linux/drivers/dma/ep93xx_dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Cirrus Logic EP93xx DMA Controller
   4 *
   5 * Copyright (C) 2011 Mika Westerberg
   6 *
   7 * DMA M2P implementation is based on the original
   8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
   9 *
  10 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  11 *   Copyright (C) 2006 Applied Data Systems
  12 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
  13 *
  14 * This driver is based on dw_dmac and amba-pl08x drivers.
  15 */
  16
  17#include <linux/clk.h>
  18#include <linux/init.h>
  19#include <linux/interrupt.h>
  20#include <linux/dmaengine.h>
  21#include <linux/module.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25
  26#include <linux/platform_data/dma-ep93xx.h>
  27
  28#include "dmaengine.h"
  29
  30/* M2P registers */
  31#define M2P_CONTROL                     0x0000
  32#define M2P_CONTROL_STALLINT            BIT(0)
  33#define M2P_CONTROL_NFBINT              BIT(1)
  34#define M2P_CONTROL_CH_ERROR_INT        BIT(3)
  35#define M2P_CONTROL_ENABLE              BIT(4)
  36#define M2P_CONTROL_ICE                 BIT(6)
  37
  38#define M2P_INTERRUPT                   0x0004
  39#define M2P_INTERRUPT_STALL             BIT(0)
  40#define M2P_INTERRUPT_NFB               BIT(1)
  41#define M2P_INTERRUPT_ERROR             BIT(3)
  42
  43#define M2P_PPALLOC                     0x0008
  44#define M2P_STATUS                      0x000c
  45
  46#define M2P_MAXCNT0                     0x0020
  47#define M2P_BASE0                       0x0024
  48#define M2P_MAXCNT1                     0x0030
  49#define M2P_BASE1                       0x0034
  50
  51#define M2P_STATE_IDLE                  0
  52#define M2P_STATE_STALL                 1
  53#define M2P_STATE_ON                    2
  54#define M2P_STATE_NEXT                  3
  55
  56/* M2M registers */
  57#define M2M_CONTROL                     0x0000
  58#define M2M_CONTROL_DONEINT             BIT(2)
  59#define M2M_CONTROL_ENABLE              BIT(3)
  60#define M2M_CONTROL_START               BIT(4)
  61#define M2M_CONTROL_DAH                 BIT(11)
  62#define M2M_CONTROL_SAH                 BIT(12)
  63#define M2M_CONTROL_PW_SHIFT            9
  64#define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
  65#define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
  66#define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
  67#define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
  68#define M2M_CONTROL_TM_SHIFT            13
  69#define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
  70#define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
  71#define M2M_CONTROL_NFBINT              BIT(21)
  72#define M2M_CONTROL_RSS_SHIFT           22
  73#define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
  74#define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
  75#define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
  76#define M2M_CONTROL_NO_HDSK             BIT(24)
  77#define M2M_CONTROL_PWSC_SHIFT          25
  78
  79#define M2M_INTERRUPT                   0x0004
  80#define M2M_INTERRUPT_MASK              6
  81
  82#define M2M_STATUS                      0x000c
  83#define M2M_STATUS_CTL_SHIFT            1
  84#define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
  85#define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
  86#define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
  87#define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
  88#define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
  89#define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
  90#define M2M_STATUS_BUF_SHIFT            4
  91#define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
  92#define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
  93#define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
  94#define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
  95#define M2M_STATUS_DONE                 BIT(6)
  96
  97#define M2M_BCR0                        0x0010
  98#define M2M_BCR1                        0x0014
  99#define M2M_SAR_BASE0                   0x0018
 100#define M2M_SAR_BASE1                   0x001c
 101#define M2M_DAR_BASE0                   0x002c
 102#define M2M_DAR_BASE1                   0x0030
 103
 104#define DMA_MAX_CHAN_BYTES              0xffff
 105#define DMA_MAX_CHAN_DESCRIPTORS        32
 106
 107struct ep93xx_dma_engine;
 108static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
 109                                         enum dma_transfer_direction dir,
 110                                         struct dma_slave_config *config);
 111
 112/**
 113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
 114 * @src_addr: source address of the transaction
 115 * @dst_addr: destination address of the transaction
 116 * @size: size of the transaction (in bytes)
 117 * @complete: this descriptor is completed
 118 * @txd: dmaengine API descriptor
 119 * @tx_list: list of linked descriptors
 120 * @node: link used for putting this into a channel queue
 121 */
 122struct ep93xx_dma_desc {
 123        u32                             src_addr;
 124        u32                             dst_addr;
 125        size_t                          size;
 126        bool                            complete;
 127        struct dma_async_tx_descriptor  txd;
 128        struct list_head                tx_list;
 129        struct list_head                node;
 130};
 131
 132/**
 133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
 134 * @chan: dmaengine API channel
 135 * @edma: pointer to to the engine device
 136 * @regs: memory mapped registers
 137 * @irq: interrupt number of the channel
 138 * @clk: clock used by this channel
 139 * @tasklet: channel specific tasklet used for callbacks
 140 * @lock: lock protecting the fields following
 141 * @flags: flags for the channel
 142 * @buffer: which buffer to use next (0/1)
 143 * @active: flattened chain of descriptors currently being processed
 144 * @queue: pending descriptors which are handled next
 145 * @free_list: list of free descriptors which can be used
 146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
 147 *                is set via .device_config before slave operation is
 148 *                prepared
 149 * @runtime_ctrl: M2M runtime values for the control register.
 150 *
 151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
 152 * will have slightly different scheme here: @active points to a head of
 153 * flattened DMA descriptor chain.
 154 *
 155 * @queue holds pending transactions. These are linked through the first
 156 * descriptor in the chain. When a descriptor is moved to the @active queue,
 157 * the first and chained descriptors are flattened into a single list.
 158 *
 159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
 160 * necessary channel configuration information. For memcpy channels this must
 161 * be %NULL.
 162 */
 163struct ep93xx_dma_chan {
 164        struct dma_chan                 chan;
 165        const struct ep93xx_dma_engine  *edma;
 166        void __iomem                    *regs;
 167        int                             irq;
 168        struct clk                      *clk;
 169        struct tasklet_struct           tasklet;
 170        /* protects the fields following */
 171        spinlock_t                      lock;
 172        unsigned long                   flags;
 173/* Channel is configured for cyclic transfers */
 174#define EP93XX_DMA_IS_CYCLIC            0
 175
 176        int                             buffer;
 177        struct list_head                active;
 178        struct list_head                queue;
 179        struct list_head                free_list;
 180        u32                             runtime_addr;
 181        u32                             runtime_ctrl;
 182        struct dma_slave_config         slave_config;
 183};
 184
 185/**
 186 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
 187 * @dma_dev: holds the dmaengine device
 188 * @m2m: is this an M2M or M2P device
 189 * @hw_setup: method which sets the channel up for operation
 190 * @hw_shutdown: shuts the channel down and flushes whatever is left
 191 * @hw_submit: pushes active descriptor(s) to the hardware
 192 * @hw_interrupt: handle the interrupt
 193 * @num_channels: number of channels for this instance
 194 * @channels: array of channels
 195 *
 196 * There is one instance of this struct for the M2P channels and one for the
 197 * M2M channels. hw_xxx() methods are used to perform operations which are
 198 * different on M2M and M2P channels. These methods are called with channel
 199 * lock held and interrupts disabled so they cannot sleep.
 200 */
 201struct ep93xx_dma_engine {
 202        struct dma_device       dma_dev;
 203        bool                    m2m;
 204        int                     (*hw_setup)(struct ep93xx_dma_chan *);
 205        void                    (*hw_synchronize)(struct ep93xx_dma_chan *);
 206        void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
 207        void                    (*hw_submit)(struct ep93xx_dma_chan *);
 208        int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
 209#define INTERRUPT_UNKNOWN       0
 210#define INTERRUPT_DONE          1
 211#define INTERRUPT_NEXT_BUFFER   2
 212
 213        size_t                  num_channels;
 214        struct ep93xx_dma_chan  channels[];
 215};
 216
 217static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
 218{
 219        return &edmac->chan.dev->device;
 220}
 221
 222static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
 223{
 224        return container_of(chan, struct ep93xx_dma_chan, chan);
 225}
 226
 227/**
 228 * ep93xx_dma_set_active - set new active descriptor chain
 229 * @edmac: channel
 230 * @desc: head of the new active descriptor chain
 231 *
 232 * Sets @desc to be the head of the new active descriptor chain. This is the
 233 * chain which is processed next. The active list must be empty before calling
 234 * this function.
 235 *
 236 * Called with @edmac->lock held and interrupts disabled.
 237 */
 238static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
 239                                  struct ep93xx_dma_desc *desc)
 240{
 241        BUG_ON(!list_empty(&edmac->active));
 242
 243        list_add_tail(&desc->node, &edmac->active);
 244
 245        /* Flatten the @desc->tx_list chain into @edmac->active list */
 246        while (!list_empty(&desc->tx_list)) {
 247                struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
 248                        struct ep93xx_dma_desc, node);
 249
 250                /*
 251                 * We copy the callback parameters from the first descriptor
 252                 * to all the chained descriptors. This way we can call the
 253                 * callback without having to find out the first descriptor in
 254                 * the chain. Useful for cyclic transfers.
 255                 */
 256                d->txd.callback = desc->txd.callback;
 257                d->txd.callback_param = desc->txd.callback_param;
 258
 259                list_move_tail(&d->node, &edmac->active);
 260        }
 261}
 262
 263/* Called with @edmac->lock held and interrupts disabled */
 264static struct ep93xx_dma_desc *
 265ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
 266{
 267        return list_first_entry_or_null(&edmac->active,
 268                                        struct ep93xx_dma_desc, node);
 269}
 270
 271/**
 272 * ep93xx_dma_advance_active - advances to the next active descriptor
 273 * @edmac: channel
 274 *
 275 * Function advances active descriptor to the next in the @edmac->active and
 276 * returns %true if we still have descriptors in the chain to process.
 277 * Otherwise returns %false.
 278 *
 279 * When the channel is in cyclic mode always returns %true.
 280 *
 281 * Called with @edmac->lock held and interrupts disabled.
 282 */
 283static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
 284{
 285        struct ep93xx_dma_desc *desc;
 286
 287        list_rotate_left(&edmac->active);
 288
 289        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 290                return true;
 291
 292        desc = ep93xx_dma_get_active(edmac);
 293        if (!desc)
 294                return false;
 295
 296        /*
 297         * If txd.cookie is set it means that we are back in the first
 298         * descriptor in the chain and hence done with it.
 299         */
 300        return !desc->txd.cookie;
 301}
 302
 303/*
 304 * M2P DMA implementation
 305 */
 306
 307static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
 308{
 309        writel(control, edmac->regs + M2P_CONTROL);
 310        /*
 311         * EP93xx User's Guide states that we must perform a dummy read after
 312         * write to the control register.
 313         */
 314        readl(edmac->regs + M2P_CONTROL);
 315}
 316
 317static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
 318{
 319        struct ep93xx_dma_data *data = edmac->chan.private;
 320        u32 control;
 321
 322        writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
 323
 324        control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
 325                | M2P_CONTROL_ENABLE;
 326        m2p_set_control(edmac, control);
 327
 328        edmac->buffer = 0;
 329
 330        return 0;
 331}
 332
 333static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
 334{
 335        return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
 336}
 337
 338static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
 339{
 340        unsigned long flags;
 341        u32 control;
 342
 343        spin_lock_irqsave(&edmac->lock, flags);
 344        control = readl(edmac->regs + M2P_CONTROL);
 345        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 346        m2p_set_control(edmac, control);
 347        spin_unlock_irqrestore(&edmac->lock, flags);
 348
 349        while (m2p_channel_state(edmac) >= M2P_STATE_ON)
 350                schedule();
 351}
 352
 353static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
 354{
 355        m2p_set_control(edmac, 0);
 356
 357        while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
 358                dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
 359}
 360
 361static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
 362{
 363        struct ep93xx_dma_desc *desc;
 364        u32 bus_addr;
 365
 366        desc = ep93xx_dma_get_active(edmac);
 367        if (!desc) {
 368                dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
 369                return;
 370        }
 371
 372        if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
 373                bus_addr = desc->src_addr;
 374        else
 375                bus_addr = desc->dst_addr;
 376
 377        if (edmac->buffer == 0) {
 378                writel(desc->size, edmac->regs + M2P_MAXCNT0);
 379                writel(bus_addr, edmac->regs + M2P_BASE0);
 380        } else {
 381                writel(desc->size, edmac->regs + M2P_MAXCNT1);
 382                writel(bus_addr, edmac->regs + M2P_BASE1);
 383        }
 384
 385        edmac->buffer ^= 1;
 386}
 387
 388static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
 389{
 390        u32 control = readl(edmac->regs + M2P_CONTROL);
 391
 392        m2p_fill_desc(edmac);
 393        control |= M2P_CONTROL_STALLINT;
 394
 395        if (ep93xx_dma_advance_active(edmac)) {
 396                m2p_fill_desc(edmac);
 397                control |= M2P_CONTROL_NFBINT;
 398        }
 399
 400        m2p_set_control(edmac, control);
 401}
 402
 403static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
 404{
 405        u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
 406        u32 control;
 407
 408        if (irq_status & M2P_INTERRUPT_ERROR) {
 409                struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
 410
 411                /* Clear the error interrupt */
 412                writel(1, edmac->regs + M2P_INTERRUPT);
 413
 414                /*
 415                 * It seems that there is no easy way of reporting errors back
 416                 * to client so we just report the error here and continue as
 417                 * usual.
 418                 *
 419                 * Revisit this when there is a mechanism to report back the
 420                 * errors.
 421                 */
 422                dev_err(chan2dev(edmac),
 423                        "DMA transfer failed! Details:\n"
 424                        "\tcookie       : %d\n"
 425                        "\tsrc_addr     : 0x%08x\n"
 426                        "\tdst_addr     : 0x%08x\n"
 427                        "\tsize         : %zu\n",
 428                        desc->txd.cookie, desc->src_addr, desc->dst_addr,
 429                        desc->size);
 430        }
 431
 432        /*
 433         * Even latest E2 silicon revision sometimes assert STALL interrupt
 434         * instead of NFB. Therefore we treat them equally, basing on the
 435         * amount of data we still have to transfer.
 436         */
 437        if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
 438                return INTERRUPT_UNKNOWN;
 439
 440        if (ep93xx_dma_advance_active(edmac)) {
 441                m2p_fill_desc(edmac);
 442                return INTERRUPT_NEXT_BUFFER;
 443        }
 444
 445        /* Disable interrupts */
 446        control = readl(edmac->regs + M2P_CONTROL);
 447        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 448        m2p_set_control(edmac, control);
 449
 450        return INTERRUPT_DONE;
 451}
 452
 453/*
 454 * M2M DMA implementation
 455 */
 456
 457static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
 458{
 459        const struct ep93xx_dma_data *data = edmac->chan.private;
 460        u32 control = 0;
 461
 462        if (!data) {
 463                /* This is memcpy channel, nothing to configure */
 464                writel(control, edmac->regs + M2M_CONTROL);
 465                return 0;
 466        }
 467
 468        switch (data->port) {
 469        case EP93XX_DMA_SSP:
 470                /*
 471                 * This was found via experimenting - anything less than 5
 472                 * causes the channel to perform only a partial transfer which
 473                 * leads to problems since we don't get DONE interrupt then.
 474                 */
 475                control = (5 << M2M_CONTROL_PWSC_SHIFT);
 476                control |= M2M_CONTROL_NO_HDSK;
 477
 478                if (data->direction == DMA_MEM_TO_DEV) {
 479                        control |= M2M_CONTROL_DAH;
 480                        control |= M2M_CONTROL_TM_TX;
 481                        control |= M2M_CONTROL_RSS_SSPTX;
 482                } else {
 483                        control |= M2M_CONTROL_SAH;
 484                        control |= M2M_CONTROL_TM_RX;
 485                        control |= M2M_CONTROL_RSS_SSPRX;
 486                }
 487                break;
 488
 489        case EP93XX_DMA_IDE:
 490                /*
 491                 * This IDE part is totally untested. Values below are taken
 492                 * from the EP93xx Users's Guide and might not be correct.
 493                 */
 494                if (data->direction == DMA_MEM_TO_DEV) {
 495                        /* Worst case from the UG */
 496                        control = (3 << M2M_CONTROL_PWSC_SHIFT);
 497                        control |= M2M_CONTROL_DAH;
 498                        control |= M2M_CONTROL_TM_TX;
 499                } else {
 500                        control = (2 << M2M_CONTROL_PWSC_SHIFT);
 501                        control |= M2M_CONTROL_SAH;
 502                        control |= M2M_CONTROL_TM_RX;
 503                }
 504
 505                control |= M2M_CONTROL_NO_HDSK;
 506                control |= M2M_CONTROL_RSS_IDE;
 507                control |= M2M_CONTROL_PW_16;
 508                break;
 509
 510        default:
 511                return -EINVAL;
 512        }
 513
 514        writel(control, edmac->regs + M2M_CONTROL);
 515        return 0;
 516}
 517
 518static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
 519{
 520        /* Just disable the channel */
 521        writel(0, edmac->regs + M2M_CONTROL);
 522}
 523
 524static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
 525{
 526        struct ep93xx_dma_desc *desc;
 527
 528        desc = ep93xx_dma_get_active(edmac);
 529        if (!desc) {
 530                dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
 531                return;
 532        }
 533
 534        if (edmac->buffer == 0) {
 535                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
 536                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
 537                writel(desc->size, edmac->regs + M2M_BCR0);
 538        } else {
 539                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
 540                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
 541                writel(desc->size, edmac->regs + M2M_BCR1);
 542        }
 543
 544        edmac->buffer ^= 1;
 545}
 546
 547static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
 548{
 549        struct ep93xx_dma_data *data = edmac->chan.private;
 550        u32 control = readl(edmac->regs + M2M_CONTROL);
 551
 552        /*
 553         * Since we allow clients to configure PW (peripheral width) we always
 554         * clear PW bits here and then set them according what is given in
 555         * the runtime configuration.
 556         */
 557        control &= ~M2M_CONTROL_PW_MASK;
 558        control |= edmac->runtime_ctrl;
 559
 560        m2m_fill_desc(edmac);
 561        control |= M2M_CONTROL_DONEINT;
 562
 563        if (ep93xx_dma_advance_active(edmac)) {
 564                m2m_fill_desc(edmac);
 565                control |= M2M_CONTROL_NFBINT;
 566        }
 567
 568        /*
 569         * Now we can finally enable the channel. For M2M channel this must be
 570         * done _after_ the BCRx registers are programmed.
 571         */
 572        control |= M2M_CONTROL_ENABLE;
 573        writel(control, edmac->regs + M2M_CONTROL);
 574
 575        if (!data) {
 576                /*
 577                 * For memcpy channels the software trigger must be asserted
 578                 * in order to start the memcpy operation.
 579                 */
 580                control |= M2M_CONTROL_START;
 581                writel(control, edmac->regs + M2M_CONTROL);
 582        }
 583}
 584
 585/*
 586 * According to EP93xx User's Guide, we should receive DONE interrupt when all
 587 * M2M DMA controller transactions complete normally. This is not always the
 588 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
 589 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
 590 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
 591 * In effect, disabling the channel when only DONE bit is set could stop
 592 * currently running DMA transfer. To avoid this, we use Buffer FSM and
 593 * Control FSM to check current state of DMA channel.
 594 */
 595static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
 596{
 597        u32 status = readl(edmac->regs + M2M_STATUS);
 598        u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
 599        u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
 600        bool done = status & M2M_STATUS_DONE;
 601        bool last_done;
 602        u32 control;
 603        struct ep93xx_dma_desc *desc;
 604
 605        /* Accept only DONE and NFB interrupts */
 606        if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
 607                return INTERRUPT_UNKNOWN;
 608
 609        if (done) {
 610                /* Clear the DONE bit */
 611                writel(0, edmac->regs + M2M_INTERRUPT);
 612        }
 613
 614        /*
 615         * Check whether we are done with descriptors or not. This, together
 616         * with DMA channel state, determines action to take in interrupt.
 617         */
 618        desc = ep93xx_dma_get_active(edmac);
 619        last_done = !desc || desc->txd.cookie;
 620
 621        /*
 622         * Use M2M DMA Buffer FSM and Control FSM to check current state of
 623         * DMA channel. Using DONE and NFB bits from channel status register
 624         * or bits from channel interrupt register is not reliable.
 625         */
 626        if (!last_done &&
 627            (buf_fsm == M2M_STATUS_BUF_NO ||
 628             buf_fsm == M2M_STATUS_BUF_ON)) {
 629                /*
 630                 * Two buffers are ready for update when Buffer FSM is in
 631                 * DMA_NO_BUF state. Only one buffer can be prepared without
 632                 * disabling the channel or polling the DONE bit.
 633                 * To simplify things, always prepare only one buffer.
 634                 */
 635                if (ep93xx_dma_advance_active(edmac)) {
 636                        m2m_fill_desc(edmac);
 637                        if (done && !edmac->chan.private) {
 638                                /* Software trigger for memcpy channel */
 639                                control = readl(edmac->regs + M2M_CONTROL);
 640                                control |= M2M_CONTROL_START;
 641                                writel(control, edmac->regs + M2M_CONTROL);
 642                        }
 643                        return INTERRUPT_NEXT_BUFFER;
 644                } else {
 645                        last_done = true;
 646                }
 647        }
 648
 649        /*
 650         * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
 651         * and Control FSM is in DMA_STALL state.
 652         */
 653        if (last_done &&
 654            buf_fsm == M2M_STATUS_BUF_NO &&
 655            ctl_fsm == M2M_STATUS_CTL_STALL) {
 656                /* Disable interrupts and the channel */
 657                control = readl(edmac->regs + M2M_CONTROL);
 658                control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
 659                            | M2M_CONTROL_ENABLE);
 660                writel(control, edmac->regs + M2M_CONTROL);
 661                return INTERRUPT_DONE;
 662        }
 663
 664        /*
 665         * Nothing to do this time.
 666         */
 667        return INTERRUPT_NEXT_BUFFER;
 668}
 669
 670/*
 671 * DMA engine API implementation
 672 */
 673
 674static struct ep93xx_dma_desc *
 675ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
 676{
 677        struct ep93xx_dma_desc *desc, *_desc;
 678        struct ep93xx_dma_desc *ret = NULL;
 679        unsigned long flags;
 680
 681        spin_lock_irqsave(&edmac->lock, flags);
 682        list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
 683                if (async_tx_test_ack(&desc->txd)) {
 684                        list_del_init(&desc->node);
 685
 686                        /* Re-initialize the descriptor */
 687                        desc->src_addr = 0;
 688                        desc->dst_addr = 0;
 689                        desc->size = 0;
 690                        desc->complete = false;
 691                        desc->txd.cookie = 0;
 692                        desc->txd.callback = NULL;
 693                        desc->txd.callback_param = NULL;
 694
 695                        ret = desc;
 696                        break;
 697                }
 698        }
 699        spin_unlock_irqrestore(&edmac->lock, flags);
 700        return ret;
 701}
 702
 703static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
 704                                struct ep93xx_dma_desc *desc)
 705{
 706        if (desc) {
 707                unsigned long flags;
 708
 709                spin_lock_irqsave(&edmac->lock, flags);
 710                list_splice_init(&desc->tx_list, &edmac->free_list);
 711                list_add(&desc->node, &edmac->free_list);
 712                spin_unlock_irqrestore(&edmac->lock, flags);
 713        }
 714}
 715
 716/**
 717 * ep93xx_dma_advance_work - start processing the next pending transaction
 718 * @edmac: channel
 719 *
 720 * If we have pending transactions queued and we are currently idling, this
 721 * function takes the next queued transaction from the @edmac->queue and
 722 * pushes it to the hardware for execution.
 723 */
 724static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
 725{
 726        struct ep93xx_dma_desc *new;
 727        unsigned long flags;
 728
 729        spin_lock_irqsave(&edmac->lock, flags);
 730        if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
 731                spin_unlock_irqrestore(&edmac->lock, flags);
 732                return;
 733        }
 734
 735        /* Take the next descriptor from the pending queue */
 736        new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
 737        list_del_init(&new->node);
 738
 739        ep93xx_dma_set_active(edmac, new);
 740
 741        /* Push it to the hardware */
 742        edmac->edma->hw_submit(edmac);
 743        spin_unlock_irqrestore(&edmac->lock, flags);
 744}
 745
 746static void ep93xx_dma_tasklet(unsigned long data)
 747{
 748        struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
 749        struct ep93xx_dma_desc *desc, *d;
 750        struct dmaengine_desc_callback cb;
 751        LIST_HEAD(list);
 752
 753        memset(&cb, 0, sizeof(cb));
 754        spin_lock_irq(&edmac->lock);
 755        /*
 756         * If dma_terminate_all() was called before we get to run, the active
 757         * list has become empty. If that happens we aren't supposed to do
 758         * anything more than call ep93xx_dma_advance_work().
 759         */
 760        desc = ep93xx_dma_get_active(edmac);
 761        if (desc) {
 762                if (desc->complete) {
 763                        /* mark descriptor complete for non cyclic case only */
 764                        if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 765                                dma_cookie_complete(&desc->txd);
 766                        list_splice_init(&edmac->active, &list);
 767                }
 768                dmaengine_desc_get_callback(&desc->txd, &cb);
 769        }
 770        spin_unlock_irq(&edmac->lock);
 771
 772        /* Pick up the next descriptor from the queue */
 773        ep93xx_dma_advance_work(edmac);
 774
 775        /* Now we can release all the chained descriptors */
 776        list_for_each_entry_safe(desc, d, &list, node) {
 777                dma_descriptor_unmap(&desc->txd);
 778                ep93xx_dma_desc_put(edmac, desc);
 779        }
 780
 781        dmaengine_desc_callback_invoke(&cb, NULL);
 782}
 783
 784static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
 785{
 786        struct ep93xx_dma_chan *edmac = dev_id;
 787        struct ep93xx_dma_desc *desc;
 788        irqreturn_t ret = IRQ_HANDLED;
 789
 790        spin_lock(&edmac->lock);
 791
 792        desc = ep93xx_dma_get_active(edmac);
 793        if (!desc) {
 794                dev_warn(chan2dev(edmac),
 795                         "got interrupt while active list is empty\n");
 796                spin_unlock(&edmac->lock);
 797                return IRQ_NONE;
 798        }
 799
 800        switch (edmac->edma->hw_interrupt(edmac)) {
 801        case INTERRUPT_DONE:
 802                desc->complete = true;
 803                tasklet_schedule(&edmac->tasklet);
 804                break;
 805
 806        case INTERRUPT_NEXT_BUFFER:
 807                if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 808                        tasklet_schedule(&edmac->tasklet);
 809                break;
 810
 811        default:
 812                dev_warn(chan2dev(edmac), "unknown interrupt!\n");
 813                ret = IRQ_NONE;
 814                break;
 815        }
 816
 817        spin_unlock(&edmac->lock);
 818        return ret;
 819}
 820
 821/**
 822 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
 823 * @tx: descriptor to be executed
 824 *
 825 * Function will execute given descriptor on the hardware or if the hardware
 826 * is busy, queue the descriptor to be executed later on. Returns cookie which
 827 * can be used to poll the status of the descriptor.
 828 */
 829static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 830{
 831        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
 832        struct ep93xx_dma_desc *desc;
 833        dma_cookie_t cookie;
 834        unsigned long flags;
 835
 836        spin_lock_irqsave(&edmac->lock, flags);
 837        cookie = dma_cookie_assign(tx);
 838
 839        desc = container_of(tx, struct ep93xx_dma_desc, txd);
 840
 841        /*
 842         * If nothing is currently prosessed, we push this descriptor
 843         * directly to the hardware. Otherwise we put the descriptor
 844         * to the pending queue.
 845         */
 846        if (list_empty(&edmac->active)) {
 847                ep93xx_dma_set_active(edmac, desc);
 848                edmac->edma->hw_submit(edmac);
 849        } else {
 850                list_add_tail(&desc->node, &edmac->queue);
 851        }
 852
 853        spin_unlock_irqrestore(&edmac->lock, flags);
 854        return cookie;
 855}
 856
 857/**
 858 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
 859 * @chan: channel to allocate resources
 860 *
 861 * Function allocates necessary resources for the given DMA channel and
 862 * returns number of allocated descriptors for the channel. Negative errno
 863 * is returned in case of failure.
 864 */
 865static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
 866{
 867        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 868        struct ep93xx_dma_data *data = chan->private;
 869        const char *name = dma_chan_name(chan);
 870        int ret, i;
 871
 872        /* Sanity check the channel parameters */
 873        if (!edmac->edma->m2m) {
 874                if (!data)
 875                        return -EINVAL;
 876                if (data->port < EP93XX_DMA_I2S1 ||
 877                    data->port > EP93XX_DMA_IRDA)
 878                        return -EINVAL;
 879                if (data->direction != ep93xx_dma_chan_direction(chan))
 880                        return -EINVAL;
 881        } else {
 882                if (data) {
 883                        switch (data->port) {
 884                        case EP93XX_DMA_SSP:
 885                        case EP93XX_DMA_IDE:
 886                                if (!is_slave_direction(data->direction))
 887                                        return -EINVAL;
 888                                break;
 889                        default:
 890                                return -EINVAL;
 891                        }
 892                }
 893        }
 894
 895        if (data && data->name)
 896                name = data->name;
 897
 898        ret = clk_enable(edmac->clk);
 899        if (ret)
 900                return ret;
 901
 902        ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
 903        if (ret)
 904                goto fail_clk_disable;
 905
 906        spin_lock_irq(&edmac->lock);
 907        dma_cookie_init(&edmac->chan);
 908        ret = edmac->edma->hw_setup(edmac);
 909        spin_unlock_irq(&edmac->lock);
 910
 911        if (ret)
 912                goto fail_free_irq;
 913
 914        for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
 915                struct ep93xx_dma_desc *desc;
 916
 917                desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 918                if (!desc) {
 919                        dev_warn(chan2dev(edmac), "not enough descriptors\n");
 920                        break;
 921                }
 922
 923                INIT_LIST_HEAD(&desc->tx_list);
 924
 925                dma_async_tx_descriptor_init(&desc->txd, chan);
 926                desc->txd.flags = DMA_CTRL_ACK;
 927                desc->txd.tx_submit = ep93xx_dma_tx_submit;
 928
 929                ep93xx_dma_desc_put(edmac, desc);
 930        }
 931
 932        return i;
 933
 934fail_free_irq:
 935        free_irq(edmac->irq, edmac);
 936fail_clk_disable:
 937        clk_disable(edmac->clk);
 938
 939        return ret;
 940}
 941
 942/**
 943 * ep93xx_dma_free_chan_resources - release resources for the channel
 944 * @chan: channel
 945 *
 946 * Function releases all the resources allocated for the given channel.
 947 * The channel must be idle when this is called.
 948 */
 949static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
 950{
 951        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 952        struct ep93xx_dma_desc *desc, *d;
 953        unsigned long flags;
 954        LIST_HEAD(list);
 955
 956        BUG_ON(!list_empty(&edmac->active));
 957        BUG_ON(!list_empty(&edmac->queue));
 958
 959        spin_lock_irqsave(&edmac->lock, flags);
 960        edmac->edma->hw_shutdown(edmac);
 961        edmac->runtime_addr = 0;
 962        edmac->runtime_ctrl = 0;
 963        edmac->buffer = 0;
 964        list_splice_init(&edmac->free_list, &list);
 965        spin_unlock_irqrestore(&edmac->lock, flags);
 966
 967        list_for_each_entry_safe(desc, d, &list, node)
 968                kfree(desc);
 969
 970        clk_disable(edmac->clk);
 971        free_irq(edmac->irq, edmac);
 972}
 973
 974/**
 975 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
 976 * @chan: channel
 977 * @dest: destination bus address
 978 * @src: source bus address
 979 * @len: size of the transaction
 980 * @flags: flags for the descriptor
 981 *
 982 * Returns a valid DMA descriptor or %NULL in case of failure.
 983 */
 984static struct dma_async_tx_descriptor *
 985ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
 986                           dma_addr_t src, size_t len, unsigned long flags)
 987{
 988        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 989        struct ep93xx_dma_desc *desc, *first;
 990        size_t bytes, offset;
 991
 992        first = NULL;
 993        for (offset = 0; offset < len; offset += bytes) {
 994                desc = ep93xx_dma_desc_get(edmac);
 995                if (!desc) {
 996                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
 997                        goto fail;
 998                }
 999
1000                bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1001
1002                desc->src_addr = src + offset;
1003                desc->dst_addr = dest + offset;
1004                desc->size = bytes;
1005
1006                if (!first)
1007                        first = desc;
1008                else
1009                        list_add_tail(&desc->node, &first->tx_list);
1010        }
1011
1012        first->txd.cookie = -EBUSY;
1013        first->txd.flags = flags;
1014
1015        return &first->txd;
1016fail:
1017        ep93xx_dma_desc_put(edmac, first);
1018        return NULL;
1019}
1020
1021/**
1022 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1023 * @chan: channel
1024 * @sgl: list of buffers to transfer
1025 * @sg_len: number of entries in @sgl
1026 * @dir: direction of tha DMA transfer
1027 * @flags: flags for the descriptor
1028 * @context: operation context (ignored)
1029 *
1030 * Returns a valid DMA descriptor or %NULL in case of failure.
1031 */
1032static struct dma_async_tx_descriptor *
1033ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1034                         unsigned int sg_len, enum dma_transfer_direction dir,
1035                         unsigned long flags, void *context)
1036{
1037        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1038        struct ep93xx_dma_desc *desc, *first;
1039        struct scatterlist *sg;
1040        int i;
1041
1042        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1043                dev_warn(chan2dev(edmac),
1044                         "channel was configured with different direction\n");
1045                return NULL;
1046        }
1047
1048        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1049                dev_warn(chan2dev(edmac),
1050                         "channel is already used for cyclic transfers\n");
1051                return NULL;
1052        }
1053
1054        ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1055
1056        first = NULL;
1057        for_each_sg(sgl, sg, sg_len, i) {
1058                size_t len = sg_dma_len(sg);
1059
1060                if (len > DMA_MAX_CHAN_BYTES) {
1061                        dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1062                                 len);
1063                        goto fail;
1064                }
1065
1066                desc = ep93xx_dma_desc_get(edmac);
1067                if (!desc) {
1068                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1069                        goto fail;
1070                }
1071
1072                if (dir == DMA_MEM_TO_DEV) {
1073                        desc->src_addr = sg_dma_address(sg);
1074                        desc->dst_addr = edmac->runtime_addr;
1075                } else {
1076                        desc->src_addr = edmac->runtime_addr;
1077                        desc->dst_addr = sg_dma_address(sg);
1078                }
1079                desc->size = len;
1080
1081                if (!first)
1082                        first = desc;
1083                else
1084                        list_add_tail(&desc->node, &first->tx_list);
1085        }
1086
1087        first->txd.cookie = -EBUSY;
1088        first->txd.flags = flags;
1089
1090        return &first->txd;
1091
1092fail:
1093        ep93xx_dma_desc_put(edmac, first);
1094        return NULL;
1095}
1096
1097/**
1098 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1099 * @chan: channel
1100 * @dma_addr: DMA mapped address of the buffer
1101 * @buf_len: length of the buffer (in bytes)
1102 * @period_len: length of a single period
1103 * @dir: direction of the operation
1104 * @flags: tx descriptor status flags
1105 *
1106 * Prepares a descriptor for cyclic DMA operation. This means that once the
1107 * descriptor is submitted, we will be submitting in a @period_len sized
1108 * buffers and calling callback once the period has been elapsed. Transfer
1109 * terminates only when client calls dmaengine_terminate_all() for this
1110 * channel.
1111 *
1112 * Returns a valid DMA descriptor or %NULL in case of failure.
1113 */
1114static struct dma_async_tx_descriptor *
1115ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1116                           size_t buf_len, size_t period_len,
1117                           enum dma_transfer_direction dir, unsigned long flags)
1118{
1119        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1120        struct ep93xx_dma_desc *desc, *first;
1121        size_t offset = 0;
1122
1123        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1124                dev_warn(chan2dev(edmac),
1125                         "channel was configured with different direction\n");
1126                return NULL;
1127        }
1128
1129        if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1130                dev_warn(chan2dev(edmac),
1131                         "channel is already used for cyclic transfers\n");
1132                return NULL;
1133        }
1134
1135        if (period_len > DMA_MAX_CHAN_BYTES) {
1136                dev_warn(chan2dev(edmac), "too big period length %zu\n",
1137                         period_len);
1138                return NULL;
1139        }
1140
1141        ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1142
1143        /* Split the buffer into period size chunks */
1144        first = NULL;
1145        for (offset = 0; offset < buf_len; offset += period_len) {
1146                desc = ep93xx_dma_desc_get(edmac);
1147                if (!desc) {
1148                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1149                        goto fail;
1150                }
1151
1152                if (dir == DMA_MEM_TO_DEV) {
1153                        desc->src_addr = dma_addr + offset;
1154                        desc->dst_addr = edmac->runtime_addr;
1155                } else {
1156                        desc->src_addr = edmac->runtime_addr;
1157                        desc->dst_addr = dma_addr + offset;
1158                }
1159
1160                desc->size = period_len;
1161
1162                if (!first)
1163                        first = desc;
1164                else
1165                        list_add_tail(&desc->node, &first->tx_list);
1166        }
1167
1168        first->txd.cookie = -EBUSY;
1169
1170        return &first->txd;
1171
1172fail:
1173        ep93xx_dma_desc_put(edmac, first);
1174        return NULL;
1175}
1176
1177/**
1178 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1179 * current context.
1180 * @chan: channel
1181 *
1182 * Synchronizes the DMA channel termination to the current context. When this
1183 * function returns it is guaranteed that all transfers for previously issued
1184 * descriptors have stopped and and it is safe to free the memory associated
1185 * with them. Furthermore it is guaranteed that all complete callback functions
1186 * for a previously submitted descriptor have finished running and it is safe to
1187 * free resources accessed from within the complete callbacks.
1188 */
1189static void ep93xx_dma_synchronize(struct dma_chan *chan)
1190{
1191        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1192
1193        if (edmac->edma->hw_synchronize)
1194                edmac->edma->hw_synchronize(edmac);
1195}
1196
1197/**
1198 * ep93xx_dma_terminate_all - terminate all transactions
1199 * @chan: channel
1200 *
1201 * Stops all DMA transactions. All descriptors are put back to the
1202 * @edmac->free_list and callbacks are _not_ called.
1203 */
1204static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1205{
1206        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1207        struct ep93xx_dma_desc *desc, *_d;
1208        unsigned long flags;
1209        LIST_HEAD(list);
1210
1211        spin_lock_irqsave(&edmac->lock, flags);
1212        /* First we disable and flush the DMA channel */
1213        edmac->edma->hw_shutdown(edmac);
1214        clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1215        list_splice_init(&edmac->active, &list);
1216        list_splice_init(&edmac->queue, &list);
1217        /*
1218         * We then re-enable the channel. This way we can continue submitting
1219         * the descriptors by just calling ->hw_submit() again.
1220         */
1221        edmac->edma->hw_setup(edmac);
1222        spin_unlock_irqrestore(&edmac->lock, flags);
1223
1224        list_for_each_entry_safe(desc, _d, &list, node)
1225                ep93xx_dma_desc_put(edmac, desc);
1226
1227        return 0;
1228}
1229
1230static int ep93xx_dma_slave_config(struct dma_chan *chan,
1231                                   struct dma_slave_config *config)
1232{
1233        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1234
1235        memcpy(&edmac->slave_config, config, sizeof(*config));
1236
1237        return 0;
1238}
1239
1240static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
1241                                         enum dma_transfer_direction dir,
1242                                         struct dma_slave_config *config)
1243{
1244        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1245        enum dma_slave_buswidth width;
1246        unsigned long flags;
1247        u32 addr, ctrl;
1248
1249        if (!edmac->edma->m2m)
1250                return -EINVAL;
1251
1252        switch (dir) {
1253        case DMA_DEV_TO_MEM:
1254                width = config->src_addr_width;
1255                addr = config->src_addr;
1256                break;
1257
1258        case DMA_MEM_TO_DEV:
1259                width = config->dst_addr_width;
1260                addr = config->dst_addr;
1261                break;
1262
1263        default:
1264                return -EINVAL;
1265        }
1266
1267        switch (width) {
1268        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1269                ctrl = 0;
1270                break;
1271        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1272                ctrl = M2M_CONTROL_PW_16;
1273                break;
1274        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1275                ctrl = M2M_CONTROL_PW_32;
1276                break;
1277        default:
1278                return -EINVAL;
1279        }
1280
1281        spin_lock_irqsave(&edmac->lock, flags);
1282        edmac->runtime_addr = addr;
1283        edmac->runtime_ctrl = ctrl;
1284        spin_unlock_irqrestore(&edmac->lock, flags);
1285
1286        return 0;
1287}
1288
1289/**
1290 * ep93xx_dma_tx_status - check if a transaction is completed
1291 * @chan: channel
1292 * @cookie: transaction specific cookie
1293 * @state: state of the transaction is stored here if given
1294 *
1295 * This function can be used to query state of a given transaction.
1296 */
1297static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1298                                            dma_cookie_t cookie,
1299                                            struct dma_tx_state *state)
1300{
1301        return dma_cookie_status(chan, cookie, state);
1302}
1303
1304/**
1305 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1306 * @chan: channel
1307 *
1308 * When this function is called, all pending transactions are pushed to the
1309 * hardware and executed.
1310 */
1311static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1312{
1313        ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1314}
1315
1316static int __init ep93xx_dma_probe(struct platform_device *pdev)
1317{
1318        struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1319        struct ep93xx_dma_engine *edma;
1320        struct dma_device *dma_dev;
1321        size_t edma_size;
1322        int ret, i;
1323
1324        edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1325        edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1326        if (!edma)
1327                return -ENOMEM;
1328
1329        dma_dev = &edma->dma_dev;
1330        edma->m2m = platform_get_device_id(pdev)->driver_data;
1331        edma->num_channels = pdata->num_channels;
1332
1333        INIT_LIST_HEAD(&dma_dev->channels);
1334        for (i = 0; i < pdata->num_channels; i++) {
1335                const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1336                struct ep93xx_dma_chan *edmac = &edma->channels[i];
1337
1338                edmac->chan.device = dma_dev;
1339                edmac->regs = cdata->base;
1340                edmac->irq = cdata->irq;
1341                edmac->edma = edma;
1342
1343                edmac->clk = clk_get(NULL, cdata->name);
1344                if (IS_ERR(edmac->clk)) {
1345                        dev_warn(&pdev->dev, "failed to get clock for %s\n",
1346                                 cdata->name);
1347                        continue;
1348                }
1349
1350                spin_lock_init(&edmac->lock);
1351                INIT_LIST_HEAD(&edmac->active);
1352                INIT_LIST_HEAD(&edmac->queue);
1353                INIT_LIST_HEAD(&edmac->free_list);
1354                tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1355                             (unsigned long)edmac);
1356
1357                list_add_tail(&edmac->chan.device_node,
1358                              &dma_dev->channels);
1359        }
1360
1361        dma_cap_zero(dma_dev->cap_mask);
1362        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1363        dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1364
1365        dma_dev->dev = &pdev->dev;
1366        dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1367        dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1368        dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1369        dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1370        dma_dev->device_config = ep93xx_dma_slave_config;
1371        dma_dev->device_synchronize = ep93xx_dma_synchronize;
1372        dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1373        dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1374        dma_dev->device_tx_status = ep93xx_dma_tx_status;
1375
1376        dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1377
1378        if (edma->m2m) {
1379                dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1380                dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1381
1382                edma->hw_setup = m2m_hw_setup;
1383                edma->hw_shutdown = m2m_hw_shutdown;
1384                edma->hw_submit = m2m_hw_submit;
1385                edma->hw_interrupt = m2m_hw_interrupt;
1386        } else {
1387                dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1388
1389                edma->hw_synchronize = m2p_hw_synchronize;
1390                edma->hw_setup = m2p_hw_setup;
1391                edma->hw_shutdown = m2p_hw_shutdown;
1392                edma->hw_submit = m2p_hw_submit;
1393                edma->hw_interrupt = m2p_hw_interrupt;
1394        }
1395
1396        ret = dma_async_device_register(dma_dev);
1397        if (unlikely(ret)) {
1398                for (i = 0; i < edma->num_channels; i++) {
1399                        struct ep93xx_dma_chan *edmac = &edma->channels[i];
1400                        if (!IS_ERR_OR_NULL(edmac->clk))
1401                                clk_put(edmac->clk);
1402                }
1403                kfree(edma);
1404        } else {
1405                dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1406                         edma->m2m ? "M" : "P");
1407        }
1408
1409        return ret;
1410}
1411
1412static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1413        { "ep93xx-dma-m2p", 0 },
1414        { "ep93xx-dma-m2m", 1 },
1415        { },
1416};
1417
1418static struct platform_driver ep93xx_dma_driver = {
1419        .driver         = {
1420                .name   = "ep93xx-dma",
1421        },
1422        .id_table       = ep93xx_dma_driver_ids,
1423};
1424
1425static int __init ep93xx_dma_module_init(void)
1426{
1427        return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1428}
1429subsys_initcall(ep93xx_dma_module_init);
1430
1431MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1432MODULE_DESCRIPTION("EP93xx DMA driver");
1433MODULE_LICENSE("GPL");
1434