linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/iommu.h>
  10#include <linux/of_device.h>
  11#include <linux/pm_runtime.h>
  12#include <linux/reset.h>
  13
  14#include <soc/tegra/pmc.h>
  15
  16#include "dc.h"
  17#include "drm.h"
  18#include "gem.h"
  19#include "hub.h"
  20#include "plane.h"
  21
  22#include <drm/drm_atomic.h>
  23#include <drm/drm_atomic_helper.h>
  24#include <drm/drm_plane_helper.h>
  25
  26static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  27{
  28        stats->frames = 0;
  29        stats->vblank = 0;
  30        stats->underflow = 0;
  31        stats->overflow = 0;
  32}
  33
  34/* Reads the active copy of a register. */
  35static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  36{
  37        u32 value;
  38
  39        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  40        value = tegra_dc_readl(dc, offset);
  41        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  42
  43        return value;
  44}
  45
  46static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  47                                              unsigned int offset)
  48{
  49        if (offset >= 0x500 && offset <= 0x638) {
  50                offset = 0x000 + (offset - 0x500);
  51                return plane->offset + offset;
  52        }
  53
  54        if (offset >= 0x700 && offset <= 0x719) {
  55                offset = 0x180 + (offset - 0x700);
  56                return plane->offset + offset;
  57        }
  58
  59        if (offset >= 0x800 && offset <= 0x839) {
  60                offset = 0x1c0 + (offset - 0x800);
  61                return plane->offset + offset;
  62        }
  63
  64        dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  65
  66        return plane->offset + offset;
  67}
  68
  69static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  70                                    unsigned int offset)
  71{
  72        return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  73}
  74
  75static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  76                                      unsigned int offset)
  77{
  78        tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  79}
  80
  81bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  82{
  83        struct device_node *np = dc->dev->of_node;
  84        struct of_phandle_iterator it;
  85        int err;
  86
  87        of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  88                if (it.node == dev->of_node)
  89                        return true;
  90
  91        return false;
  92}
  93
  94/*
  95 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  96 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
  97 * Latching happens mmediately if the display controller is in STOP mode or
  98 * on the next frame boundary otherwise.
  99 *
 100 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 101 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 102 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 103 * into the ACTIVE copy, either immediately if the display controller is in
 104 * STOP mode, or at the next frame boundary otherwise.
 105 */
 106void tegra_dc_commit(struct tegra_dc *dc)
 107{
 108        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 109        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 110}
 111
 112static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 113                                  unsigned int bpp)
 114{
 115        fixed20_12 outf = dfixed_init(out);
 116        fixed20_12 inf = dfixed_init(in);
 117        u32 dda_inc;
 118        int max;
 119
 120        if (v)
 121                max = 15;
 122        else {
 123                switch (bpp) {
 124                case 2:
 125                        max = 8;
 126                        break;
 127
 128                default:
 129                        WARN_ON_ONCE(1);
 130                        /* fallthrough */
 131                case 4:
 132                        max = 4;
 133                        break;
 134                }
 135        }
 136
 137        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 138        inf.full -= dfixed_const(1);
 139
 140        dda_inc = dfixed_div(inf, outf);
 141        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 142
 143        return dda_inc;
 144}
 145
 146static inline u32 compute_initial_dda(unsigned int in)
 147{
 148        fixed20_12 inf = dfixed_init(in);
 149        return dfixed_frac(inf);
 150}
 151
 152static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 153{
 154        u32 background[3] = {
 155                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 156                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 157                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 158        };
 159        u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 160                         BLEND_COLOR_KEY_NONE;
 161        u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 162        struct tegra_plane_state *state;
 163        u32 blending[2];
 164        unsigned int i;
 165
 166        /* disable blending for non-overlapping case */
 167        tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 168        tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 169
 170        state = to_tegra_plane_state(plane->base.state);
 171
 172        if (state->opaque) {
 173                /*
 174                 * Since custom fix-weight blending isn't utilized and weight
 175                 * of top window is set to max, we can enforce dependent
 176                 * blending which in this case results in transparent bottom
 177                 * window if top window is opaque and if top window enables
 178                 * alpha blending, then bottom window is getting alpha value
 179                 * of 1 minus the sum of alpha components of the overlapping
 180                 * plane.
 181                 */
 182                background[0] |= BLEND_CONTROL_DEPENDENT;
 183                background[1] |= BLEND_CONTROL_DEPENDENT;
 184
 185                /*
 186                 * The region where three windows overlap is the intersection
 187                 * of the two regions where two windows overlap. It contributes
 188                 * to the area if all of the windows on top of it have an alpha
 189                 * component.
 190                 */
 191                switch (state->base.normalized_zpos) {
 192                case 0:
 193                        if (state->blending[0].alpha &&
 194                            state->blending[1].alpha)
 195                                background[2] |= BLEND_CONTROL_DEPENDENT;
 196                        break;
 197
 198                case 1:
 199                        background[2] |= BLEND_CONTROL_DEPENDENT;
 200                        break;
 201                }
 202        } else {
 203                /*
 204                 * Enable alpha blending if pixel format has an alpha
 205                 * component.
 206                 */
 207                foreground |= BLEND_CONTROL_ALPHA;
 208
 209                /*
 210                 * If any of the windows on top of this window is opaque, it
 211                 * will completely conceal this window within that area. If
 212                 * top window has an alpha component, it is blended over the
 213                 * bottom window.
 214                 */
 215                for (i = 0; i < 2; i++) {
 216                        if (state->blending[i].alpha &&
 217                            state->blending[i].top)
 218                                background[i] |= BLEND_CONTROL_DEPENDENT;
 219                }
 220
 221                switch (state->base.normalized_zpos) {
 222                case 0:
 223                        if (state->blending[0].alpha &&
 224                            state->blending[1].alpha)
 225                                background[2] |= BLEND_CONTROL_DEPENDENT;
 226                        break;
 227
 228                case 1:
 229                        /*
 230                         * When both middle and topmost windows have an alpha,
 231                         * these windows a mixed together and then the result
 232                         * is blended over the bottom window.
 233                         */
 234                        if (state->blending[0].alpha &&
 235                            state->blending[0].top)
 236                                background[2] |= BLEND_CONTROL_ALPHA;
 237
 238                        if (state->blending[1].alpha &&
 239                            state->blending[1].top)
 240                                background[2] |= BLEND_CONTROL_ALPHA;
 241                        break;
 242                }
 243        }
 244
 245        switch (state->base.normalized_zpos) {
 246        case 0:
 247                tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 248                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 249                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 250                break;
 251
 252        case 1:
 253                /*
 254                 * If window B / C is topmost, then X / Y registers are
 255                 * matching the order of blending[...] state indices,
 256                 * otherwise a swap is required.
 257                 */
 258                if (!state->blending[0].top && state->blending[1].top) {
 259                        blending[0] = foreground;
 260                        blending[1] = background[1];
 261                } else {
 262                        blending[0] = background[0];
 263                        blending[1] = foreground;
 264                }
 265
 266                tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 267                tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 268                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 269                break;
 270
 271        case 2:
 272                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 273                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 274                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 275                break;
 276        }
 277}
 278
 279static void tegra_plane_setup_blending(struct tegra_plane *plane,
 280                                       const struct tegra_dc_window *window)
 281{
 282        u32 value;
 283
 284        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 285                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 286                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 287        tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 288
 289        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 290                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 291                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 292        tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 293
 294        value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 295        tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 296}
 297
 298static bool
 299tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 300                                     const struct tegra_dc_window *window)
 301{
 302        struct tegra_dc *dc = plane->dc;
 303
 304        if (window->src.w == window->dst.w)
 305                return false;
 306
 307        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 308                return false;
 309
 310        return true;
 311}
 312
 313static bool
 314tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 315                                   const struct tegra_dc_window *window)
 316{
 317        struct tegra_dc *dc = plane->dc;
 318
 319        if (window->src.h == window->dst.h)
 320                return false;
 321
 322        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 323                return false;
 324
 325        if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 326                return false;
 327
 328        return true;
 329}
 330
 331static void tegra_dc_setup_window(struct tegra_plane *plane,
 332                                  const struct tegra_dc_window *window)
 333{
 334        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 335        struct tegra_dc *dc = plane->dc;
 336        bool yuv, planar;
 337        u32 value;
 338
 339        /*
 340         * For YUV planar modes, the number of bytes per pixel takes into
 341         * account only the luma component and therefore is 1.
 342         */
 343        yuv = tegra_plane_format_is_yuv(window->format, &planar);
 344        if (!yuv)
 345                bpp = window->bits_per_pixel / 8;
 346        else
 347                bpp = planar ? 1 : 2;
 348
 349        tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 350        tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 351
 352        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 353        tegra_plane_writel(plane, value, DC_WIN_POSITION);
 354
 355        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 356        tegra_plane_writel(plane, value, DC_WIN_SIZE);
 357
 358        h_offset = window->src.x * bpp;
 359        v_offset = window->src.y;
 360        h_size = window->src.w * bpp;
 361        v_size = window->src.h;
 362
 363        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 364        tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 365
 366        /*
 367         * For DDA computations the number of bytes per pixel for YUV planar
 368         * modes needs to take into account all Y, U and V components.
 369         */
 370        if (yuv && planar)
 371                bpp = 2;
 372
 373        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 374        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 375
 376        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 377        tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 378
 379        h_dda = compute_initial_dda(window->src.x);
 380        v_dda = compute_initial_dda(window->src.y);
 381
 382        tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 383        tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 384
 385        tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 386        tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 387
 388        tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 389
 390        if (yuv && planar) {
 391                tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 392                tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 393                value = window->stride[1] << 16 | window->stride[0];
 394                tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 395        } else {
 396                tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 397        }
 398
 399        if (window->bottom_up)
 400                v_offset += window->src.h - 1;
 401
 402        tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 403        tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 404
 405        if (dc->soc->supports_block_linear) {
 406                unsigned long height = window->tiling.value;
 407
 408                switch (window->tiling.mode) {
 409                case TEGRA_BO_TILING_MODE_PITCH:
 410                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 411                        break;
 412
 413                case TEGRA_BO_TILING_MODE_TILED:
 414                        value = DC_WINBUF_SURFACE_KIND_TILED;
 415                        break;
 416
 417                case TEGRA_BO_TILING_MODE_BLOCK:
 418                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 419                                DC_WINBUF_SURFACE_KIND_BLOCK;
 420                        break;
 421                }
 422
 423                tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 424        } else {
 425                switch (window->tiling.mode) {
 426                case TEGRA_BO_TILING_MODE_PITCH:
 427                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 428                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 429                        break;
 430
 431                case TEGRA_BO_TILING_MODE_TILED:
 432                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 433                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 434                        break;
 435
 436                case TEGRA_BO_TILING_MODE_BLOCK:
 437                        /*
 438                         * No need to handle this here because ->atomic_check
 439                         * will already have filtered it out.
 440                         */
 441                        break;
 442                }
 443
 444                tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 445        }
 446
 447        value = WIN_ENABLE;
 448
 449        if (yuv) {
 450                /* setup default colorspace conversion coefficients */
 451                tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 452                tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 453                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 454                tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 455                tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 456                tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 457                tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 458                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 459
 460                value |= CSC_ENABLE;
 461        } else if (window->bits_per_pixel < 24) {
 462                value |= COLOR_EXPAND;
 463        }
 464
 465        if (window->bottom_up)
 466                value |= V_DIRECTION;
 467
 468        if (tegra_plane_use_horizontal_filtering(plane, window)) {
 469                /*
 470                 * Enable horizontal 6-tap filter and set filtering
 471                 * coefficients to the default values defined in TRM.
 472                 */
 473                tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 474                tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 475                tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 476                tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 477                tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 478                tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 479                tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 480                tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 481                tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 482                tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 483                tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 484                tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 485                tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 486                tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 487                tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 488                tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 489
 490                value |= H_FILTER;
 491        }
 492
 493        if (tegra_plane_use_vertical_filtering(plane, window)) {
 494                unsigned int i, k;
 495
 496                /*
 497                 * Enable vertical 2-tap filter and set filtering
 498                 * coefficients to the default values defined in TRM.
 499                 */
 500                for (i = 0, k = 128; i < 16; i++, k -= 8)
 501                        tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 502
 503                value |= V_FILTER;
 504        }
 505
 506        tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 507
 508        if (dc->soc->has_legacy_blending)
 509                tegra_plane_setup_blending_legacy(plane);
 510        else
 511                tegra_plane_setup_blending(plane, window);
 512}
 513
 514static const u32 tegra20_primary_formats[] = {
 515        DRM_FORMAT_ARGB4444,
 516        DRM_FORMAT_ARGB1555,
 517        DRM_FORMAT_RGB565,
 518        DRM_FORMAT_RGBA5551,
 519        DRM_FORMAT_ABGR8888,
 520        DRM_FORMAT_ARGB8888,
 521        /* non-native formats */
 522        DRM_FORMAT_XRGB1555,
 523        DRM_FORMAT_RGBX5551,
 524        DRM_FORMAT_XBGR8888,
 525        DRM_FORMAT_XRGB8888,
 526};
 527
 528static const u64 tegra20_modifiers[] = {
 529        DRM_FORMAT_MOD_LINEAR,
 530        DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 531        DRM_FORMAT_MOD_INVALID
 532};
 533
 534static const u32 tegra114_primary_formats[] = {
 535        DRM_FORMAT_ARGB4444,
 536        DRM_FORMAT_ARGB1555,
 537        DRM_FORMAT_RGB565,
 538        DRM_FORMAT_RGBA5551,
 539        DRM_FORMAT_ABGR8888,
 540        DRM_FORMAT_ARGB8888,
 541        /* new on Tegra114 */
 542        DRM_FORMAT_ABGR4444,
 543        DRM_FORMAT_ABGR1555,
 544        DRM_FORMAT_BGRA5551,
 545        DRM_FORMAT_XRGB1555,
 546        DRM_FORMAT_RGBX5551,
 547        DRM_FORMAT_XBGR1555,
 548        DRM_FORMAT_BGRX5551,
 549        DRM_FORMAT_BGR565,
 550        DRM_FORMAT_BGRA8888,
 551        DRM_FORMAT_RGBA8888,
 552        DRM_FORMAT_XRGB8888,
 553        DRM_FORMAT_XBGR8888,
 554};
 555
 556static const u32 tegra124_primary_formats[] = {
 557        DRM_FORMAT_ARGB4444,
 558        DRM_FORMAT_ARGB1555,
 559        DRM_FORMAT_RGB565,
 560        DRM_FORMAT_RGBA5551,
 561        DRM_FORMAT_ABGR8888,
 562        DRM_FORMAT_ARGB8888,
 563        /* new on Tegra114 */
 564        DRM_FORMAT_ABGR4444,
 565        DRM_FORMAT_ABGR1555,
 566        DRM_FORMAT_BGRA5551,
 567        DRM_FORMAT_XRGB1555,
 568        DRM_FORMAT_RGBX5551,
 569        DRM_FORMAT_XBGR1555,
 570        DRM_FORMAT_BGRX5551,
 571        DRM_FORMAT_BGR565,
 572        DRM_FORMAT_BGRA8888,
 573        DRM_FORMAT_RGBA8888,
 574        DRM_FORMAT_XRGB8888,
 575        DRM_FORMAT_XBGR8888,
 576        /* new on Tegra124 */
 577        DRM_FORMAT_RGBX8888,
 578        DRM_FORMAT_BGRX8888,
 579};
 580
 581static const u64 tegra124_modifiers[] = {
 582        DRM_FORMAT_MOD_LINEAR,
 583        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 584        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 585        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 586        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 587        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 588        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 589        DRM_FORMAT_MOD_INVALID
 590};
 591
 592static int tegra_plane_atomic_check(struct drm_plane *plane,
 593                                    struct drm_plane_state *state)
 594{
 595        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 596        unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
 597        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 598        struct tegra_plane *tegra = to_tegra_plane(plane);
 599        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 600        int err;
 601
 602        /* no need for further checks if the plane is being disabled */
 603        if (!state->crtc)
 604                return 0;
 605
 606        err = tegra_plane_format(state->fb->format->format,
 607                                 &plane_state->format,
 608                                 &plane_state->swap);
 609        if (err < 0)
 610                return err;
 611
 612        /*
 613         * Tegra20 and Tegra30 are special cases here because they support
 614         * only variants of specific formats with an alpha component, but not
 615         * the corresponding opaque formats. However, the opaque formats can
 616         * be emulated by disabling alpha blending for the plane.
 617         */
 618        if (dc->soc->has_legacy_blending) {
 619                err = tegra_plane_setup_legacy_state(tegra, plane_state);
 620                if (err < 0)
 621                        return err;
 622        }
 623
 624        err = tegra_fb_get_tiling(state->fb, tiling);
 625        if (err < 0)
 626                return err;
 627
 628        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 629            !dc->soc->supports_block_linear) {
 630                DRM_ERROR("hardware doesn't support block linear mode\n");
 631                return -EINVAL;
 632        }
 633
 634        rotation = drm_rotation_simplify(state->rotation, rotation);
 635
 636        if (rotation & DRM_MODE_REFLECT_Y)
 637                plane_state->bottom_up = true;
 638        else
 639                plane_state->bottom_up = false;
 640
 641        /*
 642         * Tegra doesn't support different strides for U and V planes so we
 643         * error out if the user tries to display a framebuffer with such a
 644         * configuration.
 645         */
 646        if (state->fb->format->num_planes > 2) {
 647                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 648                        DRM_ERROR("unsupported UV-plane configuration\n");
 649                        return -EINVAL;
 650                }
 651        }
 652
 653        err = tegra_plane_state_add(tegra, state);
 654        if (err < 0)
 655                return err;
 656
 657        return 0;
 658}
 659
 660static void tegra_plane_atomic_disable(struct drm_plane *plane,
 661                                       struct drm_plane_state *old_state)
 662{
 663        struct tegra_plane *p = to_tegra_plane(plane);
 664        u32 value;
 665
 666        /* rien ne va plus */
 667        if (!old_state || !old_state->crtc)
 668                return;
 669
 670        value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 671        value &= ~WIN_ENABLE;
 672        tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 673}
 674
 675static void tegra_plane_atomic_update(struct drm_plane *plane,
 676                                      struct drm_plane_state *old_state)
 677{
 678        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 679        struct drm_framebuffer *fb = plane->state->fb;
 680        struct tegra_plane *p = to_tegra_plane(plane);
 681        struct tegra_dc_window window;
 682        unsigned int i;
 683
 684        /* rien ne va plus */
 685        if (!plane->state->crtc || !plane->state->fb)
 686                return;
 687
 688        if (!plane->state->visible)
 689                return tegra_plane_atomic_disable(plane, old_state);
 690
 691        memset(&window, 0, sizeof(window));
 692        window.src.x = plane->state->src.x1 >> 16;
 693        window.src.y = plane->state->src.y1 >> 16;
 694        window.src.w = drm_rect_width(&plane->state->src) >> 16;
 695        window.src.h = drm_rect_height(&plane->state->src) >> 16;
 696        window.dst.x = plane->state->dst.x1;
 697        window.dst.y = plane->state->dst.y1;
 698        window.dst.w = drm_rect_width(&plane->state->dst);
 699        window.dst.h = drm_rect_height(&plane->state->dst);
 700        window.bits_per_pixel = fb->format->cpp[0] * 8;
 701        window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
 702
 703        /* copy from state */
 704        window.zpos = plane->state->normalized_zpos;
 705        window.tiling = state->tiling;
 706        window.format = state->format;
 707        window.swap = state->swap;
 708
 709        for (i = 0; i < fb->format->num_planes; i++) {
 710                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 711
 712                window.base[i] = bo->paddr + fb->offsets[i];
 713
 714                /*
 715                 * Tegra uses a shared stride for UV planes. Framebuffers are
 716                 * already checked for this in the tegra_plane_atomic_check()
 717                 * function, so it's safe to ignore the V-plane pitch here.
 718                 */
 719                if (i < 2)
 720                        window.stride[i] = fb->pitches[i];
 721        }
 722
 723        tegra_dc_setup_window(p, &window);
 724}
 725
 726static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 727        .atomic_check = tegra_plane_atomic_check,
 728        .atomic_disable = tegra_plane_atomic_disable,
 729        .atomic_update = tegra_plane_atomic_update,
 730};
 731
 732static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 733{
 734        /*
 735         * Ideally this would use drm_crtc_mask(), but that would require the
 736         * CRTC to already be in the mode_config's list of CRTCs. However, it
 737         * will only be added to that list in the drm_crtc_init_with_planes()
 738         * (in tegra_dc_init()), which in turn requires registration of these
 739         * planes. So we have ourselves a nice little chicken and egg problem
 740         * here.
 741         *
 742         * We work around this by manually creating the mask from the number
 743         * of CRTCs that have been registered, and should therefore always be
 744         * the same as drm_crtc_index() after registration.
 745         */
 746        return 1 << drm->mode_config.num_crtc;
 747}
 748
 749static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 750                                                    struct tegra_dc *dc)
 751{
 752        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 753        enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 754        struct tegra_plane *plane;
 755        unsigned int num_formats;
 756        const u64 *modifiers;
 757        const u32 *formats;
 758        int err;
 759
 760        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 761        if (!plane)
 762                return ERR_PTR(-ENOMEM);
 763
 764        /* Always use window A as primary window */
 765        plane->offset = 0xa00;
 766        plane->index = 0;
 767        plane->dc = dc;
 768
 769        num_formats = dc->soc->num_primary_formats;
 770        formats = dc->soc->primary_formats;
 771        modifiers = dc->soc->modifiers;
 772
 773        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 774                                       &tegra_plane_funcs, formats,
 775                                       num_formats, modifiers, type, NULL);
 776        if (err < 0) {
 777                kfree(plane);
 778                return ERR_PTR(err);
 779        }
 780
 781        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 782        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 783
 784        err = drm_plane_create_rotation_property(&plane->base,
 785                                                 DRM_MODE_ROTATE_0,
 786                                                 DRM_MODE_ROTATE_0 |
 787                                                 DRM_MODE_REFLECT_Y);
 788        if (err < 0)
 789                dev_err(dc->dev, "failed to create rotation property: %d\n",
 790                        err);
 791
 792        return &plane->base;
 793}
 794
 795static const u32 tegra_cursor_plane_formats[] = {
 796        DRM_FORMAT_RGBA8888,
 797};
 798
 799static int tegra_cursor_atomic_check(struct drm_plane *plane,
 800                                     struct drm_plane_state *state)
 801{
 802        struct tegra_plane *tegra = to_tegra_plane(plane);
 803        int err;
 804
 805        /* no need for further checks if the plane is being disabled */
 806        if (!state->crtc)
 807                return 0;
 808
 809        /* scaling not supported for cursor */
 810        if ((state->src_w >> 16 != state->crtc_w) ||
 811            (state->src_h >> 16 != state->crtc_h))
 812                return -EINVAL;
 813
 814        /* only square cursors supported */
 815        if (state->src_w != state->src_h)
 816                return -EINVAL;
 817
 818        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 819            state->crtc_w != 128 && state->crtc_w != 256)
 820                return -EINVAL;
 821
 822        err = tegra_plane_state_add(tegra, state);
 823        if (err < 0)
 824                return err;
 825
 826        return 0;
 827}
 828
 829static void tegra_cursor_atomic_update(struct drm_plane *plane,
 830                                       struct drm_plane_state *old_state)
 831{
 832        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 833        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 834        struct drm_plane_state *state = plane->state;
 835        u32 value = CURSOR_CLIP_DISPLAY;
 836
 837        /* rien ne va plus */
 838        if (!plane->state->crtc || !plane->state->fb)
 839                return;
 840
 841        switch (state->crtc_w) {
 842        case 32:
 843                value |= CURSOR_SIZE_32x32;
 844                break;
 845
 846        case 64:
 847                value |= CURSOR_SIZE_64x64;
 848                break;
 849
 850        case 128:
 851                value |= CURSOR_SIZE_128x128;
 852                break;
 853
 854        case 256:
 855                value |= CURSOR_SIZE_256x256;
 856                break;
 857
 858        default:
 859                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 860                     state->crtc_h);
 861                return;
 862        }
 863
 864        value |= (bo->paddr >> 10) & 0x3fffff;
 865        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 866
 867#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 868        value = (bo->paddr >> 32) & 0x3;
 869        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 870#endif
 871
 872        /* enable cursor and set blend mode */
 873        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 874        value |= CURSOR_ENABLE;
 875        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 876
 877        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 878        value &= ~CURSOR_DST_BLEND_MASK;
 879        value &= ~CURSOR_SRC_BLEND_MASK;
 880        value |= CURSOR_MODE_NORMAL;
 881        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 882        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 883        value |= CURSOR_ALPHA;
 884        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 885
 886        /* position the cursor */
 887        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 888        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 889}
 890
 891static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 892                                        struct drm_plane_state *old_state)
 893{
 894        struct tegra_dc *dc;
 895        u32 value;
 896
 897        /* rien ne va plus */
 898        if (!old_state || !old_state->crtc)
 899                return;
 900
 901        dc = to_tegra_dc(old_state->crtc);
 902
 903        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 904        value &= ~CURSOR_ENABLE;
 905        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 906}
 907
 908static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 909        .atomic_check = tegra_cursor_atomic_check,
 910        .atomic_update = tegra_cursor_atomic_update,
 911        .atomic_disable = tegra_cursor_atomic_disable,
 912};
 913
 914static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 915                                                      struct tegra_dc *dc)
 916{
 917        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 918        struct tegra_plane *plane;
 919        unsigned int num_formats;
 920        const u32 *formats;
 921        int err;
 922
 923        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 924        if (!plane)
 925                return ERR_PTR(-ENOMEM);
 926
 927        /*
 928         * This index is kind of fake. The cursor isn't a regular plane, but
 929         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 930         * use the same programming. Setting this fake index here allows the
 931         * code in tegra_add_plane_state() to do the right thing without the
 932         * need to special-casing the cursor plane.
 933         */
 934        plane->index = 6;
 935        plane->dc = dc;
 936
 937        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 938        formats = tegra_cursor_plane_formats;
 939
 940        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 941                                       &tegra_plane_funcs, formats,
 942                                       num_formats, NULL,
 943                                       DRM_PLANE_TYPE_CURSOR, NULL);
 944        if (err < 0) {
 945                kfree(plane);
 946                return ERR_PTR(err);
 947        }
 948
 949        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 950
 951        return &plane->base;
 952}
 953
 954static const u32 tegra20_overlay_formats[] = {
 955        DRM_FORMAT_ARGB4444,
 956        DRM_FORMAT_ARGB1555,
 957        DRM_FORMAT_RGB565,
 958        DRM_FORMAT_RGBA5551,
 959        DRM_FORMAT_ABGR8888,
 960        DRM_FORMAT_ARGB8888,
 961        /* non-native formats */
 962        DRM_FORMAT_XRGB1555,
 963        DRM_FORMAT_RGBX5551,
 964        DRM_FORMAT_XBGR8888,
 965        DRM_FORMAT_XRGB8888,
 966        /* planar formats */
 967        DRM_FORMAT_UYVY,
 968        DRM_FORMAT_YUYV,
 969        DRM_FORMAT_YUV420,
 970        DRM_FORMAT_YUV422,
 971};
 972
 973static const u32 tegra114_overlay_formats[] = {
 974        DRM_FORMAT_ARGB4444,
 975        DRM_FORMAT_ARGB1555,
 976        DRM_FORMAT_RGB565,
 977        DRM_FORMAT_RGBA5551,
 978        DRM_FORMAT_ABGR8888,
 979        DRM_FORMAT_ARGB8888,
 980        /* new on Tegra114 */
 981        DRM_FORMAT_ABGR4444,
 982        DRM_FORMAT_ABGR1555,
 983        DRM_FORMAT_BGRA5551,
 984        DRM_FORMAT_XRGB1555,
 985        DRM_FORMAT_RGBX5551,
 986        DRM_FORMAT_XBGR1555,
 987        DRM_FORMAT_BGRX5551,
 988        DRM_FORMAT_BGR565,
 989        DRM_FORMAT_BGRA8888,
 990        DRM_FORMAT_RGBA8888,
 991        DRM_FORMAT_XRGB8888,
 992        DRM_FORMAT_XBGR8888,
 993        /* planar formats */
 994        DRM_FORMAT_UYVY,
 995        DRM_FORMAT_YUYV,
 996        DRM_FORMAT_YUV420,
 997        DRM_FORMAT_YUV422,
 998};
 999
1000static const u32 tegra124_overlay_formats[] = {
1001        DRM_FORMAT_ARGB4444,
1002        DRM_FORMAT_ARGB1555,
1003        DRM_FORMAT_RGB565,
1004        DRM_FORMAT_RGBA5551,
1005        DRM_FORMAT_ABGR8888,
1006        DRM_FORMAT_ARGB8888,
1007        /* new on Tegra114 */
1008        DRM_FORMAT_ABGR4444,
1009        DRM_FORMAT_ABGR1555,
1010        DRM_FORMAT_BGRA5551,
1011        DRM_FORMAT_XRGB1555,
1012        DRM_FORMAT_RGBX5551,
1013        DRM_FORMAT_XBGR1555,
1014        DRM_FORMAT_BGRX5551,
1015        DRM_FORMAT_BGR565,
1016        DRM_FORMAT_BGRA8888,
1017        DRM_FORMAT_RGBA8888,
1018        DRM_FORMAT_XRGB8888,
1019        DRM_FORMAT_XBGR8888,
1020        /* new on Tegra124 */
1021        DRM_FORMAT_RGBX8888,
1022        DRM_FORMAT_BGRX8888,
1023        /* planar formats */
1024        DRM_FORMAT_UYVY,
1025        DRM_FORMAT_YUYV,
1026        DRM_FORMAT_YUV420,
1027        DRM_FORMAT_YUV422,
1028};
1029
1030static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1031                                                       struct tegra_dc *dc,
1032                                                       unsigned int index,
1033                                                       bool cursor)
1034{
1035        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1036        struct tegra_plane *plane;
1037        unsigned int num_formats;
1038        enum drm_plane_type type;
1039        const u32 *formats;
1040        int err;
1041
1042        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1043        if (!plane)
1044                return ERR_PTR(-ENOMEM);
1045
1046        plane->offset = 0xa00 + 0x200 * index;
1047        plane->index = index;
1048        plane->dc = dc;
1049
1050        num_formats = dc->soc->num_overlay_formats;
1051        formats = dc->soc->overlay_formats;
1052
1053        if (!cursor)
1054                type = DRM_PLANE_TYPE_OVERLAY;
1055        else
1056                type = DRM_PLANE_TYPE_CURSOR;
1057
1058        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1059                                       &tegra_plane_funcs, formats,
1060                                       num_formats, NULL, type, NULL);
1061        if (err < 0) {
1062                kfree(plane);
1063                return ERR_PTR(err);
1064        }
1065
1066        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1067        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1068
1069        err = drm_plane_create_rotation_property(&plane->base,
1070                                                 DRM_MODE_ROTATE_0,
1071                                                 DRM_MODE_ROTATE_0 |
1072                                                 DRM_MODE_REFLECT_Y);
1073        if (err < 0)
1074                dev_err(dc->dev, "failed to create rotation property: %d\n",
1075                        err);
1076
1077        return &plane->base;
1078}
1079
1080static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1081                                                    struct tegra_dc *dc)
1082{
1083        struct drm_plane *plane, *primary = NULL;
1084        unsigned int i, j;
1085
1086        for (i = 0; i < dc->soc->num_wgrps; i++) {
1087                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1088
1089                if (wgrp->dc == dc->pipe) {
1090                        for (j = 0; j < wgrp->num_windows; j++) {
1091                                unsigned int index = wgrp->windows[j];
1092
1093                                plane = tegra_shared_plane_create(drm, dc,
1094                                                                  wgrp->index,
1095                                                                  index);
1096                                if (IS_ERR(plane))
1097                                        return plane;
1098
1099                                /*
1100                                 * Choose the first shared plane owned by this
1101                                 * head as the primary plane.
1102                                 */
1103                                if (!primary) {
1104                                        plane->type = DRM_PLANE_TYPE_PRIMARY;
1105                                        primary = plane;
1106                                }
1107                        }
1108                }
1109        }
1110
1111        return primary;
1112}
1113
1114static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1115                                             struct tegra_dc *dc)
1116{
1117        struct drm_plane *planes[2], *primary;
1118        unsigned int planes_num;
1119        unsigned int i;
1120        int err;
1121
1122        primary = tegra_primary_plane_create(drm, dc);
1123        if (IS_ERR(primary))
1124                return primary;
1125
1126        if (dc->soc->supports_cursor)
1127                planes_num = 2;
1128        else
1129                planes_num = 1;
1130
1131        for (i = 0; i < planes_num; i++) {
1132                planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1133                                                          false);
1134                if (IS_ERR(planes[i])) {
1135                        err = PTR_ERR(planes[i]);
1136
1137                        while (i--)
1138                                tegra_plane_funcs.destroy(planes[i]);
1139
1140                        tegra_plane_funcs.destroy(primary);
1141                        return ERR_PTR(err);
1142                }
1143        }
1144
1145        return primary;
1146}
1147
1148static void tegra_dc_destroy(struct drm_crtc *crtc)
1149{
1150        drm_crtc_cleanup(crtc);
1151}
1152
1153static void tegra_crtc_reset(struct drm_crtc *crtc)
1154{
1155        struct tegra_dc_state *state;
1156
1157        if (crtc->state)
1158                __drm_atomic_helper_crtc_destroy_state(crtc->state);
1159
1160        kfree(crtc->state);
1161        crtc->state = NULL;
1162
1163        state = kzalloc(sizeof(*state), GFP_KERNEL);
1164        if (state) {
1165                crtc->state = &state->base;
1166                crtc->state->crtc = crtc;
1167        }
1168
1169        drm_crtc_vblank_reset(crtc);
1170}
1171
1172static struct drm_crtc_state *
1173tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1174{
1175        struct tegra_dc_state *state = to_dc_state(crtc->state);
1176        struct tegra_dc_state *copy;
1177
1178        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1179        if (!copy)
1180                return NULL;
1181
1182        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1183        copy->clk = state->clk;
1184        copy->pclk = state->pclk;
1185        copy->div = state->div;
1186        copy->planes = state->planes;
1187
1188        return &copy->base;
1189}
1190
1191static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1192                                            struct drm_crtc_state *state)
1193{
1194        __drm_atomic_helper_crtc_destroy_state(state);
1195        kfree(state);
1196}
1197
1198#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1199
1200static const struct debugfs_reg32 tegra_dc_regs[] = {
1201        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1202        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1203        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1204        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1205        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1206        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1207        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1208        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1209        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1210        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1211        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1212        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1213        DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1214        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1215        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1216        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1217        DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1218        DEBUGFS_REG32(DC_CMD_INT_STATUS),
1219        DEBUGFS_REG32(DC_CMD_INT_MASK),
1220        DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1221        DEBUGFS_REG32(DC_CMD_INT_TYPE),
1222        DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1223        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1224        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1225        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1226        DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1227        DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1228        DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1229        DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1230        DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1231        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1232        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1233        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1234        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1235        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1236        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1237        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1238        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1239        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1240        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1241        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1242        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1243        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1244        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1245        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1246        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1247        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1248        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1249        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1250        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1251        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1252        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1253        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1254        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1255        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1256        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1257        DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1258        DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1259        DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1260        DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1261        DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1262        DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1263        DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1264        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1265        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1266        DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1267        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1268        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1269        DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1270        DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1271        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1272        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1273        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1274        DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1275        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1276        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1277        DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1278        DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1279        DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1280        DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1281        DEBUGFS_REG32(DC_DISP_ACTIVE),
1282        DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1283        DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1284        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1285        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1286        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1287        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1288        DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1289        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1290        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1291        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1292        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1293        DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1294        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1295        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1296        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1297        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1298        DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1299        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1300        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1301        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1302        DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1303        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1304        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1305        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1306        DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1307        DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1308        DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1309        DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1310        DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1311        DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1312        DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1313        DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1314        DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1315        DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1316        DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1317        DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1318        DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1319        DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1320        DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1321        DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1322        DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1323        DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1324        DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1325        DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1326        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1327        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1328        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1329        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1330        DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1331        DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1332        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1333        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1334        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1335        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1336        DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1337        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1338        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1339        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1340        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1341        DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1342        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1343        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1344        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1345        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1346        DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1347        DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1348        DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1349        DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1350        DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1351        DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1352        DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1353        DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1354        DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1355        DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1356        DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1357        DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1358        DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1359        DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1360        DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1361        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1362        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1363        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1364        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1365        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1366        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1367        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1368        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1369        DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1370        DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1371        DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1372        DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1373        DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1374        DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1375        DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1376        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1377        DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1378        DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1379        DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1380        DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1381        DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1382        DEBUGFS_REG32(DC_WIN_POSITION),
1383        DEBUGFS_REG32(DC_WIN_SIZE),
1384        DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1385        DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1386        DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1387        DEBUGFS_REG32(DC_WIN_DDA_INC),
1388        DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1389        DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1390        DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1391        DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1392        DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1393        DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1394        DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1395        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1396        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1397        DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1398        DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1399        DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1400        DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1401        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1402        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1403        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1404        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1405        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1406        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1407        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1408        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1409        DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1410        DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1411        DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1412        DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1413};
1414
1415static int tegra_dc_show_regs(struct seq_file *s, void *data)
1416{
1417        struct drm_info_node *node = s->private;
1418        struct tegra_dc *dc = node->info_ent->data;
1419        unsigned int i;
1420        int err = 0;
1421
1422        drm_modeset_lock(&dc->base.mutex, NULL);
1423
1424        if (!dc->base.state->active) {
1425                err = -EBUSY;
1426                goto unlock;
1427        }
1428
1429        for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1430                unsigned int offset = tegra_dc_regs[i].offset;
1431
1432                seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1433                           offset, tegra_dc_readl(dc, offset));
1434        }
1435
1436unlock:
1437        drm_modeset_unlock(&dc->base.mutex);
1438        return err;
1439}
1440
1441static int tegra_dc_show_crc(struct seq_file *s, void *data)
1442{
1443        struct drm_info_node *node = s->private;
1444        struct tegra_dc *dc = node->info_ent->data;
1445        int err = 0;
1446        u32 value;
1447
1448        drm_modeset_lock(&dc->base.mutex, NULL);
1449
1450        if (!dc->base.state->active) {
1451                err = -EBUSY;
1452                goto unlock;
1453        }
1454
1455        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1456        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1457        tegra_dc_commit(dc);
1458
1459        drm_crtc_wait_one_vblank(&dc->base);
1460        drm_crtc_wait_one_vblank(&dc->base);
1461
1462        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1463        seq_printf(s, "%08x\n", value);
1464
1465        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1466
1467unlock:
1468        drm_modeset_unlock(&dc->base.mutex);
1469        return err;
1470}
1471
1472static int tegra_dc_show_stats(struct seq_file *s, void *data)
1473{
1474        struct drm_info_node *node = s->private;
1475        struct tegra_dc *dc = node->info_ent->data;
1476
1477        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1478        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1479        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1480        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1481
1482        return 0;
1483}
1484
1485static struct drm_info_list debugfs_files[] = {
1486        { "regs", tegra_dc_show_regs, 0, NULL },
1487        { "crc", tegra_dc_show_crc, 0, NULL },
1488        { "stats", tegra_dc_show_stats, 0, NULL },
1489};
1490
1491static int tegra_dc_late_register(struct drm_crtc *crtc)
1492{
1493        unsigned int i, count = ARRAY_SIZE(debugfs_files);
1494        struct drm_minor *minor = crtc->dev->primary;
1495        struct dentry *root;
1496        struct tegra_dc *dc = to_tegra_dc(crtc);
1497        int err;
1498
1499#ifdef CONFIG_DEBUG_FS
1500        root = crtc->debugfs_entry;
1501#else
1502        root = NULL;
1503#endif
1504
1505        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1506                                    GFP_KERNEL);
1507        if (!dc->debugfs_files)
1508                return -ENOMEM;
1509
1510        for (i = 0; i < count; i++)
1511                dc->debugfs_files[i].data = dc;
1512
1513        err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1514        if (err < 0)
1515                goto free;
1516
1517        return 0;
1518
1519free:
1520        kfree(dc->debugfs_files);
1521        dc->debugfs_files = NULL;
1522
1523        return err;
1524}
1525
1526static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1527{
1528        unsigned int count = ARRAY_SIZE(debugfs_files);
1529        struct drm_minor *minor = crtc->dev->primary;
1530        struct tegra_dc *dc = to_tegra_dc(crtc);
1531
1532        drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1533        kfree(dc->debugfs_files);
1534        dc->debugfs_files = NULL;
1535}
1536
1537static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1538{
1539        struct tegra_dc *dc = to_tegra_dc(crtc);
1540
1541        /* XXX vblank syncpoints don't work with nvdisplay yet */
1542        if (dc->syncpt && !dc->soc->has_nvdisplay)
1543                return host1x_syncpt_read(dc->syncpt);
1544
1545        /* fallback to software emulated VBLANK counter */
1546        return (u32)drm_crtc_vblank_count(&dc->base);
1547}
1548
1549static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1550{
1551        struct tegra_dc *dc = to_tegra_dc(crtc);
1552        u32 value;
1553
1554        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1555        value |= VBLANK_INT;
1556        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1557
1558        return 0;
1559}
1560
1561static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1562{
1563        struct tegra_dc *dc = to_tegra_dc(crtc);
1564        u32 value;
1565
1566        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1567        value &= ~VBLANK_INT;
1568        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1569}
1570
1571static const struct drm_crtc_funcs tegra_crtc_funcs = {
1572        .page_flip = drm_atomic_helper_page_flip,
1573        .set_config = drm_atomic_helper_set_config,
1574        .destroy = tegra_dc_destroy,
1575        .reset = tegra_crtc_reset,
1576        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1577        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1578        .late_register = tegra_dc_late_register,
1579        .early_unregister = tegra_dc_early_unregister,
1580        .get_vblank_counter = tegra_dc_get_vblank_counter,
1581        .enable_vblank = tegra_dc_enable_vblank,
1582        .disable_vblank = tegra_dc_disable_vblank,
1583};
1584
1585static int tegra_dc_set_timings(struct tegra_dc *dc,
1586                                struct drm_display_mode *mode)
1587{
1588        unsigned int h_ref_to_sync = 1;
1589        unsigned int v_ref_to_sync = 1;
1590        unsigned long value;
1591
1592        if (!dc->soc->has_nvdisplay) {
1593                tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1594
1595                value = (v_ref_to_sync << 16) | h_ref_to_sync;
1596                tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1597        }
1598
1599        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1600                ((mode->hsync_end - mode->hsync_start) <<  0);
1601        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1602
1603        value = ((mode->vtotal - mode->vsync_end) << 16) |
1604                ((mode->htotal - mode->hsync_end) <<  0);
1605        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1606
1607        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1608                ((mode->hsync_start - mode->hdisplay) <<  0);
1609        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1610
1611        value = (mode->vdisplay << 16) | mode->hdisplay;
1612        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1613
1614        return 0;
1615}
1616
1617/**
1618 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1619 *     state
1620 * @dc: display controller
1621 * @crtc_state: CRTC atomic state
1622 * @clk: parent clock for display controller
1623 * @pclk: pixel clock
1624 * @div: shift clock divider
1625 *
1626 * Returns:
1627 * 0 on success or a negative error-code on failure.
1628 */
1629int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1630                               struct drm_crtc_state *crtc_state,
1631                               struct clk *clk, unsigned long pclk,
1632                               unsigned int div)
1633{
1634        struct tegra_dc_state *state = to_dc_state(crtc_state);
1635
1636        if (!clk_has_parent(dc->clk, clk))
1637                return -EINVAL;
1638
1639        state->clk = clk;
1640        state->pclk = pclk;
1641        state->div = div;
1642
1643        return 0;
1644}
1645
1646static void tegra_dc_commit_state(struct tegra_dc *dc,
1647                                  struct tegra_dc_state *state)
1648{
1649        u32 value;
1650        int err;
1651
1652        err = clk_set_parent(dc->clk, state->clk);
1653        if (err < 0)
1654                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1655
1656        /*
1657         * Outputs may not want to change the parent clock rate. This is only
1658         * relevant to Tegra20 where only a single display PLL is available.
1659         * Since that PLL would typically be used for HDMI, an internal LVDS
1660         * panel would need to be driven by some other clock such as PLL_P
1661         * which is shared with other peripherals. Changing the clock rate
1662         * should therefore be avoided.
1663         */
1664        if (state->pclk > 0) {
1665                err = clk_set_rate(state->clk, state->pclk);
1666                if (err < 0)
1667                        dev_err(dc->dev,
1668                                "failed to set clock rate to %lu Hz\n",
1669                                state->pclk);
1670        }
1671
1672        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1673                      state->div);
1674        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1675
1676        if (!dc->soc->has_nvdisplay) {
1677                value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1678                tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1679        }
1680
1681        err = clk_set_rate(dc->clk, state->pclk);
1682        if (err < 0)
1683                dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1684                        dc->clk, state->pclk, err);
1685}
1686
1687static void tegra_dc_stop(struct tegra_dc *dc)
1688{
1689        u32 value;
1690
1691        /* stop the display controller */
1692        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1693        value &= ~DISP_CTRL_MODE_MASK;
1694        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1695
1696        tegra_dc_commit(dc);
1697}
1698
1699static bool tegra_dc_idle(struct tegra_dc *dc)
1700{
1701        u32 value;
1702
1703        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1704
1705        return (value & DISP_CTRL_MODE_MASK) == 0;
1706}
1707
1708static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1709{
1710        timeout = jiffies + msecs_to_jiffies(timeout);
1711
1712        while (time_before(jiffies, timeout)) {
1713                if (tegra_dc_idle(dc))
1714                        return 0;
1715
1716                usleep_range(1000, 2000);
1717        }
1718
1719        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1720        return -ETIMEDOUT;
1721}
1722
1723static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1724                                      struct drm_crtc_state *old_state)
1725{
1726        struct tegra_dc *dc = to_tegra_dc(crtc);
1727        u32 value;
1728
1729        if (!tegra_dc_idle(dc)) {
1730                tegra_dc_stop(dc);
1731
1732                /*
1733                 * Ignore the return value, there isn't anything useful to do
1734                 * in case this fails.
1735                 */
1736                tegra_dc_wait_idle(dc, 100);
1737        }
1738
1739        /*
1740         * This should really be part of the RGB encoder driver, but clearing
1741         * these bits has the side-effect of stopping the display controller.
1742         * When that happens no VBLANK interrupts will be raised. At the same
1743         * time the encoder is disabled before the display controller, so the
1744         * above code is always going to timeout waiting for the controller
1745         * to go idle.
1746         *
1747         * Given the close coupling between the RGB encoder and the display
1748         * controller doing it here is still kind of okay. None of the other
1749         * encoder drivers require these bits to be cleared.
1750         *
1751         * XXX: Perhaps given that the display controller is switched off at
1752         * this point anyway maybe clearing these bits isn't even useful for
1753         * the RGB encoder?
1754         */
1755        if (dc->rgb) {
1756                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1757                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1758                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1759                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1760        }
1761
1762        tegra_dc_stats_reset(&dc->stats);
1763        drm_crtc_vblank_off(crtc);
1764
1765        spin_lock_irq(&crtc->dev->event_lock);
1766
1767        if (crtc->state->event) {
1768                drm_crtc_send_vblank_event(crtc, crtc->state->event);
1769                crtc->state->event = NULL;
1770        }
1771
1772        spin_unlock_irq(&crtc->dev->event_lock);
1773
1774        pm_runtime_put_sync(dc->dev);
1775}
1776
1777static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1778                                     struct drm_crtc_state *old_state)
1779{
1780        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1781        struct tegra_dc_state *state = to_dc_state(crtc->state);
1782        struct tegra_dc *dc = to_tegra_dc(crtc);
1783        u32 value;
1784
1785        pm_runtime_get_sync(dc->dev);
1786
1787        /* initialize display controller */
1788        if (dc->syncpt) {
1789                u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1790
1791                if (dc->soc->has_nvdisplay)
1792                        enable = 1 << 31;
1793                else
1794                        enable = 1 << 8;
1795
1796                value = SYNCPT_CNTRL_NO_STALL;
1797                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1798
1799                value = enable | syncpt;
1800                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1801        }
1802
1803        if (dc->soc->has_nvdisplay) {
1804                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1805                        DSC_OBUF_UF_INT;
1806                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1807
1808                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1809                        DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1810                        HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1811                        REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1812                        VBLANK_INT | FRAME_END_INT;
1813                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1814
1815                value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1816                        FRAME_END_INT;
1817                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1818
1819                value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1820                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1821
1822                tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1823        } else {
1824                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1825                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1826                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1827
1828                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1829                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1830                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1831
1832                /* initialize timer */
1833                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1834                        WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1835                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1836
1837                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1838                        WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1839                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1840
1841                value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1842                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1843                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1844
1845                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1846                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1847                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1848        }
1849
1850        if (dc->soc->supports_background_color)
1851                tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1852        else
1853                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1854
1855        /* apply PLL and pixel clock changes */
1856        tegra_dc_commit_state(dc, state);
1857
1858        /* program display mode */
1859        tegra_dc_set_timings(dc, mode);
1860
1861        /* interlacing isn't supported yet, so disable it */
1862        if (dc->soc->supports_interlacing) {
1863                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1864                value &= ~INTERLACE_ENABLE;
1865                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1866        }
1867
1868        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1869        value &= ~DISP_CTRL_MODE_MASK;
1870        value |= DISP_CTRL_MODE_C_DISPLAY;
1871        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1872
1873        if (!dc->soc->has_nvdisplay) {
1874                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1875                value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1876                         PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1877                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1878        }
1879
1880        /* enable underflow reporting and display red for missing pixels */
1881        if (dc->soc->has_nvdisplay) {
1882                value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1883                tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1884        }
1885
1886        tegra_dc_commit(dc);
1887
1888        drm_crtc_vblank_on(crtc);
1889}
1890
1891static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1892                                    struct drm_crtc_state *old_crtc_state)
1893{
1894        unsigned long flags;
1895
1896        if (crtc->state->event) {
1897                spin_lock_irqsave(&crtc->dev->event_lock, flags);
1898
1899                if (drm_crtc_vblank_get(crtc) != 0)
1900                        drm_crtc_send_vblank_event(crtc, crtc->state->event);
1901                else
1902                        drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1903
1904                spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1905
1906                crtc->state->event = NULL;
1907        }
1908}
1909
1910static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1911                                    struct drm_crtc_state *old_crtc_state)
1912{
1913        struct tegra_dc_state *state = to_dc_state(crtc->state);
1914        struct tegra_dc *dc = to_tegra_dc(crtc);
1915        u32 value;
1916
1917        value = state->planes << 8 | GENERAL_UPDATE;
1918        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1919        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1920
1921        value = state->planes | GENERAL_ACT_REQ;
1922        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1923        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1924}
1925
1926static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1927        .atomic_begin = tegra_crtc_atomic_begin,
1928        .atomic_flush = tegra_crtc_atomic_flush,
1929        .atomic_enable = tegra_crtc_atomic_enable,
1930        .atomic_disable = tegra_crtc_atomic_disable,
1931};
1932
1933static irqreturn_t tegra_dc_irq(int irq, void *data)
1934{
1935        struct tegra_dc *dc = data;
1936        unsigned long status;
1937
1938        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1939        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1940
1941        if (status & FRAME_END_INT) {
1942                /*
1943                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1944                */
1945                dc->stats.frames++;
1946        }
1947
1948        if (status & VBLANK_INT) {
1949                /*
1950                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1951                */
1952                drm_crtc_handle_vblank(&dc->base);
1953                dc->stats.vblank++;
1954        }
1955
1956        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1957                /*
1958                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1959                */
1960                dc->stats.underflow++;
1961        }
1962
1963        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1964                /*
1965                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1966                */
1967                dc->stats.overflow++;
1968        }
1969
1970        if (status & HEAD_UF_INT) {
1971                dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1972                dc->stats.underflow++;
1973        }
1974
1975        return IRQ_HANDLED;
1976}
1977
1978static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1979{
1980        unsigned int i;
1981
1982        if (!dc->soc->wgrps)
1983                return true;
1984
1985        for (i = 0; i < dc->soc->num_wgrps; i++) {
1986                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1987
1988                if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1989                        return true;
1990        }
1991
1992        return false;
1993}
1994
1995static int tegra_dc_init(struct host1x_client *client)
1996{
1997        struct drm_device *drm = dev_get_drvdata(client->parent);
1998        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1999        struct tegra_dc *dc = host1x_client_to_dc(client);
2000        struct tegra_drm *tegra = drm->dev_private;
2001        struct drm_plane *primary = NULL;
2002        struct drm_plane *cursor = NULL;
2003        int err;
2004
2005        /*
2006         * XXX do not register DCs with no window groups because we cannot
2007         * assign a primary plane to them, which in turn will cause KMS to
2008         * crash.
2009         */
2010        if (!tegra_dc_has_window_groups(dc))
2011                return 0;
2012
2013        dc->syncpt = host1x_syncpt_request(client, flags);
2014        if (!dc->syncpt)
2015                dev_warn(dc->dev, "failed to allocate syncpoint\n");
2016
2017        dc->group = host1x_client_iommu_attach(client, true);
2018        if (IS_ERR(dc->group)) {
2019                err = PTR_ERR(dc->group);
2020                dev_err(client->dev, "failed to attach to domain: %d\n", err);
2021                return err;
2022        }
2023
2024        if (dc->soc->wgrps)
2025                primary = tegra_dc_add_shared_planes(drm, dc);
2026        else
2027                primary = tegra_dc_add_planes(drm, dc);
2028
2029        if (IS_ERR(primary)) {
2030                err = PTR_ERR(primary);
2031                goto cleanup;
2032        }
2033
2034        if (dc->soc->supports_cursor) {
2035                cursor = tegra_dc_cursor_plane_create(drm, dc);
2036                if (IS_ERR(cursor)) {
2037                        err = PTR_ERR(cursor);
2038                        goto cleanup;
2039                }
2040        } else {
2041                /* dedicate one overlay to mouse cursor */
2042                cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2043                if (IS_ERR(cursor)) {
2044                        err = PTR_ERR(cursor);
2045                        goto cleanup;
2046                }
2047        }
2048
2049        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2050                                        &tegra_crtc_funcs, NULL);
2051        if (err < 0)
2052                goto cleanup;
2053
2054        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2055
2056        /*
2057         * Keep track of the minimum pitch alignment across all display
2058         * controllers.
2059         */
2060        if (dc->soc->pitch_align > tegra->pitch_align)
2061                tegra->pitch_align = dc->soc->pitch_align;
2062
2063        err = tegra_dc_rgb_init(drm, dc);
2064        if (err < 0 && err != -ENODEV) {
2065                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2066                goto cleanup;
2067        }
2068
2069        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2070                               dev_name(dc->dev), dc);
2071        if (err < 0) {
2072                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2073                        err);
2074                goto cleanup;
2075        }
2076
2077        return 0;
2078
2079cleanup:
2080        if (!IS_ERR_OR_NULL(cursor))
2081                drm_plane_cleanup(cursor);
2082
2083        if (!IS_ERR(primary))
2084                drm_plane_cleanup(primary);
2085
2086        host1x_client_iommu_detach(client, dc->group);
2087        host1x_syncpt_free(dc->syncpt);
2088
2089        return err;
2090}
2091
2092static int tegra_dc_exit(struct host1x_client *client)
2093{
2094        struct tegra_dc *dc = host1x_client_to_dc(client);
2095        int err;
2096
2097        if (!tegra_dc_has_window_groups(dc))
2098                return 0;
2099
2100        devm_free_irq(dc->dev, dc->irq, dc);
2101
2102        err = tegra_dc_rgb_exit(dc);
2103        if (err) {
2104                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2105                return err;
2106        }
2107
2108        host1x_client_iommu_detach(client, dc->group);
2109        host1x_syncpt_free(dc->syncpt);
2110
2111        return 0;
2112}
2113
2114static const struct host1x_client_ops dc_client_ops = {
2115        .init = tegra_dc_init,
2116        .exit = tegra_dc_exit,
2117};
2118
2119static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2120        .supports_background_color = false,
2121        .supports_interlacing = false,
2122        .supports_cursor = false,
2123        .supports_block_linear = false,
2124        .has_legacy_blending = true,
2125        .pitch_align = 8,
2126        .has_powergate = false,
2127        .coupled_pm = true,
2128        .has_nvdisplay = false,
2129        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2130        .primary_formats = tegra20_primary_formats,
2131        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2132        .overlay_formats = tegra20_overlay_formats,
2133        .modifiers = tegra20_modifiers,
2134        .has_win_a_without_filters = true,
2135        .has_win_c_without_vert_filter = true,
2136};
2137
2138static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2139        .supports_background_color = false,
2140        .supports_interlacing = false,
2141        .supports_cursor = false,
2142        .supports_block_linear = false,
2143        .has_legacy_blending = true,
2144        .pitch_align = 8,
2145        .has_powergate = false,
2146        .coupled_pm = false,
2147        .has_nvdisplay = false,
2148        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2149        .primary_formats = tegra20_primary_formats,
2150        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2151        .overlay_formats = tegra20_overlay_formats,
2152        .modifiers = tegra20_modifiers,
2153        .has_win_a_without_filters = false,
2154        .has_win_c_without_vert_filter = false,
2155};
2156
2157static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2158        .supports_background_color = false,
2159        .supports_interlacing = false,
2160        .supports_cursor = false,
2161        .supports_block_linear = false,
2162        .has_legacy_blending = true,
2163        .pitch_align = 64,
2164        .has_powergate = true,
2165        .coupled_pm = false,
2166        .has_nvdisplay = false,
2167        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2168        .primary_formats = tegra114_primary_formats,
2169        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2170        .overlay_formats = tegra114_overlay_formats,
2171        .modifiers = tegra20_modifiers,
2172        .has_win_a_without_filters = false,
2173        .has_win_c_without_vert_filter = false,
2174};
2175
2176static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2177        .supports_background_color = true,
2178        .supports_interlacing = true,
2179        .supports_cursor = true,
2180        .supports_block_linear = true,
2181        .has_legacy_blending = false,
2182        .pitch_align = 64,
2183        .has_powergate = true,
2184        .coupled_pm = false,
2185        .has_nvdisplay = false,
2186        .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2187        .primary_formats = tegra124_primary_formats,
2188        .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2189        .overlay_formats = tegra124_overlay_formats,
2190        .modifiers = tegra124_modifiers,
2191        .has_win_a_without_filters = false,
2192        .has_win_c_without_vert_filter = false,
2193};
2194
2195static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2196        .supports_background_color = true,
2197        .supports_interlacing = true,
2198        .supports_cursor = true,
2199        .supports_block_linear = true,
2200        .has_legacy_blending = false,
2201        .pitch_align = 64,
2202        .has_powergate = true,
2203        .coupled_pm = false,
2204        .has_nvdisplay = false,
2205        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2206        .primary_formats = tegra114_primary_formats,
2207        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2208        .overlay_formats = tegra114_overlay_formats,
2209        .modifiers = tegra124_modifiers,
2210        .has_win_a_without_filters = false,
2211        .has_win_c_without_vert_filter = false,
2212};
2213
2214static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2215        {
2216                .index = 0,
2217                .dc = 0,
2218                .windows = (const unsigned int[]) { 0 },
2219                .num_windows = 1,
2220        }, {
2221                .index = 1,
2222                .dc = 1,
2223                .windows = (const unsigned int[]) { 1 },
2224                .num_windows = 1,
2225        }, {
2226                .index = 2,
2227                .dc = 1,
2228                .windows = (const unsigned int[]) { 2 },
2229                .num_windows = 1,
2230        }, {
2231                .index = 3,
2232                .dc = 2,
2233                .windows = (const unsigned int[]) { 3 },
2234                .num_windows = 1,
2235        }, {
2236                .index = 4,
2237                .dc = 2,
2238                .windows = (const unsigned int[]) { 4 },
2239                .num_windows = 1,
2240        }, {
2241                .index = 5,
2242                .dc = 2,
2243                .windows = (const unsigned int[]) { 5 },
2244                .num_windows = 1,
2245        },
2246};
2247
2248static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2249        .supports_background_color = true,
2250        .supports_interlacing = true,
2251        .supports_cursor = true,
2252        .supports_block_linear = true,
2253        .has_legacy_blending = false,
2254        .pitch_align = 64,
2255        .has_powergate = false,
2256        .coupled_pm = false,
2257        .has_nvdisplay = true,
2258        .wgrps = tegra186_dc_wgrps,
2259        .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2260};
2261
2262static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2263        {
2264                .index = 0,
2265                .dc = 0,
2266                .windows = (const unsigned int[]) { 0 },
2267                .num_windows = 1,
2268        }, {
2269                .index = 1,
2270                .dc = 1,
2271                .windows = (const unsigned int[]) { 1 },
2272                .num_windows = 1,
2273        }, {
2274                .index = 2,
2275                .dc = 1,
2276                .windows = (const unsigned int[]) { 2 },
2277                .num_windows = 1,
2278        }, {
2279                .index = 3,
2280                .dc = 2,
2281                .windows = (const unsigned int[]) { 3 },
2282                .num_windows = 1,
2283        }, {
2284                .index = 4,
2285                .dc = 2,
2286                .windows = (const unsigned int[]) { 4 },
2287                .num_windows = 1,
2288        }, {
2289                .index = 5,
2290                .dc = 2,
2291                .windows = (const unsigned int[]) { 5 },
2292                .num_windows = 1,
2293        },
2294};
2295
2296static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2297        .supports_background_color = true,
2298        .supports_interlacing = true,
2299        .supports_cursor = true,
2300        .supports_block_linear = true,
2301        .has_legacy_blending = false,
2302        .pitch_align = 64,
2303        .has_powergate = false,
2304        .coupled_pm = false,
2305        .has_nvdisplay = true,
2306        .wgrps = tegra194_dc_wgrps,
2307        .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2308};
2309
2310static const struct of_device_id tegra_dc_of_match[] = {
2311        {
2312                .compatible = "nvidia,tegra194-dc",
2313                .data = &tegra194_dc_soc_info,
2314        }, {
2315                .compatible = "nvidia,tegra186-dc",
2316                .data = &tegra186_dc_soc_info,
2317        }, {
2318                .compatible = "nvidia,tegra210-dc",
2319                .data = &tegra210_dc_soc_info,
2320        }, {
2321                .compatible = "nvidia,tegra124-dc",
2322                .data = &tegra124_dc_soc_info,
2323        }, {
2324                .compatible = "nvidia,tegra114-dc",
2325                .data = &tegra114_dc_soc_info,
2326        }, {
2327                .compatible = "nvidia,tegra30-dc",
2328                .data = &tegra30_dc_soc_info,
2329        }, {
2330                .compatible = "nvidia,tegra20-dc",
2331                .data = &tegra20_dc_soc_info,
2332        }, {
2333                /* sentinel */
2334        }
2335};
2336MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2337
2338static int tegra_dc_parse_dt(struct tegra_dc *dc)
2339{
2340        struct device_node *np;
2341        u32 value = 0;
2342        int err;
2343
2344        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2345        if (err < 0) {
2346                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2347
2348                /*
2349                 * If the nvidia,head property isn't present, try to find the
2350                 * correct head number by looking up the position of this
2351                 * display controller's node within the device tree. Assuming
2352                 * that the nodes are ordered properly in the DTS file and
2353                 * that the translation into a flattened device tree blob
2354                 * preserves that ordering this will actually yield the right
2355                 * head number.
2356                 *
2357                 * If those assumptions don't hold, this will still work for
2358                 * cases where only a single display controller is used.
2359                 */
2360                for_each_matching_node(np, tegra_dc_of_match) {
2361                        if (np == dc->dev->of_node) {
2362                                of_node_put(np);
2363                                break;
2364                        }
2365
2366                        value++;
2367                }
2368        }
2369
2370        dc->pipe = value;
2371
2372        return 0;
2373}
2374
2375static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2376{
2377        struct tegra_dc *dc = dev_get_drvdata(dev);
2378        unsigned int pipe = (unsigned long)data;
2379
2380        return dc->pipe == pipe;
2381}
2382
2383static int tegra_dc_couple(struct tegra_dc *dc)
2384{
2385        /*
2386         * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2387         * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2388         * POWER_CONTROL registers during CRTC enabling.
2389         */
2390        if (dc->soc->coupled_pm && dc->pipe == 1) {
2391                u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2392                struct device_link *link;
2393                struct device *partner;
2394
2395                partner = driver_find_device(dc->dev->driver, NULL, NULL,
2396                                             tegra_dc_match_by_pipe);
2397                if (!partner)
2398                        return -EPROBE_DEFER;
2399
2400                link = device_link_add(dc->dev, partner, flags);
2401                if (!link) {
2402                        dev_err(dc->dev, "failed to link controllers\n");
2403                        return -EINVAL;
2404                }
2405
2406                dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2407        }
2408
2409        return 0;
2410}
2411
2412static int tegra_dc_probe(struct platform_device *pdev)
2413{
2414        struct resource *regs;
2415        struct tegra_dc *dc;
2416        int err;
2417
2418        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2419        if (!dc)
2420                return -ENOMEM;
2421
2422        dc->soc = of_device_get_match_data(&pdev->dev);
2423
2424        INIT_LIST_HEAD(&dc->list);
2425        dc->dev = &pdev->dev;
2426
2427        err = tegra_dc_parse_dt(dc);
2428        if (err < 0)
2429                return err;
2430
2431        err = tegra_dc_couple(dc);
2432        if (err < 0)
2433                return err;
2434
2435        dc->clk = devm_clk_get(&pdev->dev, NULL);
2436        if (IS_ERR(dc->clk)) {
2437                dev_err(&pdev->dev, "failed to get clock\n");
2438                return PTR_ERR(dc->clk);
2439        }
2440
2441        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2442        if (IS_ERR(dc->rst)) {
2443                dev_err(&pdev->dev, "failed to get reset\n");
2444                return PTR_ERR(dc->rst);
2445        }
2446
2447        /* assert reset and disable clock */
2448        err = clk_prepare_enable(dc->clk);
2449        if (err < 0)
2450                return err;
2451
2452        usleep_range(2000, 4000);
2453
2454        err = reset_control_assert(dc->rst);
2455        if (err < 0)
2456                return err;
2457
2458        usleep_range(2000, 4000);
2459
2460        clk_disable_unprepare(dc->clk);
2461
2462        if (dc->soc->has_powergate) {
2463                if (dc->pipe == 0)
2464                        dc->powergate = TEGRA_POWERGATE_DIS;
2465                else
2466                        dc->powergate = TEGRA_POWERGATE_DISB;
2467
2468                tegra_powergate_power_off(dc->powergate);
2469        }
2470
2471        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2472        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2473        if (IS_ERR(dc->regs))
2474                return PTR_ERR(dc->regs);
2475
2476        dc->irq = platform_get_irq(pdev, 0);
2477        if (dc->irq < 0) {
2478                dev_err(&pdev->dev, "failed to get IRQ\n");
2479                return -ENXIO;
2480        }
2481
2482        err = tegra_dc_rgb_probe(dc);
2483        if (err < 0 && err != -ENODEV) {
2484                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2485                return err;
2486        }
2487
2488        platform_set_drvdata(pdev, dc);
2489        pm_runtime_enable(&pdev->dev);
2490
2491        INIT_LIST_HEAD(&dc->client.list);
2492        dc->client.ops = &dc_client_ops;
2493        dc->client.dev = &pdev->dev;
2494
2495        err = host1x_client_register(&dc->client);
2496        if (err < 0) {
2497                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2498                        err);
2499                return err;
2500        }
2501
2502        return 0;
2503}
2504
2505static int tegra_dc_remove(struct platform_device *pdev)
2506{
2507        struct tegra_dc *dc = platform_get_drvdata(pdev);
2508        int err;
2509
2510        err = host1x_client_unregister(&dc->client);
2511        if (err < 0) {
2512                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2513                        err);
2514                return err;
2515        }
2516
2517        err = tegra_dc_rgb_remove(dc);
2518        if (err < 0) {
2519                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2520                return err;
2521        }
2522
2523        pm_runtime_disable(&pdev->dev);
2524
2525        return 0;
2526}
2527
2528#ifdef CONFIG_PM
2529static int tegra_dc_suspend(struct device *dev)
2530{
2531        struct tegra_dc *dc = dev_get_drvdata(dev);
2532        int err;
2533
2534        err = reset_control_assert(dc->rst);
2535        if (err < 0) {
2536                dev_err(dev, "failed to assert reset: %d\n", err);
2537                return err;
2538        }
2539
2540        if (dc->soc->has_powergate)
2541                tegra_powergate_power_off(dc->powergate);
2542
2543        clk_disable_unprepare(dc->clk);
2544
2545        return 0;
2546}
2547
2548static int tegra_dc_resume(struct device *dev)
2549{
2550        struct tegra_dc *dc = dev_get_drvdata(dev);
2551        int err;
2552
2553        if (dc->soc->has_powergate) {
2554                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2555                                                        dc->rst);
2556                if (err < 0) {
2557                        dev_err(dev, "failed to power partition: %d\n", err);
2558                        return err;
2559                }
2560        } else {
2561                err = clk_prepare_enable(dc->clk);
2562                if (err < 0) {
2563                        dev_err(dev, "failed to enable clock: %d\n", err);
2564                        return err;
2565                }
2566
2567                err = reset_control_deassert(dc->rst);
2568                if (err < 0) {
2569                        dev_err(dev, "failed to deassert reset: %d\n", err);
2570                        return err;
2571                }
2572        }
2573
2574        return 0;
2575}
2576#endif
2577
2578static const struct dev_pm_ops tegra_dc_pm_ops = {
2579        SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2580};
2581
2582struct platform_driver tegra_dc_driver = {
2583        .driver = {
2584                .name = "tegra-dc",
2585                .of_match_table = tegra_dc_of_match,
2586                .pm = &tegra_dc_pm_ops,
2587        },
2588        .probe = tegra_dc_probe,
2589        .remove = tegra_dc_remove,
2590};
2591