q, bio, &same_queue_rq))
1950                return BLK_QC_T_NONE;
1951
1952        if (blk_mq_sched_bio_merge(q, bio))
1953                return BLK_QC_T_NONE;
1954
1955        rq_qos_throttle(q, bio);
1956
1957        data.cmd_flags = bio->bi_opf;
1958        rq = blk_mq_get_request(q, bio, &data);
1959        if (unlikely(!rq)) {
1960                rq_qos_cleanup(q, bio);
1961                if (bio->bi_opf & REQ_NOWAIT)
1962                        bio_wouldblock_error(bio);
1963                return BLK_QC_T_NONE;
1964        }
1965
1966        trace_block_getrq(q, bio, bio->bi_opf);
1967
1968        rq_qos_track(q, rq, bio);
1969
1970        cookie = request_to_qc_t(data.hctx, rq);
1971
1972        plug = current->plug;
1973        if (unlikely(is_flush_fua)) {
1974                blk_mq_put_ctx(data.ctx);
1975                blk_mq_bio_to_request(rq, bio);
1976
1977                /* bypass scheduler for flush rq */
1978                blk_insert_flush(rq);
1979                blk_mq_run_hw_queue(data.hctx, true);
1980        } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1981                /*
1982                 * Use plugging if we have a ->commit_rqs() hook as well, as
1983                 * we know the driver uses bd->last in a smart fashion.
1984                 */
1985                unsigned int request_count = plug->rq_count;
1986                struct request *last = NULL;
1987
1988                blk_mq_put_ctx(data.ctx);
1989                blk_mq_bio_to_request(rq, bio);
1990
1991                if (!request_count)
1992                        trace_block_plug(q);
1993                else
1994                        last = list_entry_rq(plug->mq_list.prev);
1995
1996                if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1997                    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1998                        blk_flush_plug_list(plug, false);
1999                        trace_block_plug(q);
2000                }
2001
2002                blk_add_rq_to_plug(plug, rq);
2003        } else if (plug && !blk_queue_nomerges(q)) {
2004                blk_mq_bio_to_request(rq, bio);
2005
2006                /*
2007                 * We do limited plugging. If the bio can be merged, do that.
2008                 * Otherwise the existing request in the plug list will be
2009                 * issued. So the plug list will have one request at most
2010                 * The plug list might get flushed before this. If that happens,
2011                 * the plug list is empty, and same_queue_rq is invalid.
2012                 */
2013                if (list_empty(&plug->mq_list))
2014                        same_queue_rq = NULL;
2015                if (same_queue_rq) {
2016                        list_del_init(&same_queue_rq->queuelist);
2017                        plug->rq_count--;
2018                }
2019                blk_add_rq_to_plug(plug, rq);
2020                trace_block_plug(q);
2021
2022                blk_mq_put_ctx(data.ctx);
2023
2024                if (same_queue_rq) {
2025                        data.hctx = same_queue_rq->mq_hctx;
2026                        trace_block_unplug(q, 1, true);
2027                        blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2028                                        &cookie);
2029                }
2030        } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2031                        !data.hctx->dispatch_busy)) {
2032                blk_mq_put_ctx(data.ctx);
2033                blk_mq_bio_to_request(rq, bio);
2034                blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2035        } else {
2036                blk_mq_put_ctx(data.ctx);
2037                blk_mq_bio_to_request(rq, bio);
2038                blk_mq_sched_insert_request(rq, false, true, true);
2039        }
2040
2041        return cookie;
2042}
2043
2044void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2045                     unsigned int hctx_idx)
2046{
2047        struct page *page;
2048
2049        if (tags->rqs && set->ops->exit_request) {
2050                int i;
2051
2052                for (i = 0; i < tags->nr_tags; i++) {
2053                        struct request *rq = tags->static_rqs[i];
2054
2055                        if (!rq)
2056                                continue;
2057                        set->ops->exit_request(set, rq, hctx_idx);
2058                        tags->static_rqs[i] = NULL;
2059                }
2060        }
2061
2062        while (!list_empty(&tags->page_list)) {
2063                page = list_first_entry(&tags->page_list, struct page, lru);
2064                list_del_init(&page->lru);
2065                /*
2066                 * Remove kmemleak object previously allocated in
2067                 * blk_mq_alloc_rqs().
2068                 */
2069                kmemleak_free(page_address(page));
2070                __free_pages(page, page->private);
2071        }
2072}
2073
2074void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2075{
2076        kfree(tags->rqs);
2077        tags->rqs = NULL;
2078        kfree(tags->static_rqs);
2079        tags->static_rqs = NULL;
2080
2081        blk_mq_free_tags(tags);
2082}
2083
2084struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2085                                        unsigned int hctx_idx,
2086                                        unsigned int nr_tags,
2087                                        unsigned int reserved_tags)
2088{
2089        struct blk_mq_tags *tags;
2090        int node;
2091
2092        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2093        if (node == NUMA_NO_NODE)
2094                node = set->numa_node;
2095
2096        tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2097                                BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2098        if (!tags)
2099                return NULL;
2100
2101        tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2102                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2103                                 node);
2104        if (!tags->rqs) {
2105                blk_mq_free_tags(tags);
2106                return NULL;
2107        }
2108
2109        tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2110                                        GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2111                                        node);
2112        if (!tags->static_rqs) {
2113                kfree(tags->rqs);
2114                blk_mq_free_tags(tags);
2115                return NULL;
2116        }
2117
2118        return tags;
2119}
2120
2121static size_t order_to_size(unsigned int order)
2122{
2123        return (size_t)PAGE_SIZE << order;
2124}
2125
2126static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2127                               unsigned int hctx_idx, int node)
2128{
2129        int ret;
2130
2131        if (set->ops->init_request) {
2132                ret = set->ops->init_request(set, rq, hctx_idx, node);
2133                if (ret)
2134                        return ret;
2135        }
2136
2137        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2138        return 0;
2139}
2140
2141int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2142                     unsigned int hctx_idx, unsigned int depth)
2143{
2144        unsigned int i, j, entries_per_page, max_order = 4;
2145        size_t rq_size, left;
2146        int node;
2147
2148        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2149        if (node == NUMA_NO_NODE)
2150                node = set->numa_node;
2151
2152        INIT_LIST_HEAD(&tags->page_list);
2153
2154        /*
2155         * rq_size is the size of the request plus driver payload, rounded
2156         * to the cacheline size
2157         */
2158        rq_size = round_up(sizeof(struct request) + set->cmd_size,
2159                                cache_line_size());
2160        left = rq_size * depth;
2161
2162        for (i = 0; i < depth; ) {
2163                int this_order = max_order;
2164                struct page *page;
2165                int to_do;
2166                void *p;
2167
2168                while (this_order && left < order_to_size(this_order - 1))
2169                        this_order--;
2170
2171                do {
2172                        page = alloc_pages_node(node,
2173                                GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2174                                this_order);
2175                        if (page)
2176                                break;
2177                        if (!this_order--)
2178                                break;
2179                        if (order_to_size(this_order) < rq_size)
2180                                break;
2181                } while (1);
2182
2183                if (!page)
2184                        goto fail;
2185
2186                page->private = this_order;
2187                list_add_tail(&page->lru, &tags->page_list);
2188
2189                p = page_address(page);
2190                /*
2191                 * Allow kmemleak to scan these pages as they contain pointers
2192                 * to additional allocations like via ops->init_request().
2193                 */
2194                kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2195                entries_per_page = order_to_size(this_order) / rq_size;
2196                to_do = min(entries_per_page, depth - i);
2197                left -= to_do * rq_size;
2198                for (j = 0; j < to_do; j++) {
2199                        struct request *rq = p;
2200
2201                        tags->static_rqs[i] = rq;
2202                        if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2203                                tags->static_rqs[i] = NULL;
2204                                goto fail;
2205                        }
2206
2207                        p += rq_size;
2208                        i++;
2209                }
2210        }
2211        return 0;
2212
2213fail:
2214        blk_mq_free_rqs(set, tags, hctx_idx);
2215        return -ENOMEM;
2216}
2217
2218/*
2219 * 'cpu' is going away. splice any existing rq_list entries from this
2220 * software queue to the hw queue dispatch list, and ensure that it
2221 * gets run.
2222 */
2223static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2224{
2225        struct blk_mq_hw_ctx *hctx;
2226        struct blk_mq_ctx *ctx;
2227        LIST_HEAD(tmp);
2228        enum hctx_type type;
2229
2230        hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2231        ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2232        type = hctx->type;
2233
2234        spin_lock(&ctx->lock);
2235        if (!list_empty(&ctx->rq_lists[type])) {
2236                list_splice_init(&ctx->rq_lists[type], &tmp);
2237                blk_mq_hctx_clear_pending(hctx, ctx);
2238        }
2239        spin_unlock(&ctx->lock);
2240
2241        if (list_empty(&tmp))
2242                return 0;
2243
2244        spin_lock(&hctx->lock);
2245        list_splice_tail_init(&tmp, &hctx->dispatch);
2246        spin_unlock(&hctx->lock);
2247
2248        blk_mq_run_hw_queue(hctx, true);
2249        return 0;
2250}
2251
2252static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2253{
2254        cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2255                                            &hctx->cpuhp_dead);
2256}
2257
2258/* hctx->ctxs will be freed in queue's release handler */
2259static void blk_mq_exit_hctx(struct request_queue *q,
2260                struct blk_mq_tag_set *set,
2261                struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2262{
2263        if (blk_mq_hw_queue_mapped(hctx))
2264                blk_mq_tag_idle(hctx);
2265
2266        if (set->ops->exit_request)
2267                set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2268
2269        if (set->ops->exit_hctx)
2270                set->ops->exit_hctx(hctx, hctx_idx);
2271
2272        blk_mq_remove_cpuhp(hctx);
2273
2274        spin_lock(&q->unused_hctx_lock);
2275        list_add(&hctx->hctx_list, &q->unused_hctx_list);
2276        spin_unlock(&q->unused_hctx_lock);
2277}
2278
2279static void blk_mq_exit_hw_queues(struct request_queue *q,
2280                struct blk_mq_tag_set *set, int nr_queue)
2281{
2282        struct blk_mq_hw_ctx *hctx;
2283        unsigned int i;
2284
2285        queue_for_each_hw_ctx(q, hctx, i) {
2286                if (i == nr_queue)
2287                        break;
2288                blk_mq_debugfs_unregister_hctx(hctx);
2289                blk_mq_exit_hctx(q, set, hctx, i);
2290        }
2291}
2292
2293static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2294{
2295        int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2296
2297        BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2298                           __alignof__(struct blk_mq_hw_ctx)) !=
2299                     sizeof(struct blk_mq_hw_ctx));
2300
2301        if (tag_set->flags & BLK_MQ_F_BLOCKING)
2302                hw_ctx_size += sizeof(struct srcu_struct);
2303
2304        return hw_ctx_size;
2305}
2306
2307static int blk_mq_init_hctx(struct request_queue *q,
2308                struct blk_mq_tag_set *set,
2309                struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2310{
2311        hctx->queue_num = hctx_idx;
2312
2313        cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2314
2315        hctx->tags = set->tags[hctx_idx];
2316
2317        if (set->ops->init_hctx &&
2318            set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2319                goto unregister_cpu_notifier;
2320
2321        if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2322                                hctx->numa_node))
2323                goto exit_hctx;
2324        return 0;
2325
2326 exit_hctx:
2327        if (set->ops->exit_hctx)
2328                set->ops->exit_hctx(hctx, hctx_idx);
2329 unregister_cpu_notifier:
2330        blk_mq_remove_cpuhp(hctx);
2331        return -1;
2332}
2333
2334static struct blk_mq_hw_ctx *
2335blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2336                int node)
2337{
2338        struct blk_mq_hw_ctx *hctx;
2339        gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2340
2341        hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2342        if (!hctx)
2343                goto fail_alloc_hctx;
2344
2345        if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2346                goto free_hctx;
2347
2348        atomic_set(&hctx->nr_active, 0);
2349        if (node == NUMA_NO_NODE)
2350                node = set->numa_node;
2351        hctx->numa_node = node;
2352
2353        INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2354        spin_lock_init(&hctx->lock);
2355        INIT_LIST_HEAD(&hctx->dispatch);
2356        hctx->queue = q;
2357        hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2358
2359        INIT_LIST_HEAD(&hctx->hctx_list);
2360
2361        /*
2362         * Allocate space for all possible cpus to avoid allocation at
2363         * runtime
2364         */
2365        hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2366                        gfp, node);
2367        if (!hctx->ctxs)
2368                goto free_cpumask;
2369
2370        if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2371                                gfp, node))
2372                goto free_ctxs;
2373        hctx->nr_ctx = 0;
2374
2375        spin_lock_init(&hctx->dispatch_wait_lock);
2376        init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2377        INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2378
2379        hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2380                        gfp);
2381        if (!hctx->fq)
2382                goto free_bitmap;
2383
2384        if (hctx->flags & BLK_MQ_F_BLOCKING)
2385                init_srcu_struct(hctx->srcu);
2386        blk_mq_hctx_kobj_init(hctx);
2387
2388        return hctx;
2389
2390 free_bitmap:
2391        sbitmap_free(&hctx->ctx_map);
2392 free_ctxs:
2393        kfree(hctx->ctxs);
2394 free_cpumask:
2395        free_cpumask_var(hctx->cpumask);
2396 free_hctx:
2397        kfree(hctx);
2398 fail_alloc_hctx:
2399        return NULL;
2400}
2401
2402static void blk_mq_init_cpu_queues(struct request_queue *q,
2403                                   unsigned int nr_hw_queues)
2404{
2405        struct blk_mq_tag_set *set = q->tag_set;
2406        unsigned int i, j;
2407
2408        for_each_possible_cpu(i) {
2409                struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2410                struct blk_mq_hw_ctx *hctx;
2411                int k;
2412
2413                __ctx->cpu = i;
2414                spin_lock_init(&__ctx->lock);
2415                for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2416                        INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2417
2418                __ctx->queue = q;
2419
2420                /*
2421                 * Set local node, IFF we have more than one hw queue. If
2422                 * not, we remain on the home node of the device
2423                 */
2424                for (j = 0; j < set->nr_maps; j++) {
2425                        hctx = blk_mq_map_queue_type(q, j, i);
2426                        if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2427                                hctx->numa_node = local_memory_node(cpu_to_node(i));
2428                }
2429        }
2430}
2431
2432static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2433{
2434        int ret = 0;
2435
2436        set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2437                                        set->queue_depth, set->reserved_tags);
2438        if (!set->tags[hctx_idx])
2439                return false;
2440
2441        ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2442                                set->queue_depth);
2443        if (!ret)
2444                return true;
2445
2446        blk_mq_free_rq_map(set->tags[hctx_idx]);
2447        set->tags[hctx_idx] = NULL;
2448        return false;
2449}
2450
2451static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2452                                         unsigned int hctx_idx)
2453{
2454        if (set->tags && set->tags[hctx_idx]) {
2455                blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2456                blk_mq_free_rq_map(set->tags[hctx_idx]);
2457                set->tags[hctx_idx] = NULL;
2458        }
2459}
2460
2461static void blk_mq_map_swqueue(struct request_queue *q)
2462{
2463        unsigned int i, j, hctx_idx;
2464        struct blk_mq_hw_ctx *hctx;
2465        struct blk_mq_ctx *ctx;
2466        struct blk_mq_tag_set *set = q->tag_set;
2467
2468        /*
2469         * Avoid others reading imcomplete hctx->cpumask through sysfs
2470         */
2471        mutex_lock(&q->sysfs_lock);
2472
2473        queue_for_each_hw_ctx(q, hctx, i) {
2474                cpumask_clear(hctx->cpumask);
2475                hctx->nr_ctx = 0;
2476                hctx->dispatch_from = NULL;
2477        }
2478
2479        /*
2480         * Map software to hardware queues.
2481         *
2482         * If the cpu isn't present, the cpu is mapped to first hctx.
2483         */
2484        for_each_possible_cpu(i) {
2485                hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2486                /* unmapped hw queue can be remapped after CPU topo changed */
2487                if (!set->tags[hctx_idx] &&
2488                    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2489                        /*
2490                         * If tags initialization fail for some hctx,
2491                         * that hctx won't be brought online.  In this
2492                         * case, remap the current ctx to hctx[0] which
2493                         * is guaranteed to always have tags allocated
2494                         */
2495                        set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2496                }
2497
2498                ctx = per_cpu_ptr(q->queue_ctx, i);
2499                for (j = 0; j < set->nr_maps; j++) {
2500                        if (!set->map[j].nr_queues) {
2501                                ctx->hctxs[j] = blk_mq_map_queue_type(q,
2502                                                HCTX_TYPE_DEFAULT, i);
2503                                continue;
2504                        }
2505
2506                        hctx = blk_mq_map_queue_type(q, j, i);
2507                        ctx->hctxs[j] = hctx;
2508                        /*
2509                         * If the CPU is already set in the mask, then we've
2510                         * mapped this one already. This can happen if
2511                         * devices share queues across queue maps.
2512                         */
2513                        if (cpumask_test_cpu(i, hctx->cpumask))
2514                                continue;
2515
2516                        cpumask_set_cpu(i, hctx->cpumask);
2517                        hctx->type = j;
2518                        ctx->index_hw[hctx->type] = hctx->nr_ctx;
2519                        hctx->ctxs[hctx->nr_ctx++] = ctx;
2520
2521                        /*
2522                         * If the nr_ctx type overflows, we have exceeded the
2523                         * amount of sw queues we can support.
2524                         */
2525                        BUG_ON(!hctx->nr_ctx);
2526                }
2527
2528                for (; j < HCTX_MAX_TYPES; j++)
2529                        ctx->hctxs[j] = blk_mq_map_queue_type(q,
2530                                        HCTX_TYPE_DEFAULT, i);
2531        }
2532
2533        mutex_unlock(&q->sysfs_lock);
2534
2535        queue_for_each_hw_ctx(q, hctx, i) {
2536                /*
2537                 * If no software queues are mapped to this hardware queue,
2538                 * disable it and free the request entries.
2539                 */
2540                if (!hctx->nr_ctx) {
2541                        /* Never unmap queue 0.  We need it as a
2542                         * fallback in case of a new remap fails
2543                         * allocation
2544                         */
2545                        if (i && set->tags[i])
2546                                blk_mq_free_map_and_requests(set, i);
2547
2548                        hctx->tags = NULL;
2549                        continue;
2550                }
2551
2552                hctx->tags = set->tags[i];
2553                WARN_ON(!hctx->tags);
2554
2555                /*
2556                 * Set the map size to the number of mapped software queues.
2557                 * This is more accurate and more efficient than looping
2558                 * over all possibly mapped software queues.
2559                 */
2560                sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2561
2562                /*
2563                 * Initialize batch roundrobin counts
2564                 */
2565                hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2566                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2567        }
2568}
2569
2570/*
2571 * Caller needs to ensure that we're either frozen/quiesced, or that
2572 * the queue isn't live yet.
2573 */
2574static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2575{
2576        struct blk_mq_hw_ctx *hctx;
2577        int i;
2578
2579        queue_for_each_hw_ctx(q, hctx, i) {
2580                if (shared)
2581                        hctx->flags |= BLK_MQ_F_TAG_SHARED;
2582                else
2583                        hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2584        }
2585}
2586
2587static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2588                                        bool shared)
2589{
2590        struct request_queue *q;
2591
2592        lockdep_assert_held(&set->tag_list_lock);
2593
2594        list_for_each_entry(q, &set->tag_list, tag_set_list) {
2595                blk_mq_freeze_queue(q);
2596                queue_set_hctx_shared(q, shared);
2597                blk_mq_unfreeze_queue(q);
2598        }
2599}
2600
2601static void blk_mq_del_queue_tag_set(struct request_queue *q)
2602{
2603        struct blk_mq_tag_set *set = q->tag_set;
2604
2605        mutex_lock(&set->tag_list_lock);
2606        list_del_rcu(&q->tag_set_list);
2607        if (list_is_singular(&set->tag_list)) {
2608                /* just transitioned to unshared */
2609                set->flags &= ~BLK_MQ_F_TAG_SHARED;
2610                /* update existing queue */
2611                blk_mq_update_tag_set_depth(set, false);
2612        }
2613        mutex_unlock(&set->tag_list_lock);
2614        INIT_LIST_HEAD(&q->tag_set_list);
2615}
2616
2617static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2618                                     struct request_queue *q)
2619{
2620        mutex_lock(&set->tag_list_lock);
2621
2622        /*
2623         * Check to see if we're transitioning to shared (from 1 to 2 queues).
2624         */
2625        if (!list_empty(&set->tag_list) &&
2626            !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2627                set->flags |= BLK_MQ_F_TAG_SHARED;
2628                /* update existing queue */
2629                blk_mq_update_tag_set_depth(set, true);
2630        }
2631        if (set->flags & BLK_MQ_F_TAG_SHARED)
2632                queue_set_hctx_shared(q, true);
2633        list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2634
2635        mutex_unlock(&set->tag_list_lock);
2636}
2637
2638/* All allocations will be freed in release handler of q->mq_kobj */
2639static int blk_mq_alloc_ctxs(struct request_queue *q)
2640{
2641        struct blk_mq_ctxs *ctxs;
2642        int cpu;
2643
2644        ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2645        if (!ctxs)
2646                return -ENOMEM;
2647
2648        ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2649        if (!ctxs->queue_ctx)
2650                goto fail;
2651
2652        for_each_possible_cpu(cpu) {
2653                struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2654                ctx->ctxs = ctxs;
2655        }
2656
2657        q->mq_kobj = &ctxs->kobj;
2658        q->queue_ctx = ctxs->queue_ctx;
2659
2660        return 0;
2661 fail:
2662        kfree(ctxs);
2663        return -ENOMEM;
2664}
2665
2666/*
2667 * It is the actual release handler for mq, but we do it from
2668 * request queue's release handler for avoiding use-after-free
2669 * and headache because q->mq_kobj shouldn't have been introduced,
2670 * but we can't group ctx/kctx kobj without it.
2671 */
2672void blk_mq_release(struct request_queue *q)
2673{
2674        struct blk_mq_hw_ctx *hctx, *next;
2675        int i;
2676
2677        cancel_delayed_work_sync(&q->requeue_work);
2678
2679        queue_for_each_hw_ctx(q, hctx, i)
2680                WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2681
2682        /* all hctx are in .unused_hctx_list now */
2683        list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2684                list_del_init(&hctx->hctx_list);
2685                kobject_put(&hctx->kobj);
2686        }
2687
2688        kfree(q->queue_hw_ctx);
2689
2690        /*
2691         * release .mq_kobj and sw queue's kobject now because
2692         * both share lifetime with request queue.
2693         */
2694        blk_mq_sysfs_deinit(q);
2695}
2696
2697struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2698{
2699        struct request_queue *uninit_q, *q;
2700
2701        uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2702        if (!uninit_q)
2703                return ERR_PTR(-ENOMEM);
2704
2705        q = blk_mq_init_allocated_queue(set, uninit_q);
2706        if (IS_ERR(q))
2707                blk_cleanup_queue(uninit_q);
2708
2709        return q;
2710}
2711EXPORT_SYMBOL(blk_mq_init_queue);
2712
2713/*
2714 * Helper for setting up a queue with mq ops, given queue depth, and
2715 * the passed in mq ops flags.
2716 */
2717struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2718                                           const struct blk_mq_ops *ops,
2719                                           unsigned int queue_depth,
2720                                           unsigned int set_flags)
2721{
2722        struct request_queue *q;
2723        int ret;
2724
2725        memset(set, 0, sizeof(*set));
2726        set->ops = ops;
2727        set->nr_hw_queues = 1;
2728        set->nr_maps = 1;
2729        set->queue_depth = queue_depth;
2730        set->numa_node = NUMA_NO_NODE;
2731        set->flags = set_flags;
2732
2733        ret = blk_mq_alloc_tag_set(set);
2734        if (ret)
2735                return ERR_PTR(ret);
2736
2737        q = blk_mq_init_queue(set);
2738        if (IS_ERR(q)) {
2739                blk_mq_free_tag_set(set);
2740                return q;
2741        }
2742
2743        return q;
2744}
2745EXPORT_SYMBOL(blk_mq_init_sq_queue);
2746
2747static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2748                struct blk_mq_tag_set *set, struct request_queue *q,
2749                int hctx_idx, int node)
2750{
2751        struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2752
2753        /* reuse dead hctx first */
2754        spin_lock(&q->unused_hctx_lock);
2755        list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2756                if (tmp->numa_node == node) {
2757                        hctx = tmp;
2758                        break;
2759                }
2760        }
2761        if (hctx)
2762                list_del_init(&hctx->hctx_list);
2763        spin_unlock(&q->unused_hctx_lock);
2764
2765        if (!hctx)
2766                hctx = blk_mq_alloc_hctx(q, set, node);
2767        if (!hctx)
2768                goto fail;
2769
2770        if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2771                goto free_hctx;
2772
2773        return hctx;
2774
2775 free_hctx:
2776        kobject_put(&hctx->kobj);
2777 fail:
2778        return NULL;
2779}
2780
2781static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2782                                                struct request_queue *q)
2783{
2784        int i, j, end;
2785        struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2786
2787        /* protect against switching io scheduler  */
2788        mutex_lock(&q->sysfs_lock);
2789        for (i = 0; i < set->nr_hw_queues; i++) {
2790                int node;
2791                struct blk_mq_hw_ctx *hctx;
2792
2793                node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2794                /*
2795                 * If the hw queue has been mapped to another numa node,
2796                 * we need to realloc the hctx. If allocation fails, fallback
2797                 * to use the previous one.
2798                 */
2799                if (hctxs[i] && (hctxs[i]->numa_node == node))
2800                        continue;
2801
2802                hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2803                if (hctx) {
2804                        if (hctxs[i])
2805                                blk_mq_exit_hctx(q, set, hctxs[i], i);
2806                        hctxs[i] = hctx;
2807                } else {
2808                        if (hctxs[i])
2809                                pr_warn("Allocate new hctx on node %d fails,\
2810                                                fallback to previous one on node %d\n",
2811                                                node, hctxs[i]->numa_node);
2812                        else
2813                                break;
2814                }
2815        }
2816        /*
2817         * Increasing nr_hw_queues fails. Free the newly allocated
2818         * hctxs and keep the previous q->nr_hw_queues.
2819         */
2820        if (i != set->nr_hw_queues) {
2821                j = q->nr_hw_queues;
2822                end = i;
2823        } else {
2824                j = i;
2825                end = q->nr_hw_queues;
2826                q->nr_hw_queues = set->nr_hw_queues;
2827        }
2828
2829        for (; j < end; j++) {
2830                struct blk_mq_hw_ctx *hctx = hctxs[j];
2831
2832                if (hctx) {
2833                        if (hctx->tags)
2834                                blk_mq_free_map_and_requests(set, j);
2835                        blk_mq_exit_hctx(q, set, hctx, j);
2836                        hctxs[j] = NULL;
2837                }
2838        }
2839        mutex_unlock(&q->sysfs_lock);
2840}
2841
2842/*
2843 * Maximum number of hardware queues we support. For single sets, we'll never
2844 * have more than the CPUs (software queues). For multiple sets, the tag_set
2845 * user may have set ->nr_hw_queues larger.
2846 */
2847static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2848{
2849        if (set->nr_maps == 1)
2850                return nr_cpu_ids;
2851
2852        return max(set->nr_hw_queues, nr_cpu_ids);
2853}
2854
2855struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2856                                                  struct request_queue *q)
2857{
2858        /* mark the queue as mq asap */
2859        q->mq_ops = set->ops;
2860
2861        q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2862                                             blk_mq_poll_stats_bkt,
2863                                             BLK_MQ_POLL_STATS_BKTS, q);
2864        if (!q->poll_cb)
2865                goto err_exit;
2866
2867        if (blk_mq_alloc_ctxs(q))
2868                goto err_poll;
2869
2870        /* init q->mq_kobj and sw queues' kobjects */
2871        blk_mq_sysfs_init(q);
2872
2873        q->nr_queues = nr_hw_queues(set);
2874        q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2875                                                GFP_KERNEL, set->numa_node);
2876        if (!q->queue_hw_ctx)
2877                goto err_sys_init;
2878
2879        INIT_LIST_HEAD(&q->unused_hctx_list);
2880        spin_lock_init(&q->unused_hctx_lock);
2881
2882        blk_mq_realloc_hw_ctxs(set, q);
2883        if (!q->nr_hw_queues)
2884                goto err_hctxs;
2885
2886        INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2887        blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2888
2889        q->tag_set = set;
2890
2891        q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2892        if (set->nr_maps > HCTX_TYPE_POLL &&
2893            set->map[HCTX_TYPE_POLL].nr_queues)
2894                blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2895
2896        q->sg_reserved_size = INT_MAX;
2897
2898        INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2899        INIT_LIST_HEAD(&q->requeue_list);
2900        spin_lock_init(&q->requeue_lock);
2901
2902        blk_queue_make_request(q, blk_mq_make_request);
2903
2904        /*
2905         * Do this after blk_queue_make_request() overrides it...
2906         */
2907        q->nr_requests = set->queue_depth;
2908
2909        /*
2910         * Default to classic polling
2911         */
2912        q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2913
2914        blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2915        blk_mq_add_queue_tag_set(set, q);
2916        blk_mq_map_swqueue(q);
2917
2918        if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2919                int ret;
2920
2921                ret = elevator_init_mq(q);
2922                if (ret)
2923                        return ERR_PTR(ret);
2924        }
2925
2926        return q;
2927
2928err_hctxs:
2929        kfree(q->queue_hw_ctx);
2930err_sys_init:
2931        blk_mq_sysfs_deinit(q);
2932err_poll:
2933        blk_stat_free_callback(q->poll_cb);
2934        q->poll_cb = NULL;
2935err_exit:
2936        q->mq_ops = NULL;
2937        return ERR_PTR(-ENOMEM);
2938}
2939EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2940
2941/* tags can _not_ be used after returning from blk_mq_exit_queue */
2942void blk_mq_exit_queue(struct request_queue *q)
2943{
2944        struct blk_mq_tag_set   *set = q->tag_set;
2945
2946        blk_mq_del_queue_tag_set(q);
2947        blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2948}
2949
2950static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2951{
2952        int i;
2953
2954        for (i = 0; i < set->nr_hw_queues; i++)
2955                if (!__blk_mq_alloc_rq_map(set, i))
2956                        goto out_unwind;
2957
2958        return 0;
2959
2960out_unwind:
2961        while (--i >= 0)
2962                blk_mq_free_rq_map(set->tags[i]);
2963
2964        return -ENOMEM;
2965}
2966
2967/*
2968 * Allocate the request maps associated with this tag_set. Note that this
2969 * may reduce the depth asked for, if memory is tight. set->queue_depth
2970 * will be updated to reflect the allocated depth.
2971 */
2972static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2973{
2974        unsigned int depth;
2975        int err;
2976
2977        depth = set->queue_depth;
2978        do {
2979                err = __blk_mq_alloc_rq_maps(set);
2980                if (!err)
2981                        break;
2982
2983                set->queue_depth >>= 1;
2984                if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2985                        err = -ENOMEM;
2986                        break;
2987                }
2988        } while (set->queue_depth);
2989
2990        if (!set->queue_depth || err) {
2991                pr_err("blk-mq: failed to allocate request map\n");
2992                return -ENOMEM;
2993        }
2994
2995        if (depth != set->queue_depth)
2996                pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2997                                                depth, set->queue_depth);
2998
2999        return 0;
3000}
3001
3002static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3003{
3004        if (set->ops->map_queues && !is_kdump_kernel()) {
3005                int i;
3006
3007                /*
3008                 * transport .map_queues is usually done in the following
3009                 * way:
3010                 *
3011                 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3012                 *      mask = get_cpu_mask(queue)
3013                 *      for_each_cpu(cpu, mask)
3014                 *              set->map[x].mq_map[cpu] = queue;
3015                 * }
3016                 *
3017                 * When we need to remap, the table has to be cleared for
3018                 * killing stale mapping since one CPU may not be mapped
3019                 * to any hw queue.
3020                 */
3021                for (i = 0; i < set->nr_maps; i++)
3022                        blk_mq_clear_mq_map(&set->map[i]);
3023
3024                return set->ops->map_queues(set);
3025        } else {
3026                BUG_ON(set->nr_maps > 1);
3027                return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3028        }
3029}
3030
3031/*
3032 * Alloc a tag set to be associated with one or more request queues.
3033 * May fail with EINVAL for various error conditions. May adjust the
3034 * requested depth down, if it's too large. In that case, the set
3035 * value will be stored in set->queue_depth.
3036 */
3037int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3038{
3039        int i, ret;
3040
3041        BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3042
3043        if (!set->nr_hw_queues)
3044                return -EINVAL;
3045        if (!set->queue_depth)
3046                return -EINVAL;
3047        if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3048                return -EINVAL;
3049
3050        if (!set->ops->queue_rq)
3051                return -EINVAL;
3052
3053        if (!set->ops->get_budget ^ !set->ops->put_budget)
3054                return -EINVAL;
3055
3056        if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3057                pr_info("blk-mq: reduced tag depth to %u\n",
3058                        BLK_MQ_MAX_DEPTH);
3059                set->queue_depth = BLK_MQ_MAX_DEPTH;
3060        }
3061
3062        if (!set->nr_maps)
3063                set->nr_maps = 1;
3064        else if (set->nr_maps > HCTX_MAX_TYPES)
3065                return -EINVAL;
3066
3067        /*
3068         * If a crashdump is active, then we are potentially in a very
3069         * memory constrained environment. Limit us to 1 queue and
3070         * 64 tags to prevent using too much memory.
3071         */
3072        if (is_kdump_kernel()) {
3073                set->nr_hw_queues = 1;
3074                set->nr_maps = 1;
3075                set->queue_depth = min(64U, set->queue_depth);
3076        }
3077        /*
3078         * There is no use for more h/w queues than cpus if we just have
3079         * a single map
3080         */
3081        if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3082                set->nr_hw_queues = nr_cpu_ids;
3083
3084        set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3085                                 GFP_KERNEL, set->numa_node);
3086        if (!set->tags)
3087                return -ENOMEM;
3088
3089        ret = -ENOMEM;
3090        for (i = 0; i < set->nr_maps; i++) {
3091                set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3092                                                  sizeof(set->map[i].mq_map[0]),
3093                                                  GFP_KERNEL, set->numa_node);
3094                if (!set->map[i].mq_map)
3095                        goto out_free_mq_map;
3096                set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3097        }
3098
3099        ret = blk_mq_update_queue_map(set);
3100        if (ret)
3101                goto out_free_mq_map;
3102
3103        ret = blk_mq_alloc_rq_maps(set);
3104        if (ret)
3105                goto out_free_mq_map;
3106
3107        mutex_init(&set->tag_list_lock);
3108        INIT_LIST_HEAD(&set->tag_list);
3109
3110        return 0;
3111
3112out_free_mq_map:
3113        for (i = 0; i < set->nr_maps; i++) {
3114                kfree(set->map[i].mq_map);
3115                set->map[i].mq_map = NULL;
3116        }
3117        kfree(set->tags);
3118        set->tags = NULL;
3119        return ret;
3120}
3121EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3122
3123void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3124{
3125        int i, j;
3126
3127        for (i = 0; i < nr_hw_queues(set); i++)
3128                blk_mq_free_map_and_requests(set, i);
3129
3130        for (j = 0; j < set->nr_maps; j++) {
3131                kfree(set->map[j].mq_map);
3132                set->map[j].mq_map = NULL;
3133        }
3134
3135        kfree(set->tags);
3136        set->tags = NULL;
3137}
3138EXPORT_SYMBOL(blk_mq_free_tag_set);
3139
3140int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3141{
3142        struct blk_mq_tag_set *set = q->tag_set;
3143        struct blk_mq_hw_ctx *hctx;
3144        int i, ret;
3145
3146        if (!set)
3147                return -EINVAL;
3148
3149        if (q->nr_requests == nr)
3150                return 0;
3151
3152        blk_mq_freeze_queue(q);
3153        blk_mq_quiesce_queue(q);
3154
3155        ret = 0;
3156        queue_for_each_hw_ctx(q, hctx, i) {
3157                if (!hctx->tags)
3158                        continue;
3159                /*
3160                 * If we're using an MQ scheduler, just update the scheduler
3161                 * queue depth. This is similar to what the old code would do.
3162                 */
3163                if (!hctx->sched_tags) {
3164                        ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3165                                                        false);
3166                } else {
3167                        ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3168                                                        nr, true);
3169                }
3170                if (ret)
3171                        break;
3172                if (q->elevator && q->elevator->type->ops.depth_updated)
3173                        q->elevator->type->ops.depth_updated(hctx);
3174        }
3175
3176        if (!ret)
3177                q->nr_requests = nr;
3178
3179        blk_mq_unquiesce_queue(q);
3180        blk_mq_unfreeze_queue(q);
3181
3182        return ret;
3183}
3184
3185/*
3186 * request_queue and elevator_type pair.
3187 * It is just used by __blk_mq_update_nr_hw_queues to cache
3188 * the elevator_type associated with a request_queue.
3189 */
3190struct blk_mq_qe_pair {
3191        struct list_head node;
3192        struct request_queue *q;
3193        struct elevator_type *type;
3194};
3195
3196/*
3197 * Cache the elevator_type in qe pair list and switch the
3198 * io scheduler to 'none'
3199 */
3200static bool blk_mq_elv_switch_none(struct list_head *head,
3201                struct request_queue *q)
3202{
3203        struct blk_mq_qe_pair *qe;
3204
3205        if (!q->elevator)
3206                return true;
3207
3208        qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3209        if (!qe)
3210                return false;
3211
3212        INIT_LIST_HEAD(&qe->node);
3213        qe->q = q;
3214        qe->type = q->elevator->type;
3215        list_add(&qe->node, head);
3216
3217        mutex_lock(&q->sysfs_lock);
3218        /*
3219         * After elevator_switch_mq, the previous elevator_queue will be
3220         * released by elevator_release. The reference of the io scheduler
3221         * module get by elevator_get will also be put. So we need to get
3222         * a reference of the io scheduler module here to prevent it to be
3223         * removed.
3224         */
3225        __module_get(qe->type->elevator_owner);
3226        elevator_switch_mq(q, NULL);
3227        mutex_unlock(&q->sysfs_lock);
3228
3229        return true;
3230}
3231
3232static void blk_mq_elv_switch_back(struct list_head *head,
3233                struct request_queue *q)
3234{
3235        struct blk_mq_qe_pair *qe;
3236        struct elevator_type *t = NULL;
3237
3238        list_for_each_entry(qe, head, node)
3239                if (qe->q == q) {
3240                        t = qe->type;
3241                        break;
3242                }
3243
3244        if (!t)
3245                return;
3246
3247        list_del(&qe->node);
3248        kfree(qe);
3249
3250        mutex_lock(&q->sysfs_lock);
3251        elevator_switch_mq(q, t);
3252        mutex_unlock(&q->sysfs_lock);
3253}
3254
3255static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3256                                                        int nr_hw_queues)
3257{
3258        struct request_queue *q;
3259        LIST_HEAD(head);
3260        int prev_nr_hw_queues;
3261
3262        lockdep_assert_held(&set->tag_list_lock);
3263
3264        if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3265                nr_hw_queues = nr_cpu_ids;
3266        if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3267                return;
3268
3269        list_for_each_entry(q, &set->tag_list, tag_set_list)
3270                blk_mq_freeze_queue(q);
3271        /*
3272         * Sync with blk_mq_queue_tag_busy_iter.
3273         */
3274        synchronize_rcu();
3275        /*
3276         * Switch IO scheduler to 'none', cleaning up the data associated
3277         * with the previous scheduler. We will switch back once we are done
3278         * updating the new sw to hw queue mappings.
3279         */
3280        list_for_each_entry(q, &set->tag_list, tag_set_list)
3281                if (!blk_mq_elv_switch_none(&head, q))
3282                        goto switch_back;
3283
3284        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3285                blk_mq_debugfs_unregister_hctxs(q);
3286                blk_mq_sysfs_unregister(q);
3287        }
3288
3289        prev_nr_hw_queues = set->nr_hw_queues;
3290        set->nr_hw_queues = nr_hw_queues;
3291        blk_mq_update_queue_map(set);
3292fallback:
3293        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3294                blk_mq_realloc_hw_ctxs(set, q);
3295                if (q->nr_hw_queues != set->nr_hw_queues) {
3296                        pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3297                                        nr_hw_queues, prev_nr_hw_queues);
3298                        set->nr_hw_queues = prev_nr_hw_queues;
3299                        blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3300                        goto fallback;
3301                }
3302                blk_mq_map_swqueue(q);
3303        }
3304
3305        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3306                blk_mq_sysfs_register(q);
3307                blk_mq_debugfs_register_hctxs(q);
3308        }
3309
3310switch_back:
3311        list_for_each_entry(q, &set->tag_list, tag_set_list)
3312                blk_mq_elv_switch_back(&head, q);
3313
3314        list_for_each_entry(q, &set->tag_list, tag_set_list)
3315                blk_mq_unfreeze_queue(q);
3316}
3317
3318void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3319{
3320        mutex_lock(&set->tag_list_lock);
3321        __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3322        mutex_unlock(&set->tag_list_lock);
3323}
3324EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3325
3326/* Enable polling stats and return whether they were already enabled. */
3327static bool blk_poll_stats_enable(struct request_queue *q)
3328{
3329        if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3330            blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3331                return true;
3332        blk_stat_add_callback(q, q->poll_cb);
3333        return false;
3334}
3335
3336static void blk_mq_poll_stats_start(struct request_queue *q)
3337{
3338        /*
3339         * We don't arm the callback if polling stats are not enabled or the
3340         * callback is already active.
3341         */
3342        if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3343            blk_stat_is_active(q->poll_cb))
3344                return;
3345
3346        blk_stat_activate_msecs(q->poll_cb, 100);
3347}
3348
3349static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3350{
3351        struct request_queue *q = cb->data;
3352        int bucket;
3353
3354        for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3355                if (cb->stat[bucket].nr_samples)
3356                        q->poll_stat[bucket] = cb->stat[bucket];
3357        }
3358}
3359
3360static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3361                                       struct blk_mq_hw_ctx *hctx,
3362                                       struct request *rq)
3363{
3364        unsigned long ret = 0;
3365        int bucket;
3366
3367        /*
3368         * If stats collection isn't on, don't sleep but turn it on for
3369         * future users
3370         */
3371        if (!blk_poll_stats_enable(q))
3372                return 0;
3373
3374        /*
3375         * As an optimistic guess, use half of the mean service time
3376         * for this type of request. We can (and should) make this smarter.
3377         * For instance, if the completion latencies are tight, we can
3378         * get closer than just half the mean. This is especially
3379         * important on devices where the completion latencies are longer
3380         * than ~10 usec. We do use the stats for the relevant IO size
3381         * if available which does lead to better estimates.
3382         */
3383        bucket = blk_mq_poll_stats_bkt(rq);
3384        if (bucket < 0)
3385                return ret;
3386
3387        if (q->poll_stat[bucket].nr_samples)
3388                ret = (q->poll_stat[bucket].mean + 1) / 2;
3389
3390        return ret;
3391}
3392
3393static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3394                                     struct blk_mq_hw_ctx *hctx,
3395                                     struct request *rq)
3396{
3397        struct hrtimer_sleeper hs;
3398        enum hrtimer_mode mode;
3399        unsigned int nsecs;
3400        ktime_t kt;
3401
3402        if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3403                return false;
3404
3405        /*
3406         * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3407         *
3408         *  0:  use half of prev avg
3409         * >0:  use this specific value
3410         */
3411        if (q->poll_nsec > 0)
3412                nsecs = q->poll_nsec;
3413        else
3414                nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3415
3416        if (!nsecs)
3417                return false;
3418
3419        rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3420
3421        /*
3422         * This will be replaced with the stats tracking code, using
3423         * 'avg_completion_time / 2' as the pre-sleep target.
3424         */
3425        kt = nsecs;
3426
3427        mode = HRTIMER_MODE_REL;
3428        hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3429        hrtimer_set_expires(&hs.timer, kt);
3430
3431        hrtimer_init_sleeper(&hs, current);
3432        do {
3433                if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3434                        break;
3435                set_current_state(TASK_UNINTERRUPTIBLE);
3436                hrtimer_start_expires(&hs.timer, mode);
3437                if (hs.task)
3438                        io_schedule();
3439                hrtimer_cancel(&hs.timer);
3440                mode = HRTIMER_MODE_ABS;
3441        } while (hs.task && !signal_pending(current));
3442
3443        __set_current_state(TASK_RUNNING);
3444        destroy_hrtimer_on_stack(&hs.timer);
3445        return true;
3446}
3447
3448static bool blk_mq_poll_hybrid(struct request_queue *q,
3449                               struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3450{
3451        struct request *rq;
3452
3453        if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3454                return false;
3455
3456        if (!blk_qc_t_is_internal(cookie))
3457                rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3458        else {
3459                rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3460                /*
3461                 * With scheduling, if the request has completed, we'll
3462                 * get a NULL return here, as we clear the sched tag when
3463                 * that happens. The request still remains valid, like always,
3464                 * so we should be safe with just the NULL check.
3465                 */
3466                if (!rq)
3467                        return false;
3468        }
3469
3470        return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3471}
3472
3473/**
3474 * blk_poll - poll for IO completions
3475 * @q:  the queue
3476 * @cookie: cookie passed back at IO submission time
3477 * @spin: whether to spin for completions
3478 *
3479 * Description:
3480 *    Poll for completions on the passed in queue. Returns number of
3481 *    completed entries found. If @spin is true, then blk_poll will continue
3482 *    looping until at least one completion is found, unless the task is
3483 *    otherwise marked running (or we need to reschedule).
3484 */
3485int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3486{
3487        struct blk_mq_hw_ctx *hctx;
3488        long state;
3489
3490        if (!blk_qc_t_valid(cookie) ||
3491            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3492                return 0;
3493
3494        if (current->plug)
3495                blk_flush_plug_list(current->plug, false);
3496
3497        hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3498
3499        /*
3500         * If we sleep, have the caller restart the poll loop to reset
3501         * the state. Like for the other success return cases, the
3502         * caller is responsible for checking if the IO completed. If
3503         * the IO isn't complete, we'll get called again and will go
3504         * straight to the busy poll loop.
3505         */
3506        if (blk_mq_poll_hybrid(q, hctx, cookie))
3507                return 1;
3508
3509        hctx->poll_considered++;
3510
3511        state = current->state;
3512        do {
3513                int ret;
3514
3515                hctx->poll_invoked++;
3516
3517                ret = q->mq_ops->poll(hctx);
3518                if (ret > 0) {
3519                        hctx->poll_success++;
3520                        __set_current_state(TASK_RUNNING);
3521                        return ret;
3522                }
3523
3524                if (signal_pending_state(state, current))
3525                        __set_current_state(TASK_RUNNING);
3526
3527                if (current->state == TASK_RUNNING)
3528                        return 1;
3529                if (ret < 0 || !spin)
3530                        break;
3531                cpu_relax();
3532        } while (!need_resched());
3533
3534        __set_current_state(TASK_RUNNING);
3535        return 0;
3536}
3537EXPORT_SYMBOL_GPL(blk_poll);
3538
3539unsigned int blk_mq_rq_cpu(struct request *rq)
3540{
3541        return rq->mq_ctx->cpu;
3542}
3543EXPORT_SYMBOL(blk_mq_rq_cpu);
3544
3545static int __init blk_mq_init(void)
3546{
3547        cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3548                                blk_mq_hctx_notify_dead);
3549        return 0;
3550}
3551subsys_initcall(blk_mq_init);
3552