linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012-15 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: AMD
  23 *
  24 */
  25
  26
  27#include "reg_helper.h"
  28#include "dcn10_optc.h"
  29#include "dc.h"
  30
  31#define REG(reg)\
  32        optc1->tg_regs->reg
  33
  34#define CTX \
  35        optc1->base.ctx
  36
  37#undef FN
  38#define FN(reg_name, field_name) \
  39        optc1->tg_shift->field_name, optc1->tg_mask->field_name
  40
  41#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
  42
  43/**
  44* apply_front_porch_workaround  TODO FPGA still need?
  45*
  46* This is a workaround for a bug that has existed since R5xx and has not been
  47* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
  48*/
  49static void optc1_apply_front_porch_workaround(
  50        struct timing_generator *optc,
  51        struct dc_crtc_timing *timing)
  52{
  53        if (timing->flags.INTERLACE == 1) {
  54                if (timing->v_front_porch < 2)
  55                        timing->v_front_porch = 2;
  56        } else {
  57                if (timing->v_front_porch < 1)
  58                        timing->v_front_porch = 1;
  59        }
  60}
  61
  62void optc1_program_global_sync(
  63                struct timing_generator *optc)
  64{
  65        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  66
  67        if (optc->dlg_otg_param.vstartup_start == 0) {
  68                BREAK_TO_DEBUGGER();
  69                return;
  70        }
  71
  72        REG_SET(OTG_VSTARTUP_PARAM, 0,
  73                VSTARTUP_START, optc->dlg_otg_param.vstartup_start);
  74
  75        REG_SET_2(OTG_VUPDATE_PARAM, 0,
  76                        VUPDATE_OFFSET, optc->dlg_otg_param.vupdate_offset,
  77                        VUPDATE_WIDTH, optc->dlg_otg_param.vupdate_width);
  78
  79        REG_SET(OTG_VREADY_PARAM, 0,
  80                        VREADY_OFFSET, optc->dlg_otg_param.vready_offset);
  81}
  82
  83static void optc1_disable_stereo(struct timing_generator *optc)
  84{
  85        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  86
  87        REG_SET(OTG_STEREO_CONTROL, 0,
  88                OTG_STEREO_EN, 0);
  89
  90        REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
  91                OTG_3D_STRUCTURE_EN, 0,
  92                OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
  93}
  94
  95void optc1_setup_vertical_interrupt0(
  96                struct timing_generator *optc,
  97                uint32_t start_line,
  98                uint32_t end_line)
  99{
 100        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 101
 102        REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
 103                        OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
 104                        OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
 105}
 106
 107void optc1_setup_vertical_interrupt1(
 108                struct timing_generator *optc,
 109                uint32_t start_line)
 110{
 111        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 112
 113        REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
 114                                OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
 115}
 116
 117void optc1_setup_vertical_interrupt2(
 118                struct timing_generator *optc,
 119                uint32_t start_line)
 120{
 121        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 122
 123        REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
 124                        OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
 125}
 126
 127/**
 128 * program_timing_generator   used by mode timing set
 129 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
 130 * Including SYNC. Call BIOS command table to program Timings.
 131 */
 132void optc1_program_timing(
 133        struct timing_generator *optc,
 134        const struct dc_crtc_timing *dc_crtc_timing,
 135        bool use_vbios)
 136{
 137        struct dc_crtc_timing patched_crtc_timing;
 138        uint32_t vesa_sync_start;
 139        uint32_t asic_blank_end;
 140        uint32_t asic_blank_start;
 141        uint32_t v_total;
 142        uint32_t v_sync_end;
 143        uint32_t v_init, v_fp2;
 144        uint32_t h_sync_polarity, v_sync_polarity;
 145        uint32_t start_point = 0;
 146        uint32_t field_num = 0;
 147        uint32_t h_div_2;
 148        int32_t vertical_line_start;
 149
 150        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 151
 152        patched_crtc_timing = *dc_crtc_timing;
 153        optc1_apply_front_porch_workaround(optc, &patched_crtc_timing);
 154
 155        /* Load horizontal timing */
 156
 157        /* CRTC_H_TOTAL = vesa.h_total - 1 */
 158        REG_SET(OTG_H_TOTAL, 0,
 159                        OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
 160
 161        /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
 162        REG_UPDATE_2(OTG_H_SYNC_A,
 163                        OTG_H_SYNC_A_START, 0,
 164                        OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
 165
 166        /* asic_h_blank_end = HsyncWidth + HbackPorch =
 167         * vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
 168         * vesa.h_left_border
 169         */
 170        vesa_sync_start = patched_crtc_timing.h_addressable +
 171                        patched_crtc_timing.h_border_right +
 172                        patched_crtc_timing.h_front_porch;
 173
 174        asic_blank_end = patched_crtc_timing.h_total -
 175                        vesa_sync_start -
 176                        patched_crtc_timing.h_border_left;
 177
 178        /* h_blank_start = v_blank_end + v_active */
 179        asic_blank_start = asic_blank_end +
 180                        patched_crtc_timing.h_border_left +
 181                        patched_crtc_timing.h_addressable +
 182                        patched_crtc_timing.h_border_right;
 183
 184        REG_UPDATE_2(OTG_H_BLANK_START_END,
 185                        OTG_H_BLANK_START, asic_blank_start,
 186                        OTG_H_BLANK_END, asic_blank_end);
 187
 188        /* h_sync polarity */
 189        h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
 190                        0 : 1;
 191
 192        REG_UPDATE(OTG_H_SYNC_A_CNTL,
 193                        OTG_H_SYNC_A_POL, h_sync_polarity);
 194
 195        v_total = patched_crtc_timing.v_total - 1;
 196
 197        REG_SET(OTG_V_TOTAL, 0,
 198                        OTG_V_TOTAL, v_total);
 199
 200        /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
 201         * OTG_V_TOTAL_MIN are equal to V_TOTAL.
 202         */
 203        REG_SET(OTG_V_TOTAL_MAX, 0,
 204                OTG_V_TOTAL_MAX, v_total);
 205        REG_SET(OTG_V_TOTAL_MIN, 0,
 206                OTG_V_TOTAL_MIN, v_total);
 207
 208        /* v_sync_start = 0, v_sync_end = v_sync_width */
 209        v_sync_end = patched_crtc_timing.v_sync_width;
 210
 211        REG_UPDATE_2(OTG_V_SYNC_A,
 212                        OTG_V_SYNC_A_START, 0,
 213                        OTG_V_SYNC_A_END, v_sync_end);
 214
 215        vesa_sync_start = patched_crtc_timing.v_addressable +
 216                        patched_crtc_timing.v_border_bottom +
 217                        patched_crtc_timing.v_front_porch;
 218
 219        asic_blank_end = (patched_crtc_timing.v_total -
 220                        vesa_sync_start -
 221                        patched_crtc_timing.v_border_top);
 222
 223        /* v_blank_start = v_blank_end + v_active */
 224        asic_blank_start = asic_blank_end +
 225                        (patched_crtc_timing.v_border_top +
 226                        patched_crtc_timing.v_addressable +
 227                        patched_crtc_timing.v_border_bottom);
 228
 229        vertical_line_start = asic_blank_end - optc->dlg_otg_param.vstartup_start + 1;
 230        v_fp2 = 0;
 231        if (vertical_line_start < 0)
 232                v_fp2 = -vertical_line_start;
 233
 234        REG_UPDATE_2(OTG_V_BLANK_START_END,
 235                        OTG_V_BLANK_START, asic_blank_start,
 236                        OTG_V_BLANK_END, asic_blank_end);
 237
 238        /* v_sync polarity */
 239        v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
 240                        0 : 1;
 241
 242        REG_UPDATE(OTG_V_SYNC_A_CNTL,
 243                OTG_V_SYNC_A_POL, v_sync_polarity);
 244
 245        v_init = asic_blank_start;
 246        if (optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
 247                optc->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
 248                optc->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
 249                start_point = 1;
 250                if (patched_crtc_timing.flags.INTERLACE == 1)
 251                        field_num = 1;
 252        }
 253
 254        /* Interlace */
 255        if (REG(OTG_INTERLACE_CONTROL)) {
 256                if (patched_crtc_timing.flags.INTERLACE == 1) {
 257                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 258                                        OTG_INTERLACE_ENABLE, 1);
 259                        v_init = v_init / 2;
 260                        if ((optc->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
 261                                v_fp2 = v_fp2 / 2;
 262                } else
 263                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 264                                        OTG_INTERLACE_ENABLE, 0);
 265        }
 266
 267        /* VTG enable set to 0 first VInit */
 268        REG_UPDATE(CONTROL,
 269                        VTG0_ENABLE, 0);
 270
 271        REG_UPDATE_2(CONTROL,
 272                        VTG0_FP2, v_fp2,
 273                        VTG0_VCOUNT_INIT, v_init);
 274
 275        /* original code is using VTG offset to address OTG reg, seems wrong */
 276        REG_UPDATE_2(OTG_CONTROL,
 277                        OTG_START_POINT_CNTL, start_point,
 278                        OTG_FIELD_NUMBER_CNTL, field_num);
 279
 280        optc1_program_global_sync(optc);
 281
 282        /* TODO
 283         * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
 284         * program_horz_count_by_2
 285         * for DVI 30bpp mode, 0 otherwise
 286         * program_horz_count_by_2(optc, &patched_crtc_timing);
 287         */
 288
 289        /* Enable stereo - only when we need to pack 3D frame. Other types
 290         * of stereo handled in explicit call
 291         */
 292
 293        h_div_2 = optc1_is_two_pixels_per_containter(&patched_crtc_timing);
 294        REG_UPDATE(OTG_H_TIMING_CNTL,
 295                        OTG_H_TIMING_DIV_BY2, h_div_2 || optc1->comb_opp_id != 0xf);
 296
 297}
 298
 299void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
 300{
 301        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 302
 303        uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
 304
 305        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 306                        OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
 307}
 308
 309/**
 310 * unblank_crtc
 311 * Call ASIC Control Object to UnBlank CRTC.
 312 */
 313static void optc1_unblank_crtc(struct timing_generator *optc)
 314{
 315        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 316
 317        REG_UPDATE_2(OTG_BLANK_CONTROL,
 318                        OTG_BLANK_DATA_EN, 0,
 319                        OTG_BLANK_DE_MODE, 0);
 320
 321        /* W/A for automated testing
 322         * Automated testing will fail underflow test as there
 323         * sporadic underflows which occur during the optc blank
 324         * sequence.  As a w/a, clear underflow on unblank.
 325         * This prevents the failure, but will not mask actual
 326         * underflow that affect real use cases.
 327         */
 328        optc1_clear_optc_underflow(optc);
 329}
 330
 331/**
 332 * blank_crtc
 333 * Call ASIC Control Object to Blank CRTC.
 334 */
 335
 336static void optc1_blank_crtc(struct timing_generator *optc)
 337{
 338        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 339
 340        REG_UPDATE_2(OTG_BLANK_CONTROL,
 341                        OTG_BLANK_DATA_EN, 1,
 342                        OTG_BLANK_DE_MODE, 0);
 343
 344        optc1_set_blank_data_double_buffer(optc, false);
 345}
 346
 347void optc1_set_blank(struct timing_generator *optc,
 348                bool enable_blanking)
 349{
 350        if (enable_blanking)
 351                optc1_blank_crtc(optc);
 352        else
 353                optc1_unblank_crtc(optc);
 354}
 355
 356bool optc1_is_blanked(struct timing_generator *optc)
 357{
 358        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 359        uint32_t blank_en;
 360        uint32_t blank_state;
 361
 362        REG_GET_2(OTG_BLANK_CONTROL,
 363                        OTG_BLANK_DATA_EN, &blank_en,
 364                        OTG_CURRENT_BLANK_STATE, &blank_state);
 365
 366        return blank_en && blank_state;
 367}
 368
 369void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
 370{
 371        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 372
 373        if (enable) {
 374                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 375                                OPTC_INPUT_CLK_EN, 1,
 376                                OPTC_INPUT_CLK_GATE_DIS, 1);
 377
 378                REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
 379                                OPTC_INPUT_CLK_ON, 1,
 380                                1, 1000);
 381
 382                /* Enable clock */
 383                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 384                                OTG_CLOCK_EN, 1,
 385                                OTG_CLOCK_GATE_DIS, 1);
 386                REG_WAIT(OTG_CLOCK_CONTROL,
 387                                OTG_CLOCK_ON, 1,
 388                                1, 1000);
 389        } else  {
 390                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 391                                OTG_CLOCK_GATE_DIS, 0,
 392                                OTG_CLOCK_EN, 0);
 393
 394                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 395                                OPTC_INPUT_CLK_GATE_DIS, 0,
 396                                OPTC_INPUT_CLK_EN, 0);
 397        }
 398}
 399
 400/**
 401 * Enable CRTC
 402 * Enable CRTC - call ASIC Control Object to enable Timing generator.
 403 */
 404static bool optc1_enable_crtc(struct timing_generator *optc)
 405{
 406        /* TODO FPGA wait for answer
 407         * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
 408         * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
 409         */
 410        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 411
 412        /* opp instance for OTG. For DCN1.0, ODM is remoed.
 413         * OPP and OPTC should 1:1 mapping
 414         */
 415        REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
 416                        OPTC_SRC_SEL, optc->inst);
 417
 418        /* VTG enable first is for HW workaround */
 419        REG_UPDATE(CONTROL,
 420                        VTG0_ENABLE, 1);
 421
 422        /* Enable CRTC */
 423        REG_UPDATE_2(OTG_CONTROL,
 424                        OTG_DISABLE_POINT_CNTL, 3,
 425                        OTG_MASTER_EN, 1);
 426
 427        return true;
 428}
 429
 430/* disable_crtc - call ASIC Control Object to disable Timing generator. */
 431bool optc1_disable_crtc(struct timing_generator *optc)
 432{
 433        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 434
 435        /* disable otg request until end of the first line
 436         * in the vertical blank region
 437         */
 438        REG_UPDATE_2(OTG_CONTROL,
 439                        OTG_DISABLE_POINT_CNTL, 3,
 440                        OTG_MASTER_EN, 0);
 441
 442        REG_UPDATE(CONTROL,
 443                        VTG0_ENABLE, 0);
 444
 445        /* CRTC disabled, so disable  clock. */
 446        REG_WAIT(OTG_CLOCK_CONTROL,
 447                        OTG_BUSY, 0,
 448                        1, 100000);
 449
 450        return true;
 451}
 452
 453
 454void optc1_program_blank_color(
 455                struct timing_generator *optc,
 456                const struct tg_color *black_color)
 457{
 458        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 459
 460        REG_SET_3(OTG_BLACK_COLOR, 0,
 461                        OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
 462                        OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
 463                        OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
 464}
 465
 466bool optc1_validate_timing(
 467        struct timing_generator *optc,
 468        const struct dc_crtc_timing *timing)
 469{
 470        uint32_t v_blank;
 471        uint32_t h_blank;
 472        uint32_t min_v_blank;
 473        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 474
 475        ASSERT(timing != NULL);
 476
 477        v_blank = (timing->v_total - timing->v_addressable -
 478                                        timing->v_border_top - timing->v_border_bottom);
 479
 480        h_blank = (timing->h_total - timing->h_addressable -
 481                timing->h_border_right -
 482                timing->h_border_left);
 483
 484        if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
 485                timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
 486                timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
 487                timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
 488                timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
 489                timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
 490                return false;
 491
 492        /* Temporarily blocking interlacing mode until it's supported */
 493        if (timing->flags.INTERLACE == 1)
 494                return false;
 495
 496        /* Check maximum number of pixels supported by Timing Generator
 497         * (Currently will never fail, in order to fail needs display which
 498         * needs more than 8192 horizontal and
 499         * more than 8192 vertical total pixels)
 500         */
 501        if (timing->h_total > optc1->max_h_total ||
 502                timing->v_total > optc1->max_v_total)
 503                return false;
 504
 505
 506        if (h_blank < optc1->min_h_blank)
 507                return false;
 508
 509        if (timing->h_sync_width  < optc1->min_h_sync_width ||
 510                 timing->v_sync_width  < optc1->min_v_sync_width)
 511                return false;
 512
 513        min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
 514
 515        if (v_blank < min_v_blank)
 516                return false;
 517
 518        return true;
 519
 520}
 521
 522/*
 523 * get_vblank_counter
 524 *
 525 * @brief
 526 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
 527 * holds the counter of frames.
 528 *
 529 * @param
 530 * struct timing_generator *optc - [in] timing generator which controls the
 531 * desired CRTC
 532 *
 533 * @return
 534 * Counter of frames, which should equal to number of vblanks.
 535 */
 536uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
 537{
 538        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 539        uint32_t frame_count;
 540
 541        REG_GET(OTG_STATUS_FRAME_COUNT,
 542                OTG_FRAME_COUNT, &frame_count);
 543
 544        return frame_count;
 545}
 546
 547void optc1_lock(struct timing_generator *optc)
 548{
 549        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 550
 551        REG_SET(OTG_GLOBAL_CONTROL0, 0,
 552                        OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
 553        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 554                        OTG_MASTER_UPDATE_LOCK, 1);
 555
 556        /* Should be fast, status does not update on maximus */
 557        if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
 558                REG_WAIT(OTG_MASTER_UPDATE_LOCK,
 559                                UPDATE_LOCK_STATUS, 1,
 560                                1, 10);
 561}
 562
 563void optc1_unlock(struct timing_generator *optc)
 564{
 565        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 566
 567        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 568                        OTG_MASTER_UPDATE_LOCK, 0);
 569}
 570
 571void optc1_get_position(struct timing_generator *optc,
 572                struct crtc_position *position)
 573{
 574        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 575
 576        REG_GET_2(OTG_STATUS_POSITION,
 577                        OTG_HORZ_COUNT, &position->horizontal_count,
 578                        OTG_VERT_COUNT, &position->vertical_count);
 579
 580        REG_GET(OTG_NOM_VERT_POSITION,
 581                        OTG_VERT_COUNT_NOM, &position->nominal_vcount);
 582}
 583
 584bool optc1_is_counter_moving(struct timing_generator *optc)
 585{
 586        struct crtc_position position1, position2;
 587
 588        optc->funcs->get_position(optc, &position1);
 589        optc->funcs->get_position(optc, &position2);
 590
 591        if (position1.horizontal_count == position2.horizontal_count &&
 592                position1.vertical_count == position2.vertical_count)
 593                return false;
 594        else
 595                return true;
 596}
 597
 598bool optc1_did_triggered_reset_occur(
 599        struct timing_generator *optc)
 600{
 601        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 602        uint32_t occurred_force, occurred_vsync;
 603
 604        REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
 605                OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
 606
 607        REG_GET(OTG_VERT_SYNC_CONTROL,
 608                OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
 609
 610        return occurred_vsync != 0 || occurred_force != 0;
 611}
 612
 613void optc1_disable_reset_trigger(struct timing_generator *optc)
 614{
 615        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 616
 617        REG_WRITE(OTG_TRIGA_CNTL, 0);
 618
 619        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 620                OTG_FORCE_COUNT_NOW_CLEAR, 1);
 621
 622        REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 623                OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
 624}
 625
 626void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
 627{
 628        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 629        uint32_t falling_edge;
 630
 631        REG_GET(OTG_V_SYNC_A_CNTL,
 632                        OTG_V_SYNC_A_POL, &falling_edge);
 633
 634        if (falling_edge)
 635                REG_SET_3(OTG_TRIGA_CNTL, 0,
 636                                /* vsync signal from selected OTG pipe based
 637                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 638                                 */
 639                                OTG_TRIGA_SOURCE_SELECT, 20,
 640                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 641                                /* always detect falling edge */
 642                                OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
 643        else
 644                REG_SET_3(OTG_TRIGA_CNTL, 0,
 645                                /* vsync signal from selected OTG pipe based
 646                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 647                                 */
 648                                OTG_TRIGA_SOURCE_SELECT, 20,
 649                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 650                                /* always detect rising edge */
 651                                OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
 652
 653        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 654                        /* force H count to H_TOTAL and V count to V_TOTAL in
 655                         * progressive mode and V_TOTAL-1 in interlaced mode
 656                         */
 657                        OTG_FORCE_COUNT_NOW_MODE, 2);
 658}
 659
 660void optc1_enable_crtc_reset(
 661                struct timing_generator *optc,
 662                int source_tg_inst,
 663                struct crtc_trigger_info *crtc_tp)
 664{
 665        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 666        uint32_t falling_edge = 0;
 667        uint32_t rising_edge = 0;
 668
 669        switch (crtc_tp->event) {
 670
 671        case CRTC_EVENT_VSYNC_RISING:
 672                rising_edge = 1;
 673                break;
 674
 675        case CRTC_EVENT_VSYNC_FALLING:
 676                falling_edge = 1;
 677                break;
 678        }
 679
 680        REG_SET_4(OTG_TRIGA_CNTL, 0,
 681                 /* vsync signal from selected OTG pipe based
 682                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 683                  */
 684                  OTG_TRIGA_SOURCE_SELECT, 20,
 685                  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 686                  /* always detect falling edge */
 687                  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
 688                  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
 689
 690        switch (crtc_tp->delay) {
 691        case TRIGGER_DELAY_NEXT_LINE:
 692                REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 693                                OTG_AUTO_FORCE_VSYNC_MODE, 1);
 694                break;
 695        case TRIGGER_DELAY_NEXT_PIXEL:
 696                REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 697                        /* force H count to H_TOTAL and V count to V_TOTAL in
 698                         * progressive mode and V_TOTAL-1 in interlaced mode
 699                         */
 700                        OTG_FORCE_COUNT_NOW_MODE, 2);
 701                break;
 702        }
 703}
 704
 705void optc1_wait_for_state(struct timing_generator *optc,
 706                enum crtc_state state)
 707{
 708        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 709
 710        switch (state) {
 711        case CRTC_STATE_VBLANK:
 712                REG_WAIT(OTG_STATUS,
 713                                OTG_V_BLANK, 1,
 714                                1, 100000); /* 1 vupdate at 10hz */
 715                break;
 716
 717        case CRTC_STATE_VACTIVE:
 718                REG_WAIT(OTG_STATUS,
 719                                OTG_V_ACTIVE_DISP, 1,
 720                                1, 100000); /* 1 vupdate at 10hz */
 721                break;
 722
 723        default:
 724                break;
 725        }
 726}
 727
 728void optc1_set_early_control(
 729        struct timing_generator *optc,
 730        uint32_t early_cntl)
 731{
 732        /* asic design change, do not need this control
 733         * empty for share caller logic
 734         */
 735}
 736
 737
 738void optc1_set_static_screen_control(
 739        struct timing_generator *optc,
 740        uint32_t value)
 741{
 742        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 743
 744        /* Bit 8 is no longer applicable in RV for PSR case,
 745         * set bit 8 to 0 if given
 746         */
 747        if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
 748                        != 0)
 749                value = value &
 750                ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
 751
 752        REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
 753                        OTG_STATIC_SCREEN_EVENT_MASK, value,
 754                        OTG_STATIC_SCREEN_FRAME_COUNT, 2);
 755}
 756
 757
 758/**
 759 *****************************************************************************
 760 *  Function: set_drr
 761 *
 762 *  @brief
 763 *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
 764 *
 765 *****************************************************************************
 766 */
 767void optc1_set_drr(
 768        struct timing_generator *optc,
 769        const struct drr_params *params)
 770{
 771        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 772
 773        if (params != NULL &&
 774                params->vertical_total_max > 0 &&
 775                params->vertical_total_min > 0) {
 776
 777                REG_SET(OTG_V_TOTAL_MAX, 0,
 778                        OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
 779
 780                REG_SET(OTG_V_TOTAL_MIN, 0,
 781                        OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
 782
 783                REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
 784                                OTG_V_TOTAL_MIN_SEL, 1,
 785                                OTG_V_TOTAL_MAX_SEL, 1,
 786                                OTG_FORCE_LOCK_ON_EVENT, 0,
 787                                OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
 788                                OTG_SET_V_TOTAL_MIN_MASK, 0);
 789        } else {
 790                REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
 791                                OTG_SET_V_TOTAL_MIN_MASK, 0,
 792                                OTG_V_TOTAL_MIN_SEL, 0,
 793                                OTG_V_TOTAL_MAX_SEL, 0,
 794                                OTG_FORCE_LOCK_ON_EVENT, 0);
 795
 796                REG_SET(OTG_V_TOTAL_MIN, 0,
 797                        OTG_V_TOTAL_MIN, 0);
 798
 799                REG_SET(OTG_V_TOTAL_MAX, 0,
 800                        OTG_V_TOTAL_MAX, 0);
 801        }
 802}
 803
 804static void optc1_set_test_pattern(
 805        struct timing_generator *optc,
 806        /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
 807         * because this is not DP-specific (which is probably somewhere in DP
 808         * encoder) */
 809        enum controller_dp_test_pattern test_pattern,
 810        enum dc_color_depth color_depth)
 811{
 812        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 813        enum test_pattern_color_format bit_depth;
 814        enum test_pattern_dyn_range dyn_range;
 815        enum test_pattern_mode mode;
 816        uint32_t pattern_mask;
 817        uint32_t pattern_data;
 818        /* color ramp generator mixes 16-bits color */
 819        uint32_t src_bpc = 16;
 820        /* requested bpc */
 821        uint32_t dst_bpc;
 822        uint32_t index;
 823        /* RGB values of the color bars.
 824         * Produce two RGB colors: RGB0 - white (all Fs)
 825         * and RGB1 - black (all 0s)
 826         * (three RGB components for two colors)
 827         */
 828        uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
 829                                                0x0000, 0x0000};
 830        /* dest color (converted to the specified color format) */
 831        uint16_t dst_color[6];
 832        uint32_t inc_base;
 833
 834        /* translate to bit depth */
 835        switch (color_depth) {
 836        case COLOR_DEPTH_666:
 837                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
 838        break;
 839        case COLOR_DEPTH_888:
 840                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 841        break;
 842        case COLOR_DEPTH_101010:
 843                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
 844        break;
 845        case COLOR_DEPTH_121212:
 846                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
 847        break;
 848        default:
 849                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 850        break;
 851        }
 852
 853        switch (test_pattern) {
 854        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
 855        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
 856        {
 857                dyn_range = (test_pattern ==
 858                                CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
 859                                TEST_PATTERN_DYN_RANGE_CEA :
 860                                TEST_PATTERN_DYN_RANGE_VESA);
 861                mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
 862
 863                REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
 864                                OTG_TEST_PATTERN_VRES, 6,
 865                                OTG_TEST_PATTERN_HRES, 6);
 866
 867                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
 868                                OTG_TEST_PATTERN_EN, 1,
 869                                OTG_TEST_PATTERN_MODE, mode,
 870                                OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
 871                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
 872        }
 873        break;
 874
 875        case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
 876        case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
 877        {
 878                mode = (test_pattern ==
 879                        CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
 880                        TEST_PATTERN_MODE_VERTICALBARS :
 881                        TEST_PATTERN_MODE_HORIZONTALBARS);
 882
 883                switch (bit_depth) {
 884                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
 885                        dst_bpc = 6;
 886                break;
 887                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
 888                        dst_bpc = 8;
 889                break;
 890                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
 891                        dst_bpc = 10;
 892                break;
 893                default:
 894                        dst_bpc = 8;
 895                break;
 896                }
 897
 898                /* adjust color to the required colorFormat */
 899                for (index = 0; index < 6; index++) {
 900                        /* dst = 2^dstBpc * src / 2^srcBpc = src >>
 901                         * (srcBpc - dstBpc);
 902                         */
 903                        dst_color[index] =
 904                                src_color[index] >> (src_bpc - dst_bpc);
 905                /* CRTC_TEST_PATTERN_DATA has 16 bits,
 906                 * lowest 6 are hardwired to ZERO
 907                 * color bits should be left aligned aligned to MSB
 908                 * XXXXXXXXXX000000 for 10 bit,
 909                 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
 910                 */
 911                        dst_color[index] <<= (16 - dst_bpc);
 912                }
 913
 914                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
 915
 916                /* We have to write the mask before data, similar to pipeline.
 917                 * For example, for 8 bpc, if we want RGB0 to be magenta,
 918                 * and RGB1 to be cyan,
 919                 * we need to make 7 writes:
 920                 * MASK   DATA
 921                 * 000001 00000000 00000000                     set mask to R0
 922                 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
 923                 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
 924                 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
 925                 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
 926                 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
 927                 * 100000 11111111 00000000     B1 255, 0xFF00
 928                 *
 929                 * we will make a loop of 6 in which we prepare the mask,
 930                 * then write, then prepare the color for next write.
 931                 * first iteration will write mask only,
 932                 * but each next iteration color prepared in
 933                 * previous iteration will be written within new mask,
 934                 * the last component will written separately,
 935                 * mask is not changing between 6th and 7th write
 936                 * and color will be prepared by last iteration
 937                 */
 938
 939                /* write color, color values mask in CRTC_TEST_PATTERN_MASK
 940                 * is B1, G1, R1, B0, G0, R0
 941                 */
 942                pattern_data = 0;
 943                for (index = 0; index < 6; index++) {
 944                        /* prepare color mask, first write PATTERN_DATA
 945                         * will have all zeros
 946                         */
 947                        pattern_mask = (1 << index);
 948
 949                        /* write color component */
 950                        REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
 951                                        OTG_TEST_PATTERN_MASK, pattern_mask,
 952                                        OTG_TEST_PATTERN_DATA, pattern_data);
 953
 954                        /* prepare next color component,
 955                         * will be written in the next iteration
 956                         */
 957                        pattern_data = dst_color[index];
 958                }
 959                /* write last color component,
 960                 * it's been already prepared in the loop
 961                 */
 962                REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
 963                                OTG_TEST_PATTERN_MASK, pattern_mask,
 964                                OTG_TEST_PATTERN_DATA, pattern_data);
 965
 966                /* enable test pattern */
 967                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
 968                                OTG_TEST_PATTERN_EN, 1,
 969                                OTG_TEST_PATTERN_MODE, mode,
 970                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
 971                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
 972        }
 973        break;
 974
 975        case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
 976        {
 977                mode = (bit_depth ==
 978                        TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
 979                        TEST_PATTERN_MODE_DUALRAMP_RGB :
 980                        TEST_PATTERN_MODE_SINGLERAMP_RGB);
 981
 982                switch (bit_depth) {
 983                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
 984                        dst_bpc = 6;
 985                break;
 986                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
 987                        dst_bpc = 8;
 988                break;
 989                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
 990                        dst_bpc = 10;
 991                break;
 992                default:
 993                        dst_bpc = 8;
 994                break;
 995                }
 996
 997                /* increment for the first ramp for one color gradation
 998                 * 1 gradation for 6-bit color is 2^10
 999                 * gradations in 16-bit color
1000                 */
1001                inc_base = (src_bpc - dst_bpc);
1002
1003                switch (bit_depth) {
1004                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1005                {
1006                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1007                                        OTG_TEST_PATTERN_INC0, inc_base,
1008                                        OTG_TEST_PATTERN_INC1, 0,
1009                                        OTG_TEST_PATTERN_HRES, 6,
1010                                        OTG_TEST_PATTERN_VRES, 6,
1011                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1012                }
1013                break;
1014                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1015                {
1016                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1017                                        OTG_TEST_PATTERN_INC0, inc_base,
1018                                        OTG_TEST_PATTERN_INC1, 0,
1019                                        OTG_TEST_PATTERN_HRES, 8,
1020                                        OTG_TEST_PATTERN_VRES, 6,
1021                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1022                }
1023                break;
1024                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1025                {
1026                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1027                                        OTG_TEST_PATTERN_INC0, inc_base,
1028                                        OTG_TEST_PATTERN_INC1, inc_base + 2,
1029                                        OTG_TEST_PATTERN_HRES, 8,
1030                                        OTG_TEST_PATTERN_VRES, 5,
1031                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1032                }
1033                break;
1034                default:
1035                break;
1036                }
1037
1038                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1039
1040                /* enable test pattern */
1041                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1042
1043                REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1044                                OTG_TEST_PATTERN_EN, 1,
1045                                OTG_TEST_PATTERN_MODE, mode,
1046                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1047                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1048        }
1049        break;
1050        case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1051        {
1052                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1053                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1054                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1055        }
1056        break;
1057        default:
1058                break;
1059
1060        }
1061}
1062
1063void optc1_get_crtc_scanoutpos(
1064        struct timing_generator *optc,
1065        uint32_t *v_blank_start,
1066        uint32_t *v_blank_end,
1067        uint32_t *h_position,
1068        uint32_t *v_position)
1069{
1070        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1071        struct crtc_position position;
1072
1073        REG_GET_2(OTG_V_BLANK_START_END,
1074                        OTG_V_BLANK_START, v_blank_start,
1075                        OTG_V_BLANK_END, v_blank_end);
1076
1077        optc1_get_position(optc, &position);
1078
1079        *h_position = position.horizontal_count;
1080        *v_position = position.vertical_count;
1081}
1082
1083static void optc1_enable_stereo(struct timing_generator *optc,
1084        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1085{
1086        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1087
1088        if (flags) {
1089                uint32_t stereo_en;
1090                stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1091
1092                if (flags->PROGRAM_STEREO)
1093                        REG_UPDATE_3(OTG_STEREO_CONTROL,
1094                                OTG_STEREO_EN, stereo_en,
1095                                OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1096                                OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1097
1098                if (flags->PROGRAM_POLARITY)
1099                        REG_UPDATE(OTG_STEREO_CONTROL,
1100                                OTG_STEREO_EYE_FLAG_POLARITY,
1101                                flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1102
1103                if (flags->DISABLE_STEREO_DP_SYNC)
1104                        REG_UPDATE(OTG_STEREO_CONTROL,
1105                                OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1106
1107                if (flags->PROGRAM_STEREO)
1108                        REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1109                                OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1110                                OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1111
1112        }
1113}
1114
1115void optc1_program_stereo(struct timing_generator *optc,
1116        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1117{
1118        if (flags->PROGRAM_STEREO)
1119                optc1_enable_stereo(optc, timing, flags);
1120        else
1121                optc1_disable_stereo(optc);
1122}
1123
1124
1125bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1126{
1127        bool ret = false;
1128        uint32_t left_eye = 0;
1129        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1130
1131        REG_GET(OTG_STEREO_STATUS,
1132                OTG_STEREO_CURRENT_EYE, &left_eye);
1133        if (left_eye == 1)
1134                ret = true;
1135        else
1136                ret = false;
1137
1138        return ret;
1139}
1140
1141bool optc1_is_matching_timing(struct timing_generator *tg,
1142                const struct dc_crtc_timing *otg_timing)
1143{
1144        struct dc_crtc_timing hw_crtc_timing = {0};
1145        struct dcn_otg_state s = {0};
1146
1147        if (tg == NULL || otg_timing == NULL)
1148                return false;
1149
1150        optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1151
1152        hw_crtc_timing.h_total = s.h_total + 1;
1153        hw_crtc_timing.h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1154        hw_crtc_timing.h_front_porch = s.h_total + 1 - s.h_blank_start;
1155        hw_crtc_timing.h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1156
1157        hw_crtc_timing.v_total = s.v_total + 1;
1158        hw_crtc_timing.v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1159        hw_crtc_timing.v_front_porch = s.v_total + 1 - s.v_blank_start;
1160        hw_crtc_timing.v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1161
1162        if (otg_timing->h_total != hw_crtc_timing.h_total)
1163                return false;
1164
1165        if (otg_timing->h_border_left != hw_crtc_timing.h_border_left)
1166                return false;
1167
1168        if (otg_timing->h_addressable != hw_crtc_timing.h_addressable)
1169                return false;
1170
1171        if (otg_timing->h_border_right != hw_crtc_timing.h_border_right)
1172                return false;
1173
1174        if (otg_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1175                return false;
1176
1177        if (otg_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1178                return false;
1179
1180        if (otg_timing->v_total != hw_crtc_timing.v_total)
1181                return false;
1182
1183        if (otg_timing->v_border_top != hw_crtc_timing.v_border_top)
1184                return false;
1185
1186        if (otg_timing->v_addressable != hw_crtc_timing.v_addressable)
1187                return false;
1188
1189        if (otg_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1190                return false;
1191
1192        if (otg_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1193                return false;
1194
1195        return true;
1196}
1197
1198
1199void optc1_read_otg_state(struct optc *optc1,
1200                struct dcn_otg_state *s)
1201{
1202        REG_GET(OTG_CONTROL,
1203                        OTG_MASTER_EN, &s->otg_enabled);
1204
1205        REG_GET_2(OTG_V_BLANK_START_END,
1206                        OTG_V_BLANK_START, &s->v_blank_start,
1207                        OTG_V_BLANK_END, &s->v_blank_end);
1208
1209        REG_GET(OTG_V_SYNC_A_CNTL,
1210                        OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1211
1212        REG_GET(OTG_V_TOTAL,
1213                        OTG_V_TOTAL, &s->v_total);
1214
1215        REG_GET(OTG_V_TOTAL_MAX,
1216                        OTG_V_TOTAL_MAX, &s->v_total_max);
1217
1218        REG_GET(OTG_V_TOTAL_MIN,
1219                        OTG_V_TOTAL_MIN, &s->v_total_min);
1220
1221        REG_GET(OTG_V_TOTAL_CONTROL,
1222                        OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1223
1224        REG_GET(OTG_V_TOTAL_CONTROL,
1225                        OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1226
1227        REG_GET_2(OTG_V_SYNC_A,
1228                        OTG_V_SYNC_A_START, &s->v_sync_a_start,
1229                        OTG_V_SYNC_A_END, &s->v_sync_a_end);
1230
1231        REG_GET_2(OTG_H_BLANK_START_END,
1232                        OTG_H_BLANK_START, &s->h_blank_start,
1233                        OTG_H_BLANK_END, &s->h_blank_end);
1234
1235        REG_GET_2(OTG_H_SYNC_A,
1236                        OTG_H_SYNC_A_START, &s->h_sync_a_start,
1237                        OTG_H_SYNC_A_END, &s->h_sync_a_end);
1238
1239        REG_GET(OTG_H_SYNC_A_CNTL,
1240                        OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1241
1242        REG_GET(OTG_H_TOTAL,
1243                        OTG_H_TOTAL, &s->h_total);
1244
1245        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1246                        OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1247}
1248
1249bool optc1_get_otg_active_size(struct timing_generator *optc,
1250                uint32_t *otg_active_width,
1251                uint32_t *otg_active_height)
1252{
1253        uint32_t otg_enabled;
1254        uint32_t v_blank_start;
1255        uint32_t v_blank_end;
1256        uint32_t h_blank_start;
1257        uint32_t h_blank_end;
1258        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1259
1260
1261        REG_GET(OTG_CONTROL,
1262                        OTG_MASTER_EN, &otg_enabled);
1263
1264        if (otg_enabled == 0)
1265                return false;
1266
1267        REG_GET_2(OTG_V_BLANK_START_END,
1268                        OTG_V_BLANK_START, &v_blank_start,
1269                        OTG_V_BLANK_END, &v_blank_end);
1270
1271        REG_GET_2(OTG_H_BLANK_START_END,
1272                        OTG_H_BLANK_START, &h_blank_start,
1273                        OTG_H_BLANK_END, &h_blank_end);
1274
1275        *otg_active_width = v_blank_start - v_blank_end;
1276        *otg_active_height = h_blank_start - h_blank_end;
1277        return true;
1278}
1279
1280void optc1_clear_optc_underflow(struct timing_generator *optc)
1281{
1282        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1283
1284        REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1285}
1286
1287void optc1_tg_init(struct timing_generator *optc)
1288{
1289        optc1_set_blank_data_double_buffer(optc, true);
1290        optc1_clear_optc_underflow(optc);
1291}
1292
1293bool optc1_is_tg_enabled(struct timing_generator *optc)
1294{
1295        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1296        uint32_t otg_enabled = 0;
1297
1298        REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1299
1300        return (otg_enabled != 0);
1301
1302}
1303
1304bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1305{
1306        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1307        uint32_t underflow_occurred = 0;
1308
1309        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1310                        OPTC_UNDERFLOW_OCCURRED_STATUS,
1311                        &underflow_occurred);
1312
1313        return (underflow_occurred == 1);
1314}
1315
1316bool optc1_configure_crc(struct timing_generator *optc,
1317                          const struct crc_params *params)
1318{
1319        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1320
1321        /* Cannot configure crc on a CRTC that is disabled */
1322        if (!optc1_is_tg_enabled(optc))
1323                return false;
1324
1325        REG_WRITE(OTG_CRC_CNTL, 0);
1326
1327        if (!params->enable)
1328                return true;
1329
1330        /* Program frame boundaries */
1331        /* Window A x axis start and end. */
1332        REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1333                        OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1334                        OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1335
1336        /* Window A y axis start and end. */
1337        REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1338                        OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1339                        OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1340
1341        /* Window B x axis start and end. */
1342        REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1343                        OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1344                        OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1345
1346        /* Window B y axis start and end. */
1347        REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1348                        OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1349                        OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1350
1351        /* Set crc mode and selection, and enable. Only using CRC0*/
1352        REG_UPDATE_3(OTG_CRC_CNTL,
1353                        OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1354                        OTG_CRC0_SELECT, params->selection,
1355                        OTG_CRC_EN, 1);
1356
1357        return true;
1358}
1359
1360bool optc1_get_crc(struct timing_generator *optc,
1361                    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1362{
1363        uint32_t field = 0;
1364        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1365
1366        REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1367
1368        /* Early return if CRC is not enabled for this CRTC */
1369        if (!field)
1370                return false;
1371
1372        REG_GET_2(OTG_CRC0_DATA_RG,
1373                        CRC0_R_CR, r_cr,
1374                        CRC0_G_Y, g_y);
1375
1376        REG_GET(OTG_CRC0_DATA_B,
1377                        CRC0_B_CB, b_cb);
1378
1379        return true;
1380}
1381
1382static const struct timing_generator_funcs dcn10_tg_funcs = {
1383                .validate_timing = optc1_validate_timing,
1384                .program_timing = optc1_program_timing,
1385                .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1386                .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1387                .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1388                .program_global_sync = optc1_program_global_sync,
1389                .enable_crtc = optc1_enable_crtc,
1390                .disable_crtc = optc1_disable_crtc,
1391                /* used by enable_timing_synchronization. Not need for FPGA */
1392                .is_counter_moving = optc1_is_counter_moving,
1393                .get_position = optc1_get_position,
1394                .get_frame_count = optc1_get_vblank_counter,
1395                .get_scanoutpos = optc1_get_crtc_scanoutpos,
1396                .get_otg_active_size = optc1_get_otg_active_size,
1397                .is_matching_timing = optc1_is_matching_timing,
1398                .set_early_control = optc1_set_early_control,
1399                /* used by enable_timing_synchronization. Not need for FPGA */
1400                .wait_for_state = optc1_wait_for_state,
1401                .set_blank = optc1_set_blank,
1402                .is_blanked = optc1_is_blanked,
1403                .set_blank_color = optc1_program_blank_color,
1404                .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1405                .enable_reset_trigger = optc1_enable_reset_trigger,
1406                .enable_crtc_reset = optc1_enable_crtc_reset,
1407                .disable_reset_trigger = optc1_disable_reset_trigger,
1408                .lock = optc1_lock,
1409                .unlock = optc1_unlock,
1410                .enable_optc_clock = optc1_enable_optc_clock,
1411                .set_drr = optc1_set_drr,
1412                .set_static_screen_control = optc1_set_static_screen_control,
1413                .set_test_pattern = optc1_set_test_pattern,
1414                .program_stereo = optc1_program_stereo,
1415                .is_stereo_left_eye = optc1_is_stereo_left_eye,
1416                .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1417                .tg_init = optc1_tg_init,
1418                .is_tg_enabled = optc1_is_tg_enabled,
1419                .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1420                .clear_optc_underflow = optc1_clear_optc_underflow,
1421                .get_crc = optc1_get_crc,
1422                .configure_crc = optc1_configure_crc,
1423};
1424
1425void dcn10_timing_generator_init(struct optc *optc1)
1426{
1427        optc1->base.funcs = &dcn10_tg_funcs;
1428
1429        optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1430        optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1431
1432        optc1->min_h_blank = 32;
1433        optc1->min_v_blank = 3;
1434        optc1->min_v_blank_interlace = 5;
1435        optc1->min_h_sync_width = 8;
1436        optc1->min_v_sync_width = 1;
1437        optc1->comb_opp_id = 0xf;
1438}
1439
1440bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1441{
1442        bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1443
1444        return two_pix;
1445}
1446
1447