linux/drivers/ata/libata-sff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   7 *                  on emails.
   8 *
   9 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2006 Jeff Garzik
  11 *
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/gfp.h>
  21#include <linux/pci.h>
  22#include <linux/module.h>
  23#include <linux/libata.h>
  24#include <linux/highmem.h>
  25
  26#include "libata.h"
  27
  28static struct workqueue_struct *ata_sff_wq;
  29
  30const struct ata_port_operations ata_sff_port_ops = {
  31        .inherits               = &ata_base_port_ops,
  32
  33        .qc_prep                = ata_noop_qc_prep,
  34        .qc_issue               = ata_sff_qc_issue,
  35        .qc_fill_rtf            = ata_sff_qc_fill_rtf,
  36
  37        .freeze                 = ata_sff_freeze,
  38        .thaw                   = ata_sff_thaw,
  39        .prereset               = ata_sff_prereset,
  40        .softreset              = ata_sff_softreset,
  41        .hardreset              = sata_sff_hardreset,
  42        .postreset              = ata_sff_postreset,
  43        .error_handler          = ata_sff_error_handler,
  44
  45        .sff_dev_select         = ata_sff_dev_select,
  46        .sff_check_status       = ata_sff_check_status,
  47        .sff_tf_load            = ata_sff_tf_load,
  48        .sff_tf_read            = ata_sff_tf_read,
  49        .sff_exec_command       = ata_sff_exec_command,
  50        .sff_data_xfer          = ata_sff_data_xfer,
  51        .sff_drain_fifo         = ata_sff_drain_fifo,
  52
  53        .lost_interrupt         = ata_sff_lost_interrupt,
  54};
  55EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  56
  57/**
  58 *      ata_sff_check_status - Read device status reg & clear interrupt
  59 *      @ap: port where the device is
  60 *
  61 *      Reads ATA taskfile status register for currently-selected device
  62 *      and return its value. This also clears pending interrupts
  63 *      from this device
  64 *
  65 *      LOCKING:
  66 *      Inherited from caller.
  67 */
  68u8 ata_sff_check_status(struct ata_port *ap)
  69{
  70        return ioread8(ap->ioaddr.status_addr);
  71}
  72EXPORT_SYMBOL_GPL(ata_sff_check_status);
  73
  74/**
  75 *      ata_sff_altstatus - Read device alternate status reg
  76 *      @ap: port where the device is
  77 *
  78 *      Reads ATA taskfile alternate status register for
  79 *      currently-selected device and return its value.
  80 *
  81 *      Note: may NOT be used as the check_altstatus() entry in
  82 *      ata_port_operations.
  83 *
  84 *      LOCKING:
  85 *      Inherited from caller.
  86 */
  87static u8 ata_sff_altstatus(struct ata_port *ap)
  88{
  89        if (ap->ops->sff_check_altstatus)
  90                return ap->ops->sff_check_altstatus(ap);
  91
  92        return ioread8(ap->ioaddr.altstatus_addr);
  93}
  94
  95/**
  96 *      ata_sff_irq_status - Check if the device is busy
  97 *      @ap: port where the device is
  98 *
  99 *      Determine if the port is currently busy. Uses altstatus
 100 *      if available in order to avoid clearing shared IRQ status
 101 *      when finding an IRQ source. Non ctl capable devices don't
 102 *      share interrupt lines fortunately for us.
 103 *
 104 *      LOCKING:
 105 *      Inherited from caller.
 106 */
 107static u8 ata_sff_irq_status(struct ata_port *ap)
 108{
 109        u8 status;
 110
 111        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 112                status = ata_sff_altstatus(ap);
 113                /* Not us: We are busy */
 114                if (status & ATA_BUSY)
 115                        return status;
 116        }
 117        /* Clear INTRQ latch */
 118        status = ap->ops->sff_check_status(ap);
 119        return status;
 120}
 121
 122/**
 123 *      ata_sff_sync - Flush writes
 124 *      @ap: Port to wait for.
 125 *
 126 *      CAUTION:
 127 *      If we have an mmio device with no ctl and no altstatus
 128 *      method this will fail. No such devices are known to exist.
 129 *
 130 *      LOCKING:
 131 *      Inherited from caller.
 132 */
 133
 134static void ata_sff_sync(struct ata_port *ap)
 135{
 136        if (ap->ops->sff_check_altstatus)
 137                ap->ops->sff_check_altstatus(ap);
 138        else if (ap->ioaddr.altstatus_addr)
 139                ioread8(ap->ioaddr.altstatus_addr);
 140}
 141
 142/**
 143 *      ata_sff_pause           -       Flush writes and wait 400nS
 144 *      @ap: Port to pause for.
 145 *
 146 *      CAUTION:
 147 *      If we have an mmio device with no ctl and no altstatus
 148 *      method this will fail. No such devices are known to exist.
 149 *
 150 *      LOCKING:
 151 *      Inherited from caller.
 152 */
 153
 154void ata_sff_pause(struct ata_port *ap)
 155{
 156        ata_sff_sync(ap);
 157        ndelay(400);
 158}
 159EXPORT_SYMBOL_GPL(ata_sff_pause);
 160
 161/**
 162 *      ata_sff_dma_pause       -       Pause before commencing DMA
 163 *      @ap: Port to pause for.
 164 *
 165 *      Perform I/O fencing and ensure sufficient cycle delays occur
 166 *      for the HDMA1:0 transition
 167 */
 168
 169void ata_sff_dma_pause(struct ata_port *ap)
 170{
 171        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 172                /* An altstatus read will cause the needed delay without
 173                   messing up the IRQ status */
 174                ata_sff_altstatus(ap);
 175                return;
 176        }
 177        /* There are no DMA controllers without ctl. BUG here to ensure
 178           we never violate the HDMA1:0 transition timing and risk
 179           corruption. */
 180        BUG();
 181}
 182EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 183
 184/**
 185 *      ata_sff_busy_sleep - sleep until BSY clears, or timeout
 186 *      @ap: port containing status register to be polled
 187 *      @tmout_pat: impatience timeout in msecs
 188 *      @tmout: overall timeout in msecs
 189 *
 190 *      Sleep until ATA Status register bit BSY clears,
 191 *      or a timeout occurs.
 192 *
 193 *      LOCKING:
 194 *      Kernel thread context (may sleep).
 195 *
 196 *      RETURNS:
 197 *      0 on success, -errno otherwise.
 198 */
 199int ata_sff_busy_sleep(struct ata_port *ap,
 200                       unsigned long tmout_pat, unsigned long tmout)
 201{
 202        unsigned long timer_start, timeout;
 203        u8 status;
 204
 205        status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 206        timer_start = jiffies;
 207        timeout = ata_deadline(timer_start, tmout_pat);
 208        while (status != 0xff && (status & ATA_BUSY) &&
 209               time_before(jiffies, timeout)) {
 210                ata_msleep(ap, 50);
 211                status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 212        }
 213
 214        if (status != 0xff && (status & ATA_BUSY))
 215                ata_port_warn(ap,
 216                              "port is slow to respond, please be patient (Status 0x%x)\n",
 217                              status);
 218
 219        timeout = ata_deadline(timer_start, tmout);
 220        while (status != 0xff && (status & ATA_BUSY) &&
 221               time_before(jiffies, timeout)) {
 222                ata_msleep(ap, 50);
 223                status = ap->ops->sff_check_status(ap);
 224        }
 225
 226        if (status == 0xff)
 227                return -ENODEV;
 228
 229        if (status & ATA_BUSY) {
 230                ata_port_err(ap,
 231                             "port failed to respond (%lu secs, Status 0x%x)\n",
 232                             DIV_ROUND_UP(tmout, 1000), status);
 233                return -EBUSY;
 234        }
 235
 236        return 0;
 237}
 238EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 239
 240static int ata_sff_check_ready(struct ata_link *link)
 241{
 242        u8 status = link->ap->ops->sff_check_status(link->ap);
 243
 244        return ata_check_ready(status);
 245}
 246
 247/**
 248 *      ata_sff_wait_ready - sleep until BSY clears, or timeout
 249 *      @link: SFF link to wait ready status for
 250 *      @deadline: deadline jiffies for the operation
 251 *
 252 *      Sleep until ATA Status register bit BSY clears, or timeout
 253 *      occurs.
 254 *
 255 *      LOCKING:
 256 *      Kernel thread context (may sleep).
 257 *
 258 *      RETURNS:
 259 *      0 on success, -errno otherwise.
 260 */
 261int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 262{
 263        return ata_wait_ready(link, deadline, ata_sff_check_ready);
 264}
 265EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 266
 267/**
 268 *      ata_sff_set_devctl - Write device control reg
 269 *      @ap: port where the device is
 270 *      @ctl: value to write
 271 *
 272 *      Writes ATA taskfile device control register.
 273 *
 274 *      Note: may NOT be used as the sff_set_devctl() entry in
 275 *      ata_port_operations.
 276 *
 277 *      LOCKING:
 278 *      Inherited from caller.
 279 */
 280static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 281{
 282        if (ap->ops->sff_set_devctl)
 283                ap->ops->sff_set_devctl(ap, ctl);
 284        else
 285                iowrite8(ctl, ap->ioaddr.ctl_addr);
 286}
 287
 288/**
 289 *      ata_sff_dev_select - Select device 0/1 on ATA bus
 290 *      @ap: ATA channel to manipulate
 291 *      @device: ATA device (numbered from zero) to select
 292 *
 293 *      Use the method defined in the ATA specification to
 294 *      make either device 0, or device 1, active on the
 295 *      ATA channel.  Works with both PIO and MMIO.
 296 *
 297 *      May be used as the dev_select() entry in ata_port_operations.
 298 *
 299 *      LOCKING:
 300 *      caller.
 301 */
 302void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 303{
 304        u8 tmp;
 305
 306        if (device == 0)
 307                tmp = ATA_DEVICE_OBS;
 308        else
 309                tmp = ATA_DEVICE_OBS | ATA_DEV1;
 310
 311        iowrite8(tmp, ap->ioaddr.device_addr);
 312        ata_sff_pause(ap);      /* needed; also flushes, for mmio */
 313}
 314EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 315
 316/**
 317 *      ata_dev_select - Select device 0/1 on ATA bus
 318 *      @ap: ATA channel to manipulate
 319 *      @device: ATA device (numbered from zero) to select
 320 *      @wait: non-zero to wait for Status register BSY bit to clear
 321 *      @can_sleep: non-zero if context allows sleeping
 322 *
 323 *      Use the method defined in the ATA specification to
 324 *      make either device 0, or device 1, active on the
 325 *      ATA channel.
 326 *
 327 *      This is a high-level version of ata_sff_dev_select(), which
 328 *      additionally provides the services of inserting the proper
 329 *      pauses and status polling, where needed.
 330 *
 331 *      LOCKING:
 332 *      caller.
 333 */
 334static void ata_dev_select(struct ata_port *ap, unsigned int device,
 335                           unsigned int wait, unsigned int can_sleep)
 336{
 337        if (ata_msg_probe(ap))
 338                ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 339                              device, wait);
 340
 341        if (wait)
 342                ata_wait_idle(ap);
 343
 344        ap->ops->sff_dev_select(ap, device);
 345
 346        if (wait) {
 347                if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 348                        ata_msleep(ap, 150);
 349                ata_wait_idle(ap);
 350        }
 351}
 352
 353/**
 354 *      ata_sff_irq_on - Enable interrupts on a port.
 355 *      @ap: Port on which interrupts are enabled.
 356 *
 357 *      Enable interrupts on a legacy IDE device using MMIO or PIO,
 358 *      wait for idle, clear any pending interrupts.
 359 *
 360 *      Note: may NOT be used as the sff_irq_on() entry in
 361 *      ata_port_operations.
 362 *
 363 *      LOCKING:
 364 *      Inherited from caller.
 365 */
 366void ata_sff_irq_on(struct ata_port *ap)
 367{
 368        struct ata_ioports *ioaddr = &ap->ioaddr;
 369
 370        if (ap->ops->sff_irq_on) {
 371                ap->ops->sff_irq_on(ap);
 372                return;
 373        }
 374
 375        ap->ctl &= ~ATA_NIEN;
 376        ap->last_ctl = ap->ctl;
 377
 378        if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 379                ata_sff_set_devctl(ap, ap->ctl);
 380        ata_wait_idle(ap);
 381
 382        if (ap->ops->sff_irq_clear)
 383                ap->ops->sff_irq_clear(ap);
 384}
 385EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 386
 387/**
 388 *      ata_sff_tf_load - send taskfile registers to host controller
 389 *      @ap: Port to which output is sent
 390 *      @tf: ATA taskfile register set
 391 *
 392 *      Outputs ATA taskfile to standard ATA host controller.
 393 *
 394 *      LOCKING:
 395 *      Inherited from caller.
 396 */
 397void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 398{
 399        struct ata_ioports *ioaddr = &ap->ioaddr;
 400        unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 401
 402        if (tf->ctl != ap->last_ctl) {
 403                if (ioaddr->ctl_addr)
 404                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 405                ap->last_ctl = tf->ctl;
 406                ata_wait_idle(ap);
 407        }
 408
 409        if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 410                WARN_ON_ONCE(!ioaddr->ctl_addr);
 411                iowrite8(tf->hob_feature, ioaddr->feature_addr);
 412                iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 413                iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 414                iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 415                iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 416                VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 417                        tf->hob_feature,
 418                        tf->hob_nsect,
 419                        tf->hob_lbal,
 420                        tf->hob_lbam,
 421                        tf->hob_lbah);
 422        }
 423
 424        if (is_addr) {
 425                iowrite8(tf->feature, ioaddr->feature_addr);
 426                iowrite8(tf->nsect, ioaddr->nsect_addr);
 427                iowrite8(tf->lbal, ioaddr->lbal_addr);
 428                iowrite8(tf->lbam, ioaddr->lbam_addr);
 429                iowrite8(tf->lbah, ioaddr->lbah_addr);
 430                VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 431                        tf->feature,
 432                        tf->nsect,
 433                        tf->lbal,
 434                        tf->lbam,
 435                        tf->lbah);
 436        }
 437
 438        if (tf->flags & ATA_TFLAG_DEVICE) {
 439                iowrite8(tf->device, ioaddr->device_addr);
 440                VPRINTK("device 0x%X\n", tf->device);
 441        }
 442
 443        ata_wait_idle(ap);
 444}
 445EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 446
 447/**
 448 *      ata_sff_tf_read - input device's ATA taskfile shadow registers
 449 *      @ap: Port from which input is read
 450 *      @tf: ATA taskfile register set for storing input
 451 *
 452 *      Reads ATA taskfile registers for currently-selected device
 453 *      into @tf. Assumes the device has a fully SFF compliant task file
 454 *      layout and behaviour. If you device does not (eg has a different
 455 *      status method) then you will need to provide a replacement tf_read
 456 *
 457 *      LOCKING:
 458 *      Inherited from caller.
 459 */
 460void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 461{
 462        struct ata_ioports *ioaddr = &ap->ioaddr;
 463
 464        tf->command = ata_sff_check_status(ap);
 465        tf->feature = ioread8(ioaddr->error_addr);
 466        tf->nsect = ioread8(ioaddr->nsect_addr);
 467        tf->lbal = ioread8(ioaddr->lbal_addr);
 468        tf->lbam = ioread8(ioaddr->lbam_addr);
 469        tf->lbah = ioread8(ioaddr->lbah_addr);
 470        tf->device = ioread8(ioaddr->device_addr);
 471
 472        if (tf->flags & ATA_TFLAG_LBA48) {
 473                if (likely(ioaddr->ctl_addr)) {
 474                        iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 475                        tf->hob_feature = ioread8(ioaddr->error_addr);
 476                        tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 477                        tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 478                        tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 479                        tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 480                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 481                        ap->last_ctl = tf->ctl;
 482                } else
 483                        WARN_ON_ONCE(1);
 484        }
 485}
 486EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 487
 488/**
 489 *      ata_sff_exec_command - issue ATA command to host controller
 490 *      @ap: port to which command is being issued
 491 *      @tf: ATA taskfile register set
 492 *
 493 *      Issues ATA command, with proper synchronization with interrupt
 494 *      handler / other threads.
 495 *
 496 *      LOCKING:
 497 *      spin_lock_irqsave(host lock)
 498 */
 499void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 500{
 501        DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 502
 503        iowrite8(tf->command, ap->ioaddr.command_addr);
 504        ata_sff_pause(ap);
 505}
 506EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 507
 508/**
 509 *      ata_tf_to_host - issue ATA taskfile to host controller
 510 *      @ap: port to which command is being issued
 511 *      @tf: ATA taskfile register set
 512 *
 513 *      Issues ATA taskfile register set to ATA host controller,
 514 *      with proper synchronization with interrupt handler and
 515 *      other threads.
 516 *
 517 *      LOCKING:
 518 *      spin_lock_irqsave(host lock)
 519 */
 520static inline void ata_tf_to_host(struct ata_port *ap,
 521                                  const struct ata_taskfile *tf)
 522{
 523        ap->ops->sff_tf_load(ap, tf);
 524        ap->ops->sff_exec_command(ap, tf);
 525}
 526
 527/**
 528 *      ata_sff_data_xfer - Transfer data by PIO
 529 *      @qc: queued command
 530 *      @buf: data buffer
 531 *      @buflen: buffer length
 532 *      @rw: read/write
 533 *
 534 *      Transfer data from/to the device data register by PIO.
 535 *
 536 *      LOCKING:
 537 *      Inherited from caller.
 538 *
 539 *      RETURNS:
 540 *      Bytes consumed.
 541 */
 542unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 543                               unsigned int buflen, int rw)
 544{
 545        struct ata_port *ap = qc->dev->link->ap;
 546        void __iomem *data_addr = ap->ioaddr.data_addr;
 547        unsigned int words = buflen >> 1;
 548
 549        /* Transfer multiple of 2 bytes */
 550        if (rw == READ)
 551                ioread16_rep(data_addr, buf, words);
 552        else
 553                iowrite16_rep(data_addr, buf, words);
 554
 555        /* Transfer trailing byte, if any. */
 556        if (unlikely(buflen & 0x01)) {
 557                unsigned char pad[2] = { };
 558
 559                /* Point buf to the tail of buffer */
 560                buf += buflen - 1;
 561
 562                /*
 563                 * Use io*16_rep() accessors here as well to avoid pointlessly
 564                 * swapping bytes to and from on the big endian machines...
 565                 */
 566                if (rw == READ) {
 567                        ioread16_rep(data_addr, pad, 1);
 568                        *buf = pad[0];
 569                } else {
 570                        pad[0] = *buf;
 571                        iowrite16_rep(data_addr, pad, 1);
 572                }
 573                words++;
 574        }
 575
 576        return words << 1;
 577}
 578EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 579
 580/**
 581 *      ata_sff_data_xfer32 - Transfer data by PIO
 582 *      @qc: queued command
 583 *      @buf: data buffer
 584 *      @buflen: buffer length
 585 *      @rw: read/write
 586 *
 587 *      Transfer data from/to the device data register by PIO using 32bit
 588 *      I/O operations.
 589 *
 590 *      LOCKING:
 591 *      Inherited from caller.
 592 *
 593 *      RETURNS:
 594 *      Bytes consumed.
 595 */
 596
 597unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 598                               unsigned int buflen, int rw)
 599{
 600        struct ata_device *dev = qc->dev;
 601        struct ata_port *ap = dev->link->ap;
 602        void __iomem *data_addr = ap->ioaddr.data_addr;
 603        unsigned int words = buflen >> 2;
 604        int slop = buflen & 3;
 605
 606        if (!(ap->pflags & ATA_PFLAG_PIO32))
 607                return ata_sff_data_xfer(qc, buf, buflen, rw);
 608
 609        /* Transfer multiple of 4 bytes */
 610        if (rw == READ)
 611                ioread32_rep(data_addr, buf, words);
 612        else
 613                iowrite32_rep(data_addr, buf, words);
 614
 615        /* Transfer trailing bytes, if any */
 616        if (unlikely(slop)) {
 617                unsigned char pad[4] = { };
 618
 619                /* Point buf to the tail of buffer */
 620                buf += buflen - slop;
 621
 622                /*
 623                 * Use io*_rep() accessors here as well to avoid pointlessly
 624                 * swapping bytes to and from on the big endian machines...
 625                 */
 626                if (rw == READ) {
 627                        if (slop < 3)
 628                                ioread16_rep(data_addr, pad, 1);
 629                        else
 630                                ioread32_rep(data_addr, pad, 1);
 631                        memcpy(buf, pad, slop);
 632                } else {
 633                        memcpy(pad, buf, slop);
 634                        if (slop < 3)
 635                                iowrite16_rep(data_addr, pad, 1);
 636                        else
 637                                iowrite32_rep(data_addr, pad, 1);
 638                }
 639        }
 640        return (buflen + 1) & ~1;
 641}
 642EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 643
 644/**
 645 *      ata_pio_sector - Transfer a sector of data.
 646 *      @qc: Command on going
 647 *
 648 *      Transfer qc->sect_size bytes of data from/to the ATA device.
 649 *
 650 *      LOCKING:
 651 *      Inherited from caller.
 652 */
 653static void ata_pio_sector(struct ata_queued_cmd *qc)
 654{
 655        int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 656        struct ata_port *ap = qc->ap;
 657        struct page *page;
 658        unsigned int offset;
 659        unsigned char *buf;
 660
 661        if (qc->curbytes == qc->nbytes - qc->sect_size)
 662                ap->hsm_task_state = HSM_ST_LAST;
 663
 664        page = sg_page(qc->cursg);
 665        offset = qc->cursg->offset + qc->cursg_ofs;
 666
 667        /* get the current page and offset */
 668        page = nth_page(page, (offset >> PAGE_SHIFT));
 669        offset %= PAGE_SIZE;
 670
 671        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 672
 673        /* do the actual data transfer */
 674        buf = kmap_atomic(page);
 675        ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
 676        kunmap_atomic(buf);
 677
 678        if (!do_write && !PageSlab(page))
 679                flush_dcache_page(page);
 680
 681        qc->curbytes += qc->sect_size;
 682        qc->cursg_ofs += qc->sect_size;
 683
 684        if (qc->cursg_ofs == qc->cursg->length) {
 685                qc->cursg = sg_next(qc->cursg);
 686                qc->cursg_ofs = 0;
 687        }
 688}
 689
 690/**
 691 *      ata_pio_sectors - Transfer one or many sectors.
 692 *      @qc: Command on going
 693 *
 694 *      Transfer one or many sectors of data from/to the
 695 *      ATA device for the DRQ request.
 696 *
 697 *      LOCKING:
 698 *      Inherited from caller.
 699 */
 700static void ata_pio_sectors(struct ata_queued_cmd *qc)
 701{
 702        if (is_multi_taskfile(&qc->tf)) {
 703                /* READ/WRITE MULTIPLE */
 704                unsigned int nsect;
 705
 706                WARN_ON_ONCE(qc->dev->multi_count == 0);
 707
 708                nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 709                            qc->dev->multi_count);
 710                while (nsect--)
 711                        ata_pio_sector(qc);
 712        } else
 713                ata_pio_sector(qc);
 714
 715        ata_sff_sync(qc->ap); /* flush */
 716}
 717
 718/**
 719 *      atapi_send_cdb - Write CDB bytes to hardware
 720 *      @ap: Port to which ATAPI device is attached.
 721 *      @qc: Taskfile currently active
 722 *
 723 *      When device has indicated its readiness to accept
 724 *      a CDB, this function is called.  Send the CDB.
 725 *
 726 *      LOCKING:
 727 *      caller.
 728 */
 729static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 730{
 731        /* send SCSI cdb */
 732        DPRINTK("send cdb\n");
 733        WARN_ON_ONCE(qc->dev->cdb_len < 12);
 734
 735        ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 736        ata_sff_sync(ap);
 737        /* FIXME: If the CDB is for DMA do we need to do the transition delay
 738           or is bmdma_start guaranteed to do it ? */
 739        switch (qc->tf.protocol) {
 740        case ATAPI_PROT_PIO:
 741                ap->hsm_task_state = HSM_ST;
 742                break;
 743        case ATAPI_PROT_NODATA:
 744                ap->hsm_task_state = HSM_ST_LAST;
 745                break;
 746#ifdef CONFIG_ATA_BMDMA
 747        case ATAPI_PROT_DMA:
 748                ap->hsm_task_state = HSM_ST_LAST;
 749                /* initiate bmdma */
 750                ap->ops->bmdma_start(qc);
 751                break;
 752#endif /* CONFIG_ATA_BMDMA */
 753        default:
 754                BUG();
 755        }
 756}
 757
 758/**
 759 *      __atapi_pio_bytes - Transfer data from/to the ATAPI device.
 760 *      @qc: Command on going
 761 *      @bytes: number of bytes
 762 *
 763 *      Transfer Transfer data from/to the ATAPI device.
 764 *
 765 *      LOCKING:
 766 *      Inherited from caller.
 767 *
 768 */
 769static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 770{
 771        int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 772        struct ata_port *ap = qc->ap;
 773        struct ata_device *dev = qc->dev;
 774        struct ata_eh_info *ehi = &dev->link->eh_info;
 775        struct scatterlist *sg;
 776        struct page *page;
 777        unsigned char *buf;
 778        unsigned int offset, count, consumed;
 779
 780next_sg:
 781        sg = qc->cursg;
 782        if (unlikely(!sg)) {
 783                ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 784                                  "buf=%u cur=%u bytes=%u",
 785                                  qc->nbytes, qc->curbytes, bytes);
 786                return -1;
 787        }
 788
 789        page = sg_page(sg);
 790        offset = sg->offset + qc->cursg_ofs;
 791
 792        /* get the current page and offset */
 793        page = nth_page(page, (offset >> PAGE_SHIFT));
 794        offset %= PAGE_SIZE;
 795
 796        /* don't overrun current sg */
 797        count = min(sg->length - qc->cursg_ofs, bytes);
 798
 799        /* don't cross page boundaries */
 800        count = min(count, (unsigned int)PAGE_SIZE - offset);
 801
 802        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 803
 804        /* do the actual data transfer */
 805        buf = kmap_atomic(page);
 806        consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 807        kunmap_atomic(buf);
 808
 809        bytes -= min(bytes, consumed);
 810        qc->curbytes += count;
 811        qc->cursg_ofs += count;
 812
 813        if (qc->cursg_ofs == sg->length) {
 814                qc->cursg = sg_next(qc->cursg);
 815                qc->cursg_ofs = 0;
 816        }
 817
 818        /*
 819         * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 820         * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 821         * check correctly as it doesn't know if it is the last request being
 822         * made. Somebody should implement a proper sanity check.
 823         */
 824        if (bytes)
 825                goto next_sg;
 826        return 0;
 827}
 828
 829/**
 830 *      atapi_pio_bytes - Transfer data from/to the ATAPI device.
 831 *      @qc: Command on going
 832 *
 833 *      Transfer Transfer data from/to the ATAPI device.
 834 *
 835 *      LOCKING:
 836 *      Inherited from caller.
 837 */
 838static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 839{
 840        struct ata_port *ap = qc->ap;
 841        struct ata_device *dev = qc->dev;
 842        struct ata_eh_info *ehi = &dev->link->eh_info;
 843        unsigned int ireason, bc_lo, bc_hi, bytes;
 844        int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 845
 846        /* Abuse qc->result_tf for temp storage of intermediate TF
 847         * here to save some kernel stack usage.
 848         * For normal completion, qc->result_tf is not relevant. For
 849         * error, qc->result_tf is later overwritten by ata_qc_complete().
 850         * So, the correctness of qc->result_tf is not affected.
 851         */
 852        ap->ops->sff_tf_read(ap, &qc->result_tf);
 853        ireason = qc->result_tf.nsect;
 854        bc_lo = qc->result_tf.lbam;
 855        bc_hi = qc->result_tf.lbah;
 856        bytes = (bc_hi << 8) | bc_lo;
 857
 858        /* shall be cleared to zero, indicating xfer of data */
 859        if (unlikely(ireason & ATAPI_COD))
 860                goto atapi_check;
 861
 862        /* make sure transfer direction matches expected */
 863        i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 864        if (unlikely(do_write != i_write))
 865                goto atapi_check;
 866
 867        if (unlikely(!bytes))
 868                goto atapi_check;
 869
 870        VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 871
 872        if (unlikely(__atapi_pio_bytes(qc, bytes)))
 873                goto err_out;
 874        ata_sff_sync(ap); /* flush */
 875
 876        return;
 877
 878 atapi_check:
 879        ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 880                          ireason, bytes);
 881 err_out:
 882        qc->err_mask |= AC_ERR_HSM;
 883        ap->hsm_task_state = HSM_ST_ERR;
 884}
 885
 886/**
 887 *      ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 888 *      @ap: the target ata_port
 889 *      @qc: qc on going
 890 *
 891 *      RETURNS:
 892 *      1 if ok in workqueue, 0 otherwise.
 893 */
 894static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 895                                                struct ata_queued_cmd *qc)
 896{
 897        if (qc->tf.flags & ATA_TFLAG_POLLING)
 898                return 1;
 899
 900        if (ap->hsm_task_state == HSM_ST_FIRST) {
 901                if (qc->tf.protocol == ATA_PROT_PIO &&
 902                   (qc->tf.flags & ATA_TFLAG_WRITE))
 903                    return 1;
 904
 905                if (ata_is_atapi(qc->tf.protocol) &&
 906                   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 907                        return 1;
 908        }
 909
 910        return 0;
 911}
 912
 913/**
 914 *      ata_hsm_qc_complete - finish a qc running on standard HSM
 915 *      @qc: Command to complete
 916 *      @in_wq: 1 if called from workqueue, 0 otherwise
 917 *
 918 *      Finish @qc which is running on standard HSM.
 919 *
 920 *      LOCKING:
 921 *      If @in_wq is zero, spin_lock_irqsave(host lock).
 922 *      Otherwise, none on entry and grabs host lock.
 923 */
 924static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 925{
 926        struct ata_port *ap = qc->ap;
 927
 928        if (ap->ops->error_handler) {
 929                if (in_wq) {
 930                        /* EH might have kicked in while host lock is
 931                         * released.
 932                         */
 933                        qc = ata_qc_from_tag(ap, qc->tag);
 934                        if (qc) {
 935                                if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 936                                        ata_sff_irq_on(ap);
 937                                        ata_qc_complete(qc);
 938                                } else
 939                                        ata_port_freeze(ap);
 940                        }
 941                } else {
 942                        if (likely(!(qc->err_mask & AC_ERR_HSM)))
 943                                ata_qc_complete(qc);
 944                        else
 945                                ata_port_freeze(ap);
 946                }
 947        } else {
 948                if (in_wq) {
 949                        ata_sff_irq_on(ap);
 950                        ata_qc_complete(qc);
 951                } else
 952                        ata_qc_complete(qc);
 953        }
 954}
 955
 956/**
 957 *      ata_sff_hsm_move - move the HSM to the next state.
 958 *      @ap: the target ata_port
 959 *      @qc: qc on going
 960 *      @status: current device status
 961 *      @in_wq: 1 if called from workqueue, 0 otherwise
 962 *
 963 *      RETURNS:
 964 *      1 when poll next status needed, 0 otherwise.
 965 */
 966int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 967                     u8 status, int in_wq)
 968{
 969        struct ata_link *link = qc->dev->link;
 970        struct ata_eh_info *ehi = &link->eh_info;
 971        int poll_next;
 972
 973        lockdep_assert_held(ap->lock);
 974
 975        WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 976
 977        /* Make sure ata_sff_qc_issue() does not throw things
 978         * like DMA polling into the workqueue. Notice that
 979         * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 980         */
 981        WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 982
 983fsm_start:
 984        DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
 985                ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
 986
 987        switch (ap->hsm_task_state) {
 988        case HSM_ST_FIRST:
 989                /* Send first data block or PACKET CDB */
 990
 991                /* If polling, we will stay in the work queue after
 992                 * sending the data. Otherwise, interrupt handler
 993                 * takes over after sending the data.
 994                 */
 995                poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 996
 997                /* check device status */
 998                if (unlikely((status & ATA_DRQ) == 0)) {
 999                        /* handle BSY=0, DRQ=0 as error */
1000                        if (likely(status & (ATA_ERR | ATA_DF)))
1001                                /* device stops HSM for abort/error */
1002                                qc->err_mask |= AC_ERR_DEV;
1003                        else {
1004                                /* HSM violation. Let EH handle this */
1005                                ata_ehi_push_desc(ehi,
1006                                        "ST_FIRST: !(DRQ|ERR|DF)");
1007                                qc->err_mask |= AC_ERR_HSM;
1008                        }
1009
1010                        ap->hsm_task_state = HSM_ST_ERR;
1011                        goto fsm_start;
1012                }
1013
1014                /* Device should not ask for data transfer (DRQ=1)
1015                 * when it finds something wrong.
1016                 * We ignore DRQ here and stop the HSM by
1017                 * changing hsm_task_state to HSM_ST_ERR and
1018                 * let the EH abort the command or reset the device.
1019                 */
1020                if (unlikely(status & (ATA_ERR | ATA_DF))) {
1021                        /* Some ATAPI tape drives forget to clear the ERR bit
1022                         * when doing the next command (mostly request sense).
1023                         * We ignore ERR here to workaround and proceed sending
1024                         * the CDB.
1025                         */
1026                        if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1027                                ata_ehi_push_desc(ehi, "ST_FIRST: "
1028                                        "DRQ=1 with device error, "
1029                                        "dev_stat 0x%X", status);
1030                                qc->err_mask |= AC_ERR_HSM;
1031                                ap->hsm_task_state = HSM_ST_ERR;
1032                                goto fsm_start;
1033                        }
1034                }
1035
1036                if (qc->tf.protocol == ATA_PROT_PIO) {
1037                        /* PIO data out protocol.
1038                         * send first data block.
1039                         */
1040
1041                        /* ata_pio_sectors() might change the state
1042                         * to HSM_ST_LAST. so, the state is changed here
1043                         * before ata_pio_sectors().
1044                         */
1045                        ap->hsm_task_state = HSM_ST;
1046                        ata_pio_sectors(qc);
1047                } else
1048                        /* send CDB */
1049                        atapi_send_cdb(ap, qc);
1050
1051                /* if polling, ata_sff_pio_task() handles the rest.
1052                 * otherwise, interrupt handler takes over from here.
1053                 */
1054                break;
1055
1056        case HSM_ST:
1057                /* complete command or read/write the data register */
1058                if (qc->tf.protocol == ATAPI_PROT_PIO) {
1059                        /* ATAPI PIO protocol */
1060                        if ((status & ATA_DRQ) == 0) {
1061                                /* No more data to transfer or device error.
1062                                 * Device error will be tagged in HSM_ST_LAST.
1063                                 */
1064                                ap->hsm_task_state = HSM_ST_LAST;
1065                                goto fsm_start;
1066                        }
1067
1068                        /* Device should not ask for data transfer (DRQ=1)
1069                         * when it finds something wrong.
1070                         * We ignore DRQ here and stop the HSM by
1071                         * changing hsm_task_state to HSM_ST_ERR and
1072                         * let the EH abort the command or reset the device.
1073                         */
1074                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1075                                ata_ehi_push_desc(ehi, "ST-ATAPI: "
1076                                        "DRQ=1 with device error, "
1077                                        "dev_stat 0x%X", status);
1078                                qc->err_mask |= AC_ERR_HSM;
1079                                ap->hsm_task_state = HSM_ST_ERR;
1080                                goto fsm_start;
1081                        }
1082
1083                        atapi_pio_bytes(qc);
1084
1085                        if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1086                                /* bad ireason reported by device */
1087                                goto fsm_start;
1088
1089                } else {
1090                        /* ATA PIO protocol */
1091                        if (unlikely((status & ATA_DRQ) == 0)) {
1092                                /* handle BSY=0, DRQ=0 as error */
1093                                if (likely(status & (ATA_ERR | ATA_DF))) {
1094                                        /* device stops HSM for abort/error */
1095                                        qc->err_mask |= AC_ERR_DEV;
1096
1097                                        /* If diagnostic failed and this is
1098                                         * IDENTIFY, it's likely a phantom
1099                                         * device.  Mark hint.
1100                                         */
1101                                        if (qc->dev->horkage &
1102                                            ATA_HORKAGE_DIAGNOSTIC)
1103                                                qc->err_mask |=
1104                                                        AC_ERR_NODEV_HINT;
1105                                } else {
1106                                        /* HSM violation. Let EH handle this.
1107                                         * Phantom devices also trigger this
1108                                         * condition.  Mark hint.
1109                                         */
1110                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1111                                                "DRQ=0 without device error, "
1112                                                "dev_stat 0x%X", status);
1113                                        qc->err_mask |= AC_ERR_HSM |
1114                                                        AC_ERR_NODEV_HINT;
1115                                }
1116
1117                                ap->hsm_task_state = HSM_ST_ERR;
1118                                goto fsm_start;
1119                        }
1120
1121                        /* For PIO reads, some devices may ask for
1122                         * data transfer (DRQ=1) alone with ERR=1.
1123                         * We respect DRQ here and transfer one
1124                         * block of junk data before changing the
1125                         * hsm_task_state to HSM_ST_ERR.
1126                         *
1127                         * For PIO writes, ERR=1 DRQ=1 doesn't make
1128                         * sense since the data block has been
1129                         * transferred to the device.
1130                         */
1131                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1132                                /* data might be corrputed */
1133                                qc->err_mask |= AC_ERR_DEV;
1134
1135                                if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1136                                        ata_pio_sectors(qc);
1137                                        status = ata_wait_idle(ap);
1138                                }
1139
1140                                if (status & (ATA_BUSY | ATA_DRQ)) {
1141                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1142                                                "BUSY|DRQ persists on ERR|DF, "
1143                                                "dev_stat 0x%X", status);
1144                                        qc->err_mask |= AC_ERR_HSM;
1145                                }
1146
1147                                /* There are oddball controllers with
1148                                 * status register stuck at 0x7f and
1149                                 * lbal/m/h at zero which makes it
1150                                 * pass all other presence detection
1151                                 * mechanisms we have.  Set NODEV_HINT
1152                                 * for it.  Kernel bz#7241.
1153                                 */
1154                                if (status == 0x7f)
1155                                        qc->err_mask |= AC_ERR_NODEV_HINT;
1156
1157                                /* ata_pio_sectors() might change the
1158                                 * state to HSM_ST_LAST. so, the state
1159                                 * is changed after ata_pio_sectors().
1160                                 */
1161                                ap->hsm_task_state = HSM_ST_ERR;
1162                                goto fsm_start;
1163                        }
1164
1165                        ata_pio_sectors(qc);
1166
1167                        if (ap->hsm_task_state == HSM_ST_LAST &&
1168                            (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1169                                /* all data read */
1170                                status = ata_wait_idle(ap);
1171                                goto fsm_start;
1172                        }
1173                }
1174
1175                poll_next = 1;
1176                break;
1177
1178        case HSM_ST_LAST:
1179                if (unlikely(!ata_ok(status))) {
1180                        qc->err_mask |= __ac_err_mask(status);
1181                        ap->hsm_task_state = HSM_ST_ERR;
1182                        goto fsm_start;
1183                }
1184
1185                /* no more data to transfer */
1186                DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1187                        ap->print_id, qc->dev->devno, status);
1188
1189                WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1190
1191                ap->hsm_task_state = HSM_ST_IDLE;
1192
1193                /* complete taskfile transaction */
1194                ata_hsm_qc_complete(qc, in_wq);
1195
1196                poll_next = 0;
1197                break;
1198
1199        case HSM_ST_ERR:
1200                ap->hsm_task_state = HSM_ST_IDLE;
1201
1202                /* complete taskfile transaction */
1203                ata_hsm_qc_complete(qc, in_wq);
1204
1205                poll_next = 0;
1206                break;
1207        default:
1208                poll_next = 0;
1209                WARN(true, "ata%d: SFF host state machine in invalid state %d",
1210                     ap->print_id, ap->hsm_task_state);
1211        }
1212
1213        return poll_next;
1214}
1215EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1216
1217void ata_sff_queue_work(struct work_struct *work)
1218{
1219        queue_work(ata_sff_wq, work);
1220}
1221EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1222
1223void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1224{
1225        queue_delayed_work(ata_sff_wq, dwork, delay);
1226}
1227EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1228
1229void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1230{
1231        struct ata_port *ap = link->ap;
1232
1233        WARN_ON((ap->sff_pio_task_link != NULL) &&
1234                (ap->sff_pio_task_link != link));
1235        ap->sff_pio_task_link = link;
1236
1237        /* may fail if ata_sff_flush_pio_task() in progress */
1238        ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1239}
1240EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1241
1242void ata_sff_flush_pio_task(struct ata_port *ap)
1243{
1244        DPRINTK("ENTER\n");
1245
1246        cancel_delayed_work_sync(&ap->sff_pio_task);
1247
1248        /*
1249         * We wanna reset the HSM state to IDLE.  If we do so without
1250         * grabbing the port lock, critical sections protected by it which
1251         * expect the HSM state to stay stable may get surprised.  For
1252         * example, we may set IDLE in between the time
1253         * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1254         * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1255         */
1256        spin_lock_irq(ap->lock);
1257        ap->hsm_task_state = HSM_ST_IDLE;
1258        spin_unlock_irq(ap->lock);
1259
1260        ap->sff_pio_task_link = NULL;
1261
1262        if (ata_msg_ctl(ap))
1263                ata_port_dbg(ap, "%s: EXIT\n", __func__);
1264}
1265
1266static void ata_sff_pio_task(struct work_struct *work)
1267{
1268        struct ata_port *ap =
1269                container_of(work, struct ata_port, sff_pio_task.work);
1270        struct ata_link *link = ap->sff_pio_task_link;
1271        struct ata_queued_cmd *qc;
1272        u8 status;
1273        int poll_next;
1274
1275        spin_lock_irq(ap->lock);
1276
1277        BUG_ON(ap->sff_pio_task_link == NULL);
1278        /* qc can be NULL if timeout occurred */
1279        qc = ata_qc_from_tag(ap, link->active_tag);
1280        if (!qc) {
1281                ap->sff_pio_task_link = NULL;
1282                goto out_unlock;
1283        }
1284
1285fsm_start:
1286        WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1287
1288        /*
1289         * This is purely heuristic.  This is a fast path.
1290         * Sometimes when we enter, BSY will be cleared in
1291         * a chk-status or two.  If not, the drive is probably seeking
1292         * or something.  Snooze for a couple msecs, then
1293         * chk-status again.  If still busy, queue delayed work.
1294         */
1295        status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1296        if (status & ATA_BUSY) {
1297                spin_unlock_irq(ap->lock);
1298                ata_msleep(ap, 2);
1299                spin_lock_irq(ap->lock);
1300
1301                status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1302                if (status & ATA_BUSY) {
1303                        ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1304                        goto out_unlock;
1305                }
1306        }
1307
1308        /*
1309         * hsm_move() may trigger another command to be processed.
1310         * clean the link beforehand.
1311         */
1312        ap->sff_pio_task_link = NULL;
1313        /* move the HSM */
1314        poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1315
1316        /* another command or interrupt handler
1317         * may be running at this point.
1318         */
1319        if (poll_next)
1320                goto fsm_start;
1321out_unlock:
1322        spin_unlock_irq(ap->lock);
1323}
1324
1325/**
1326 *      ata_sff_qc_issue - issue taskfile to a SFF controller
1327 *      @qc: command to issue to device
1328 *
1329 *      This function issues a PIO or NODATA command to a SFF
1330 *      controller.
1331 *
1332 *      LOCKING:
1333 *      spin_lock_irqsave(host lock)
1334 *
1335 *      RETURNS:
1336 *      Zero on success, AC_ERR_* mask on failure
1337 */
1338unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1339{
1340        struct ata_port *ap = qc->ap;
1341        struct ata_link *link = qc->dev->link;
1342
1343        /* Use polling pio if the LLD doesn't handle
1344         * interrupt driven pio and atapi CDB interrupt.
1345         */
1346        if (ap->flags & ATA_FLAG_PIO_POLLING)
1347                qc->tf.flags |= ATA_TFLAG_POLLING;
1348
1349        /* select the device */
1350        ata_dev_select(ap, qc->dev->devno, 1, 0);
1351
1352        /* start the command */
1353        switch (qc->tf.protocol) {
1354        case ATA_PROT_NODATA:
1355                if (qc->tf.flags & ATA_TFLAG_POLLING)
1356                        ata_qc_set_polling(qc);
1357
1358                ata_tf_to_host(ap, &qc->tf);
1359                ap->hsm_task_state = HSM_ST_LAST;
1360
1361                if (qc->tf.flags & ATA_TFLAG_POLLING)
1362                        ata_sff_queue_pio_task(link, 0);
1363
1364                break;
1365
1366        case ATA_PROT_PIO:
1367                if (qc->tf.flags & ATA_TFLAG_POLLING)
1368                        ata_qc_set_polling(qc);
1369
1370                ata_tf_to_host(ap, &qc->tf);
1371
1372                if (qc->tf.flags & ATA_TFLAG_WRITE) {
1373                        /* PIO data out protocol */
1374                        ap->hsm_task_state = HSM_ST_FIRST;
1375                        ata_sff_queue_pio_task(link, 0);
1376
1377                        /* always send first data block using the
1378                         * ata_sff_pio_task() codepath.
1379                         */
1380                } else {
1381                        /* PIO data in protocol */
1382                        ap->hsm_task_state = HSM_ST;
1383
1384                        if (qc->tf.flags & ATA_TFLAG_POLLING)
1385                                ata_sff_queue_pio_task(link, 0);
1386
1387                        /* if polling, ata_sff_pio_task() handles the
1388                         * rest.  otherwise, interrupt handler takes
1389                         * over from here.
1390                         */
1391                }
1392
1393                break;
1394
1395        case ATAPI_PROT_PIO:
1396        case ATAPI_PROT_NODATA:
1397                if (qc->tf.flags & ATA_TFLAG_POLLING)
1398                        ata_qc_set_polling(qc);
1399
1400                ata_tf_to_host(ap, &qc->tf);
1401
1402                ap->hsm_task_state = HSM_ST_FIRST;
1403
1404                /* send cdb by polling if no cdb interrupt */
1405                if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1406                    (qc->tf.flags & ATA_TFLAG_POLLING))
1407                        ata_sff_queue_pio_task(link, 0);
1408                break;
1409
1410        default:
1411                return AC_ERR_SYSTEM;
1412        }
1413
1414        return 0;
1415}
1416EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1417
1418/**
1419 *      ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1420 *      @qc: qc to fill result TF for
1421 *
1422 *      @qc is finished and result TF needs to be filled.  Fill it
1423 *      using ->sff_tf_read.
1424 *
1425 *      LOCKING:
1426 *      spin_lock_irqsave(host lock)
1427 *
1428 *      RETURNS:
1429 *      true indicating that result TF is successfully filled.
1430 */
1431bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1432{
1433        qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1434        return true;
1435}
1436EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1437
1438static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1439{
1440        ap->stats.idle_irq++;
1441
1442#ifdef ATA_IRQ_TRAP
1443        if ((ap->stats.idle_irq % 1000) == 0) {
1444                ap->ops->sff_check_status(ap);
1445                if (ap->ops->sff_irq_clear)
1446                        ap->ops->sff_irq_clear(ap);
1447                ata_port_warn(ap, "irq trap\n");
1448                return 1;
1449        }
1450#endif
1451        return 0;       /* irq not handled */
1452}
1453
1454static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1455                                        struct ata_queued_cmd *qc,
1456                                        bool hsmv_on_idle)
1457{
1458        u8 status;
1459
1460        VPRINTK("ata%u: protocol %d task_state %d\n",
1461                ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1462
1463        /* Check whether we are expecting interrupt in this state */
1464        switch (ap->hsm_task_state) {
1465        case HSM_ST_FIRST:
1466                /* Some pre-ATAPI-4 devices assert INTRQ
1467                 * at this state when ready to receive CDB.
1468                 */
1469
1470                /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1471                 * The flag was turned on only for atapi devices.  No
1472                 * need to check ata_is_atapi(qc->tf.protocol) again.
1473                 */
1474                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1475                        return ata_sff_idle_irq(ap);
1476                break;
1477        case HSM_ST_IDLE:
1478                return ata_sff_idle_irq(ap);
1479        default:
1480                break;
1481        }
1482
1483        /* check main status, clearing INTRQ if needed */
1484        status = ata_sff_irq_status(ap);
1485        if (status & ATA_BUSY) {
1486                if (hsmv_on_idle) {
1487                        /* BMDMA engine is already stopped, we're screwed */
1488                        qc->err_mask |= AC_ERR_HSM;
1489                        ap->hsm_task_state = HSM_ST_ERR;
1490                } else
1491                        return ata_sff_idle_irq(ap);
1492        }
1493
1494        /* clear irq events */
1495        if (ap->ops->sff_irq_clear)
1496                ap->ops->sff_irq_clear(ap);
1497
1498        ata_sff_hsm_move(ap, qc, status, 0);
1499
1500        return 1;       /* irq handled */
1501}
1502
1503/**
1504 *      ata_sff_port_intr - Handle SFF port interrupt
1505 *      @ap: Port on which interrupt arrived (possibly...)
1506 *      @qc: Taskfile currently active in engine
1507 *
1508 *      Handle port interrupt for given queued command.
1509 *
1510 *      LOCKING:
1511 *      spin_lock_irqsave(host lock)
1512 *
1513 *      RETURNS:
1514 *      One if interrupt was handled, zero if not (shared irq).
1515 */
1516unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1517{
1518        return __ata_sff_port_intr(ap, qc, false);
1519}
1520EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1521
1522static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1523        unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1524{
1525        struct ata_host *host = dev_instance;
1526        bool retried = false;
1527        unsigned int i;
1528        unsigned int handled, idle, polling;
1529        unsigned long flags;
1530
1531        /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1532        spin_lock_irqsave(&host->lock, flags);
1533
1534retry:
1535        handled = idle = polling = 0;
1536        for (i = 0; i < host->n_ports; i++) {
1537                struct ata_port *ap = host->ports[i];
1538                struct ata_queued_cmd *qc;
1539
1540                qc = ata_qc_from_tag(ap, ap->link.active_tag);
1541                if (qc) {
1542                        if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1543                                handled |= port_intr(ap, qc);
1544                        else
1545                                polling |= 1 << i;
1546                } else
1547                        idle |= 1 << i;
1548        }
1549
1550        /*
1551         * If no port was expecting IRQ but the controller is actually
1552         * asserting IRQ line, nobody cared will ensue.  Check IRQ
1553         * pending status if available and clear spurious IRQ.
1554         */
1555        if (!handled && !retried) {
1556                bool retry = false;
1557
1558                for (i = 0; i < host->n_ports; i++) {
1559                        struct ata_port *ap = host->ports[i];
1560
1561                        if (polling & (1 << i))
1562                                continue;
1563
1564                        if (!ap->ops->sff_irq_check ||
1565                            !ap->ops->sff_irq_check(ap))
1566                                continue;
1567
1568                        if (idle & (1 << i)) {
1569                                ap->ops->sff_check_status(ap);
1570                                if (ap->ops->sff_irq_clear)
1571                                        ap->ops->sff_irq_clear(ap);
1572                        } else {
1573                                /* clear INTRQ and check if BUSY cleared */
1574                                if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1575                                        retry |= true;
1576                                /*
1577                                 * With command in flight, we can't do
1578                                 * sff_irq_clear() w/o racing with completion.
1579                                 */
1580                        }
1581                }
1582
1583                if (retry) {
1584                        retried = true;
1585                        goto retry;
1586                }
1587        }
1588
1589        spin_unlock_irqrestore(&host->lock, flags);
1590
1591        return IRQ_RETVAL(handled);
1592}
1593
1594/**
1595 *      ata_sff_interrupt - Default SFF ATA host interrupt handler
1596 *      @irq: irq line (unused)
1597 *      @dev_instance: pointer to our ata_host information structure
1598 *
1599 *      Default interrupt handler for PCI IDE devices.  Calls
1600 *      ata_sff_port_intr() for each port that is not disabled.
1601 *
1602 *      LOCKING:
1603 *      Obtains host lock during operation.
1604 *
1605 *      RETURNS:
1606 *      IRQ_NONE or IRQ_HANDLED.
1607 */
1608irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1609{
1610        return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1611}
1612EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1613
1614/**
1615 *      ata_sff_lost_interrupt  -       Check for an apparent lost interrupt
1616 *      @ap: port that appears to have timed out
1617 *
1618 *      Called from the libata error handlers when the core code suspects
1619 *      an interrupt has been lost. If it has complete anything we can and
1620 *      then return. Interface must support altstatus for this faster
1621 *      recovery to occur.
1622 *
1623 *      Locking:
1624 *      Caller holds host lock
1625 */
1626
1627void ata_sff_lost_interrupt(struct ata_port *ap)
1628{
1629        u8 status;
1630        struct ata_queued_cmd *qc;
1631
1632        /* Only one outstanding command per SFF channel */
1633        qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634        /* We cannot lose an interrupt on a non-existent or polled command */
1635        if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1636                return;
1637        /* See if the controller thinks it is still busy - if so the command
1638           isn't a lost IRQ but is still in progress */
1639        status = ata_sff_altstatus(ap);
1640        if (status & ATA_BUSY)
1641                return;
1642
1643        /* There was a command running, we are no longer busy and we have
1644           no interrupt. */
1645        ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1646                                                                status);
1647        /* Run the host interrupt logic as if the interrupt had not been
1648           lost */
1649        ata_sff_port_intr(ap, qc);
1650}
1651EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1652
1653/**
1654 *      ata_sff_freeze - Freeze SFF controller port
1655 *      @ap: port to freeze
1656 *
1657 *      Freeze SFF controller port.
1658 *
1659 *      LOCKING:
1660 *      Inherited from caller.
1661 */
1662void ata_sff_freeze(struct ata_port *ap)
1663{
1664        ap->ctl |= ATA_NIEN;
1665        ap->last_ctl = ap->ctl;
1666
1667        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1668                ata_sff_set_devctl(ap, ap->ctl);
1669
1670        /* Under certain circumstances, some controllers raise IRQ on
1671         * ATA_NIEN manipulation.  Also, many controllers fail to mask
1672         * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1673         */
1674        ap->ops->sff_check_status(ap);
1675
1676        if (ap->ops->sff_irq_clear)
1677                ap->ops->sff_irq_clear(ap);
1678}
1679EXPORT_SYMBOL_GPL(ata_sff_freeze);
1680
1681/**
1682 *      ata_sff_thaw - Thaw SFF controller port
1683 *      @ap: port to thaw
1684 *
1685 *      Thaw SFF controller port.
1686 *
1687 *      LOCKING:
1688 *      Inherited from caller.
1689 */
1690void ata_sff_thaw(struct ata_port *ap)
1691{
1692        /* clear & re-enable interrupts */
1693        ap->ops->sff_check_status(ap);
1694        if (ap->ops->sff_irq_clear)
1695                ap->ops->sff_irq_clear(ap);
1696        ata_sff_irq_on(ap);
1697}
1698EXPORT_SYMBOL_GPL(ata_sff_thaw);
1699
1700/**
1701 *      ata_sff_prereset - prepare SFF link for reset
1702 *      @link: SFF link to be reset
1703 *      @deadline: deadline jiffies for the operation
1704 *
1705 *      SFF link @link is about to be reset.  Initialize it.  It first
1706 *      calls ata_std_prereset() and wait for !BSY if the port is
1707 *      being softreset.
1708 *
1709 *      LOCKING:
1710 *      Kernel thread context (may sleep)
1711 *
1712 *      RETURNS:
1713 *      0 on success, -errno otherwise.
1714 */
1715int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1716{
1717        struct ata_eh_context *ehc = &link->eh_context;
1718        int rc;
1719
1720        rc = ata_std_prereset(link, deadline);
1721        if (rc)
1722                return rc;
1723
1724        /* if we're about to do hardreset, nothing more to do */
1725        if (ehc->i.action & ATA_EH_HARDRESET)
1726                return 0;
1727
1728        /* wait for !BSY if we don't know that no device is attached */
1729        if (!ata_link_offline(link)) {
1730                rc = ata_sff_wait_ready(link, deadline);
1731                if (rc && rc != -ENODEV) {
1732                        ata_link_warn(link,
1733                                      "device not ready (errno=%d), forcing hardreset\n",
1734                                      rc);
1735                        ehc->i.action |= ATA_EH_HARDRESET;
1736                }
1737        }
1738
1739        return 0;
1740}
1741EXPORT_SYMBOL_GPL(ata_sff_prereset);
1742
1743/**
1744 *      ata_devchk - PATA device presence detection
1745 *      @ap: ATA channel to examine
1746 *      @device: Device to examine (starting at zero)
1747 *
1748 *      This technique was originally described in
1749 *      Hale Landis's ATADRVR (www.ata-atapi.com), and
1750 *      later found its way into the ATA/ATAPI spec.
1751 *
1752 *      Write a pattern to the ATA shadow registers,
1753 *      and if a device is present, it will respond by
1754 *      correctly storing and echoing back the
1755 *      ATA shadow register contents.
1756 *
1757 *      LOCKING:
1758 *      caller.
1759 */
1760static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1761{
1762        struct ata_ioports *ioaddr = &ap->ioaddr;
1763        u8 nsect, lbal;
1764
1765        ap->ops->sff_dev_select(ap, device);
1766
1767        iowrite8(0x55, ioaddr->nsect_addr);
1768        iowrite8(0xaa, ioaddr->lbal_addr);
1769
1770        iowrite8(0xaa, ioaddr->nsect_addr);
1771        iowrite8(0x55, ioaddr->lbal_addr);
1772
1773        iowrite8(0x55, ioaddr->nsect_addr);
1774        iowrite8(0xaa, ioaddr->lbal_addr);
1775
1776        nsect = ioread8(ioaddr->nsect_addr);
1777        lbal = ioread8(ioaddr->lbal_addr);
1778
1779        if ((nsect == 0x55) && (lbal == 0xaa))
1780                return 1;       /* we found a device */
1781
1782        return 0;               /* nothing found */
1783}
1784
1785/**
1786 *      ata_sff_dev_classify - Parse returned ATA device signature
1787 *      @dev: ATA device to classify (starting at zero)
1788 *      @present: device seems present
1789 *      @r_err: Value of error register on completion
1790 *
1791 *      After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1792 *      an ATA/ATAPI-defined set of values is placed in the ATA
1793 *      shadow registers, indicating the results of device detection
1794 *      and diagnostics.
1795 *
1796 *      Select the ATA device, and read the values from the ATA shadow
1797 *      registers.  Then parse according to the Error register value,
1798 *      and the spec-defined values examined by ata_dev_classify().
1799 *
1800 *      LOCKING:
1801 *      caller.
1802 *
1803 *      RETURNS:
1804 *      Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1805 */
1806unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1807                                  u8 *r_err)
1808{
1809        struct ata_port *ap = dev->link->ap;
1810        struct ata_taskfile tf;
1811        unsigned int class;
1812        u8 err;
1813
1814        ap->ops->sff_dev_select(ap, dev->devno);
1815
1816        memset(&tf, 0, sizeof(tf));
1817
1818        ap->ops->sff_tf_read(ap, &tf);
1819        err = tf.feature;
1820        if (r_err)
1821                *r_err = err;
1822
1823        /* see if device passed diags: continue and warn later */
1824        if (err == 0)
1825                /* diagnostic fail : do nothing _YET_ */
1826                dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1827        else if (err == 1)
1828                /* do nothing */ ;
1829        else if ((dev->devno == 0) && (err == 0x81))
1830                /* do nothing */ ;
1831        else
1832                return ATA_DEV_NONE;
1833
1834        /* determine if device is ATA or ATAPI */
1835        class = ata_dev_classify(&tf);
1836
1837        if (class == ATA_DEV_UNKNOWN) {
1838                /* If the device failed diagnostic, it's likely to
1839                 * have reported incorrect device signature too.
1840                 * Assume ATA device if the device seems present but
1841                 * device signature is invalid with diagnostic
1842                 * failure.
1843                 */
1844                if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1845                        class = ATA_DEV_ATA;
1846                else
1847                        class = ATA_DEV_NONE;
1848        } else if ((class == ATA_DEV_ATA) &&
1849                   (ap->ops->sff_check_status(ap) == 0))
1850                class = ATA_DEV_NONE;
1851
1852        return class;
1853}
1854EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1855
1856/**
1857 *      ata_sff_wait_after_reset - wait for devices to become ready after reset
1858 *      @link: SFF link which is just reset
1859 *      @devmask: mask of present devices
1860 *      @deadline: deadline jiffies for the operation
1861 *
1862 *      Wait devices attached to SFF @link to become ready after
1863 *      reset.  It contains preceding 150ms wait to avoid accessing TF
1864 *      status register too early.
1865 *
1866 *      LOCKING:
1867 *      Kernel thread context (may sleep).
1868 *
1869 *      RETURNS:
1870 *      0 on success, -ENODEV if some or all of devices in @devmask
1871 *      don't seem to exist.  -errno on other errors.
1872 */
1873int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1874                             unsigned long deadline)
1875{
1876        struct ata_port *ap = link->ap;
1877        struct ata_ioports *ioaddr = &ap->ioaddr;
1878        unsigned int dev0 = devmask & (1 << 0);
1879        unsigned int dev1 = devmask & (1 << 1);
1880        int rc, ret = 0;
1881
1882        ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1883
1884        /* always check readiness of the master device */
1885        rc = ata_sff_wait_ready(link, deadline);
1886        /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1887         * and TF status is 0xff, bail out on it too.
1888         */
1889        if (rc)
1890                return rc;
1891
1892        /* if device 1 was found in ata_devchk, wait for register
1893         * access briefly, then wait for BSY to clear.
1894         */
1895        if (dev1) {
1896                int i;
1897
1898                ap->ops->sff_dev_select(ap, 1);
1899
1900                /* Wait for register access.  Some ATAPI devices fail
1901                 * to set nsect/lbal after reset, so don't waste too
1902                 * much time on it.  We're gonna wait for !BSY anyway.
1903                 */
1904                for (i = 0; i < 2; i++) {
1905                        u8 nsect, lbal;
1906
1907                        nsect = ioread8(ioaddr->nsect_addr);
1908                        lbal = ioread8(ioaddr->lbal_addr);
1909                        if ((nsect == 1) && (lbal == 1))
1910                                break;
1911                        ata_msleep(ap, 50);     /* give drive a breather */
1912                }
1913
1914                rc = ata_sff_wait_ready(link, deadline);
1915                if (rc) {
1916                        if (rc != -ENODEV)
1917                                return rc;
1918                        ret = rc;
1919                }
1920        }
1921
1922        /* is all this really necessary? */
1923        ap->ops->sff_dev_select(ap, 0);
1924        if (dev1)
1925                ap->ops->sff_dev_select(ap, 1);
1926        if (dev0)
1927                ap->ops->sff_dev_select(ap, 0);
1928
1929        return ret;
1930}
1931EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1932
1933static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1934                             unsigned long deadline)
1935{
1936        struct ata_ioports *ioaddr = &ap->ioaddr;
1937
1938        DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1939
1940        if (ap->ioaddr.ctl_addr) {
1941                /* software reset.  causes dev0 to be selected */
1942                iowrite8(ap->ctl, ioaddr->ctl_addr);
1943                udelay(20);     /* FIXME: flush */
1944                iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1945                udelay(20);     /* FIXME: flush */
1946                iowrite8(ap->ctl, ioaddr->ctl_addr);
1947                ap->last_ctl = ap->ctl;
1948        }
1949
1950        /* wait the port to become ready */
1951        return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1952}
1953
1954/**
1955 *      ata_sff_softreset - reset host port via ATA SRST
1956 *      @link: ATA link to reset
1957 *      @classes: resulting classes of attached devices
1958 *      @deadline: deadline jiffies for the operation
1959 *
1960 *      Reset host port using ATA SRST.
1961 *
1962 *      LOCKING:
1963 *      Kernel thread context (may sleep)
1964 *
1965 *      RETURNS:
1966 *      0 on success, -errno otherwise.
1967 */
1968int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1969                      unsigned long deadline)
1970{
1971        struct ata_port *ap = link->ap;
1972        unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1973        unsigned int devmask = 0;
1974        int rc;
1975        u8 err;
1976
1977        DPRINTK("ENTER\n");
1978
1979        /* determine if device 0/1 are present */
1980        if (ata_devchk(ap, 0))
1981                devmask |= (1 << 0);
1982        if (slave_possible && ata_devchk(ap, 1))
1983                devmask |= (1 << 1);
1984
1985        /* select device 0 again */
1986        ap->ops->sff_dev_select(ap, 0);
1987
1988        /* issue bus reset */
1989        DPRINTK("about to softreset, devmask=%x\n", devmask);
1990        rc = ata_bus_softreset(ap, devmask, deadline);
1991        /* if link is occupied, -ENODEV too is an error */
1992        if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1993                ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1994                return rc;
1995        }
1996
1997        /* determine by signature whether we have ATA or ATAPI devices */
1998        classes[0] = ata_sff_dev_classify(&link->device[0],
1999                                          devmask & (1 << 0), &err);
2000        if (slave_possible && err != 0x81)
2001                classes[1] = ata_sff_dev_classify(&link->device[1],
2002                                                  devmask & (1 << 1), &err);
2003
2004        DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2005        return 0;
2006}
2007EXPORT_SYMBOL_GPL(ata_sff_softreset);
2008
2009/**
2010 *      sata_sff_hardreset - reset host port via SATA phy reset
2011 *      @link: link to reset
2012 *      @class: resulting class of attached device
2013 *      @deadline: deadline jiffies for the operation
2014 *
2015 *      SATA phy-reset host port using DET bits of SControl register,
2016 *      wait for !BSY and classify the attached device.
2017 *
2018 *      LOCKING:
2019 *      Kernel thread context (may sleep)
2020 *
2021 *      RETURNS:
2022 *      0 on success, -errno otherwise.
2023 */
2024int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2025                       unsigned long deadline)
2026{
2027        struct ata_eh_context *ehc = &link->eh_context;
2028        const unsigned long *timing = sata_ehc_deb_timing(ehc);
2029        bool online;
2030        int rc;
2031
2032        rc = sata_link_hardreset(link, timing, deadline, &online,
2033                                 ata_sff_check_ready);
2034        if (online)
2035                *class = ata_sff_dev_classify(link->device, 1, NULL);
2036
2037        DPRINTK("EXIT, class=%u\n", *class);
2038        return rc;
2039}
2040EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2041
2042/**
2043 *      ata_sff_postreset - SFF postreset callback
2044 *      @link: the target SFF ata_link
2045 *      @classes: classes of attached devices
2046 *
2047 *      This function is invoked after a successful reset.  It first
2048 *      calls ata_std_postreset() and performs SFF specific postreset
2049 *      processing.
2050 *
2051 *      LOCKING:
2052 *      Kernel thread context (may sleep)
2053 */
2054void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2055{
2056        struct ata_port *ap = link->ap;
2057
2058        ata_std_postreset(link, classes);
2059
2060        /* is double-select really necessary? */
2061        if (classes[0] != ATA_DEV_NONE)
2062                ap->ops->sff_dev_select(ap, 1);
2063        if (classes[1] != ATA_DEV_NONE)
2064                ap->ops->sff_dev_select(ap, 0);
2065
2066        /* bail out if no device is present */
2067        if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2068                DPRINTK("EXIT, no device\n");
2069                return;
2070        }
2071
2072        /* set up device control */
2073        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2074                ata_sff_set_devctl(ap, ap->ctl);
2075                ap->last_ctl = ap->ctl;
2076        }
2077}
2078EXPORT_SYMBOL_GPL(ata_sff_postreset);
2079
2080/**
2081 *      ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2082 *      @qc: command
2083 *
2084 *      Drain the FIFO and device of any stuck data following a command
2085 *      failing to complete. In some cases this is necessary before a
2086 *      reset will recover the device.
2087 *
2088 */
2089
2090void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2091{
2092        int count;
2093        struct ata_port *ap;
2094
2095        /* We only need to flush incoming data when a command was running */
2096        if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2097                return;
2098
2099        ap = qc->ap;
2100        /* Drain up to 64K of data before we give up this recovery method */
2101        for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2102                                                && count < 65536; count += 2)
2103                ioread16(ap->ioaddr.data_addr);
2104
2105        /* Can become DEBUG later */
2106        if (count)
2107                ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108
2109}
2110EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111
2112/**
2113 *      ata_sff_error_handler - Stock error handler for SFF controller
2114 *      @ap: port to handle error for
2115 *
2116 *      Stock error handler for SFF controller.  It can handle both
2117 *      PATA and SATA controllers.  Many controllers should be able to
2118 *      use this EH as-is or with some added handling before and
2119 *      after.
2120 *
2121 *      LOCKING:
2122 *      Kernel thread context (may sleep)
2123 */
2124void ata_sff_error_handler(struct ata_port *ap)
2125{
2126        ata_reset_fn_t softreset = ap->ops->softreset;
2127        ata_reset_fn_t hardreset = ap->ops->hardreset;
2128        struct ata_queued_cmd *qc;
2129        unsigned long flags;
2130
2131        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133                qc = NULL;
2134
2135        spin_lock_irqsave(ap->lock, flags);
2136
2137        /*
2138         * We *MUST* do FIFO draining before we issue a reset as
2139         * several devices helpfully clear their internal state and
2140         * will lock solid if we touch the data port post reset. Pass
2141         * qc in case anyone wants to do different PIO/DMA recovery or
2142         * has per command fixups
2143         */
2144        if (ap->ops->sff_drain_fifo)
2145                ap->ops->sff_drain_fifo(qc);
2146
2147        spin_unlock_irqrestore(ap->lock, flags);
2148
2149        /* ignore built-in hardresets if SCR access is not available */
2150        if ((hardreset == sata_std_hardreset ||
2151             hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152                hardreset = NULL;
2153
2154        ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155                  ap->ops->postreset);
2156}
2157EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158
2159/**
2160 *      ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161 *      @ioaddr: IO address structure to be initialized
2162 *
2163 *      Utility function which initializes data_addr, error_addr,
2164 *      feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165 *      device_addr, status_addr, and command_addr to standard offsets
2166 *      relative to cmd_addr.
2167 *
2168 *      Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169 */
2170void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171{
2172        ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173        ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174        ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175        ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176        ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177        ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178        ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179        ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180        ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181        ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182}
2183EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184
2185#ifdef CONFIG_PCI
2186
2187static int ata_resources_present(struct pci_dev *pdev, int port)
2188{
2189        int i;
2190
2191        /* Check the PCI resources for this channel are enabled */
2192        port = port * 2;
2193        for (i = 0; i < 2; i++) {
2194                if (pci_resource_start(pdev, port + i) == 0 ||
2195                    pci_resource_len(pdev, port + i) == 0)
2196                        return 0;
2197        }
2198        return 1;
2199}
2200
2201/**
2202 *      ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203 *      @host: target ATA host
2204 *
2205 *      Acquire native PCI ATA resources for @host and initialize the
2206 *      first two ports of @host accordingly.  Ports marked dummy are
2207 *      skipped and allocation failure makes the port dummy.
2208 *
2209 *      Note that native PCI resources are valid even for legacy hosts
2210 *      as we fix up pdev resources array early in boot, so this
2211 *      function can be used for both native and legacy SFF hosts.
2212 *
2213 *      LOCKING:
2214 *      Inherited from calling layer (may sleep).
2215 *
2216 *      RETURNS:
2217 *      0 if at least one port is initialized, -ENODEV if no port is
2218 *      available.
2219 */
2220int ata_pci_sff_init_host(struct ata_host *host)
2221{
2222        struct device *gdev = host->dev;
2223        struct pci_dev *pdev = to_pci_dev(gdev);
2224        unsigned int mask = 0;
2225        int i, rc;
2226
2227        /* request, iomap BARs and init port addresses accordingly */
2228        for (i = 0; i < 2; i++) {
2229                struct ata_port *ap = host->ports[i];
2230                int base = i * 2;
2231                void __iomem * const *iomap;
2232
2233                if (ata_port_is_dummy(ap))
2234                        continue;
2235
2236                /* Discard disabled ports.  Some controllers show
2237                 * their unused channels this way.  Disabled ports are
2238                 * made dummy.
2239                 */
2240                if (!ata_resources_present(pdev, i)) {
2241                        ap->ops = &ata_dummy_port_ops;
2242                        continue;
2243                }
2244
2245                rc = pcim_iomap_regions(pdev, 0x3 << base,
2246                                        dev_driver_string(gdev));
2247                if (rc) {
2248                        dev_warn(gdev,
2249                                 "failed to request/iomap BARs for port %d (errno=%d)\n",
2250                                 i, rc);
2251                        if (rc == -EBUSY)
2252                                pcim_pin_device(pdev);
2253                        ap->ops = &ata_dummy_port_ops;
2254                        continue;
2255                }
2256                host->iomap = iomap = pcim_iomap_table(pdev);
2257
2258                ap->ioaddr.cmd_addr = iomap[base];
2259                ap->ioaddr.altstatus_addr =
2260                ap->ioaddr.ctl_addr = (void __iomem *)
2261                        ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262                ata_sff_std_ports(&ap->ioaddr);
2263
2264                ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265                        (unsigned long long)pci_resource_start(pdev, base),
2266                        (unsigned long long)pci_resource_start(pdev, base + 1));
2267
2268                mask |= 1 << i;
2269        }
2270
2271        if (!mask) {
2272                dev_err(gdev, "no available native port\n");
2273                return -ENODEV;
2274        }
2275
2276        return 0;
2277}
2278EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279
2280/**
2281 *      ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282 *      @pdev: target PCI device
2283 *      @ppi: array of port_info, must be enough for two ports
2284 *      @r_host: out argument for the initialized ATA host
2285 *
2286 *      Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287 *      all PCI resources and initialize it accordingly in one go.
2288 *
2289 *      LOCKING:
2290 *      Inherited from calling layer (may sleep).
2291 *
2292 *      RETURNS:
2293 *      0 on success, -errno otherwise.
2294 */
2295int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296                             const struct ata_port_info * const *ppi,
2297                             struct ata_host **r_host)
2298{
2299        struct ata_host *host;
2300        int rc;
2301
2302        if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303                return -ENOMEM;
2304
2305        host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306        if (!host) {
2307                dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308                rc = -ENOMEM;
2309                goto err_out;
2310        }
2311
2312        rc = ata_pci_sff_init_host(host);
2313        if (rc)
2314                goto err_out;
2315
2316        devres_remove_group(&pdev->dev, NULL);
2317        *r_host = host;
2318        return 0;
2319
2320err_out:
2321        devres_release_group(&pdev->dev, NULL);
2322        return rc;
2323}
2324EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325
2326/**
2327 *      ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328 *      @host: target SFF ATA host
2329 *      @irq_handler: irq_handler used when requesting IRQ(s)
2330 *      @sht: scsi_host_template to use when registering the host
2331 *
2332 *      This is the counterpart of ata_host_activate() for SFF ATA
2333 *      hosts.  This separate helper is necessary because SFF hosts
2334 *      use two separate interrupts in legacy mode.
2335 *
2336 *      LOCKING:
2337 *      Inherited from calling layer (may sleep).
2338 *
2339 *      RETURNS:
2340 *      0 on success, -errno otherwise.
2341 */
2342int ata_pci_sff_activate_host(struct ata_host *host,
2343                              irq_handler_t irq_handler,
2344                              struct scsi_host_template *sht)
2345{
2346        struct device *dev = host->dev;
2347        struct pci_dev *pdev = to_pci_dev(dev);
2348        const char *drv_name = dev_driver_string(host->dev);
2349        int legacy_mode = 0, rc;
2350
2351        rc = ata_host_start(host);
2352        if (rc)
2353                return rc;
2354
2355        if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356                u8 tmp8, mask = 0;
2357
2358                /*
2359                 * ATA spec says we should use legacy mode when one
2360                 * port is in legacy mode, but disabled ports on some
2361                 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362                 * on which the secondary port is not wired, so
2363                 * ignore ports that are marked as 'dummy' during
2364                 * this check
2365                 */
2366                pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367                if (!ata_port_is_dummy(host->ports[0]))
2368                        mask |= (1 << 0);
2369                if (!ata_port_is_dummy(host->ports[1]))
2370                        mask |= (1 << 2);
2371                if ((tmp8 & mask) != mask)
2372                        legacy_mode = 1;
2373        }
2374
2375        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376                return -ENOMEM;
2377
2378        if (!legacy_mode && pdev->irq) {
2379                int i;
2380
2381                rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382                                      IRQF_SHARED, drv_name, host);
2383                if (rc)
2384                        goto out;
2385
2386                for (i = 0; i < 2; i++) {
2387                        if (ata_port_is_dummy(host->ports[i]))
2388                                continue;
2389                        ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390                }
2391        } else if (legacy_mode) {
2392                if (!ata_port_is_dummy(host->ports[0])) {
2393                        rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394                                              irq_handler, IRQF_SHARED,
2395                                              drv_name, host);
2396                        if (rc)
2397                                goto out;
2398
2399                        ata_port_desc(host->ports[0], "irq %d",
2400                                      ATA_PRIMARY_IRQ(pdev));
2401                }
2402
2403                if (!ata_port_is_dummy(host->ports[1])) {
2404                        rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405                                              irq_handler, IRQF_SHARED,
2406                                              drv_name, host);
2407                        if (rc)
2408                                goto out;
2409
2410                        ata_port_desc(host->ports[1], "irq %d",
2411                                      ATA_SECONDARY_IRQ(pdev));
2412                }
2413        }
2414
2415        rc = ata_host_register(host, sht);
2416out:
2417        if (rc == 0)
2418                devres_remove_group(dev, NULL);
2419        else
2420                devres_release_group(dev, NULL);
2421
2422        return rc;
2423}
2424EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425
2426static const struct ata_port_info *ata_sff_find_valid_pi(
2427                                        const struct ata_port_info * const *ppi)
2428{
2429        int i;
2430
2431        /* look up the first valid port_info */
2432        for (i = 0; i < 2 && ppi[i]; i++)
2433                if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434                        return ppi[i];
2435
2436        return NULL;
2437}
2438
2439static int ata_pci_init_one(struct pci_dev *pdev,
2440                const struct ata_port_info * const *ppi,
2441                struct scsi_host_template *sht, void *host_priv,
2442                int hflags, bool bmdma)
2443{
2444        struct device *dev = &pdev->dev;
2445        const struct ata_port_info *pi;
2446        struct ata_host *host = NULL;
2447        int rc;
2448
2449        DPRINTK("ENTER\n");
2450
2451        pi = ata_sff_find_valid_pi(ppi);
2452        if (!pi) {
2453                dev_err(&pdev->dev, "no valid port_info specified\n");
2454                return -EINVAL;
2455        }
2456
2457        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2458                return -ENOMEM;
2459
2460        rc = pcim_enable_device(pdev);
2461        if (rc)
2462                goto out;
2463
2464#ifdef CONFIG_ATA_BMDMA
2465        if (bmdma)
2466                /* prepare and activate BMDMA host */
2467                rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2468        else
2469#endif
2470                /* prepare and activate SFF host */
2471                rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2472        if (rc)
2473                goto out;
2474        host->private_data = host_priv;
2475        host->flags |= hflags;
2476
2477#ifdef CONFIG_ATA_BMDMA
2478        if (bmdma) {
2479                pci_set_master(pdev);
2480                rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2481        } else
2482#endif
2483                rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2484out:
2485        if (rc == 0)
2486                devres_remove_group(&pdev->dev, NULL);
2487        else
2488                devres_release_group(&pdev->dev, NULL);
2489
2490        return rc;
2491}
2492
2493/**
2494 *      ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2495 *      @pdev: Controller to be initialized
2496 *      @ppi: array of port_info, must be enough for two ports
2497 *      @sht: scsi_host_template to use when registering the host
2498 *      @host_priv: host private_data
2499 *      @hflag: host flags
2500 *
2501 *      This is a helper function which can be called from a driver's
2502 *      xxx_init_one() probe function if the hardware uses traditional
2503 *      IDE taskfile registers and is PIO only.
2504 *
2505 *      ASSUMPTION:
2506 *      Nobody makes a single channel controller that appears solely as
2507 *      the secondary legacy port on PCI.
2508 *
2509 *      LOCKING:
2510 *      Inherited from PCI layer (may sleep).
2511 *
2512 *      RETURNS:
2513 *      Zero on success, negative on errno-based value on error.
2514 */
2515int ata_pci_sff_init_one(struct pci_dev *pdev,
2516                 const struct ata_port_info * const *ppi,
2517                 struct scsi_host_template *sht, void *host_priv, int hflag)
2518{
2519        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2520}
2521EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2522
2523#endif /* CONFIG_PCI */
2524
2525/*
2526 *      BMDMA support
2527 */
2528
2529#ifdef CONFIG_ATA_BMDMA
2530
2531const struct ata_port_operations ata_bmdma_port_ops = {
2532        .inherits               = &ata_sff_port_ops,
2533
2534        .error_handler          = ata_bmdma_error_handler,
2535        .post_internal_cmd      = ata_bmdma_post_internal_cmd,
2536
2537        .qc_prep                = ata_bmdma_qc_prep,
2538        .qc_issue               = ata_bmdma_qc_issue,
2539
2540        .sff_irq_clear          = ata_bmdma_irq_clear,
2541        .bmdma_setup            = ata_bmdma_setup,
2542        .bmdma_start            = ata_bmdma_start,
2543        .bmdma_stop             = ata_bmdma_stop,
2544        .bmdma_status           = ata_bmdma_status,
2545
2546        .port_start             = ata_bmdma_port_start,
2547};
2548EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2549
2550const struct ata_port_operations ata_bmdma32_port_ops = {
2551        .inherits               = &ata_bmdma_port_ops,
2552
2553        .sff_data_xfer          = ata_sff_data_xfer32,
2554        .port_start             = ata_bmdma_port_start32,
2555};
2556EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2557
2558/**
2559 *      ata_bmdma_fill_sg - Fill PCI IDE PRD table
2560 *      @qc: Metadata associated with taskfile to be transferred
2561 *
2562 *      Fill PCI IDE PRD (scatter-gather) table with segments
2563 *      associated with the current disk command.
2564 *
2565 *      LOCKING:
2566 *      spin_lock_irqsave(host lock)
2567 *
2568 */
2569static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2570{
2571        struct ata_port *ap = qc->ap;
2572        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2573        struct scatterlist *sg;
2574        unsigned int si, pi;
2575
2576        pi = 0;
2577        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2578                u32 addr, offset;
2579                u32 sg_len, len;
2580
2581                /* determine if physical DMA addr spans 64K boundary.
2582                 * Note h/w doesn't support 64-bit, so we unconditionally
2583                 * truncate dma_addr_t to u32.
2584                 */
2585                addr = (u32) sg_dma_address(sg);
2586                sg_len = sg_dma_len(sg);
2587
2588                while (sg_len) {
2589                        offset = addr & 0xffff;
2590                        len = sg_len;
2591                        if ((offset + sg_len) > 0x10000)
2592                                len = 0x10000 - offset;
2593
2594                        prd[pi].addr = cpu_to_le32(addr);
2595                        prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2596                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2597
2598                        pi++;
2599                        sg_len -= len;
2600                        addr += len;
2601                }
2602        }
2603
2604        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2605}
2606
2607/**
2608 *      ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2609 *      @qc: Metadata associated with taskfile to be transferred
2610 *
2611 *      Fill PCI IDE PRD (scatter-gather) table with segments
2612 *      associated with the current disk command. Perform the fill
2613 *      so that we avoid writing any length 64K records for
2614 *      controllers that don't follow the spec.
2615 *
2616 *      LOCKING:
2617 *      spin_lock_irqsave(host lock)
2618 *
2619 */
2620static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2621{
2622        struct ata_port *ap = qc->ap;
2623        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2624        struct scatterlist *sg;
2625        unsigned int si, pi;
2626
2627        pi = 0;
2628        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2629                u32 addr, offset;
2630                u32 sg_len, len, blen;
2631
2632                /* determine if physical DMA addr spans 64K boundary.
2633                 * Note h/w doesn't support 64-bit, so we unconditionally
2634                 * truncate dma_addr_t to u32.
2635                 */
2636                addr = (u32) sg_dma_address(sg);
2637                sg_len = sg_dma_len(sg);
2638
2639                while (sg_len) {
2640                        offset = addr & 0xffff;
2641                        len = sg_len;
2642                        if ((offset + sg_len) > 0x10000)
2643                                len = 0x10000 - offset;
2644
2645                        blen = len & 0xffff;
2646                        prd[pi].addr = cpu_to_le32(addr);
2647                        if (blen == 0) {
2648                                /* Some PATA chipsets like the CS5530 can't
2649                                   cope with 0x0000 meaning 64K as the spec
2650                                   says */
2651                                prd[pi].flags_len = cpu_to_le32(0x8000);
2652                                blen = 0x8000;
2653                                prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2654                        }
2655                        prd[pi].flags_len = cpu_to_le32(blen);
2656                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2657
2658                        pi++;
2659                        sg_len -= len;
2660                        addr += len;
2661                }
2662        }
2663
2664        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2665}
2666
2667/**
2668 *      ata_bmdma_qc_prep - Prepare taskfile for submission
2669 *      @qc: Metadata associated with taskfile to be prepared
2670 *
2671 *      Prepare ATA taskfile for submission.
2672 *
2673 *      LOCKING:
2674 *      spin_lock_irqsave(host lock)
2675 */
2676void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2677{
2678        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2679                return;
2680
2681        ata_bmdma_fill_sg(qc);
2682}
2683EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2684
2685/**
2686 *      ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2687 *      @qc: Metadata associated with taskfile to be prepared
2688 *
2689 *      Prepare ATA taskfile for submission.
2690 *
2691 *      LOCKING:
2692 *      spin_lock_irqsave(host lock)
2693 */
2694void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2695{
2696        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2697                return;
2698
2699        ata_bmdma_fill_sg_dumb(qc);
2700}
2701EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702
2703/**
2704 *      ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705 *      @qc: command to issue to device
2706 *
2707 *      This function issues a PIO, NODATA or DMA command to a
2708 *      SFF/BMDMA controller.  PIO and NODATA are handled by
2709 *      ata_sff_qc_issue().
2710 *
2711 *      LOCKING:
2712 *      spin_lock_irqsave(host lock)
2713 *
2714 *      RETURNS:
2715 *      Zero on success, AC_ERR_* mask on failure
2716 */
2717unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718{
2719        struct ata_port *ap = qc->ap;
2720        struct ata_link *link = qc->dev->link;
2721
2722        /* defer PIO handling to sff_qc_issue */
2723        if (!ata_is_dma(qc->tf.protocol))
2724                return ata_sff_qc_issue(qc);
2725
2726        /* select the device */
2727        ata_dev_select(ap, qc->dev->devno, 1, 0);
2728
2729        /* start the command */
2730        switch (qc->tf.protocol) {
2731        case ATA_PROT_DMA:
2732                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733
2734                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2735                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2736                ap->ops->bmdma_start(qc);           /* initiate bmdma */
2737                ap->hsm_task_state = HSM_ST_LAST;
2738                break;
2739
2740        case ATAPI_PROT_DMA:
2741                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2742
2743                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2744                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2745                ap->hsm_task_state = HSM_ST_FIRST;
2746
2747                /* send cdb by polling if no cdb interrupt */
2748                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2749                        ata_sff_queue_pio_task(link, 0);
2750                break;
2751
2752        default:
2753                WARN_ON(1);
2754                return AC_ERR_SYSTEM;
2755        }
2756
2757        return 0;
2758}
2759EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2760
2761/**
2762 *      ata_bmdma_port_intr - Handle BMDMA port interrupt
2763 *      @ap: Port on which interrupt arrived (possibly...)
2764 *      @qc: Taskfile currently active in engine
2765 *
2766 *      Handle port interrupt for given queued command.
2767 *
2768 *      LOCKING:
2769 *      spin_lock_irqsave(host lock)
2770 *
2771 *      RETURNS:
2772 *      One if interrupt was handled, zero if not (shared irq).
2773 */
2774unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2775{
2776        struct ata_eh_info *ehi = &ap->link.eh_info;
2777        u8 host_stat = 0;
2778        bool bmdma_stopped = false;
2779        unsigned int handled;
2780
2781        if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2782                /* check status of DMA engine */
2783                host_stat = ap->ops->bmdma_status(ap);
2784                VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2785
2786                /* if it's not our irq... */
2787                if (!(host_stat & ATA_DMA_INTR))
2788                        return ata_sff_idle_irq(ap);
2789
2790                /* before we do anything else, clear DMA-Start bit */
2791                ap->ops->bmdma_stop(qc);
2792                bmdma_stopped = true;
2793
2794                if (unlikely(host_stat & ATA_DMA_ERR)) {
2795                        /* error when transferring data to/from memory */
2796                        qc->err_mask |= AC_ERR_HOST_BUS;
2797                        ap->hsm_task_state = HSM_ST_ERR;
2798                }
2799        }
2800
2801        handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2802
2803        if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2804                ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2805
2806        return handled;
2807}
2808EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2809
2810/**
2811 *      ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2812 *      @irq: irq line (unused)
2813 *      @dev_instance: pointer to our ata_host information structure
2814 *
2815 *      Default interrupt handler for PCI IDE devices.  Calls
2816 *      ata_bmdma_port_intr() for each port that is not disabled.
2817 *
2818 *      LOCKING:
2819 *      Obtains host lock during operation.
2820 *
2821 *      RETURNS:
2822 *      IRQ_NONE or IRQ_HANDLED.
2823 */
2824irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2825{
2826        return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2827}
2828EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2829
2830/**
2831 *      ata_bmdma_error_handler - Stock error handler for BMDMA controller
2832 *      @ap: port to handle error for
2833 *
2834 *      Stock error handler for BMDMA controller.  It can handle both
2835 *      PATA and SATA controllers.  Most BMDMA controllers should be
2836 *      able to use this EH as-is or with some added handling before
2837 *      and after.
2838 *
2839 *      LOCKING:
2840 *      Kernel thread context (may sleep)
2841 */
2842void ata_bmdma_error_handler(struct ata_port *ap)
2843{
2844        struct ata_queued_cmd *qc;
2845        unsigned long flags;
2846        bool thaw = false;
2847
2848        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2849        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2850                qc = NULL;
2851
2852        /* reset PIO HSM and stop DMA engine */
2853        spin_lock_irqsave(ap->lock, flags);
2854
2855        if (qc && ata_is_dma(qc->tf.protocol)) {
2856                u8 host_stat;
2857
2858                host_stat = ap->ops->bmdma_status(ap);
2859
2860                /* BMDMA controllers indicate host bus error by
2861                 * setting DMA_ERR bit and timing out.  As it wasn't
2862                 * really a timeout event, adjust error mask and
2863                 * cancel frozen state.
2864                 */
2865                if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2866                        qc->err_mask = AC_ERR_HOST_BUS;
2867                        thaw = true;
2868                }
2869
2870                ap->ops->bmdma_stop(qc);
2871
2872                /* if we're gonna thaw, make sure IRQ is clear */
2873                if (thaw) {
2874                        ap->ops->sff_check_status(ap);
2875                        if (ap->ops->sff_irq_clear)
2876                                ap->ops->sff_irq_clear(ap);
2877                }
2878        }
2879
2880        spin_unlock_irqrestore(ap->lock, flags);
2881
2882        if (thaw)
2883                ata_eh_thaw_port(ap);
2884
2885        ata_sff_error_handler(ap);
2886}
2887EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2888
2889/**
2890 *      ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2891 *      @qc: internal command to clean up
2892 *
2893 *      LOCKING:
2894 *      Kernel thread context (may sleep)
2895 */
2896void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2897{
2898        struct ata_port *ap = qc->ap;
2899        unsigned long flags;
2900
2901        if (ata_is_dma(qc->tf.protocol)) {
2902                spin_lock_irqsave(ap->lock, flags);
2903                ap->ops->bmdma_stop(qc);
2904                spin_unlock_irqrestore(ap->lock, flags);
2905        }
2906}
2907EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2908
2909/**
2910 *      ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2911 *      @ap: Port associated with this ATA transaction.
2912 *
2913 *      Clear interrupt and error flags in DMA status register.
2914 *
2915 *      May be used as the irq_clear() entry in ata_port_operations.
2916 *
2917 *      LOCKING:
2918 *      spin_lock_irqsave(host lock)
2919 */
2920void ata_bmdma_irq_clear(struct ata_port *ap)
2921{
2922        void __iomem *mmio = ap->ioaddr.bmdma_addr;
2923
2924        if (!mmio)
2925                return;
2926
2927        iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2928}
2929EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2930
2931/**
2932 *      ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2933 *      @qc: Info associated with this ATA transaction.
2934 *
2935 *      LOCKING:
2936 *      spin_lock_irqsave(host lock)
2937 */
2938void ata_bmdma_setup(struct ata_queued_cmd *qc)
2939{
2940        struct ata_port *ap = qc->ap;
2941        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2942        u8 dmactl;
2943
2944        /* load PRD table addr. */
2945        mb();   /* make sure PRD table writes are visible to controller */
2946        iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2947
2948        /* specify data direction, triple-check start bit is clear */
2949        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2950        dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2951        if (!rw)
2952                dmactl |= ATA_DMA_WR;
2953        iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2954
2955        /* issue r/w command */
2956        ap->ops->sff_exec_command(ap, &qc->tf);
2957}
2958EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2959
2960/**
2961 *      ata_bmdma_start - Start a PCI IDE BMDMA transaction
2962 *      @qc: Info associated with this ATA transaction.
2963 *
2964 *      LOCKING:
2965 *      spin_lock_irqsave(host lock)
2966 */
2967void ata_bmdma_start(struct ata_queued_cmd *qc)
2968{
2969        struct ata_port *ap = qc->ap;
2970        u8 dmactl;
2971
2972        /* start host DMA transaction */
2973        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2974        iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2975
2976        /* Strictly, one may wish to issue an ioread8() here, to
2977         * flush the mmio write.  However, control also passes
2978         * to the hardware at this point, and it will interrupt
2979         * us when we are to resume control.  So, in effect,
2980         * we don't care when the mmio write flushes.
2981         * Further, a read of the DMA status register _immediately_
2982         * following the write may not be what certain flaky hardware
2983         * is expected, so I think it is best to not add a readb()
2984         * without first all the MMIO ATA cards/mobos.
2985         * Or maybe I'm just being paranoid.
2986         *
2987         * FIXME: The posting of this write means I/O starts are
2988         * unnecessarily delayed for MMIO
2989         */
2990}
2991EXPORT_SYMBOL_GPL(ata_bmdma_start);
2992
2993/**
2994 *      ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2995 *      @qc: Command we are ending DMA for
2996 *
2997 *      Clears the ATA_DMA_START flag in the dma control register
2998 *
2999 *      May be used as the bmdma_stop() entry in ata_port_operations.
3000 *
3001 *      LOCKING:
3002 *      spin_lock_irqsave(host lock)
3003 */
3004void ata_bmdma_stop(struct ata_queued_cmd *qc)
3005{
3006        struct ata_port *ap = qc->ap;
3007        void __iomem *mmio = ap->ioaddr.bmdma_addr;
3008
3009        /* clear start/stop bit */
3010        iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3011                 mmio + ATA_DMA_CMD);
3012
3013        /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3014        ata_sff_dma_pause(ap);
3015}
3016EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3017
3018/**
3019 *      ata_bmdma_status - Read PCI IDE BMDMA status
3020 *      @ap: Port associated with this ATA transaction.
3021 *
3022 *      Read and return BMDMA status register.
3023 *
3024 *      May be used as the bmdma_status() entry in ata_port_operations.
3025 *
3026 *      LOCKING:
3027 *      spin_lock_irqsave(host lock)
3028 */
3029u8 ata_bmdma_status(struct ata_port *ap)
3030{
3031        return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3032}
3033EXPORT_SYMBOL_GPL(ata_bmdma_status);
3034
3035
3036/**
3037 *      ata_bmdma_port_start - Set port up for bmdma.
3038 *      @ap: Port to initialize
3039 *
3040 *      Called just after data structures for each port are
3041 *      initialized.  Allocates space for PRD table.
3042 *
3043 *      May be used as the port_start() entry in ata_port_operations.
3044 *
3045 *      LOCKING:
3046 *      Inherited from caller.
3047 */
3048int ata_bmdma_port_start(struct ata_port *ap)
3049{
3050        if (ap->mwdma_mask || ap->udma_mask) {
3051                ap->bmdma_prd =
3052                        dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3053                                            &ap->bmdma_prd_dma, GFP_KERNEL);
3054                if (!ap->bmdma_prd)
3055                        return -ENOMEM;
3056        }
3057
3058        return 0;
3059}
3060EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3061
3062/**
3063 *      ata_bmdma_port_start32 - Set port up for dma.
3064 *      @ap: Port to initialize
3065 *
3066 *      Called just after data structures for each port are
3067 *      initialized.  Enables 32bit PIO and allocates space for PRD
3068 *      table.
3069 *
3070 *      May be used as the port_start() entry in ata_port_operations for
3071 *      devices that are capable of 32bit PIO.
3072 *
3073 *      LOCKING:
3074 *      Inherited from caller.
3075 */
3076int ata_bmdma_port_start32(struct ata_port *ap)
3077{
3078        ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3079        return ata_bmdma_port_start(ap);
3080}
3081EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3082
3083#ifdef CONFIG_PCI
3084
3085/**
3086 *      ata_pci_bmdma_clear_simplex -   attempt to kick device out of simplex
3087 *      @pdev: PCI device
3088 *
3089 *      Some PCI ATA devices report simplex mode but in fact can be told to
3090 *      enter non simplex mode. This implements the necessary logic to
3091 *      perform the task on such devices. Calling it on other devices will
3092 *      have -undefined- behaviour.
3093 */
3094int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3095{
3096        unsigned long bmdma = pci_resource_start(pdev, 4);
3097        u8 simplex;
3098
3099        if (bmdma == 0)
3100                return -ENOENT;
3101
3102        simplex = inb(bmdma + 0x02);
3103        outb(simplex & 0x60, bmdma + 0x02);
3104        simplex = inb(bmdma + 0x02);
3105        if (simplex & 0x80)
3106                return -EOPNOTSUPP;
3107        return 0;
3108}
3109EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3110
3111static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3112{
3113        int i;
3114
3115        dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3116
3117        for (i = 0; i < 2; i++) {
3118                host->ports[i]->mwdma_mask = 0;
3119                host->ports[i]->udma_mask = 0;
3120        }
3121}
3122
3123/**
3124 *      ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3125 *      @host: target ATA host
3126 *
3127 *      Acquire PCI BMDMA resources and initialize @host accordingly.
3128 *
3129 *      LOCKING:
3130 *      Inherited from calling layer (may sleep).
3131 */
3132void ata_pci_bmdma_init(struct ata_host *host)
3133{
3134        struct device *gdev = host->dev;
3135        struct pci_dev *pdev = to_pci_dev(gdev);
3136        int i, rc;
3137
3138        /* No BAR4 allocation: No DMA */
3139        if (pci_resource_start(pdev, 4) == 0) {
3140                ata_bmdma_nodma(host, "BAR4 is zero");
3141                return;
3142        }
3143
3144        /*
3145         * Some controllers require BMDMA region to be initialized
3146         * even if DMA is not in use to clear IRQ status via
3147         * ->sff_irq_clear method.  Try to initialize bmdma_addr
3148         * regardless of dma masks.
3149         */
3150        rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3151        if (rc)
3152                ata_bmdma_nodma(host, "failed to set dma mask");
3153        if (!rc) {
3154                rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3155                if (rc)
3156                        ata_bmdma_nodma(host,
3157                                        "failed to set consistent dma mask");
3158        }
3159
3160        /* request and iomap DMA region */
3161        rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3162        if (rc) {
3163                ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3164                return;
3165        }
3166        host->iomap = pcim_iomap_table(pdev);
3167
3168        for (i = 0; i < 2; i++) {
3169                struct ata_port *ap = host->ports[i];
3170                void __iomem *bmdma = host->iomap[4] + 8 * i;
3171
3172                if (ata_port_is_dummy(ap))
3173                        continue;
3174
3175                ap->ioaddr.bmdma_addr = bmdma;
3176                if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3177                    (ioread8(bmdma + 2) & 0x80))
3178                        host->flags |= ATA_HOST_SIMPLEX;
3179
3180                ata_port_desc(ap, "bmdma 0x%llx",
3181                    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3182        }
3183}
3184EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3185
3186/**
3187 *      ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188 *      @pdev: target PCI device
3189 *      @ppi: array of port_info, must be enough for two ports
3190 *      @r_host: out argument for the initialized ATA host
3191 *
3192 *      Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193 *      resources and initialize it accordingly in one go.
3194 *
3195 *      LOCKING:
3196 *      Inherited from calling layer (may sleep).
3197 *
3198 *      RETURNS:
3199 *      0 on success, -errno otherwise.
3200 */
3201int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3202                               const struct ata_port_info * const * ppi,
3203                               struct ata_host **r_host)
3204{
3205        int rc;
3206
3207        rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3208        if (rc)
3209                return rc;
3210
3211        ata_pci_bmdma_init(*r_host);
3212        return 0;
3213}
3214EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3215
3216/**
3217 *      ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218 *      @pdev: Controller to be initialized
3219 *      @ppi: array of port_info, must be enough for two ports
3220 *      @sht: scsi_host_template to use when registering the host
3221 *      @host_priv: host private_data
3222 *      @hflags: host flags
3223 *
3224 *      This function is similar to ata_pci_sff_init_one() but also
3225 *      takes care of BMDMA initialization.
3226 *
3227 *      LOCKING:
3228 *      Inherited from PCI layer (may sleep).
3229 *
3230 *      RETURNS:
3231 *      Zero on success, negative on errno-based value on error.
3232 */
3233int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3234                           const struct ata_port_info * const * ppi,
3235                           struct scsi_host_template *sht, void *host_priv,
3236                           int hflags)
3237{
3238        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3239}
3240EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3241
3242#endif /* CONFIG_PCI */
3243#endif /* CONFIG_ATA_BMDMA */
3244
3245/**
3246 *      ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247 *      @ap: Port to initialize
3248 *
3249 *      Called on port allocation to initialize SFF/BMDMA specific
3250 *      fields.
3251 *
3252 *      LOCKING:
3253 *      None.
3254 */
3255void ata_sff_port_init(struct ata_port *ap)
3256{
3257        INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3258        ap->ctl = ATA_DEVCTL_OBS;
3259        ap->last_ctl = 0xFF;
3260}
3261
3262int __init ata_sff_init(void)
3263{
3264        ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3265        if (!ata_sff_wq)
3266                return -ENOMEM;
3267
3268        return 0;
3269}
3270
3271void ata_sff_exit(void)
3272{
3273        destroy_workqueue(ata_sff_wq);
3274}
3275