linux/drivers/atm/fore200e.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#include <asm/pgtable.h>
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87                             printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88                                    __func__, __LINE__, #expr); \
  89                             panic(FORE200E "%s", __func__); \
  90                         }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170        alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177        return -ENOMEM;
 178
 179    if (alignment > 0)
 180        offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185                                     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187        kfree(chunk->alloc_addr);
 188        return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200                     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211                int size, int nbr, int alignment)
 212{
 213        /* returned chunks are page-aligned */
 214        chunk->alloc_size = size * nbr;
 215        chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216                                               &chunk->dma_addr, GFP_KERNEL);
 217        if (!chunk->alloc_addr)
 218                return -ENOMEM;
 219        chunk->align_addr = chunk->alloc_addr;
 220        return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229        dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230                          chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249        if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250            break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256        printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257               *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272        if ((ok = (fore200e->bus->read(addr) == val)))
 273            break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279        printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280               fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297            if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299                for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301                    struct chunk* data = &buffer[ nbr ].data;
 302
 303                    if (data->alloc_addr != NULL)
 304                        fore200e_chunk_free(fore200e, data);
 305                }
 306            }
 307        }
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320            struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321            struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322            
 323            if (status->alloc_addr)
 324                fore200e_dma_chunk_free(fore200e, status);
 325            
 326            if (rbd_block->alloc_addr)
 327                fore200e_dma_chunk_free(fore200e, rbd_block);
 328        }
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345        ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346        if (ok == 0) {
 347            
 348            printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349            return -ENODEV;
 350        }
 351
 352        printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353        
 354        fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365           fore200e->name, fore200e->phys_base, 
 366           fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369        /* first, reset the board to prevent further interrupts or data transfers */
 370        fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377        kfree(fore200e->stats);
 378
 379        /* fall through */
 380    case FORE200E_STATE_IRQ:
 381        free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383        /* fall through */
 384    case FORE200E_STATE_ALLOC_BUF:
 385        fore200e_free_rx_buf(fore200e);
 386
 387        /* fall through */
 388    case FORE200E_STATE_INIT_BSQ:
 389        fore200e_uninit_bs_queue(fore200e);
 390
 391        /* fall through */
 392    case FORE200E_STATE_INIT_RXQ:
 393        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396        /* fall through */
 397    case FORE200E_STATE_INIT_TXQ:
 398        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401        /* fall through */
 402    case FORE200E_STATE_INIT_CMDQ:
 403        fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405        /* fall through */
 406    case FORE200E_STATE_INITIALIZE:
 407        /* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410        /* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413        /* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416        fore200e->bus->unmap(fore200e);
 417
 418        /* fall through */
 419    case FORE200E_STATE_CONFIGURE:
 420        /* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423        /* XXX shouldn't we *start* by deregistering the device? */
 424        atm_dev_deregister(fore200e->atm_dev);
 425
 426    case FORE200E_STATE_BLANK:
 427        /* nothing to do for that state */
 428        break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458        DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489        printk(FORE200E "can't map device %s\n", fore200e->name);
 490        return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511        iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523        printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524        return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531        /* request the PCA board to convert the endianess of slave RAM accesses */
 532        | PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540        | PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570                              DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572        return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587        printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588        return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610                   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614        .model_name             = "PCA-200E",
 615        .proc_name              = "pca200e",
 616        .descr_alignment        = 32,
 617        .buffer_alignment       = 4,
 618        .status_alignment       = 32,
 619        .read                   = fore200e_pca_read,
 620        .write                  = fore200e_pca_write,
 621        .configure              = fore200e_pca_configure,
 622        .map                    = fore200e_pca_map,
 623        .reset                  = fore200e_pca_reset,
 624        .prom_read              = fore200e_pca_prom_read,
 625        .unmap                  = fore200e_pca_unmap,
 626        .irq_check              = fore200e_pca_irq_check,
 627        .irq_ack                = fore200e_pca_irq_ack,
 628        .proc_read              = fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647        fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652        return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658        fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663        fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664        fore200e_spin(10);
 665        fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670        struct platform_device *op = to_platform_device(fore200e->dev);
 671        unsigned int bursts;
 672
 673        /* gain access to the SBA specific registers  */
 674        fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675        fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676        fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677        fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679        if (!fore200e->virt_base) {
 680                printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681                return -EFAULT;
 682        }
 683
 684        DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686        fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688        /* get the supported DVMA burst sizes */
 689        bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691        if (sbus_can_dma_64bit())
 692                sbus_set_sbus64(&op->dev, bursts);
 693
 694        fore200e->state = FORE200E_STATE_MAP;
 695        return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700        struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702        of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703        of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704        of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705        of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710        fore200e->state = FORE200E_STATE_CONFIGURE;
 711        return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716        struct platform_device *op = to_platform_device(fore200e->dev);
 717        const u8 *prop;
 718        int len;
 719
 720        prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721        if (!prop)
 722                return -ENODEV;
 723        memcpy(&prom->mac_addr[4], prop, 4);
 724
 725        prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726        if (!prop)
 727                return -ENODEV;
 728        memcpy(&prom->mac_addr[2], prop, 4);
 729
 730        prom->serial_number = of_getintprop_default(op->dev.of_node,
 731                                                    "serialnumber", 0);
 732        prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733                                                  "promversion", 0);
 734    
 735        return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740        struct platform_device *op = to_platform_device(fore200e->dev);
 741        const struct linux_prom_registers *regs;
 742
 743        regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745        return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746                       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750        .model_name             = "SBA-200E",
 751        .proc_name              = "sba200e",
 752        .descr_alignment        = 32,
 753        .buffer_alignment       = 64,
 754        .status_alignment       = 32,
 755        .read                   = fore200e_sba_read,
 756        .write                  = fore200e_sba_write,
 757        .configure              = fore200e_sba_configure,
 758        .map                    = fore200e_sba_map,
 759        .reset                  = fore200e_sba_reset,
 760        .prom_read              = fore200e_sba_prom_read,
 761        .unmap                  = fore200e_sba_unmap,
 762        .irq_enable             = fore200e_sba_irq_enable,
 763        .irq_check              = fore200e_sba_irq_check,
 764        .irq_ack                = fore200e_sba_irq_ack,
 765        .proc_read              = fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778        return;
 779
 780    for (;;) {
 781        
 782        entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785            break;
 786        }
 787
 788        DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789                entry, txq->tail, entry->vc_map, entry->skb);
 790
 791        /* free copy of misaligned data */
 792        kfree(entry->data);
 793        
 794        /* remove DMA mapping */
 795        dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796                                 DMA_TO_DEVICE);
 797
 798        vc_map = entry->vc_map;
 799
 800        /* vcc closed since the time the entry was submitted for tx? */
 801        if ((vc_map->vcc == NULL) ||
 802            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804            DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805                    fore200e->atm_dev->number);
 806
 807            dev_kfree_skb_any(entry->skb);
 808        }
 809        else {
 810            ASSERT(vc_map->vcc);
 811
 812            /* vcc closed then immediately re-opened? */
 813            if (vc_map->incarn != entry->incarn) {
 814
 815                /* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816                   if the same vcc is immediately re-opened, those pending PDUs must
 817                   not be popped after the completion of their emission, as they refer
 818                   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819                   would be decremented by the size of the (unrelated) skb, possibly
 820                   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821                   we thus bind the tx entry to the current incarnation of the vcc
 822                   when the entry is submitted for tx. When the tx later completes,
 823                   if the incarnation number of the tx entry does not match the one
 824                   of the vcc, then this implies that the vcc has been closed then re-opened.
 825                   we thus just drop the skb here. */
 826
 827                DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828                        fore200e->atm_dev->number);
 829
 830                dev_kfree_skb_any(entry->skb);
 831            }
 832            else {
 833                vcc = vc_map->vcc;
 834                ASSERT(vcc);
 835
 836                /* notify tx completion */
 837                if (vcc->pop) {
 838                    vcc->pop(vcc, entry->skb);
 839                }
 840                else {
 841                    dev_kfree_skb_any(entry->skb);
 842                }
 843
 844                /* check error condition */
 845                if (*entry->status & STATUS_ERROR)
 846                    atomic_inc(&vcc->stats->tx_err);
 847                else
 848                    atomic_inc(&vcc->stats->tx);
 849            }
 850        }
 851
 852        *entry->status = STATUS_FREE;
 853
 854        fore200e->host_txq.txing--;
 855
 856        FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870        if (buffer->supplied) {
 871            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872                   where, scheme, magn, buffer->index);
 873        }
 874
 875        if (buffer->magn != magn) {
 876            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877                   where, scheme, magn, buffer->index, buffer->magn);
 878        }
 879
 880        if (buffer->scheme != scheme) {
 881            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882                   where, scheme, magn, buffer->index, buffer->scheme);
 883        }
 884
 885        if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886            printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887                   where, scheme, magn, buffer->index);
 888        }
 889
 890        count++;
 891        buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895        printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896               where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915            bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918            bsq_audit(1, bsq, scheme, magn);
 919#endif
 920            while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922                DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923                        RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925                entry = &bsq->host_entry[ bsq->head ];
 926
 927                for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929                    /* take the first buffer in the free buffer list */
 930                    buffer = bsq->freebuf;
 931                    if (!buffer) {
 932                        printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933                               scheme, magn, bsq->freebuf_count);
 934                        return;
 935                    }
 936                    bsq->freebuf = buffer->next;
 937                    
 938#ifdef FORE200E_BSQ_DEBUG
 939                    if (buffer->supplied)
 940                        printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941                               scheme, magn, buffer->index);
 942                    buffer->supplied = 1;
 943#endif
 944                    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945                    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946                }
 947
 948                FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950                /* decrease accordingly the number of free rx buffers */
 951                bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953                *entry->status = STATUS_PENDING;
 954                fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955            }
 956        }
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980        cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981                      (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985        pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991        pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995        DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997        atomic_inc(&vcc->stats->rx_drop);
 998        return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005        *((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011        
1012        /* rebuild rx buffer address from rsd handle */
1013        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014        
1015        /* Make device DMA transfer visible to CPU.  */
1016        dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017                                rpd->rsd[i].length, DMA_FROM_DEVICE);
1018        
1019        skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021        /* Now let the device get at it again.  */
1022        dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023                                   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029        fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031        fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037        DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038                vcc->itf, vcc->vpi, vcc->vci);
1039
1040        dev_kfree_skb_any(skb);
1041
1042        atomic_inc(&vcc->stats->rx_drop);
1043        return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062        /* rebuild rx buffer address from rsd handle */
1063        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065        bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068        bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070        if (buffer->supplied == 0)
1071            printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072                   buffer->scheme, buffer->magn, buffer->index);
1073        buffer->supplied = 0;
1074#endif
1075
1076        /* re-insert the buffer into the free buffer list */
1077        buffer->next = bsq->freebuf;
1078        bsq->freebuf = buffer;
1079
1080        /* then increment the number of free rx buffers */
1081        bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095        
1096        entry = &rxq->host_entry[ rxq->head ];
1097
1098        /* no more received PDUs */
1099        if ((*entry->status & STATUS_COMPLETE) == 0)
1100            break;
1101
1102        vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104        if ((vc_map->vcc == NULL) ||
1105            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107            DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108                    fore200e->atm_dev->number,
1109                    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110        }
1111        else {
1112            vcc = vc_map->vcc;
1113            ASSERT(vcc);
1114
1115            if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117                fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118            }
1119            else {
1120                DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121                        fore200e->atm_dev->number,
1122                        entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123                atomic_inc(&vcc->stats->rx_err);
1124            }
1125        }
1126
1127        FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129        fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131        /* rewrite the rpd address to ack the received PDU */
1132        fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133        *entry->status = STATUS_FREE;
1134
1135        fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163        
1164        DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165        return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218            vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238        FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239        
1240        activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241        activ_opcode.aal    = aal;
1242        activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243        activ_opcode.pad    = 0;
1244    }
1245    else {
1246        deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247        deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258        mtu = 48;
1259#endif
1260        /* the MTU is not used by the cp, except in the case of AAL0 */
1261        fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263        fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267        fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275        printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276               activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277        return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281            activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294        /* compute the data cells to idle cells ratio from the tx PCR */
1295        rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296        rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299        /* disable rate control */
1300        rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long           flags;
1312    int                     vci = vcc->vci;
1313    short                   vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325        printk(FORE200E "VC %d.%d.%d already in use\n",
1326               fore200e->atm_dev->number, vpi, vci);
1327
1328        return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337        vc_map->vcc = NULL;
1338        return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344            fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345            vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346            fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347            vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351        
1352        mutex_lock(&fore200e->rate_mtx);
1353        if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354            mutex_unlock(&fore200e->rate_mtx);
1355
1356            kfree(fore200e_vcc);
1357            vc_map->vcc = NULL;
1358            return -EAGAIN;
1359        }
1360
1361        /* reserve bandwidth */
1362        fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363        mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375        vc_map->vcc = NULL;
1376
1377        clear_bit(ATM_VF_ADDR, &vcc->flags);
1378        clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380        vcc->dev_data = NULL;
1381
1382        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384        kfree(fore200e_vcc);
1385        return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390        
1391        fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392        set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394        DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395                vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396                vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397                fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1418    struct fore200e_vcc*    fore200e_vcc;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449        mutex_lock(&fore200e->rate_mtx);
1450        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451        mutex_unlock(&fore200e->rate_mtx);
1452
1453        clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1468    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq          = &fore200e->host_txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    ASSERT(vcc);
1484    ASSERT(fore200e);
1485    ASSERT(fore200e_vcc);
1486
1487    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1488        DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1489        dev_kfree_skb_any(skb);
1490        return -EINVAL;
1491    }
1492
1493#ifdef FORE200E_52BYTE_AAL0_SDU
1494    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1495        cell_header = (u32*) skb->data;
1496        skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1497        skb_len     = tx_len = skb->len  - 4;
1498
1499        DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1500    }
1501    else 
1502#endif
1503    {
1504        skb_data = skb->data;
1505        skb_len  = skb->len;
1506    }
1507    
1508    if (((unsigned long)skb_data) & 0x3) {
1509
1510        DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1511        tx_copy = 1;
1512        tx_len  = skb_len;
1513    }
1514
1515    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1516
1517        /* this simply NUKES the PCA board */
1518        DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1519        tx_copy = 1;
1520        tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1521    }
1522    
1523    if (tx_copy) {
1524        data = kmalloc(tx_len, GFP_ATOMIC);
1525        if (data == NULL) {
1526            if (vcc->pop) {
1527                vcc->pop(vcc, skb);
1528            }
1529            else {
1530                dev_kfree_skb_any(skb);
1531            }
1532            return -ENOMEM;
1533        }
1534
1535        memcpy(data, skb_data, skb_len);
1536        if (skb_len < tx_len)
1537            memset(data + skb_len, 0x00, tx_len - skb_len);
1538    }
1539    else {
1540        data = skb_data;
1541    }
1542
1543    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1544    ASSERT(vc_map->vcc == vcc);
1545
1546  retry_here:
1547
1548    spin_lock_irqsave(&fore200e->q_lock, flags);
1549
1550    entry = &txq->host_entry[ txq->head ];
1551
1552    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1553
1554        /* try to free completed tx queue entries */
1555        fore200e_tx_irq(fore200e);
1556
1557        if (*entry->status != STATUS_FREE) {
1558
1559            spin_unlock_irqrestore(&fore200e->q_lock, flags);
1560
1561            /* retry once again? */
1562            if (--retry > 0) {
1563                udelay(50);
1564                goto retry_here;
1565            }
1566
1567            atomic_inc(&vcc->stats->tx_err);
1568
1569            fore200e->tx_sat++;
1570            DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1571                    fore200e->name, fore200e->cp_queues->heartbeat);
1572            if (vcc->pop) {
1573                vcc->pop(vcc, skb);
1574            }
1575            else {
1576                dev_kfree_skb_any(skb);
1577            }
1578
1579            if (tx_copy)
1580                kfree(data);
1581
1582            return -ENOBUFS;
1583        }
1584    }
1585
1586    entry->incarn = vc_map->incarn;
1587    entry->vc_map = vc_map;
1588    entry->skb    = skb;
1589    entry->data   = tx_copy ? data : NULL;
1590
1591    tpd = entry->tpd;
1592    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1593                                          DMA_TO_DEVICE);
1594    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1595        if (tx_copy)
1596            kfree(data);
1597        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1598        return -ENOMEM;
1599    }
1600    tpd->tsd[ 0 ].length = tx_len;
1601
1602    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1603    txq->txing++;
1604
1605    /* The dma_map call above implies a dma_sync so the device can use it,
1606     * thus no explicit dma_sync call is necessary here.
1607     */
1608    
1609    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1610            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1611            tpd->tsd[0].length, skb_len);
1612
1613    if (skb_len < fore200e_vcc->tx_min_pdu)
1614        fore200e_vcc->tx_min_pdu = skb_len;
1615    if (skb_len > fore200e_vcc->tx_max_pdu)
1616        fore200e_vcc->tx_max_pdu = skb_len;
1617    fore200e_vcc->tx_pdu++;
1618
1619    /* set tx rate control information */
1620    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1621    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1622
1623    if (cell_header) {
1624        tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1625        tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1626        tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1627        tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1628        tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1629    }
1630    else {
1631        /* set the ATM header, common to all cells conveying the PDU */
1632        tpd->atm_header.clp = 0;
1633        tpd->atm_header.plt = 0;
1634        tpd->atm_header.vci = vcc->vci;
1635        tpd->atm_header.vpi = vcc->vpi;
1636        tpd->atm_header.gfc = 0;
1637    }
1638
1639    tpd->spec.length = tx_len;
1640    tpd->spec.nseg   = 1;
1641    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1642    tpd->spec.intr   = 1;
1643
1644    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1645    tpd_haddr.pad   = 0;
1646    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1647
1648    *entry->status = STATUS_PENDING;
1649    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1650
1651    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653    return 0;
1654}
1655
1656
1657static int
1658fore200e_getstats(struct fore200e* fore200e)
1659{
1660    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1661    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1662    struct stats_opcode     opcode;
1663    int                     ok;
1664    u32                     stats_dma_addr;
1665
1666    if (fore200e->stats == NULL) {
1667        fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1668        if (fore200e->stats == NULL)
1669            return -ENOMEM;
1670    }
1671    
1672    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1673                                    sizeof(struct stats), DMA_FROM_DEVICE);
1674    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1675        return -ENOMEM;
1676    
1677    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1678
1679    opcode.opcode = OPCODE_GET_STATS;
1680    opcode.pad    = 0;
1681
1682    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1683    
1684    *entry->status = STATUS_PENDING;
1685
1686    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1687
1688    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1689
1690    *entry->status = STATUS_FREE;
1691
1692    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1693    
1694    if (ok == 0) {
1695        printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1696        return -EIO;
1697    }
1698
1699    return 0;
1700}
1701
1702
1703static int
1704fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1705{
1706    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1707
1708    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1709            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1710
1711    return -EINVAL;
1712}
1713
1714
1715static int
1716fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1717{
1718    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1719    
1720    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1721            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1722    
1723    return -EINVAL;
1724}
1725
1726
1727#if 0 /* currently unused */
1728static int
1729fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1730{
1731    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1732    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1733    struct oc3_opcode       opcode;
1734    int                     ok;
1735    u32                     oc3_regs_dma_addr;
1736
1737    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738
1739    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1740
1741    opcode.opcode = OPCODE_GET_OC3;
1742    opcode.reg    = 0;
1743    opcode.value  = 0;
1744    opcode.mask   = 0;
1745
1746    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1747    
1748    *entry->status = STATUS_PENDING;
1749
1750    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1751
1752    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1753
1754    *entry->status = STATUS_FREE;
1755
1756    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1757    
1758    if (ok == 0) {
1759        printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1760        return -EIO;
1761    }
1762
1763    return 0;
1764}
1765#endif
1766
1767
1768static int
1769fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1770{
1771    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1772    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1773    struct oc3_opcode       opcode;
1774    int                     ok;
1775
1776    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1777
1778    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1779
1780    opcode.opcode = OPCODE_SET_OC3;
1781    opcode.reg    = reg;
1782    opcode.value  = value;
1783    opcode.mask   = mask;
1784
1785    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1786    
1787    *entry->status = STATUS_PENDING;
1788
1789    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1790
1791    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1792
1793    *entry->status = STATUS_FREE;
1794
1795    if (ok == 0) {
1796        printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1797        return -EIO;
1798    }
1799
1800    return 0;
1801}
1802
1803
1804static int
1805fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1806{
1807    u32 mct_value, mct_mask;
1808    int error;
1809
1810    if (!capable(CAP_NET_ADMIN))
1811        return -EPERM;
1812    
1813    switch (loop_mode) {
1814
1815    case ATM_LM_NONE:
1816        mct_value = 0; 
1817        mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1818        break;
1819        
1820    case ATM_LM_LOC_PHY:
1821        mct_value = mct_mask = SUNI_MCT_DLE;
1822        break;
1823
1824    case ATM_LM_RMT_PHY:
1825        mct_value = mct_mask = SUNI_MCT_LLE;
1826        break;
1827
1828    default:
1829        return -EINVAL;
1830    }
1831
1832    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1833    if (error == 0)
1834        fore200e->loop_mode = loop_mode;
1835
1836    return error;
1837}
1838
1839
1840static int
1841fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1842{
1843    struct sonet_stats tmp;
1844
1845    if (fore200e_getstats(fore200e) < 0)
1846        return -EIO;
1847
1848    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1849    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1850    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1851    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1852    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1853    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1854    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1855    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1856                      be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1857                      be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1858    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1859                      be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1860                      be32_to_cpu(fore200e->stats->aal5.cells_received);
1861
1862    if (arg)
1863        return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1864    
1865    return 0;
1866}
1867
1868
1869static int
1870fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1871{
1872    struct fore200e* fore200e = FORE200E_DEV(dev);
1873    
1874    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1875
1876    switch (cmd) {
1877
1878    case SONET_GETSTAT:
1879        return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1880
1881    case SONET_GETDIAG:
1882        return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1883
1884    case ATM_SETLOOP:
1885        return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1886
1887    case ATM_GETLOOP:
1888        return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1889
1890    case ATM_QUERYLOOP:
1891        return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1892    }
1893
1894    return -ENOSYS; /* not implemented */
1895}
1896
1897
1898static int
1899fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1900{
1901    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1902    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1903
1904    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1905        DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1906        return -EINVAL;
1907    }
1908
1909    DPRINTK(2, "change_qos %d.%d.%d, "
1910            "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1911            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1912            "available_cell_rate = %u",
1913            vcc->itf, vcc->vpi, vcc->vci,
1914            fore200e_traffic_class[ qos->txtp.traffic_class ],
1915            qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1916            fore200e_traffic_class[ qos->rxtp.traffic_class ],
1917            qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1918            flags, fore200e->available_cell_rate);
1919
1920    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1921
1922        mutex_lock(&fore200e->rate_mtx);
1923        if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1924            mutex_unlock(&fore200e->rate_mtx);
1925            return -EAGAIN;
1926        }
1927
1928        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1929        fore200e->available_cell_rate -= qos->txtp.max_pcr;
1930
1931        mutex_unlock(&fore200e->rate_mtx);
1932        
1933        memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1934        
1935        /* update rate control parameters */
1936        fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1937
1938        set_bit(ATM_VF_HASQOS, &vcc->flags);
1939
1940        return 0;
1941    }
1942    
1943    return -EINVAL;
1944}
1945    
1946
1947static int fore200e_irq_request(struct fore200e *fore200e)
1948{
1949    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1950
1951        printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1952               fore200e_irq_itoa(fore200e->irq), fore200e->name);
1953        return -EBUSY;
1954    }
1955
1956    printk(FORE200E "IRQ %s reserved for device %s\n",
1957           fore200e_irq_itoa(fore200e->irq), fore200e->name);
1958
1959#ifdef FORE200E_USE_TASKLET
1960    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1961    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1962#endif
1963
1964    fore200e->state = FORE200E_STATE_IRQ;
1965    return 0;
1966}
1967
1968
1969static int fore200e_get_esi(struct fore200e *fore200e)
1970{
1971    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1972    int ok, i;
1973
1974    if (!prom)
1975        return -ENOMEM;
1976
1977    ok = fore200e->bus->prom_read(fore200e, prom);
1978    if (ok < 0) {
1979        kfree(prom);
1980        return -EBUSY;
1981    }
1982        
1983    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1984           fore200e->name, 
1985           (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1986           prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1987        
1988    for (i = 0; i < ESI_LEN; i++) {
1989        fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1990    }
1991    
1992    kfree(prom);
1993
1994    return 0;
1995}
1996
1997
1998static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1999{
2000    int scheme, magn, nbr, size, i;
2001
2002    struct host_bsq* bsq;
2003    struct buffer*   buffer;
2004
2005    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2006        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2007
2008            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2009
2010            nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2011            size = fore200e_rx_buf_size[ scheme ][ magn ];
2012
2013            DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2014
2015            /* allocate the array of receive buffers */
2016            buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2017                                           GFP_KERNEL);
2018
2019            if (buffer == NULL)
2020                return -ENOMEM;
2021
2022            bsq->freebuf = NULL;
2023
2024            for (i = 0; i < nbr; i++) {
2025
2026                buffer[ i ].scheme = scheme;
2027                buffer[ i ].magn   = magn;
2028#ifdef FORE200E_BSQ_DEBUG
2029                buffer[ i ].index  = i;
2030                buffer[ i ].supplied = 0;
2031#endif
2032
2033                /* allocate the receive buffer body */
2034                if (fore200e_chunk_alloc(fore200e,
2035                                         &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2036                                         DMA_FROM_DEVICE) < 0) {
2037                    
2038                    while (i > 0)
2039                        fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2040                    kfree(buffer);
2041                    
2042                    return -ENOMEM;
2043                }
2044
2045                /* insert the buffer into the free buffer list */
2046                buffer[ i ].next = bsq->freebuf;
2047                bsq->freebuf = &buffer[ i ];
2048            }
2049            /* all the buffers are free, initially */
2050            bsq->freebuf_count = nbr;
2051
2052#ifdef FORE200E_BSQ_DEBUG
2053            bsq_audit(3, bsq, scheme, magn);
2054#endif
2055        }
2056    }
2057
2058    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2059    return 0;
2060}
2061
2062
2063static int fore200e_init_bs_queue(struct fore200e *fore200e)
2064{
2065    int scheme, magn, i;
2066
2067    struct host_bsq*     bsq;
2068    struct cp_bsq_entry __iomem * cp_entry;
2069
2070    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2071        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2072
2073            DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2074
2075            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2076
2077            /* allocate and align the array of status words */
2078            if (fore200e_dma_chunk_alloc(fore200e,
2079                                               &bsq->status,
2080                                               sizeof(enum status), 
2081                                               QUEUE_SIZE_BS,
2082                                               fore200e->bus->status_alignment) < 0) {
2083                return -ENOMEM;
2084            }
2085
2086            /* allocate and align the array of receive buffer descriptors */
2087            if (fore200e_dma_chunk_alloc(fore200e,
2088                                               &bsq->rbd_block,
2089                                               sizeof(struct rbd_block),
2090                                               QUEUE_SIZE_BS,
2091                                               fore200e->bus->descr_alignment) < 0) {
2092                
2093                fore200e_dma_chunk_free(fore200e, &bsq->status);
2094                return -ENOMEM;
2095            }
2096            
2097            /* get the base address of the cp resident buffer supply queue entries */
2098            cp_entry = fore200e->virt_base + 
2099                       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2100            
2101            /* fill the host resident and cp resident buffer supply queue entries */
2102            for (i = 0; i < QUEUE_SIZE_BS; i++) {
2103                
2104                bsq->host_entry[ i ].status = 
2105                                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2106                bsq->host_entry[ i ].rbd_block =
2107                                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2108                bsq->host_entry[ i ].rbd_block_dma =
2109                                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2110                bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2111                
2112                *bsq->host_entry[ i ].status = STATUS_FREE;
2113                
2114                fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2115                                     &cp_entry[ i ].status_haddr);
2116            }
2117        }
2118    }
2119
2120    fore200e->state = FORE200E_STATE_INIT_BSQ;
2121    return 0;
2122}
2123
2124
2125static int fore200e_init_rx_queue(struct fore200e *fore200e)
2126{
2127    struct host_rxq*     rxq =  &fore200e->host_rxq;
2128    struct cp_rxq_entry __iomem * cp_entry;
2129    int i;
2130
2131    DPRINTK(2, "receive queue is being initialized\n");
2132
2133    /* allocate and align the array of status words */
2134    if (fore200e_dma_chunk_alloc(fore200e,
2135                                       &rxq->status,
2136                                       sizeof(enum status), 
2137                                       QUEUE_SIZE_RX,
2138                                       fore200e->bus->status_alignment) < 0) {
2139        return -ENOMEM;
2140    }
2141
2142    /* allocate and align the array of receive PDU descriptors */
2143    if (fore200e_dma_chunk_alloc(fore200e,
2144                                       &rxq->rpd,
2145                                       sizeof(struct rpd), 
2146                                       QUEUE_SIZE_RX,
2147                                       fore200e->bus->descr_alignment) < 0) {
2148        
2149        fore200e_dma_chunk_free(fore200e, &rxq->status);
2150        return -ENOMEM;
2151    }
2152
2153    /* get the base address of the cp resident rx queue entries */
2154    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2155
2156    /* fill the host resident and cp resident rx entries */
2157    for (i=0; i < QUEUE_SIZE_RX; i++) {
2158        
2159        rxq->host_entry[ i ].status = 
2160                             FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2161        rxq->host_entry[ i ].rpd = 
2162                             FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2163        rxq->host_entry[ i ].rpd_dma = 
2164                             FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2165        rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2166
2167        *rxq->host_entry[ i ].status = STATUS_FREE;
2168
2169        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2170                             &cp_entry[ i ].status_haddr);
2171
2172        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2173                             &cp_entry[ i ].rpd_haddr);
2174    }
2175
2176    /* set the head entry of the queue */
2177    rxq->head = 0;
2178
2179    fore200e->state = FORE200E_STATE_INIT_RXQ;
2180    return 0;
2181}
2182
2183
2184static int fore200e_init_tx_queue(struct fore200e *fore200e)
2185{
2186    struct host_txq*     txq =  &fore200e->host_txq;
2187    struct cp_txq_entry __iomem * cp_entry;
2188    int i;
2189
2190    DPRINTK(2, "transmit queue is being initialized\n");
2191
2192    /* allocate and align the array of status words */
2193    if (fore200e_dma_chunk_alloc(fore200e,
2194                                       &txq->status,
2195                                       sizeof(enum status), 
2196                                       QUEUE_SIZE_TX,
2197                                       fore200e->bus->status_alignment) < 0) {
2198        return -ENOMEM;
2199    }
2200
2201    /* allocate and align the array of transmit PDU descriptors */
2202    if (fore200e_dma_chunk_alloc(fore200e,
2203                                       &txq->tpd,
2204                                       sizeof(struct tpd), 
2205                                       QUEUE_SIZE_TX,
2206                                       fore200e->bus->descr_alignment) < 0) {
2207        
2208        fore200e_dma_chunk_free(fore200e, &txq->status);
2209        return -ENOMEM;
2210    }
2211
2212    /* get the base address of the cp resident tx queue entries */
2213    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2214
2215    /* fill the host resident and cp resident tx entries */
2216    for (i=0; i < QUEUE_SIZE_TX; i++) {
2217        
2218        txq->host_entry[ i ].status = 
2219                             FORE200E_INDEX(txq->status.align_addr, enum status, i);
2220        txq->host_entry[ i ].tpd = 
2221                             FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2222        txq->host_entry[ i ].tpd_dma  = 
2223                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2224        txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2225
2226        *txq->host_entry[ i ].status = STATUS_FREE;
2227        
2228        fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2229                             &cp_entry[ i ].status_haddr);
2230        
2231        /* although there is a one-to-one mapping of tx queue entries and tpds,
2232           we do not write here the DMA (physical) base address of each tpd into
2233           the related cp resident entry, because the cp relies on this write
2234           operation to detect that a new pdu has been submitted for tx */
2235    }
2236
2237    /* set the head and tail entries of the queue */
2238    txq->head = 0;
2239    txq->tail = 0;
2240
2241    fore200e->state = FORE200E_STATE_INIT_TXQ;
2242    return 0;
2243}
2244
2245
2246static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2247{
2248    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2249    struct cp_cmdq_entry __iomem * cp_entry;
2250    int i;
2251
2252    DPRINTK(2, "command queue is being initialized\n");
2253
2254    /* allocate and align the array of status words */
2255    if (fore200e_dma_chunk_alloc(fore200e,
2256                                       &cmdq->status,
2257                                       sizeof(enum status), 
2258                                       QUEUE_SIZE_CMD,
2259                                       fore200e->bus->status_alignment) < 0) {
2260        return -ENOMEM;
2261    }
2262    
2263    /* get the base address of the cp resident cmd queue entries */
2264    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2265
2266    /* fill the host resident and cp resident cmd entries */
2267    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2268        
2269        cmdq->host_entry[ i ].status   = 
2270                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2271        cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2272
2273        *cmdq->host_entry[ i ].status = STATUS_FREE;
2274
2275        fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2276                             &cp_entry[ i ].status_haddr);
2277    }
2278
2279    /* set the head entry of the queue */
2280    cmdq->head = 0;
2281
2282    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2283    return 0;
2284}
2285
2286
2287static void fore200e_param_bs_queue(struct fore200e *fore200e,
2288                                    enum buffer_scheme scheme,
2289                                    enum buffer_magn magn, int queue_length,
2290                                    int pool_size, int supply_blksize)
2291{
2292    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2293
2294    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2295    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2296    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2297    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2298}
2299
2300
2301static int fore200e_initialize(struct fore200e *fore200e)
2302{
2303    struct cp_queues __iomem * cpq;
2304    int               ok, scheme, magn;
2305
2306    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2307
2308    mutex_init(&fore200e->rate_mtx);
2309    spin_lock_init(&fore200e->q_lock);
2310
2311    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2312
2313    /* enable cp to host interrupts */
2314    fore200e->bus->write(1, &cpq->imask);
2315
2316    if (fore200e->bus->irq_enable)
2317        fore200e->bus->irq_enable(fore200e);
2318    
2319    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2320
2321    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2322    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2323    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2324
2325    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2326    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2327
2328    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2329        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2330            fore200e_param_bs_queue(fore200e, scheme, magn,
2331                                    QUEUE_SIZE_BS, 
2332                                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2333                                    RBD_BLK_SIZE);
2334
2335    /* issue the initialize command */
2336    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2337    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2338
2339    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2340    if (ok == 0) {
2341        printk(FORE200E "device %s initialization failed\n", fore200e->name);
2342        return -ENODEV;
2343    }
2344
2345    printk(FORE200E "device %s initialized\n", fore200e->name);
2346
2347    fore200e->state = FORE200E_STATE_INITIALIZE;
2348    return 0;
2349}
2350
2351
2352static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2353{
2354    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2355
2356#if 0
2357    printk("%c", c);
2358#endif
2359    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2360}
2361
2362
2363static int fore200e_monitor_getc(struct fore200e *fore200e)
2364{
2365    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2366    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2367    int                c;
2368
2369    while (time_before(jiffies, timeout)) {
2370
2371        c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2372
2373        if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2374
2375            fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2376#if 0
2377            printk("%c", c & 0xFF);
2378#endif
2379            return c & 0xFF;
2380        }
2381    }
2382
2383    return -1;
2384}
2385
2386
2387static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2388{
2389    while (*str) {
2390
2391        /* the i960 monitor doesn't accept any new character if it has something to say */
2392        while (fore200e_monitor_getc(fore200e) >= 0);
2393        
2394        fore200e_monitor_putc(fore200e, *str++);
2395    }
2396
2397    while (fore200e_monitor_getc(fore200e) >= 0);
2398}
2399
2400#ifdef __LITTLE_ENDIAN
2401#define FW_EXT ".bin"
2402#else
2403#define FW_EXT "_ecd.bin2"
2404#endif
2405
2406static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2407{
2408    const struct firmware *firmware;
2409    const struct fw_header *fw_header;
2410    const __le32 *fw_data;
2411    u32 fw_size;
2412    u32 __iomem *load_addr;
2413    char buf[48];
2414    int err;
2415
2416    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2417    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2418        printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2419        return err;
2420    }
2421
2422    fw_data = (const __le32 *)firmware->data;
2423    fw_size = firmware->size / sizeof(u32);
2424    fw_header = (const struct fw_header *)firmware->data;
2425    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2426
2427    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2428            fore200e->name, load_addr, fw_size);
2429
2430    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2431        printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2432        goto release;
2433    }
2434
2435    for (; fw_size--; fw_data++, load_addr++)
2436        fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2437
2438    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2439
2440#if defined(__sparc_v9__)
2441    /* reported to be required by SBA cards on some sparc64 hosts */
2442    fore200e_spin(100);
2443#endif
2444
2445    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2446    fore200e_monitor_puts(fore200e, buf);
2447
2448    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2449        printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2450        goto release;
2451    }
2452
2453    printk(FORE200E "device %s firmware started\n", fore200e->name);
2454
2455    fore200e->state = FORE200E_STATE_START_FW;
2456    err = 0;
2457
2458release:
2459    release_firmware(firmware);
2460    return err;
2461}
2462
2463
2464static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2465{
2466    struct atm_dev* atm_dev;
2467
2468    DPRINTK(2, "device %s being registered\n", fore200e->name);
2469
2470    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2471                               -1, NULL);
2472    if (atm_dev == NULL) {
2473        printk(FORE200E "unable to register device %s\n", fore200e->name);
2474        return -ENODEV;
2475    }
2476
2477    atm_dev->dev_data = fore200e;
2478    fore200e->atm_dev = atm_dev;
2479
2480    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2481    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2482
2483    fore200e->available_cell_rate = ATM_OC3_PCR;
2484
2485    fore200e->state = FORE200E_STATE_REGISTER;
2486    return 0;
2487}
2488
2489
2490static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2491{
2492    if (fore200e_register(fore200e, parent) < 0)
2493        return -ENODEV;
2494    
2495    if (fore200e->bus->configure(fore200e) < 0)
2496        return -ENODEV;
2497
2498    if (fore200e->bus->map(fore200e) < 0)
2499        return -ENODEV;
2500
2501    if (fore200e_reset(fore200e, 1) < 0)
2502        return -ENODEV;
2503
2504    if (fore200e_load_and_start_fw(fore200e) < 0)
2505        return -ENODEV;
2506
2507    if (fore200e_initialize(fore200e) < 0)
2508        return -ENODEV;
2509
2510    if (fore200e_init_cmd_queue(fore200e) < 0)
2511        return -ENOMEM;
2512
2513    if (fore200e_init_tx_queue(fore200e) < 0)
2514        return -ENOMEM;
2515
2516    if (fore200e_init_rx_queue(fore200e) < 0)
2517        return -ENOMEM;
2518
2519    if (fore200e_init_bs_queue(fore200e) < 0)
2520        return -ENOMEM;
2521
2522    if (fore200e_alloc_rx_buf(fore200e) < 0)
2523        return -ENOMEM;
2524
2525    if (fore200e_get_esi(fore200e) < 0)
2526        return -EIO;
2527
2528    if (fore200e_irq_request(fore200e) < 0)
2529        return -EBUSY;
2530
2531    fore200e_supply(fore200e);
2532
2533    /* all done, board initialization is now complete */
2534    fore200e->state = FORE200E_STATE_COMPLETE;
2535    return 0;
2536}
2537
2538#ifdef CONFIG_SBUS
2539static const struct of_device_id fore200e_sba_match[];
2540static int fore200e_sba_probe(struct platform_device *op)
2541{
2542        const struct of_device_id *match;
2543        struct fore200e *fore200e;
2544        static int index = 0;
2545        int err;
2546
2547        match = of_match_device(fore200e_sba_match, &op->dev);
2548        if (!match)
2549                return -EINVAL;
2550
2551        fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2552        if (!fore200e)
2553                return -ENOMEM;
2554
2555        fore200e->bus = &fore200e_sbus_ops;
2556        fore200e->dev = &op->dev;
2557        fore200e->irq = op->archdata.irqs[0];
2558        fore200e->phys_base = op->resource[0].start;
2559
2560        sprintf(fore200e->name, "SBA-200E-%d", index);
2561
2562        err = fore200e_init(fore200e, &op->dev);
2563        if (err < 0) {
2564                fore200e_shutdown(fore200e);
2565                kfree(fore200e);
2566                return err;
2567        }
2568
2569        index++;
2570        dev_set_drvdata(&op->dev, fore200e);
2571
2572        return 0;
2573}
2574
2575static int fore200e_sba_remove(struct platform_device *op)
2576{
2577        struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2578
2579        fore200e_shutdown(fore200e);
2580        kfree(fore200e);
2581
2582        return 0;
2583}
2584
2585static const struct of_device_id fore200e_sba_match[] = {
2586        {
2587                .name = SBA200E_PROM_NAME,
2588        },
2589        {},
2590};
2591MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2592
2593static struct platform_driver fore200e_sba_driver = {
2594        .driver = {
2595                .name = "fore_200e",
2596                .of_match_table = fore200e_sba_match,
2597        },
2598        .probe          = fore200e_sba_probe,
2599        .remove         = fore200e_sba_remove,
2600};
2601#endif
2602
2603#ifdef CONFIG_PCI
2604static int fore200e_pca_detect(struct pci_dev *pci_dev,
2605                               const struct pci_device_id *pci_ent)
2606{
2607    struct fore200e* fore200e;
2608    int err = 0;
2609    static int index = 0;
2610
2611    if (pci_enable_device(pci_dev)) {
2612        err = -EINVAL;
2613        goto out;
2614    }
2615
2616    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2617        err = -EINVAL;
2618        goto out;
2619    }
2620    
2621    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2622    if (fore200e == NULL) {
2623        err = -ENOMEM;
2624        goto out_disable;
2625    }
2626
2627    fore200e->bus       = &fore200e_pci_ops;
2628    fore200e->dev       = &pci_dev->dev;
2629    fore200e->irq       = pci_dev->irq;
2630    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2631
2632    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2633
2634    pci_set_master(pci_dev);
2635
2636    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2637           fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2638
2639    sprintf(fore200e->name, "PCA-200E-%d", index);
2640
2641    err = fore200e_init(fore200e, &pci_dev->dev);
2642    if (err < 0) {
2643        fore200e_shutdown(fore200e);
2644        goto out_free;
2645    }
2646
2647    ++index;
2648    pci_set_drvdata(pci_dev, fore200e);
2649
2650out:
2651    return err;
2652
2653out_free:
2654    kfree(fore200e);
2655out_disable:
2656    pci_disable_device(pci_dev);
2657    goto out;
2658}
2659
2660
2661static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2662{
2663    struct fore200e *fore200e;
2664
2665    fore200e = pci_get_drvdata(pci_dev);
2666
2667    fore200e_shutdown(fore200e);
2668    kfree(fore200e);
2669    pci_disable_device(pci_dev);
2670}
2671
2672
2673static const struct pci_device_id fore200e_pca_tbl[] = {
2674    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2675    { 0, }
2676};
2677
2678MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2679
2680static struct pci_driver fore200e_pca_driver = {
2681    .name =     "fore_200e",
2682    .probe =    fore200e_pca_detect,
2683    .remove =   fore200e_pca_remove_one,
2684    .id_table = fore200e_pca_tbl,
2685};
2686#endif
2687
2688static int __init fore200e_module_init(void)
2689{
2690        int err = 0;
2691
2692        printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2693
2694#ifdef CONFIG_SBUS
2695        err = platform_driver_register(&fore200e_sba_driver);
2696        if (err)
2697                return err;
2698#endif
2699
2700#ifdef CONFIG_PCI
2701        err = pci_register_driver(&fore200e_pca_driver);
2702#endif
2703
2704#ifdef CONFIG_SBUS
2705        if (err)
2706                platform_driver_unregister(&fore200e_sba_driver);
2707#endif
2708
2709        return err;
2710}
2711
2712static void __exit fore200e_module_cleanup(void)
2713{
2714#ifdef CONFIG_PCI
2715        pci_unregister_driver(&fore200e_pca_driver);
2716#endif
2717#ifdef CONFIG_SBUS
2718        platform_driver_unregister(&fore200e_sba_driver);
2719#endif
2720}
2721
2722static int
2723fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2724{
2725    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2726    struct fore200e_vcc* fore200e_vcc;
2727    struct atm_vcc*      vcc;
2728    int                  i, len, left = *pos;
2729    unsigned long        flags;
2730
2731    if (!left--) {
2732
2733        if (fore200e_getstats(fore200e) < 0)
2734            return -EIO;
2735
2736        len = sprintf(page,"\n"
2737                       " device:\n"
2738                       "   internal name:\t\t%s\n", fore200e->name);
2739
2740        /* print bus-specific information */
2741        if (fore200e->bus->proc_read)
2742            len += fore200e->bus->proc_read(fore200e, page + len);
2743        
2744        len += sprintf(page + len,
2745                "   interrupt line:\t\t%s\n"
2746                "   physical base address:\t0x%p\n"
2747                "   virtual base address:\t0x%p\n"
2748                "   factory address (ESI):\t%pM\n"
2749                "   board serial number:\t\t%d\n\n",
2750                fore200e_irq_itoa(fore200e->irq),
2751                (void*)fore200e->phys_base,
2752                fore200e->virt_base,
2753                fore200e->esi,
2754                fore200e->esi[4] * 256 + fore200e->esi[5]);
2755
2756        return len;
2757    }
2758
2759    if (!left--)
2760        return sprintf(page,
2761                       "   free small bufs, scheme 1:\t%d\n"
2762                       "   free large bufs, scheme 1:\t%d\n"
2763                       "   free small bufs, scheme 2:\t%d\n"
2764                       "   free large bufs, scheme 2:\t%d\n",
2765                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2766                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2767                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2768                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2769
2770    if (!left--) {
2771        u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2772
2773        len = sprintf(page,"\n\n"
2774                      " cell processor:\n"
2775                      "   heartbeat state:\t\t");
2776        
2777        if (hb >> 16 != 0xDEAD)
2778            len += sprintf(page + len, "0x%08x\n", hb);
2779        else
2780            len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2781
2782        return len;
2783    }
2784
2785    if (!left--) {
2786        static const char* media_name[] = {
2787            "unshielded twisted pair",
2788            "multimode optical fiber ST",
2789            "multimode optical fiber SC",
2790            "single-mode optical fiber ST",
2791            "single-mode optical fiber SC",
2792            "unknown"
2793        };
2794
2795        static const char* oc3_mode[] = {
2796            "normal operation",
2797            "diagnostic loopback",
2798            "line loopback",
2799            "unknown"
2800        };
2801
2802        u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2803        u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2804        u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2805        u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2806        u32 oc3_index;
2807
2808        if (media_index > 4)
2809                media_index = 5;
2810        
2811        switch (fore200e->loop_mode) {
2812            case ATM_LM_NONE:    oc3_index = 0;
2813                                 break;
2814            case ATM_LM_LOC_PHY: oc3_index = 1;
2815                                 break;
2816            case ATM_LM_RMT_PHY: oc3_index = 2;
2817                                 break;
2818            default:             oc3_index = 3;
2819        }
2820
2821        return sprintf(page,
2822                       "   firmware release:\t\t%d.%d.%d\n"
2823                       "   monitor release:\t\t%d.%d\n"
2824                       "   media type:\t\t\t%s\n"
2825                       "   OC-3 revision:\t\t0x%x\n"
2826                       "   OC-3 mode:\t\t\t%s",
2827                       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2828                       mon960_release >> 16, mon960_release << 16 >> 16,
2829                       media_name[ media_index ],
2830                       oc3_revision,
2831                       oc3_mode[ oc3_index ]);
2832    }
2833
2834    if (!left--) {
2835        struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2836
2837        return sprintf(page,
2838                       "\n\n"
2839                       " monitor:\n"
2840                       "   version number:\t\t%d\n"
2841                       "   boot status word:\t\t0x%08x\n",
2842                       fore200e->bus->read(&cp_monitor->mon_version),
2843                       fore200e->bus->read(&cp_monitor->bstat));
2844    }
2845
2846    if (!left--)
2847        return sprintf(page,
2848                       "\n"
2849                       " device statistics:\n"
2850                       "  4b5b:\n"
2851                       "     crc_header_errors:\t\t%10u\n"
2852                       "     framing_errors:\t\t%10u\n",
2853                       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2854                       be32_to_cpu(fore200e->stats->phy.framing_errors));
2855    
2856    if (!left--)
2857        return sprintf(page, "\n"
2858                       "  OC-3:\n"
2859                       "     section_bip8_errors:\t%10u\n"
2860                       "     path_bip8_errors:\t\t%10u\n"
2861                       "     line_bip24_errors:\t\t%10u\n"
2862                       "     line_febe_errors:\t\t%10u\n"
2863                       "     path_febe_errors:\t\t%10u\n"
2864                       "     corr_hcs_errors:\t\t%10u\n"
2865                       "     ucorr_hcs_errors:\t\t%10u\n",
2866                       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2867                       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2868                       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2869                       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2870                       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2871                       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2872                       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2873
2874    if (!left--)
2875        return sprintf(page,"\n"
2876                       "   ATM:\t\t\t\t     cells\n"
2877                       "     TX:\t\t\t%10u\n"
2878                       "     RX:\t\t\t%10u\n"
2879                       "     vpi out of range:\t\t%10u\n"
2880                       "     vpi no conn:\t\t%10u\n"
2881                       "     vci out of range:\t\t%10u\n"
2882                       "     vci no conn:\t\t%10u\n",
2883                       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2884                       be32_to_cpu(fore200e->stats->atm.cells_received),
2885                       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2886                       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2887                       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2888                       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2889    
2890    if (!left--)
2891        return sprintf(page,"\n"
2892                       "   AAL0:\t\t\t     cells\n"
2893                       "     TX:\t\t\t%10u\n"
2894                       "     RX:\t\t\t%10u\n"
2895                       "     dropped:\t\t\t%10u\n",
2896                       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2897                       be32_to_cpu(fore200e->stats->aal0.cells_received),
2898                       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2899    
2900    if (!left--)
2901        return sprintf(page,"\n"
2902                       "   AAL3/4:\n"
2903                       "     SAR sublayer:\t\t     cells\n"
2904                       "       TX:\t\t\t%10u\n"
2905                       "       RX:\t\t\t%10u\n"
2906                       "       dropped:\t\t\t%10u\n"
2907                       "       CRC errors:\t\t%10u\n"
2908                       "       protocol errors:\t\t%10u\n\n"
2909                       "     CS  sublayer:\t\t      PDUs\n"
2910                       "       TX:\t\t\t%10u\n"
2911                       "       RX:\t\t\t%10u\n"
2912                       "       dropped:\t\t\t%10u\n"
2913                       "       protocol errors:\t\t%10u\n",
2914                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2915                       be32_to_cpu(fore200e->stats->aal34.cells_received),
2916                       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2917                       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2918                       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2919                       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2920                       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2921                       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2922                       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2923    
2924    if (!left--)
2925        return sprintf(page,"\n"
2926                       "   AAL5:\n"
2927                       "     SAR sublayer:\t\t     cells\n"
2928                       "       TX:\t\t\t%10u\n"
2929                       "       RX:\t\t\t%10u\n"
2930                       "       dropped:\t\t\t%10u\n"
2931                       "       congestions:\t\t%10u\n\n"
2932                       "     CS  sublayer:\t\t      PDUs\n"
2933                       "       TX:\t\t\t%10u\n"
2934                       "       RX:\t\t\t%10u\n"
2935                       "       dropped:\t\t\t%10u\n"
2936                       "       CRC errors:\t\t%10u\n"
2937                       "       protocol errors:\t\t%10u\n",
2938                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2939                       be32_to_cpu(fore200e->stats->aal5.cells_received),
2940                       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2941                       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2942                       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2943                       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2944                       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2945                       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2946                       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2947    
2948    if (!left--)
2949        return sprintf(page,"\n"
2950                       "   AUX:\t\t       allocation failures\n"
2951                       "     small b1:\t\t\t%10u\n"
2952                       "     large b1:\t\t\t%10u\n"
2953                       "     small b2:\t\t\t%10u\n"
2954                       "     large b2:\t\t\t%10u\n"
2955                       "     RX PDUs:\t\t\t%10u\n"
2956                       "     TX PDUs:\t\t\t%10lu\n",
2957                       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2958                       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2959                       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2960                       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2961                       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2962                       fore200e->tx_sat);
2963    
2964    if (!left--)
2965        return sprintf(page,"\n"
2966                       " receive carrier:\t\t\t%s\n",
2967                       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2968    
2969    if (!left--) {
2970        return sprintf(page,"\n"
2971                       " VCCs:\n  address   VPI VCI   AAL "
2972                       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2973    }
2974
2975    for (i = 0; i < NBR_CONNECT; i++) {
2976
2977        vcc = fore200e->vc_map[i].vcc;
2978
2979        if (vcc == NULL)
2980            continue;
2981
2982        spin_lock_irqsave(&fore200e->q_lock, flags);
2983
2984        if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2985
2986            fore200e_vcc = FORE200E_VCC(vcc);
2987            ASSERT(fore200e_vcc);
2988
2989            len = sprintf(page,
2990                          "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2991                          vcc,
2992                          vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2993                          fore200e_vcc->tx_pdu,
2994                          fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2995                          fore200e_vcc->tx_max_pdu,
2996                          fore200e_vcc->rx_pdu,
2997                          fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2998                          fore200e_vcc->rx_max_pdu);
2999
3000            spin_unlock_irqrestore(&fore200e->q_lock, flags);
3001            return len;
3002        }
3003
3004        spin_unlock_irqrestore(&fore200e->q_lock, flags);
3005    }
3006    
3007    return 0;
3008}
3009
3010module_init(fore200e_module_init);
3011module_exit(fore200e_module_cleanup);
3012
3013
3014static const struct atmdev_ops fore200e_ops = {
3015        .open       = fore200e_open,
3016        .close      = fore200e_close,
3017        .ioctl      = fore200e_ioctl,
3018        .getsockopt = fore200e_getsockopt,
3019        .setsockopt = fore200e_setsockopt,
3020        .send       = fore200e_send,
3021        .change_qos = fore200e_change_qos,
3022        .proc_read  = fore200e_proc_read,
3023        .owner      = THIS_MODULE
3024};
3025
3026MODULE_LICENSE("GPL");
3027#ifdef CONFIG_PCI
3028#ifdef __LITTLE_ENDIAN__
3029MODULE_FIRMWARE("pca200e.bin");
3030#else
3031MODULE_FIRMWARE("pca200e_ecd.bin2");
3032#endif
3033#endif /* CONFIG_PCI */
3034#ifdef CONFIG_SBUS
3035MODULE_FIRMWARE("sba200e_ecd.bin2");
3036#endif
3037