1
2
3
4
5
6
7
8
9
10
11
12#include <linux/clk.h>
13#include <linux/completion.h>
14#include <linux/crypto.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/errno.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/irqreturn.h>
21#include <linux/klist.h>
22#include <linux/module.h>
23#include <linux/mod_devicetable.h>
24#include <linux/platform_device.h>
25#include <linux/regulator/consumer.h>
26#include <linux/semaphore.h>
27#include <linux/platform_data/dma-ste-dma40.h>
28
29#include <crypto/aes.h>
30#include <crypto/algapi.h>
31#include <crypto/ctr.h>
32#include <crypto/des.h>
33#include <crypto/scatterwalk.h>
34
35#include <linux/platform_data/crypto-ux500.h>
36
37#include "cryp_p.h"
38#include "cryp.h"
39
40#define CRYP_MAX_KEY_SIZE 32
41#define BYTES_PER_WORD 4
42
43static int cryp_mode;
44static atomic_t session_id;
45
46static struct stedma40_chan_cfg *mem_to_engine;
47static struct stedma40_chan_cfg *engine_to_mem;
48
49
50
51
52
53
54
55struct cryp_driver_data {
56 struct klist device_list;
57 struct semaphore device_allocation;
58};
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75struct cryp_ctx {
76 struct cryp_config config;
77 u8 key[CRYP_MAX_KEY_SIZE];
78 u32 keylen;
79 u8 *iv;
80 const u8 *indata;
81 u8 *outdata;
82 u32 datalen;
83 u32 outlen;
84 u32 blocksize;
85 u8 updated;
86 struct cryp_device_context dev_ctx;
87 struct cryp_device_data *device;
88 u32 session_id;
89};
90
91static struct cryp_driver_data driver_data;
92
93
94
95
96
97static inline u32 uint8p_to_uint32_be(u8 *in)
98{
99 u32 *data = (u32 *)in;
100
101 return cpu_to_be32p(data);
102}
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126static inline u8 swap_bits_in_byte(u8 b)
127{
128#define R_SHIFT_4_MASK 0xc0
129#define R_SHIFT_2_MASK 0x28
130
131#define R_SHIFT_1_MASK 0x1e
132
133#define L_SHIFT_4_MASK 0x03
134#define L_SHIFT_2_MASK 0x14
135
136#define L_SHIFT_1_MASK 0x78
137
138
139 u8 n1;
140 u8 n2;
141
142
143
144 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
145
146 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147
148 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
149
150
151
152 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
153
154 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155
156 n2 = (n2 & L_SHIFT_1_MASK) << 1;
157
158 return n1 | n2;
159}
160
161static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 u8 *out, u32 len)
163{
164 unsigned int i = 0;
165 int j;
166 int index = 0;
167
168 j = len - BYTES_PER_WORD;
169 while (j >= 0) {
170 for (i = 0; i < BYTES_PER_WORD; i++) {
171 index = len - j - BYTES_PER_WORD + i;
172 out[j + i] =
173 swap_bits_in_byte(in[index]);
174 }
175 j -= BYTES_PER_WORD;
176 }
177}
178
179static void add_session_id(struct cryp_ctx *ctx)
180{
181
182
183
184
185 if (unlikely(atomic_inc_and_test(&session_id)))
186 atomic_inc(&session_id);
187
188 ctx->session_id = atomic_read(&session_id);
189}
190
191static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192{
193 struct cryp_ctx *ctx;
194 int count;
195 struct cryp_device_data *device_data;
196
197 if (param == NULL) {
198 BUG_ON(!param);
199 return IRQ_HANDLED;
200 }
201
202
203 device_data = (struct cryp_device_data *)param;
204
205 ctx = device_data->current_ctx;
206
207 if (ctx == NULL) {
208 BUG_ON(!ctx);
209 return IRQ_HANDLED;
210 }
211
212 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 "out" : "in");
215
216 if (cryp_pending_irq_src(device_data,
217 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 if (ctx->outlen / ctx->blocksize > 0) {
219 count = ctx->blocksize / 4;
220
221 readsl(&device_data->base->dout, ctx->outdata, count);
222 ctx->outdata += count;
223 ctx->outlen -= count;
224
225 if (ctx->outlen == 0) {
226 cryp_disable_irq_src(device_data,
227 CRYP_IRQ_SRC_OUTPUT_FIFO);
228 }
229 }
230 } else if (cryp_pending_irq_src(device_data,
231 CRYP_IRQ_SRC_INPUT_FIFO)) {
232 if (ctx->datalen / ctx->blocksize > 0) {
233 count = ctx->blocksize / 4;
234
235 writesl(&device_data->base->din, ctx->indata, count);
236
237 ctx->indata += count;
238 ctx->datalen -= count;
239
240 if (ctx->datalen == 0)
241 cryp_disable_irq_src(device_data,
242 CRYP_IRQ_SRC_INPUT_FIFO);
243
244 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 CRYP_PUT_BITS(&device_data->base->cr,
246 CRYP_START_ENABLE,
247 CRYP_CR_START_POS,
248 CRYP_CR_START_MASK);
249
250 cryp_wait_until_done(device_data);
251 }
252 }
253 }
254
255 return IRQ_HANDLED;
256}
257
258static int mode_is_aes(enum cryp_algo_mode mode)
259{
260 return CRYP_ALGO_AES_ECB == mode ||
261 CRYP_ALGO_AES_CBC == mode ||
262 CRYP_ALGO_AES_CTR == mode ||
263 CRYP_ALGO_AES_XTS == mode;
264}
265
266static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 enum cryp_init_vector_index index)
268{
269 struct cryp_init_vector_value vector_value;
270
271 dev_dbg(device_data->dev, "[%s]", __func__);
272
273 vector_value.init_value_left = left;
274 vector_value.init_value_right = right;
275
276 return cryp_configure_init_vector(device_data,
277 index,
278 vector_value);
279}
280
281static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
282{
283 int i;
284 int status = 0;
285 int num_of_regs = ctx->blocksize / 8;
286 u32 iv[AES_BLOCK_SIZE / 4];
287
288 dev_dbg(device_data->dev, "[%s]", __func__);
289
290
291
292
293
294
295 if (num_of_regs > 2) {
296 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 __func__, ctx->blocksize);
298 return -EINVAL;
299 }
300
301 for (i = 0; i < ctx->blocksize / 4; i++)
302 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
303
304 for (i = 0; i < num_of_regs; i++) {
305 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 (enum cryp_init_vector_index) i);
307 if (status != 0)
308 return status;
309 }
310 return status;
311}
312
313static int set_key(struct cryp_device_data *device_data,
314 u32 left_key,
315 u32 right_key,
316 enum cryp_key_reg_index index)
317{
318 struct cryp_key_value key_value;
319 int cryp_error;
320
321 dev_dbg(device_data->dev, "[%s]", __func__);
322
323 key_value.key_value_left = left_key;
324 key_value.key_value_right = right_key;
325
326 cryp_error = cryp_configure_key_values(device_data,
327 index,
328 key_value);
329 if (cryp_error != 0)
330 dev_err(device_data->dev, "[%s]: "
331 "cryp_configure_key_values() failed!", __func__);
332
333 return cryp_error;
334}
335
336static int cfg_keys(struct cryp_ctx *ctx)
337{
338 int i;
339 int num_of_regs = ctx->keylen / 8;
340 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 int cryp_error = 0;
342
343 dev_dbg(ctx->device->dev, "[%s]", __func__);
344
345 if (mode_is_aes(ctx->config.algomode)) {
346 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 (u8 *)swapped_key,
348 ctx->keylen);
349 } else {
350 for (i = 0; i < ctx->keylen / 4; i++)
351 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
352 }
353
354 for (i = 0; i < num_of_regs; i++) {
355 cryp_error = set_key(ctx->device,
356 *(((u32 *)swapped_key)+i*2),
357 *(((u32 *)swapped_key)+i*2+1),
358 (enum cryp_key_reg_index) i);
359
360 if (cryp_error != 0) {
361 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 __func__);
363 return cryp_error;
364 }
365 }
366 return cryp_error;
367}
368
369static int cryp_setup_context(struct cryp_ctx *ctx,
370 struct cryp_device_data *device_data)
371{
372 u32 control_register = CRYP_CR_DEFAULT;
373
374 switch (cryp_mode) {
375 case CRYP_MODE_INTERRUPT:
376 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 break;
378
379 case CRYP_MODE_DMA:
380 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 break;
382
383 default:
384 break;
385 }
386
387 if (ctx->updated == 0) {
388 cryp_flush_inoutfifo(device_data);
389 if (cfg_keys(ctx) != 0) {
390 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 __func__);
392 return -EINVAL;
393 }
394
395 if (ctx->iv &&
396 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 if (cfg_ivs(device_data, ctx) != 0)
400 return -EPERM;
401 }
402
403 cryp_set_configuration(device_data, &ctx->config,
404 &control_register);
405 add_session_id(ctx);
406 } else if (ctx->updated == 1 &&
407 ctx->session_id != atomic_read(&session_id)) {
408 cryp_flush_inoutfifo(device_data);
409 cryp_restore_device_context(device_data, &ctx->dev_ctx);
410
411 add_session_id(ctx);
412 control_register = ctx->dev_ctx.cr;
413 } else
414 control_register = ctx->dev_ctx.cr;
415
416 writel(control_register |
417 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 &device_data->base->cr);
419
420 return 0;
421}
422
423static int cryp_get_device_data(struct cryp_ctx *ctx,
424 struct cryp_device_data **device_data)
425{
426 int ret;
427 struct klist_iter device_iterator;
428 struct klist_node *device_node;
429 struct cryp_device_data *local_device_data = NULL;
430 pr_debug(DEV_DBG_NAME " [%s]", __func__);
431
432
433 ret = down_interruptible(&driver_data.device_allocation);
434 if (ret)
435 return ret;
436
437
438 klist_iter_init(&driver_data.device_list, &device_iterator);
439
440 device_node = klist_next(&device_iterator);
441 while (device_node) {
442 local_device_data = container_of(device_node,
443 struct cryp_device_data, list_node);
444 spin_lock(&local_device_data->ctx_lock);
445
446 if (local_device_data->current_ctx) {
447 device_node = klist_next(&device_iterator);
448 } else {
449 local_device_data->current_ctx = ctx;
450 ctx->device = local_device_data;
451 spin_unlock(&local_device_data->ctx_lock);
452 break;
453 }
454 spin_unlock(&local_device_data->ctx_lock);
455 }
456 klist_iter_exit(&device_iterator);
457
458 if (!device_node) {
459
460
461
462
463
464
465
466
467 return -EBUSY;
468 }
469
470 *device_data = local_device_data;
471
472 return 0;
473}
474
475static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 struct device *dev)
477{
478 struct dma_slave_config mem2cryp = {
479 .direction = DMA_MEM_TO_DEV,
480 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 .dst_maxburst = 4,
483 };
484 struct dma_slave_config cryp2mem = {
485 .direction = DMA_DEV_TO_MEM,
486 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 .src_maxburst = 4,
489 };
490
491 dma_cap_zero(device_data->dma.mask);
492 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
493
494 device_data->dma.cfg_mem2cryp = mem_to_engine;
495 device_data->dma.chan_mem2cryp =
496 dma_request_channel(device_data->dma.mask,
497 stedma40_filter,
498 device_data->dma.cfg_mem2cryp);
499
500 device_data->dma.cfg_cryp2mem = engine_to_mem;
501 device_data->dma.chan_cryp2mem =
502 dma_request_channel(device_data->dma.mask,
503 stedma40_filter,
504 device_data->dma.cfg_cryp2mem);
505
506 dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
508
509 init_completion(&device_data->dma.cryp_dma_complete);
510}
511
512static void cryp_dma_out_callback(void *data)
513{
514 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516
517 complete(&ctx->device->dma.cryp_dma_complete);
518}
519
520static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 struct scatterlist *sg,
522 int len,
523 enum dma_data_direction direction)
524{
525 struct dma_async_tx_descriptor *desc;
526 struct dma_chan *channel = NULL;
527 dma_cookie_t cookie;
528
529 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
530
531 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
532 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 "aligned! Addr: 0x%08x", __func__, (u32)sg);
534 return -EFAULT;
535 }
536
537 switch (direction) {
538 case DMA_TO_DEVICE:
539 channel = ctx->device->dma.chan_mem2cryp;
540 ctx->device->dma.sg_src = sg;
541 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.nents_src,
544 direction);
545
546 if (!ctx->device->dma.sg_src_len) {
547 dev_dbg(ctx->device->dev,
548 "[%s]: Could not map the sg list (TO_DEVICE)",
549 __func__);
550 return -EFAULT;
551 }
552
553 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 "(TO_DEVICE)", __func__);
555
556 desc = dmaengine_prep_slave_sg(channel,
557 ctx->device->dma.sg_src,
558 ctx->device->dma.sg_src_len,
559 DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560 break;
561
562 case DMA_FROM_DEVICE:
563 channel = ctx->device->dma.chan_cryp2mem;
564 ctx->device->dma.sg_dst = sg;
565 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.nents_dst,
568 direction);
569
570 if (!ctx->device->dma.sg_dst_len) {
571 dev_dbg(ctx->device->dev,
572 "[%s]: Could not map the sg list (FROM_DEVICE)",
573 __func__);
574 return -EFAULT;
575 }
576
577 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 "(FROM_DEVICE)", __func__);
579
580 desc = dmaengine_prep_slave_sg(channel,
581 ctx->device->dma.sg_dst,
582 ctx->device->dma.sg_dst_len,
583 DMA_DEV_TO_MEM,
584 DMA_CTRL_ACK |
585 DMA_PREP_INTERRUPT);
586
587 desc->callback = cryp_dma_out_callback;
588 desc->callback_param = ctx;
589 break;
590
591 default:
592 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 __func__);
594 return -EFAULT;
595 }
596
597 cookie = dmaengine_submit(desc);
598 if (dma_submit_error(cookie)) {
599 dev_dbg(ctx->device->dev, "[%s]: DMA submission failed\n",
600 __func__);
601 return cookie;
602 }
603
604 dma_async_issue_pending(channel);
605
606 return 0;
607}
608
609static void cryp_dma_done(struct cryp_ctx *ctx)
610{
611 struct dma_chan *chan;
612
613 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
614
615 chan = ctx->device->dma.chan_mem2cryp;
616 dmaengine_terminate_all(chan);
617 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
618 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
619
620 chan = ctx->device->dma.chan_cryp2mem;
621 dmaengine_terminate_all(chan);
622 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
623 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
624}
625
626static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
627 int len)
628{
629 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
630 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
631
632 if (error) {
633 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
634 "failed", __func__);
635 return error;
636 }
637
638 return len;
639}
640
641static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
642{
643 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
644 if (error) {
645 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
646 "failed", __func__);
647 return error;
648 }
649
650 return len;
651}
652
653static void cryp_polling_mode(struct cryp_ctx *ctx,
654 struct cryp_device_data *device_data)
655{
656 int len = ctx->blocksize / BYTES_PER_WORD;
657 int remaining_length = ctx->datalen;
658 u32 *indata = (u32 *)ctx->indata;
659 u32 *outdata = (u32 *)ctx->outdata;
660
661 while (remaining_length > 0) {
662 writesl(&device_data->base->din, indata, len);
663 indata += len;
664 remaining_length -= (len * BYTES_PER_WORD);
665 cryp_wait_until_done(device_data);
666
667 readsl(&device_data->base->dout, outdata, len);
668 outdata += len;
669 cryp_wait_until_done(device_data);
670 }
671}
672
673static int cryp_disable_power(struct device *dev,
674 struct cryp_device_data *device_data,
675 bool save_device_context)
676{
677 int ret = 0;
678
679 dev_dbg(dev, "[%s]", __func__);
680
681 spin_lock(&device_data->power_state_spinlock);
682 if (!device_data->power_state)
683 goto out;
684
685 spin_lock(&device_data->ctx_lock);
686 if (save_device_context && device_data->current_ctx) {
687 cryp_save_device_context(device_data,
688 &device_data->current_ctx->dev_ctx,
689 cryp_mode);
690 device_data->restore_dev_ctx = true;
691 }
692 spin_unlock(&device_data->ctx_lock);
693
694 clk_disable(device_data->clk);
695 ret = regulator_disable(device_data->pwr_regulator);
696 if (ret)
697 dev_err(dev, "[%s]: "
698 "regulator_disable() failed!",
699 __func__);
700
701 device_data->power_state = false;
702
703out:
704 spin_unlock(&device_data->power_state_spinlock);
705
706 return ret;
707}
708
709static int cryp_enable_power(
710 struct device *dev,
711 struct cryp_device_data *device_data,
712 bool restore_device_context)
713{
714 int ret = 0;
715
716 dev_dbg(dev, "[%s]", __func__);
717
718 spin_lock(&device_data->power_state_spinlock);
719 if (!device_data->power_state) {
720 ret = regulator_enable(device_data->pwr_regulator);
721 if (ret) {
722 dev_err(dev, "[%s]: regulator_enable() failed!",
723 __func__);
724 goto out;
725 }
726
727 ret = clk_enable(device_data->clk);
728 if (ret) {
729 dev_err(dev, "[%s]: clk_enable() failed!",
730 __func__);
731 regulator_disable(device_data->pwr_regulator);
732 goto out;
733 }
734 device_data->power_state = true;
735 }
736
737 if (device_data->restore_dev_ctx) {
738 spin_lock(&device_data->ctx_lock);
739 if (restore_device_context && device_data->current_ctx) {
740 device_data->restore_dev_ctx = false;
741 cryp_restore_device_context(device_data,
742 &device_data->current_ctx->dev_ctx);
743 }
744 spin_unlock(&device_data->ctx_lock);
745 }
746out:
747 spin_unlock(&device_data->power_state_spinlock);
748
749 return ret;
750}
751
752static int hw_crypt_noxts(struct cryp_ctx *ctx,
753 struct cryp_device_data *device_data)
754{
755 int ret = 0;
756
757 const u8 *indata = ctx->indata;
758 u8 *outdata = ctx->outdata;
759 u32 datalen = ctx->datalen;
760 u32 outlen = datalen;
761
762 pr_debug(DEV_DBG_NAME " [%s]", __func__);
763
764 ctx->outlen = ctx->datalen;
765
766 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
767 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
768 "0x%08x", __func__, (u32)indata);
769 return -EINVAL;
770 }
771
772 ret = cryp_setup_context(ctx, device_data);
773
774 if (ret)
775 goto out;
776
777 if (cryp_mode == CRYP_MODE_INTERRUPT) {
778 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
779 CRYP_IRQ_SRC_OUTPUT_FIFO);
780
781
782
783
784
785
786 while (ctx->outlen > 0)
787 cpu_relax();
788 } else if (cryp_mode == CRYP_MODE_POLLING ||
789 cryp_mode == CRYP_MODE_DMA) {
790
791
792
793
794
795
796
797
798 cryp_polling_mode(ctx, device_data);
799 } else {
800 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
801 __func__);
802 ret = -EPERM;
803 goto out;
804 }
805
806 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
807 ctx->updated = 1;
808
809out:
810 ctx->indata = indata;
811 ctx->outdata = outdata;
812 ctx->datalen = datalen;
813 ctx->outlen = outlen;
814
815 return ret;
816}
817
818static int get_nents(struct scatterlist *sg, int nbytes)
819{
820 int nents = 0;
821
822 while (nbytes > 0) {
823 nbytes -= sg->length;
824 sg = sg_next(sg);
825 nents++;
826 }
827
828 return nents;
829}
830
831static int ablk_dma_crypt(struct ablkcipher_request *areq)
832{
833 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
834 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
835 struct cryp_device_data *device_data;
836
837 int bytes_written = 0;
838 int bytes_read = 0;
839 int ret;
840
841 pr_debug(DEV_DBG_NAME " [%s]", __func__);
842
843 ctx->datalen = areq->nbytes;
844 ctx->outlen = areq->nbytes;
845
846 ret = cryp_get_device_data(ctx, &device_data);
847 if (ret)
848 return ret;
849
850 ret = cryp_setup_context(ctx, device_data);
851 if (ret)
852 goto out;
853
854
855 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
856 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
857
858
859 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
860
861 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
862 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
863
864 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
865 cryp_dma_done(ctx);
866
867 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
868 ctx->updated = 1;
869
870out:
871 spin_lock(&device_data->ctx_lock);
872 device_data->current_ctx = NULL;
873 ctx->device = NULL;
874 spin_unlock(&device_data->ctx_lock);
875
876
877
878
879
880 up(&driver_data.device_allocation);
881
882 if (unlikely(bytes_written != bytes_read))
883 return -EPERM;
884
885 return 0;
886}
887
888static int ablk_crypt(struct ablkcipher_request *areq)
889{
890 struct ablkcipher_walk walk;
891 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
892 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
893 struct cryp_device_data *device_data;
894 unsigned long src_paddr;
895 unsigned long dst_paddr;
896 int ret;
897 int nbytes;
898
899 pr_debug(DEV_DBG_NAME " [%s]", __func__);
900
901 ret = cryp_get_device_data(ctx, &device_data);
902 if (ret)
903 goto out;
904
905 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
906 ret = ablkcipher_walk_phys(areq, &walk);
907
908 if (ret) {
909 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
910 __func__);
911 goto out;
912 }
913
914 while ((nbytes = walk.nbytes) > 0) {
915 ctx->iv = walk.iv;
916 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
917 ctx->indata = phys_to_virt(src_paddr);
918
919 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
920 ctx->outdata = phys_to_virt(dst_paddr);
921
922 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
923
924 ret = hw_crypt_noxts(ctx, device_data);
925 if (ret)
926 goto out;
927
928 nbytes -= ctx->datalen;
929 ret = ablkcipher_walk_done(areq, &walk, nbytes);
930 if (ret)
931 goto out;
932 }
933 ablkcipher_walk_complete(&walk);
934
935out:
936
937 spin_lock(&device_data->ctx_lock);
938 device_data->current_ctx = NULL;
939 ctx->device = NULL;
940 spin_unlock(&device_data->ctx_lock);
941
942
943
944
945
946 up(&driver_data.device_allocation);
947
948 return ret;
949}
950
951static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
952 const u8 *key, unsigned int keylen)
953{
954 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
955 u32 *flags = &cipher->base.crt_flags;
956
957 pr_debug(DEV_DBG_NAME " [%s]", __func__);
958
959 switch (keylen) {
960 case AES_KEYSIZE_128:
961 ctx->config.keysize = CRYP_KEY_SIZE_128;
962 break;
963
964 case AES_KEYSIZE_192:
965 ctx->config.keysize = CRYP_KEY_SIZE_192;
966 break;
967
968 case AES_KEYSIZE_256:
969 ctx->config.keysize = CRYP_KEY_SIZE_256;
970 break;
971
972 default:
973 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
974 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
975 return -EINVAL;
976 }
977
978 memcpy(ctx->key, key, keylen);
979 ctx->keylen = keylen;
980
981 ctx->updated = 0;
982
983 return 0;
984}
985
986static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
987 const u8 *key, unsigned int keylen)
988{
989 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
990 u32 *flags = &cipher->base.crt_flags;
991 u32 tmp[DES_EXPKEY_WORDS];
992 int ret;
993
994 pr_debug(DEV_DBG_NAME " [%s]", __func__);
995 if (keylen != DES_KEY_SIZE) {
996 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
997 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
998 __func__);
999 return -EINVAL;
1000 }
1001
1002 ret = des_ekey(tmp, key);
1003 if (unlikely(ret == 0) &&
1004 (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
1005 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1006 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_WEAK_KEY",
1007 __func__);
1008 return -EINVAL;
1009 }
1010
1011 memcpy(ctx->key, key, keylen);
1012 ctx->keylen = keylen;
1013
1014 ctx->updated = 0;
1015 return 0;
1016}
1017
1018static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1019 const u8 *key, unsigned int keylen)
1020{
1021 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1022 u32 flags;
1023 int err;
1024
1025 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1026
1027 flags = crypto_ablkcipher_get_flags(cipher);
1028 err = __des3_verify_key(&flags, key);
1029 if (unlikely(err)) {
1030 crypto_ablkcipher_set_flags(cipher, flags);
1031 return err;
1032 }
1033
1034 memcpy(ctx->key, key, keylen);
1035 ctx->keylen = keylen;
1036
1037 ctx->updated = 0;
1038 return 0;
1039}
1040
1041static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1042{
1043 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1044 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1045
1046 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1047
1048 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1049
1050
1051
1052 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1053 return ablk_dma_crypt(areq);
1054
1055
1056 return ablk_crypt(areq);
1057}
1058
1059static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1060{
1061 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1062 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1063
1064 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1065
1066 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1067
1068
1069 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1070 return ablk_dma_crypt(areq);
1071
1072
1073 return ablk_crypt(areq);
1074}
1075
1076struct cryp_algo_template {
1077 enum cryp_algo_mode algomode;
1078 struct crypto_alg crypto;
1079};
1080
1081static int cryp_cra_init(struct crypto_tfm *tfm)
1082{
1083 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1084 struct crypto_alg *alg = tfm->__crt_alg;
1085 struct cryp_algo_template *cryp_alg = container_of(alg,
1086 struct cryp_algo_template,
1087 crypto);
1088
1089 ctx->config.algomode = cryp_alg->algomode;
1090 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1091
1092 return 0;
1093}
1094
1095static struct cryp_algo_template cryp_algs[] = {
1096 {
1097 .algomode = CRYP_ALGO_AES_ECB,
1098 .crypto = {
1099 .cra_name = "aes",
1100 .cra_driver_name = "aes-ux500",
1101 .cra_priority = 300,
1102 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1103 CRYPTO_ALG_ASYNC,
1104 .cra_blocksize = AES_BLOCK_SIZE,
1105 .cra_ctxsize = sizeof(struct cryp_ctx),
1106 .cra_alignmask = 3,
1107 .cra_type = &crypto_ablkcipher_type,
1108 .cra_init = cryp_cra_init,
1109 .cra_module = THIS_MODULE,
1110 .cra_u = {
1111 .ablkcipher = {
1112 .min_keysize = AES_MIN_KEY_SIZE,
1113 .max_keysize = AES_MAX_KEY_SIZE,
1114 .setkey = aes_ablkcipher_setkey,
1115 .encrypt = cryp_blk_encrypt,
1116 .decrypt = cryp_blk_decrypt
1117 }
1118 }
1119 }
1120 },
1121 {
1122 .algomode = CRYP_ALGO_AES_ECB,
1123 .crypto = {
1124 .cra_name = "ecb(aes)",
1125 .cra_driver_name = "ecb-aes-ux500",
1126 .cra_priority = 300,
1127 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1128 CRYPTO_ALG_ASYNC,
1129 .cra_blocksize = AES_BLOCK_SIZE,
1130 .cra_ctxsize = sizeof(struct cryp_ctx),
1131 .cra_alignmask = 3,
1132 .cra_type = &crypto_ablkcipher_type,
1133 .cra_init = cryp_cra_init,
1134 .cra_module = THIS_MODULE,
1135 .cra_u = {
1136 .ablkcipher = {
1137 .min_keysize = AES_MIN_KEY_SIZE,
1138 .max_keysize = AES_MAX_KEY_SIZE,
1139 .setkey = aes_ablkcipher_setkey,
1140 .encrypt = cryp_blk_encrypt,
1141 .decrypt = cryp_blk_decrypt,
1142 }
1143 }
1144 }
1145 },
1146 {
1147 .algomode = CRYP_ALGO_AES_CBC,
1148 .crypto = {
1149 .cra_name = "cbc(aes)",
1150 .cra_driver_name = "cbc-aes-ux500",
1151 .cra_priority = 300,
1152 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1153 CRYPTO_ALG_ASYNC,
1154 .cra_blocksize = AES_BLOCK_SIZE,
1155 .cra_ctxsize = sizeof(struct cryp_ctx),
1156 .cra_alignmask = 3,
1157 .cra_type = &crypto_ablkcipher_type,
1158 .cra_init = cryp_cra_init,
1159 .cra_module = THIS_MODULE,
1160 .cra_u = {
1161 .ablkcipher = {
1162 .min_keysize = AES_MIN_KEY_SIZE,
1163 .max_keysize = AES_MAX_KEY_SIZE,
1164 .setkey = aes_ablkcipher_setkey,
1165 .encrypt = cryp_blk_encrypt,
1166 .decrypt = cryp_blk_decrypt,
1167 .ivsize = AES_BLOCK_SIZE,
1168 }
1169 }
1170 }
1171 },
1172 {
1173 .algomode = CRYP_ALGO_AES_CTR,
1174 .crypto = {
1175 .cra_name = "ctr(aes)",
1176 .cra_driver_name = "ctr-aes-ux500",
1177 .cra_priority = 300,
1178 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1179 CRYPTO_ALG_ASYNC,
1180 .cra_blocksize = AES_BLOCK_SIZE,
1181 .cra_ctxsize = sizeof(struct cryp_ctx),
1182 .cra_alignmask = 3,
1183 .cra_type = &crypto_ablkcipher_type,
1184 .cra_init = cryp_cra_init,
1185 .cra_module = THIS_MODULE,
1186 .cra_u = {
1187 .ablkcipher = {
1188 .min_keysize = AES_MIN_KEY_SIZE,
1189 .max_keysize = AES_MAX_KEY_SIZE,
1190 .setkey = aes_ablkcipher_setkey,
1191 .encrypt = cryp_blk_encrypt,
1192 .decrypt = cryp_blk_decrypt,
1193 .ivsize = AES_BLOCK_SIZE,
1194 }
1195 }
1196 }
1197 },
1198 {
1199 .algomode = CRYP_ALGO_DES_ECB,
1200 .crypto = {
1201 .cra_name = "ecb(des)",
1202 .cra_driver_name = "ecb-des-ux500",
1203 .cra_priority = 300,
1204 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1205 CRYPTO_ALG_ASYNC,
1206 .cra_blocksize = DES_BLOCK_SIZE,
1207 .cra_ctxsize = sizeof(struct cryp_ctx),
1208 .cra_alignmask = 3,
1209 .cra_type = &crypto_ablkcipher_type,
1210 .cra_init = cryp_cra_init,
1211 .cra_module = THIS_MODULE,
1212 .cra_u = {
1213 .ablkcipher = {
1214 .min_keysize = DES_KEY_SIZE,
1215 .max_keysize = DES_KEY_SIZE,
1216 .setkey = des_ablkcipher_setkey,
1217 .encrypt = cryp_blk_encrypt,
1218 .decrypt = cryp_blk_decrypt,
1219 }
1220 }
1221 }
1222 },
1223 {
1224 .algomode = CRYP_ALGO_TDES_ECB,
1225 .crypto = {
1226 .cra_name = "ecb(des3_ede)",
1227 .cra_driver_name = "ecb-des3_ede-ux500",
1228 .cra_priority = 300,
1229 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1230 CRYPTO_ALG_ASYNC,
1231 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1232 .cra_ctxsize = sizeof(struct cryp_ctx),
1233 .cra_alignmask = 3,
1234 .cra_type = &crypto_ablkcipher_type,
1235 .cra_init = cryp_cra_init,
1236 .cra_module = THIS_MODULE,
1237 .cra_u = {
1238 .ablkcipher = {
1239 .min_keysize = DES3_EDE_KEY_SIZE,
1240 .max_keysize = DES3_EDE_KEY_SIZE,
1241 .setkey = des3_ablkcipher_setkey,
1242 .encrypt = cryp_blk_encrypt,
1243 .decrypt = cryp_blk_decrypt,
1244 }
1245 }
1246 }
1247 },
1248 {
1249 .algomode = CRYP_ALGO_DES_CBC,
1250 .crypto = {
1251 .cra_name = "cbc(des)",
1252 .cra_driver_name = "cbc-des-ux500",
1253 .cra_priority = 300,
1254 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1255 CRYPTO_ALG_ASYNC,
1256 .cra_blocksize = DES_BLOCK_SIZE,
1257 .cra_ctxsize = sizeof(struct cryp_ctx),
1258 .cra_alignmask = 3,
1259 .cra_type = &crypto_ablkcipher_type,
1260 .cra_init = cryp_cra_init,
1261 .cra_module = THIS_MODULE,
1262 .cra_u = {
1263 .ablkcipher = {
1264 .min_keysize = DES_KEY_SIZE,
1265 .max_keysize = DES_KEY_SIZE,
1266 .setkey = des_ablkcipher_setkey,
1267 .encrypt = cryp_blk_encrypt,
1268 .decrypt = cryp_blk_decrypt,
1269 }
1270 }
1271 }
1272 },
1273 {
1274 .algomode = CRYP_ALGO_TDES_CBC,
1275 .crypto = {
1276 .cra_name = "cbc(des3_ede)",
1277 .cra_driver_name = "cbc-des3_ede-ux500",
1278 .cra_priority = 300,
1279 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1280 CRYPTO_ALG_ASYNC,
1281 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1282 .cra_ctxsize = sizeof(struct cryp_ctx),
1283 .cra_alignmask = 3,
1284 .cra_type = &crypto_ablkcipher_type,
1285 .cra_init = cryp_cra_init,
1286 .cra_module = THIS_MODULE,
1287 .cra_u = {
1288 .ablkcipher = {
1289 .min_keysize = DES3_EDE_KEY_SIZE,
1290 .max_keysize = DES3_EDE_KEY_SIZE,
1291 .setkey = des3_ablkcipher_setkey,
1292 .encrypt = cryp_blk_encrypt,
1293 .decrypt = cryp_blk_decrypt,
1294 .ivsize = DES3_EDE_BLOCK_SIZE,
1295 }
1296 }
1297 }
1298 }
1299};
1300
1301
1302
1303
1304static int cryp_algs_register_all(void)
1305{
1306 int ret;
1307 int i;
1308 int count;
1309
1310 pr_debug("[%s]", __func__);
1311
1312 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1313 ret = crypto_register_alg(&cryp_algs[i].crypto);
1314 if (ret) {
1315 count = i;
1316 pr_err("[%s] alg registration failed",
1317 cryp_algs[i].crypto.cra_driver_name);
1318 goto unreg;
1319 }
1320 }
1321 return 0;
1322unreg:
1323 for (i = 0; i < count; i++)
1324 crypto_unregister_alg(&cryp_algs[i].crypto);
1325 return ret;
1326}
1327
1328
1329
1330
1331static void cryp_algs_unregister_all(void)
1332{
1333 int i;
1334
1335 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1336
1337 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1338 crypto_unregister_alg(&cryp_algs[i].crypto);
1339}
1340
1341static int ux500_cryp_probe(struct platform_device *pdev)
1342{
1343 int ret;
1344 struct resource *res;
1345 struct resource *res_irq;
1346 struct cryp_device_data *device_data;
1347 struct cryp_protection_config prot = {
1348 .privilege_access = CRYP_STATE_ENABLE
1349 };
1350 struct device *dev = &pdev->dev;
1351
1352 dev_dbg(dev, "[%s]", __func__);
1353 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1354 if (!device_data) {
1355 ret = -ENOMEM;
1356 goto out;
1357 }
1358
1359 device_data->dev = dev;
1360 device_data->current_ctx = NULL;
1361
1362
1363 mem_to_engine = &((struct cryp_platform_data *)
1364 dev->platform_data)->mem_to_engine;
1365 engine_to_mem = &((struct cryp_platform_data *)
1366 dev->platform_data)->engine_to_mem;
1367
1368 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1369 if (!res) {
1370 dev_err(dev, "[%s]: platform_get_resource() failed",
1371 __func__);
1372 ret = -ENODEV;
1373 goto out;
1374 }
1375
1376 device_data->phybase = res->start;
1377 device_data->base = devm_ioremap_resource(dev, res);
1378 if (IS_ERR(device_data->base)) {
1379 dev_err(dev, "[%s]: ioremap failed!", __func__);
1380 ret = PTR_ERR(device_data->base);
1381 goto out;
1382 }
1383
1384 spin_lock_init(&device_data->ctx_lock);
1385 spin_lock_init(&device_data->power_state_spinlock);
1386
1387
1388 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1389 if (IS_ERR(device_data->pwr_regulator)) {
1390 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1391 ret = PTR_ERR(device_data->pwr_regulator);
1392 device_data->pwr_regulator = NULL;
1393 goto out;
1394 }
1395
1396
1397 device_data->clk = devm_clk_get(&pdev->dev, NULL);
1398 if (IS_ERR(device_data->clk)) {
1399 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1400 ret = PTR_ERR(device_data->clk);
1401 goto out_regulator;
1402 }
1403
1404 ret = clk_prepare(device_data->clk);
1405 if (ret) {
1406 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1407 goto out_regulator;
1408 }
1409
1410
1411 ret = cryp_enable_power(device_data->dev, device_data, false);
1412 if (ret) {
1413 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1414 goto out_clk_unprepare;
1415 }
1416
1417 if (cryp_check(device_data)) {
1418 dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1419 ret = -EINVAL;
1420 goto out_power;
1421 }
1422
1423 if (cryp_configure_protection(device_data, &prot)) {
1424 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1425 __func__);
1426 ret = -EINVAL;
1427 goto out_power;
1428 }
1429
1430 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1431 if (!res_irq) {
1432 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1433 __func__);
1434 ret = -ENODEV;
1435 goto out_power;
1436 }
1437
1438 ret = devm_request_irq(&pdev->dev, res_irq->start,
1439 cryp_interrupt_handler, 0, "cryp1", device_data);
1440 if (ret) {
1441 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1442 goto out_power;
1443 }
1444
1445 if (cryp_mode == CRYP_MODE_DMA)
1446 cryp_dma_setup_channel(device_data, dev);
1447
1448 platform_set_drvdata(pdev, device_data);
1449
1450
1451 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1452
1453
1454 up(&driver_data.device_allocation);
1455
1456 atomic_set(&session_id, 1);
1457
1458 ret = cryp_algs_register_all();
1459 if (ret) {
1460 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1461 __func__);
1462 goto out_power;
1463 }
1464
1465 dev_info(dev, "successfully registered\n");
1466
1467 return 0;
1468
1469out_power:
1470 cryp_disable_power(device_data->dev, device_data, false);
1471
1472out_clk_unprepare:
1473 clk_unprepare(device_data->clk);
1474
1475out_regulator:
1476 regulator_put(device_data->pwr_regulator);
1477
1478out:
1479 return ret;
1480}
1481
1482static int ux500_cryp_remove(struct platform_device *pdev)
1483{
1484 struct cryp_device_data *device_data;
1485
1486 dev_dbg(&pdev->dev, "[%s]", __func__);
1487 device_data = platform_get_drvdata(pdev);
1488 if (!device_data) {
1489 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1490 __func__);
1491 return -ENOMEM;
1492 }
1493
1494
1495 if (down_trylock(&driver_data.device_allocation))
1496 return -EBUSY;
1497
1498
1499 spin_lock(&device_data->ctx_lock);
1500
1501 if (device_data->current_ctx) {
1502
1503 spin_unlock(&device_data->ctx_lock);
1504
1505 up(&driver_data.device_allocation);
1506 return -EBUSY;
1507 }
1508
1509 spin_unlock(&device_data->ctx_lock);
1510
1511
1512 if (klist_node_attached(&device_data->list_node))
1513 klist_remove(&device_data->list_node);
1514
1515
1516 if (list_empty(&driver_data.device_list.k_list))
1517 cryp_algs_unregister_all();
1518
1519 if (cryp_disable_power(&pdev->dev, device_data, false))
1520 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1521 __func__);
1522
1523 clk_unprepare(device_data->clk);
1524 regulator_put(device_data->pwr_regulator);
1525
1526 return 0;
1527}
1528
1529static void ux500_cryp_shutdown(struct platform_device *pdev)
1530{
1531 struct cryp_device_data *device_data;
1532
1533 dev_dbg(&pdev->dev, "[%s]", __func__);
1534
1535 device_data = platform_get_drvdata(pdev);
1536 if (!device_data) {
1537 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1538 __func__);
1539 return;
1540 }
1541
1542
1543 spin_lock(&device_data->ctx_lock);
1544
1545 if (!device_data->current_ctx) {
1546 if (down_trylock(&driver_data.device_allocation))
1547 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1548 "Shutting down anyway...", __func__);
1549
1550
1551
1552
1553
1554 device_data->current_ctx++;
1555 }
1556 spin_unlock(&device_data->ctx_lock);
1557
1558
1559 if (klist_node_attached(&device_data->list_node))
1560 klist_remove(&device_data->list_node);
1561
1562
1563 if (list_empty(&driver_data.device_list.k_list))
1564 cryp_algs_unregister_all();
1565
1566 if (cryp_disable_power(&pdev->dev, device_data, false))
1567 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1568 __func__);
1569
1570}
1571
1572#ifdef CONFIG_PM_SLEEP
1573static int ux500_cryp_suspend(struct device *dev)
1574{
1575 int ret;
1576 struct platform_device *pdev = to_platform_device(dev);
1577 struct cryp_device_data *device_data;
1578 struct resource *res_irq;
1579 struct cryp_ctx *temp_ctx = NULL;
1580
1581 dev_dbg(dev, "[%s]", __func__);
1582
1583
1584 device_data = platform_get_drvdata(pdev);
1585 if (!device_data) {
1586 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1587 return -ENOMEM;
1588 }
1589
1590 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1591 if (!res_irq)
1592 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1593 else
1594 disable_irq(res_irq->start);
1595
1596 spin_lock(&device_data->ctx_lock);
1597 if (!device_data->current_ctx)
1598 device_data->current_ctx++;
1599 spin_unlock(&device_data->ctx_lock);
1600
1601 if (device_data->current_ctx == ++temp_ctx) {
1602 if (down_interruptible(&driver_data.device_allocation))
1603 dev_dbg(dev, "[%s]: down_interruptible() failed",
1604 __func__);
1605 ret = cryp_disable_power(dev, device_data, false);
1606
1607 } else
1608 ret = cryp_disable_power(dev, device_data, true);
1609
1610 if (ret)
1611 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1612
1613 return ret;
1614}
1615
1616static int ux500_cryp_resume(struct device *dev)
1617{
1618 int ret = 0;
1619 struct platform_device *pdev = to_platform_device(dev);
1620 struct cryp_device_data *device_data;
1621 struct resource *res_irq;
1622 struct cryp_ctx *temp_ctx = NULL;
1623
1624 dev_dbg(dev, "[%s]", __func__);
1625
1626 device_data = platform_get_drvdata(pdev);
1627 if (!device_data) {
1628 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1629 return -ENOMEM;
1630 }
1631
1632 spin_lock(&device_data->ctx_lock);
1633 if (device_data->current_ctx == ++temp_ctx)
1634 device_data->current_ctx = NULL;
1635 spin_unlock(&device_data->ctx_lock);
1636
1637
1638 if (!device_data->current_ctx)
1639 up(&driver_data.device_allocation);
1640 else
1641 ret = cryp_enable_power(dev, device_data, true);
1642
1643 if (ret)
1644 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1645 else {
1646 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1647 if (res_irq)
1648 enable_irq(res_irq->start);
1649 }
1650
1651 return ret;
1652}
1653#endif
1654
1655static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1656
1657static const struct of_device_id ux500_cryp_match[] = {
1658 { .compatible = "stericsson,ux500-cryp" },
1659 { },
1660};
1661MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1662
1663static struct platform_driver cryp_driver = {
1664 .probe = ux500_cryp_probe,
1665 .remove = ux500_cryp_remove,
1666 .shutdown = ux500_cryp_shutdown,
1667 .driver = {
1668 .name = "cryp1",
1669 .of_match_table = ux500_cryp_match,
1670 .pm = &ux500_cryp_pm,
1671 }
1672};
1673
1674static int __init ux500_cryp_mod_init(void)
1675{
1676 pr_debug("[%s] is called!", __func__);
1677 klist_init(&driver_data.device_list, NULL, NULL);
1678
1679 sema_init(&driver_data.device_allocation, 0);
1680 return platform_driver_register(&cryp_driver);
1681}
1682
1683static void __exit ux500_cryp_mod_fini(void)
1684{
1685 pr_debug("[%s] is called!", __func__);
1686 platform_driver_unregister(&cryp_driver);
1687}
1688
1689module_init(ux500_cryp_mod_init);
1690module_exit(ux500_cryp_mod_fini);
1691
1692module_param(cryp_mode, int, 0);
1693
1694MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1695MODULE_ALIAS_CRYPTO("aes-all");
1696MODULE_ALIAS_CRYPTO("des-all");
1697
1698MODULE_LICENSE("GPL");
1699