linux/drivers/hwtracing/coresight/coresight-tmc-etr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
   4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/coresight.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/iommu.h>
  11#include <linux/idr.h>
  12#include <linux/mutex.h>
  13#include <linux/refcount.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/vmalloc.h>
  17#include "coresight-catu.h"
  18#include "coresight-etm-perf.h"
  19#include "coresight-priv.h"
  20#include "coresight-tmc.h"
  21
  22struct etr_flat_buf {
  23        struct device   *dev;
  24        dma_addr_t      daddr;
  25        void            *vaddr;
  26        size_t          size;
  27};
  28
  29/*
  30 * etr_perf_buffer - Perf buffer used for ETR
  31 * @drvdata             - The ETR drvdaga this buffer has been allocated for.
  32 * @etr_buf             - Actual buffer used by the ETR
  33 * @pid                 - The PID this etr_perf_buffer belongs to.
  34 * @snaphost            - Perf session mode
  35 * @head                - handle->head at the beginning of the session.
  36 * @nr_pages            - Number of pages in the ring buffer.
  37 * @pages               - Array of Pages in the ring buffer.
  38 */
  39struct etr_perf_buffer {
  40        struct tmc_drvdata      *drvdata;
  41        struct etr_buf          *etr_buf;
  42        pid_t                   pid;
  43        bool                    snapshot;
  44        unsigned long           head;
  45        int                     nr_pages;
  46        void                    **pages;
  47};
  48
  49/* Convert the perf index to an offset within the ETR buffer */
  50#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  51
  52/* Lower limit for ETR hardware buffer */
  53#define TMC_ETR_PERF_MIN_BUF_SIZE       SZ_1M
  54
  55/*
  56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
  57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
  58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
  59 * contain more than one SG buffer and tables.
  60 *
  61 * A table entry has the following format:
  62 *
  63 * ---Bit31------------Bit4-------Bit1-----Bit0--
  64 * |     Address[39:12]    | SBZ |  Entry Type  |
  65 * ----------------------------------------------
  66 *
  67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
  68 *          always zero.
  69 *
  70 * Entry type:
  71 *      b00 - Reserved.
  72 *      b01 - Last entry in the tables, points to 4K page buffer.
  73 *      b10 - Normal entry, points to 4K page buffer.
  74 *      b11 - Link. The address points to the base of next table.
  75 */
  76
  77typedef u32 sgte_t;
  78
  79#define ETR_SG_PAGE_SHIFT               12
  80#define ETR_SG_PAGE_SIZE                (1UL << ETR_SG_PAGE_SHIFT)
  81#define ETR_SG_PAGES_PER_SYSPAGE        (PAGE_SIZE / ETR_SG_PAGE_SIZE)
  82#define ETR_SG_PTRS_PER_PAGE            (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
  83#define ETR_SG_PTRS_PER_SYSPAGE         (PAGE_SIZE / sizeof(sgte_t))
  84
  85#define ETR_SG_ET_MASK                  0x3
  86#define ETR_SG_ET_LAST                  0x1
  87#define ETR_SG_ET_NORMAL                0x2
  88#define ETR_SG_ET_LINK                  0x3
  89
  90#define ETR_SG_ADDR_SHIFT               4
  91
  92#define ETR_SG_ENTRY(addr, type) \
  93        (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
  94                 (type & ETR_SG_ET_MASK))
  95
  96#define ETR_SG_ADDR(entry) \
  97        (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
  98#define ETR_SG_ET(entry)                ((entry) & ETR_SG_ET_MASK)
  99
 100/*
 101 * struct etr_sg_table : ETR SG Table
 102 * @sg_table:           Generic SG Table holding the data/table pages.
 103 * @hwaddr:             hwaddress used by the TMC, which is the base
 104 *                      address of the table.
 105 */
 106struct etr_sg_table {
 107        struct tmc_sg_table     *sg_table;
 108        dma_addr_t              hwaddr;
 109};
 110
 111/*
 112 * tmc_etr_sg_table_entries: Total number of table entries required to map
 113 * @nr_pages system pages.
 114 *
 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 117 * with the last entry pointing to another page of table entries.
 118 * If we spill over to a new page for mapping 1 entry, we could as
 119 * well replace the link entry of the previous page with the last entry.
 120 */
 121static inline unsigned long __attribute_const__
 122tmc_etr_sg_table_entries(int nr_pages)
 123{
 124        unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
 125        unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
 126        /*
 127         * If we spill over to a new page for 1 entry, we could as well
 128         * make it the LAST entry in the previous page, skipping the Link
 129         * address.
 130         */
 131        if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
 132                nr_sglinks--;
 133        return nr_sgpages + nr_sglinks;
 134}
 135
 136/*
 137 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 138 * and map the device address @addr to an offset within the virtual
 139 * contiguous buffer.
 140 */
 141static long
 142tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
 143{
 144        int i;
 145        dma_addr_t page_start;
 146
 147        for (i = 0; i < tmc_pages->nr_pages; i++) {
 148                page_start = tmc_pages->daddrs[i];
 149                if (addr >= page_start && addr < (page_start + PAGE_SIZE))
 150                        return i * PAGE_SIZE + (addr - page_start);
 151        }
 152
 153        return -EINVAL;
 154}
 155
 156/*
 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 158 * If the pages were not allocated in tmc_pages_alloc(), we would
 159 * simply drop the refcount.
 160 */
 161static void tmc_pages_free(struct tmc_pages *tmc_pages,
 162                           struct device *dev, enum dma_data_direction dir)
 163{
 164        int i;
 165
 166        for (i = 0; i < tmc_pages->nr_pages; i++) {
 167                if (tmc_pages->daddrs && tmc_pages->daddrs[i])
 168                        dma_unmap_page(dev, tmc_pages->daddrs[i],
 169                                         PAGE_SIZE, dir);
 170                if (tmc_pages->pages && tmc_pages->pages[i])
 171                        __free_page(tmc_pages->pages[i]);
 172        }
 173
 174        kfree(tmc_pages->pages);
 175        kfree(tmc_pages->daddrs);
 176        tmc_pages->pages = NULL;
 177        tmc_pages->daddrs = NULL;
 178        tmc_pages->nr_pages = 0;
 179}
 180
 181/*
 182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 183 * If @pages is not NULL, the list of page virtual addresses are
 184 * used as the data pages. The pages are then dma_map'ed for @dev
 185 * with dma_direction @dir.
 186 *
 187 * Returns 0 upon success, else the error number.
 188 */
 189static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
 190                           struct device *dev, int node,
 191                           enum dma_data_direction dir, void **pages)
 192{
 193        int i, nr_pages;
 194        dma_addr_t paddr;
 195        struct page *page;
 196
 197        nr_pages = tmc_pages->nr_pages;
 198        tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
 199                                         GFP_KERNEL);
 200        if (!tmc_pages->daddrs)
 201                return -ENOMEM;
 202        tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
 203                                         GFP_KERNEL);
 204        if (!tmc_pages->pages) {
 205                kfree(tmc_pages->daddrs);
 206                tmc_pages->daddrs = NULL;
 207                return -ENOMEM;
 208        }
 209
 210        for (i = 0; i < nr_pages; i++) {
 211                if (pages && pages[i]) {
 212                        page = virt_to_page(pages[i]);
 213                        /* Hold a refcount on the page */
 214                        get_page(page);
 215                } else {
 216                        page = alloc_pages_node(node,
 217                                                GFP_KERNEL | __GFP_ZERO, 0);
 218                }
 219                paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
 220                if (dma_mapping_error(dev, paddr))
 221                        goto err;
 222                tmc_pages->daddrs[i] = paddr;
 223                tmc_pages->pages[i] = page;
 224        }
 225        return 0;
 226err:
 227        tmc_pages_free(tmc_pages, dev, dir);
 228        return -ENOMEM;
 229}
 230
 231static inline long
 232tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
 233{
 234        return tmc_pages_get_offset(&sg_table->data_pages, addr);
 235}
 236
 237static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
 238{
 239        if (sg_table->table_vaddr)
 240                vunmap(sg_table->table_vaddr);
 241        tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
 242}
 243
 244static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
 245{
 246        if (sg_table->data_vaddr)
 247                vunmap(sg_table->data_vaddr);
 248        tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
 249}
 250
 251void tmc_free_sg_table(struct tmc_sg_table *sg_table)
 252{
 253        tmc_free_table_pages(sg_table);
 254        tmc_free_data_pages(sg_table);
 255}
 256
 257/*
 258 * Alloc pages for the table. Since this will be used by the device,
 259 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 260 * rather than the CPU node).
 261 */
 262static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
 263{
 264        int rc;
 265        struct tmc_pages *table_pages = &sg_table->table_pages;
 266
 267        rc = tmc_pages_alloc(table_pages, sg_table->dev,
 268                             dev_to_node(sg_table->dev),
 269                             DMA_TO_DEVICE, NULL);
 270        if (rc)
 271                return rc;
 272        sg_table->table_vaddr = vmap(table_pages->pages,
 273                                     table_pages->nr_pages,
 274                                     VM_MAP,
 275                                     PAGE_KERNEL);
 276        if (!sg_table->table_vaddr)
 277                rc = -ENOMEM;
 278        else
 279                sg_table->table_daddr = table_pages->daddrs[0];
 280        return rc;
 281}
 282
 283static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
 284{
 285        int rc;
 286
 287        /* Allocate data pages on the node requested by the caller */
 288        rc = tmc_pages_alloc(&sg_table->data_pages,
 289                             sg_table->dev, sg_table->node,
 290                             DMA_FROM_DEVICE, pages);
 291        if (!rc) {
 292                sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
 293                                            sg_table->data_pages.nr_pages,
 294                                            VM_MAP,
 295                                            PAGE_KERNEL);
 296                if (!sg_table->data_vaddr)
 297                        rc = -ENOMEM;
 298        }
 299        return rc;
 300}
 301
 302/*
 303 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 304 * and data buffers. TMC writes to the data buffers and reads from the SG
 305 * Table pages.
 306 *
 307 * @dev         - Device to which page should be DMA mapped.
 308 * @node        - Numa node for mem allocations
 309 * @nr_tpages   - Number of pages for the table entries.
 310 * @nr_dpages   - Number of pages for Data buffer.
 311 * @pages       - Optional list of virtual address of pages.
 312 */
 313struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
 314                                        int node,
 315                                        int nr_tpages,
 316                                        int nr_dpages,
 317                                        void **pages)
 318{
 319        long rc;
 320        struct tmc_sg_table *sg_table;
 321
 322        sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
 323        if (!sg_table)
 324                return ERR_PTR(-ENOMEM);
 325        sg_table->data_pages.nr_pages = nr_dpages;
 326        sg_table->table_pages.nr_pages = nr_tpages;
 327        sg_table->node = node;
 328        sg_table->dev = dev;
 329
 330        rc  = tmc_alloc_data_pages(sg_table, pages);
 331        if (!rc)
 332                rc = tmc_alloc_table_pages(sg_table);
 333        if (rc) {
 334                tmc_free_sg_table(sg_table);
 335                kfree(sg_table);
 336                return ERR_PTR(rc);
 337        }
 338
 339        return sg_table;
 340}
 341
 342/*
 343 * tmc_sg_table_sync_data_range: Sync the data buffer written
 344 * by the device from @offset upto a @size bytes.
 345 */
 346void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
 347                                  u64 offset, u64 size)
 348{
 349        int i, index, start;
 350        int npages = DIV_ROUND_UP(size, PAGE_SIZE);
 351        struct device *dev = table->dev;
 352        struct tmc_pages *data = &table->data_pages;
 353
 354        start = offset >> PAGE_SHIFT;
 355        for (i = start; i < (start + npages); i++) {
 356                index = i % data->nr_pages;
 357                dma_sync_single_for_cpu(dev, data->daddrs[index],
 358                                        PAGE_SIZE, DMA_FROM_DEVICE);
 359        }
 360}
 361
 362/* tmc_sg_sync_table: Sync the page table */
 363void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
 364{
 365        int i;
 366        struct device *dev = sg_table->dev;
 367        struct tmc_pages *table_pages = &sg_table->table_pages;
 368
 369        for (i = 0; i < table_pages->nr_pages; i++)
 370                dma_sync_single_for_device(dev, table_pages->daddrs[i],
 371                                           PAGE_SIZE, DMA_TO_DEVICE);
 372}
 373
 374/*
 375 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 376 * in the SG buffer. The @bufpp is updated to point to the buffer.
 377 * Returns :
 378 *      the length of linear data available at @offset.
 379 *      or
 380 *      <= 0 if no data is available.
 381 */
 382ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
 383                              u64 offset, size_t len, char **bufpp)
 384{
 385        size_t size;
 386        int pg_idx = offset >> PAGE_SHIFT;
 387        int pg_offset = offset & (PAGE_SIZE - 1);
 388        struct tmc_pages *data_pages = &sg_table->data_pages;
 389
 390        size = tmc_sg_table_buf_size(sg_table);
 391        if (offset >= size)
 392                return -EINVAL;
 393
 394        /* Make sure we don't go beyond the end */
 395        len = (len < (size - offset)) ? len : size - offset;
 396        /* Respect the page boundaries */
 397        len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
 398        if (len > 0)
 399                *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
 400        return len;
 401}
 402
 403#ifdef ETR_SG_DEBUG
 404/* Map a dma address to virtual address */
 405static unsigned long
 406tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
 407                      dma_addr_t addr, bool table)
 408{
 409        long offset;
 410        unsigned long base;
 411        struct tmc_pages *tmc_pages;
 412
 413        if (table) {
 414                tmc_pages = &sg_table->table_pages;
 415                base = (unsigned long)sg_table->table_vaddr;
 416        } else {
 417                tmc_pages = &sg_table->data_pages;
 418                base = (unsigned long)sg_table->data_vaddr;
 419        }
 420
 421        offset = tmc_pages_get_offset(tmc_pages, addr);
 422        if (offset < 0)
 423                return 0;
 424        return base + offset;
 425}
 426
 427/* Dump the given sg_table */
 428static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
 429{
 430        sgte_t *ptr;
 431        int i = 0;
 432        dma_addr_t addr;
 433        struct tmc_sg_table *sg_table = etr_table->sg_table;
 434
 435        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 436                                              etr_table->hwaddr, true);
 437        while (ptr) {
 438                addr = ETR_SG_ADDR(*ptr);
 439                switch (ETR_SG_ET(*ptr)) {
 440                case ETR_SG_ET_NORMAL:
 441                        dev_dbg(sg_table->dev,
 442                                "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
 443                        ptr++;
 444                        break;
 445                case ETR_SG_ET_LINK:
 446                        dev_dbg(sg_table->dev,
 447                                "%05d: *** %p\t:{L} 0x%llx ***\n",
 448                                 i, ptr, addr);
 449                        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 450                                                              addr, true);
 451                        break;
 452                case ETR_SG_ET_LAST:
 453                        dev_dbg(sg_table->dev,
 454                                "%05d: ### %p\t:[L] 0x%llx ###\n",
 455                                 i, ptr, addr);
 456                        return;
 457                default:
 458                        dev_dbg(sg_table->dev,
 459                                "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
 460                                 i, ptr, addr);
 461                        return;
 462                }
 463                i++;
 464        }
 465        dev_dbg(sg_table->dev, "******* End of Table *****\n");
 466}
 467#else
 468static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
 469#endif
 470
 471/*
 472 * Populate the SG Table page table entries from table/data
 473 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 474 * So does a Table page. So we keep track of indices of the tables
 475 * in each system page and move the pointers accordingly.
 476 */
 477#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
 478static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
 479{
 480        dma_addr_t paddr;
 481        int i, type, nr_entries;
 482        int tpidx = 0; /* index to the current system table_page */
 483        int sgtidx = 0; /* index to the sg_table within the current syspage */
 484        int sgtentry = 0; /* the entry within the sg_table */
 485        int dpidx = 0; /* index to the current system data_page */
 486        int spidx = 0; /* index to the SG page within the current data page */
 487        sgte_t *ptr; /* pointer to the table entry to fill */
 488        struct tmc_sg_table *sg_table = etr_table->sg_table;
 489        dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
 490        dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
 491
 492        nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
 493        /*
 494         * Use the contiguous virtual address of the table to update entries.
 495         */
 496        ptr = sg_table->table_vaddr;
 497        /*
 498         * Fill all the entries, except the last entry to avoid special
 499         * checks within the loop.
 500         */
 501        for (i = 0; i < nr_entries - 1; i++) {
 502                if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
 503                        /*
 504                         * Last entry in a sg_table page is a link address to
 505                         * the next table page. If this sg_table is the last
 506                         * one in the system page, it links to the first
 507                         * sg_table in the next system page. Otherwise, it
 508                         * links to the next sg_table page within the system
 509                         * page.
 510                         */
 511                        if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
 512                                paddr = table_daddrs[tpidx + 1];
 513                        } else {
 514                                paddr = table_daddrs[tpidx] +
 515                                        (ETR_SG_PAGE_SIZE * (sgtidx + 1));
 516                        }
 517                        type = ETR_SG_ET_LINK;
 518                } else {
 519                        /*
 520                         * Update the indices to the data_pages to point to the
 521                         * next sg_page in the data buffer.
 522                         */
 523                        type = ETR_SG_ET_NORMAL;
 524                        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 525                        if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
 526                                dpidx++;
 527                }
 528                *ptr++ = ETR_SG_ENTRY(paddr, type);
 529                /*
 530                 * Move to the next table pointer, moving the table page index
 531                 * if necessary
 532                 */
 533                if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
 534                        if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
 535                                tpidx++;
 536                }
 537        }
 538
 539        /* Set up the last entry, which is always a data pointer */
 540        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 541        *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
 542}
 543
 544/*
 545 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 546 * populate the table.
 547 *
 548 * @dev         - Device pointer for the TMC
 549 * @node        - NUMA node where the memory should be allocated
 550 * @size        - Total size of the data buffer
 551 * @pages       - Optional list of page virtual address
 552 */
 553static struct etr_sg_table *
 554tmc_init_etr_sg_table(struct device *dev, int node,
 555                      unsigned long size, void **pages)
 556{
 557        int nr_entries, nr_tpages;
 558        int nr_dpages = size >> PAGE_SHIFT;
 559        struct tmc_sg_table *sg_table;
 560        struct etr_sg_table *etr_table;
 561
 562        etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
 563        if (!etr_table)
 564                return ERR_PTR(-ENOMEM);
 565        nr_entries = tmc_etr_sg_table_entries(nr_dpages);
 566        nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
 567
 568        sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
 569        if (IS_ERR(sg_table)) {
 570                kfree(etr_table);
 571                return ERR_CAST(sg_table);
 572        }
 573
 574        etr_table->sg_table = sg_table;
 575        /* TMC should use table base address for DBA */
 576        etr_table->hwaddr = sg_table->table_daddr;
 577        tmc_etr_sg_table_populate(etr_table);
 578        /* Sync the table pages for the HW */
 579        tmc_sg_table_sync_table(sg_table);
 580        tmc_etr_sg_table_dump(etr_table);
 581
 582        return etr_table;
 583}
 584
 585/*
 586 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 587 */
 588static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
 589                                  struct etr_buf *etr_buf, int node,
 590                                  void **pages)
 591{
 592        struct etr_flat_buf *flat_buf;
 593
 594        /* We cannot reuse existing pages for flat buf */
 595        if (pages)
 596                return -EINVAL;
 597
 598        flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
 599        if (!flat_buf)
 600                return -ENOMEM;
 601
 602        flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size,
 603                                             &flat_buf->daddr, GFP_KERNEL);
 604        if (!flat_buf->vaddr) {
 605                kfree(flat_buf);
 606                return -ENOMEM;
 607        }
 608
 609        flat_buf->size = etr_buf->size;
 610        flat_buf->dev = drvdata->dev;
 611        etr_buf->hwaddr = flat_buf->daddr;
 612        etr_buf->mode = ETR_MODE_FLAT;
 613        etr_buf->private = flat_buf;
 614        return 0;
 615}
 616
 617static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
 618{
 619        struct etr_flat_buf *flat_buf = etr_buf->private;
 620
 621        if (flat_buf && flat_buf->daddr)
 622                dma_free_coherent(flat_buf->dev, flat_buf->size,
 623                                  flat_buf->vaddr, flat_buf->daddr);
 624        kfree(flat_buf);
 625}
 626
 627static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 628{
 629        /*
 630         * Adjust the buffer to point to the beginning of the trace data
 631         * and update the available trace data.
 632         */
 633        etr_buf->offset = rrp - etr_buf->hwaddr;
 634        if (etr_buf->full)
 635                etr_buf->len = etr_buf->size;
 636        else
 637                etr_buf->len = rwp - rrp;
 638}
 639
 640static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
 641                                         u64 offset, size_t len, char **bufpp)
 642{
 643        struct etr_flat_buf *flat_buf = etr_buf->private;
 644
 645        *bufpp = (char *)flat_buf->vaddr + offset;
 646        /*
 647         * tmc_etr_buf_get_data already adjusts the length to handle
 648         * buffer wrapping around.
 649         */
 650        return len;
 651}
 652
 653static const struct etr_buf_operations etr_flat_buf_ops = {
 654        .alloc = tmc_etr_alloc_flat_buf,
 655        .free = tmc_etr_free_flat_buf,
 656        .sync = tmc_etr_sync_flat_buf,
 657        .get_data = tmc_etr_get_data_flat_buf,
 658};
 659
 660/*
 661 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 662 * appropriately.
 663 */
 664static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
 665                                struct etr_buf *etr_buf, int node,
 666                                void **pages)
 667{
 668        struct etr_sg_table *etr_table;
 669
 670        etr_table = tmc_init_etr_sg_table(drvdata->dev, node,
 671                                          etr_buf->size, pages);
 672        if (IS_ERR(etr_table))
 673                return -ENOMEM;
 674        etr_buf->hwaddr = etr_table->hwaddr;
 675        etr_buf->mode = ETR_MODE_ETR_SG;
 676        etr_buf->private = etr_table;
 677        return 0;
 678}
 679
 680static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
 681{
 682        struct etr_sg_table *etr_table = etr_buf->private;
 683
 684        if (etr_table) {
 685                tmc_free_sg_table(etr_table->sg_table);
 686                kfree(etr_table);
 687        }
 688}
 689
 690static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
 691                                       size_t len, char **bufpp)
 692{
 693        struct etr_sg_table *etr_table = etr_buf->private;
 694
 695        return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
 696}
 697
 698static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 699{
 700        long r_offset, w_offset;
 701        struct etr_sg_table *etr_table = etr_buf->private;
 702        struct tmc_sg_table *table = etr_table->sg_table;
 703
 704        /* Convert hw address to offset in the buffer */
 705        r_offset = tmc_sg_get_data_page_offset(table, rrp);
 706        if (r_offset < 0) {
 707                dev_warn(table->dev,
 708                         "Unable to map RRP %llx to offset\n", rrp);
 709                etr_buf->len = 0;
 710                return;
 711        }
 712
 713        w_offset = tmc_sg_get_data_page_offset(table, rwp);
 714        if (w_offset < 0) {
 715                dev_warn(table->dev,
 716                         "Unable to map RWP %llx to offset\n", rwp);
 717                etr_buf->len = 0;
 718                return;
 719        }
 720
 721        etr_buf->offset = r_offset;
 722        if (etr_buf->full)
 723                etr_buf->len = etr_buf->size;
 724        else
 725                etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
 726                                w_offset - r_offset;
 727        tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
 728}
 729
 730static const struct etr_buf_operations etr_sg_buf_ops = {
 731        .alloc = tmc_etr_alloc_sg_buf,
 732        .free = tmc_etr_free_sg_buf,
 733        .sync = tmc_etr_sync_sg_buf,
 734        .get_data = tmc_etr_get_data_sg_buf,
 735};
 736
 737/*
 738 * TMC ETR could be connected to a CATU device, which can provide address
 739 * translation service. This is represented by the Output port of the TMC
 740 * (ETR) connected to the input port of the CATU.
 741 *
 742 * Returns      : coresight_device ptr for the CATU device if a CATU is found.
 743 *              : NULL otherwise.
 744 */
 745struct coresight_device *
 746tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
 747{
 748        int i;
 749        struct coresight_device *tmp, *etr = drvdata->csdev;
 750
 751        if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
 752                return NULL;
 753
 754        for (i = 0; i < etr->nr_outport; i++) {
 755                tmp = etr->conns[i].child_dev;
 756                if (tmp && coresight_is_catu_device(tmp))
 757                        return tmp;
 758        }
 759
 760        return NULL;
 761}
 762
 763static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
 764                                      struct etr_buf *etr_buf)
 765{
 766        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 767
 768        if (catu && helper_ops(catu)->enable)
 769                return helper_ops(catu)->enable(catu, etr_buf);
 770        return 0;
 771}
 772
 773static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
 774{
 775        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 776
 777        if (catu && helper_ops(catu)->disable)
 778                helper_ops(catu)->disable(catu, drvdata->etr_buf);
 779}
 780
 781static const struct etr_buf_operations *etr_buf_ops[] = {
 782        [ETR_MODE_FLAT] = &etr_flat_buf_ops,
 783        [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
 784        [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
 785                                                ? &etr_catu_buf_ops : NULL,
 786};
 787
 788static inline int tmc_etr_mode_alloc_buf(int mode,
 789                                         struct tmc_drvdata *drvdata,
 790                                         struct etr_buf *etr_buf, int node,
 791                                         void **pages)
 792{
 793        int rc = -EINVAL;
 794
 795        switch (mode) {
 796        case ETR_MODE_FLAT:
 797        case ETR_MODE_ETR_SG:
 798        case ETR_MODE_CATU:
 799                if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
 800                        rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
 801                                                      node, pages);
 802                if (!rc)
 803                        etr_buf->ops = etr_buf_ops[mode];
 804                return rc;
 805        default:
 806                return -EINVAL;
 807        }
 808}
 809
 810/*
 811 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 812 * @drvdata     : ETR device details.
 813 * @size        : size of the requested buffer.
 814 * @flags       : Required properties for the buffer.
 815 * @node        : Node for memory allocations.
 816 * @pages       : An optional list of pages.
 817 */
 818static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
 819                                         ssize_t size, int flags,
 820                                         int node, void **pages)
 821{
 822        int rc = -ENOMEM;
 823        bool has_etr_sg, has_iommu;
 824        bool has_sg, has_catu;
 825        struct etr_buf *etr_buf;
 826
 827        has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
 828        has_iommu = iommu_get_domain_for_dev(drvdata->dev);
 829        has_catu = !!tmc_etr_get_catu_device(drvdata);
 830
 831        has_sg = has_catu || has_etr_sg;
 832
 833        etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
 834        if (!etr_buf)
 835                return ERR_PTR(-ENOMEM);
 836
 837        etr_buf->size = size;
 838
 839        /*
 840         * If we have to use an existing list of pages, we cannot reliably
 841         * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
 842         * we use the contiguous DMA memory if at least one of the following
 843         * conditions is true:
 844         *  a) The ETR cannot use Scatter-Gather.
 845         *  b) we have a backing IOMMU
 846         *  c) The requested memory size is smaller (< 1M).
 847         *
 848         * Fallback to available mechanisms.
 849         *
 850         */
 851        if (!pages &&
 852            (!has_sg || has_iommu || size < SZ_1M))
 853                rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
 854                                            etr_buf, node, pages);
 855        if (rc && has_etr_sg)
 856                rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
 857                                            etr_buf, node, pages);
 858        if (rc && has_catu)
 859                rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
 860                                            etr_buf, node, pages);
 861        if (rc) {
 862                kfree(etr_buf);
 863                return ERR_PTR(rc);
 864        }
 865
 866        dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n",
 867                (unsigned long)size >> 10, etr_buf->mode);
 868        return etr_buf;
 869}
 870
 871static void tmc_free_etr_buf(struct etr_buf *etr_buf)
 872{
 873        WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
 874        etr_buf->ops->free(etr_buf);
 875        kfree(etr_buf);
 876}
 877
 878/*
 879 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 880 * with a maximum of @len bytes.
 881 * Returns: The size of the linear data available @pos, with *bufpp
 882 * updated to point to the buffer.
 883 */
 884static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
 885                                    u64 offset, size_t len, char **bufpp)
 886{
 887        /* Adjust the length to limit this transaction to end of buffer */
 888        len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
 889
 890        return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
 891}
 892
 893static inline s64
 894tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
 895{
 896        ssize_t len;
 897        char *bufp;
 898
 899        len = tmc_etr_buf_get_data(etr_buf, offset,
 900                                   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
 901        if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
 902                return -EINVAL;
 903        coresight_insert_barrier_packet(bufp);
 904        return offset + CORESIGHT_BARRIER_PKT_SIZE;
 905}
 906
 907/*
 908 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 909 * Makes sure the trace data is synced to the memory for consumption.
 910 * @etr_buf->offset will hold the offset to the beginning of the trace data
 911 * within the buffer, with @etr_buf->len bytes to consume.
 912 */
 913static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
 914{
 915        struct etr_buf *etr_buf = drvdata->etr_buf;
 916        u64 rrp, rwp;
 917        u32 status;
 918
 919        rrp = tmc_read_rrp(drvdata);
 920        rwp = tmc_read_rwp(drvdata);
 921        status = readl_relaxed(drvdata->base + TMC_STS);
 922        etr_buf->full = status & TMC_STS_FULL;
 923
 924        WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
 925
 926        etr_buf->ops->sync(etr_buf, rrp, rwp);
 927
 928        /* Insert barrier packets at the beginning, if there was an overflow */
 929        if (etr_buf->full)
 930                tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
 931}
 932
 933static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
 934{
 935        u32 axictl, sts;
 936        struct etr_buf *etr_buf = drvdata->etr_buf;
 937
 938        CS_UNLOCK(drvdata->base);
 939
 940        /* Wait for TMCSReady bit to be set */
 941        tmc_wait_for_tmcready(drvdata);
 942
 943        writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
 944        writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
 945
 946        axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
 947        axictl &= ~TMC_AXICTL_CLEAR_MASK;
 948        axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
 949        axictl |= TMC_AXICTL_AXCACHE_OS;
 950
 951        if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
 952                axictl &= ~TMC_AXICTL_ARCACHE_MASK;
 953                axictl |= TMC_AXICTL_ARCACHE_OS;
 954        }
 955
 956        if (etr_buf->mode == ETR_MODE_ETR_SG)
 957                axictl |= TMC_AXICTL_SCT_GAT_MODE;
 958
 959        writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
 960        tmc_write_dba(drvdata, etr_buf->hwaddr);
 961        /*
 962         * If the TMC pointers must be programmed before the session,
 963         * we have to set it properly (i.e, RRP/RWP to base address and
 964         * STS to "not full").
 965         */
 966        if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
 967                tmc_write_rrp(drvdata, etr_buf->hwaddr);
 968                tmc_write_rwp(drvdata, etr_buf->hwaddr);
 969                sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
 970                writel_relaxed(sts, drvdata->base + TMC_STS);
 971        }
 972
 973        writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
 974                       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
 975                       TMC_FFCR_TRIGON_TRIGIN,
 976                       drvdata->base + TMC_FFCR);
 977        writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
 978        tmc_enable_hw(drvdata);
 979
 980        CS_LOCK(drvdata->base);
 981}
 982
 983static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
 984                             struct etr_buf *etr_buf)
 985{
 986        int rc;
 987
 988        /* Callers should provide an appropriate buffer for use */
 989        if (WARN_ON(!etr_buf))
 990                return -EINVAL;
 991
 992        if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
 993            WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
 994                return -EINVAL;
 995
 996        if (WARN_ON(drvdata->etr_buf))
 997                return -EBUSY;
 998
 999        /*
1000         * If this ETR is connected to a CATU, enable it before we turn
1001         * this on.
1002         */
1003        rc = tmc_etr_enable_catu(drvdata, etr_buf);
1004        if (rc)
1005                return rc;
1006        rc = coresight_claim_device(drvdata->base);
1007        if (!rc) {
1008                drvdata->etr_buf = etr_buf;
1009                __tmc_etr_enable_hw(drvdata);
1010        }
1011
1012        return rc;
1013}
1014
1015/*
1016 * Return the available trace data in the buffer (starts at etr_buf->offset,
1017 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1018 * also updating the @bufpp on where to find it. Since the trace data
1019 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1020 * @len returned to handle buffer wrapping around.
1021 *
1022 * We are protected here by drvdata->reading != 0, which ensures the
1023 * sysfs_buf stays alive.
1024 */
1025ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1026                                loff_t pos, size_t len, char **bufpp)
1027{
1028        s64 offset;
1029        ssize_t actual = len;
1030        struct etr_buf *etr_buf = drvdata->sysfs_buf;
1031
1032        if (pos + actual > etr_buf->len)
1033                actual = etr_buf->len - pos;
1034        if (actual <= 0)
1035                return actual;
1036
1037        /* Compute the offset from which we read the data */
1038        offset = etr_buf->offset + pos;
1039        if (offset >= etr_buf->size)
1040                offset -= etr_buf->size;
1041        return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1042}
1043
1044static struct etr_buf *
1045tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1046{
1047        return tmc_alloc_etr_buf(drvdata, drvdata->size,
1048                                 0, cpu_to_node(0), NULL);
1049}
1050
1051static void
1052tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1053{
1054        if (buf)
1055                tmc_free_etr_buf(buf);
1056}
1057
1058static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1059{
1060        struct etr_buf *etr_buf = drvdata->etr_buf;
1061
1062        if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1063                tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1064                drvdata->sysfs_buf = NULL;
1065        } else {
1066                tmc_sync_etr_buf(drvdata);
1067        }
1068}
1069
1070static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1071{
1072        CS_UNLOCK(drvdata->base);
1073
1074        tmc_flush_and_stop(drvdata);
1075        /*
1076         * When operating in sysFS mode the content of the buffer needs to be
1077         * read before the TMC is disabled.
1078         */
1079        if (drvdata->mode == CS_MODE_SYSFS)
1080                tmc_etr_sync_sysfs_buf(drvdata);
1081
1082        tmc_disable_hw(drvdata);
1083
1084        CS_LOCK(drvdata->base);
1085
1086}
1087
1088static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1089{
1090        __tmc_etr_disable_hw(drvdata);
1091        /* Disable CATU device if this ETR is connected to one */
1092        tmc_etr_disable_catu(drvdata);
1093        coresight_disclaim_device(drvdata->base);
1094        /* Reset the ETR buf used by hardware */
1095        drvdata->etr_buf = NULL;
1096}
1097
1098static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1099{
1100        int ret = 0;
1101        unsigned long flags;
1102        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1103        struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1104
1105        /*
1106         * If we are enabling the ETR from disabled state, we need to make
1107         * sure we have a buffer with the right size. The etr_buf is not reset
1108         * immediately after we stop the tracing in SYSFS mode as we wait for
1109         * the user to collect the data. We may be able to reuse the existing
1110         * buffer, provided the size matches. Any allocation has to be done
1111         * with the lock released.
1112         */
1113        spin_lock_irqsave(&drvdata->spinlock, flags);
1114        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1115        if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1116                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1117
1118                /* Allocate memory with the locks released */
1119                free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1120                if (IS_ERR(new_buf))
1121                        return PTR_ERR(new_buf);
1122
1123                /* Let's try again */
1124                spin_lock_irqsave(&drvdata->spinlock, flags);
1125        }
1126
1127        if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1128                ret = -EBUSY;
1129                goto out;
1130        }
1131
1132        /*
1133         * In sysFS mode we can have multiple writers per sink.  Since this
1134         * sink is already enabled no memory is needed and the HW need not be
1135         * touched, even if the buffer size has changed.
1136         */
1137        if (drvdata->mode == CS_MODE_SYSFS) {
1138                atomic_inc(csdev->refcnt);
1139                goto out;
1140        }
1141
1142        /*
1143         * If we don't have a buffer or it doesn't match the requested size,
1144         * use the buffer allocated above. Otherwise reuse the existing buffer.
1145         */
1146        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1147        if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1148                free_buf = sysfs_buf;
1149                drvdata->sysfs_buf = new_buf;
1150        }
1151
1152        ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1153        if (!ret) {
1154                drvdata->mode = CS_MODE_SYSFS;
1155                atomic_inc(csdev->refcnt);
1156        }
1157out:
1158        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1159
1160        /* Free memory outside the spinlock if need be */
1161        if (free_buf)
1162                tmc_etr_free_sysfs_buf(free_buf);
1163
1164        if (!ret)
1165                dev_dbg(drvdata->dev, "TMC-ETR enabled\n");
1166
1167        return ret;
1168}
1169
1170/*
1171 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1172 * The size of the hardware buffer is dependent on the size configured
1173 * via sysfs and the perf ring buffer size. We prefer to allocate the
1174 * largest possible size, scaling down the size by half until it
1175 * reaches a minimum limit (1M), beyond which we give up.
1176 */
1177static struct etr_buf *
1178alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1179              int nr_pages, void **pages, bool snapshot)
1180{
1181        int node, cpu = event->cpu;
1182        struct etr_buf *etr_buf;
1183        unsigned long size;
1184
1185        if (cpu == -1)
1186                cpu = smp_processor_id();
1187        node = cpu_to_node(cpu);
1188
1189        /*
1190         * Try to match the perf ring buffer size if it is larger
1191         * than the size requested via sysfs.
1192         */
1193        if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1194                etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1195                                            0, node, NULL);
1196                if (!IS_ERR(etr_buf))
1197                        goto done;
1198        }
1199
1200        /*
1201         * Else switch to configured size for this ETR
1202         * and scale down until we hit the minimum limit.
1203         */
1204        size = drvdata->size;
1205        do {
1206                etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1207                if (!IS_ERR(etr_buf))
1208                        goto done;
1209                size /= 2;
1210        } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1211
1212        return ERR_PTR(-ENOMEM);
1213
1214done:
1215        return etr_buf;
1216}
1217
1218static struct etr_buf *
1219get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1220                          struct perf_event *event, int nr_pages,
1221                          void **pages, bool snapshot)
1222{
1223        int ret;
1224        pid_t pid = task_pid_nr(event->owner);
1225        struct etr_buf *etr_buf;
1226
1227retry:
1228        /*
1229         * An etr_perf_buffer is associated with an event and holds a reference
1230         * to the AUX ring buffer that was created for that event.  In CPU-wide
1231         * N:1 mode multiple events (one per CPU), each with its own AUX ring
1232         * buffer, share a sink.  As such an etr_perf_buffer is created for each
1233         * event but a single etr_buf associated with the ETR is shared between
1234         * them.  The last event in a trace session will copy the content of the
1235         * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1236         * events are simply not used an freed as events are destoyed.  We still
1237         * need to allocate a ring buffer for each event since we don't know
1238         * which event will be last.
1239         */
1240
1241        /*
1242         * The first thing to do here is check if an etr_buf has already been
1243         * allocated for this session.  If so it is shared with this event,
1244         * otherwise it is created.
1245         */
1246        mutex_lock(&drvdata->idr_mutex);
1247        etr_buf = idr_find(&drvdata->idr, pid);
1248        if (etr_buf) {
1249                refcount_inc(&etr_buf->refcount);
1250                mutex_unlock(&drvdata->idr_mutex);
1251                return etr_buf;
1252        }
1253
1254        /* If we made it here no buffer has been allocated, do so now. */
1255        mutex_unlock(&drvdata->idr_mutex);
1256
1257        etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1258        if (IS_ERR(etr_buf))
1259                return etr_buf;
1260
1261        refcount_set(&etr_buf->refcount, 1);
1262
1263        /* Now that we have a buffer, add it to the IDR. */
1264        mutex_lock(&drvdata->idr_mutex);
1265        ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1266        mutex_unlock(&drvdata->idr_mutex);
1267
1268        /* Another event with this session ID has allocated this buffer. */
1269        if (ret == -ENOSPC) {
1270                tmc_free_etr_buf(etr_buf);
1271                goto retry;
1272        }
1273
1274        /* The IDR can't allocate room for a new session, abandon ship. */
1275        if (ret == -ENOMEM) {
1276                tmc_free_etr_buf(etr_buf);
1277                return ERR_PTR(ret);
1278        }
1279
1280
1281        return etr_buf;
1282}
1283
1284static struct etr_buf *
1285get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1286                            struct perf_event *event, int nr_pages,
1287                            void **pages, bool snapshot)
1288{
1289        struct etr_buf *etr_buf;
1290
1291        /*
1292         * In per-thread mode the etr_buf isn't shared, so just go ahead
1293         * with memory allocation.
1294         */
1295        etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1296        if (IS_ERR(etr_buf))
1297                goto out;
1298
1299        refcount_set(&etr_buf->refcount, 1);
1300out:
1301        return etr_buf;
1302}
1303
1304static struct etr_buf *
1305get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1306                 int nr_pages, void **pages, bool snapshot)
1307{
1308        if (event->cpu == -1)
1309                return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1310                                                   pages, snapshot);
1311
1312        return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1313                                         pages, snapshot);
1314}
1315
1316static struct etr_perf_buffer *
1317tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1318                       int nr_pages, void **pages, bool snapshot)
1319{
1320        int node, cpu = event->cpu;
1321        struct etr_buf *etr_buf;
1322        struct etr_perf_buffer *etr_perf;
1323
1324        if (cpu == -1)
1325                cpu = smp_processor_id();
1326        node = cpu_to_node(cpu);
1327
1328        etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1329        if (!etr_perf)
1330                return ERR_PTR(-ENOMEM);
1331
1332        etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1333        if (!IS_ERR(etr_buf))
1334                goto done;
1335
1336        kfree(etr_perf);
1337        return ERR_PTR(-ENOMEM);
1338
1339done:
1340        /*
1341         * Keep a reference to the ETR this buffer has been allocated for
1342         * in order to have access to the IDR in tmc_free_etr_buffer().
1343         */
1344        etr_perf->drvdata = drvdata;
1345        etr_perf->etr_buf = etr_buf;
1346
1347        return etr_perf;
1348}
1349
1350
1351static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1352                                  struct perf_event *event, void **pages,
1353                                  int nr_pages, bool snapshot)
1354{
1355        struct etr_perf_buffer *etr_perf;
1356        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1357
1358        etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1359                                          nr_pages, pages, snapshot);
1360        if (IS_ERR(etr_perf)) {
1361                dev_dbg(drvdata->dev, "Unable to allocate ETR buffer\n");
1362                return NULL;
1363        }
1364
1365        etr_perf->pid = task_pid_nr(event->owner);
1366        etr_perf->snapshot = snapshot;
1367        etr_perf->nr_pages = nr_pages;
1368        etr_perf->pages = pages;
1369
1370        return etr_perf;
1371}
1372
1373static void tmc_free_etr_buffer(void *config)
1374{
1375        struct etr_perf_buffer *etr_perf = config;
1376        struct tmc_drvdata *drvdata = etr_perf->drvdata;
1377        struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1378
1379        if (!etr_buf)
1380                goto free_etr_perf_buffer;
1381
1382        mutex_lock(&drvdata->idr_mutex);
1383        /* If we are not the last one to use the buffer, don't touch it. */
1384        if (!refcount_dec_and_test(&etr_buf->refcount)) {
1385                mutex_unlock(&drvdata->idr_mutex);
1386                goto free_etr_perf_buffer;
1387        }
1388
1389        /* We are the last one, remove from the IDR and free the buffer. */
1390        buf = idr_remove(&drvdata->idr, etr_perf->pid);
1391        mutex_unlock(&drvdata->idr_mutex);
1392
1393        /*
1394         * Something went very wrong if the buffer associated with this ID
1395         * is not the same in the IDR.  Leak to avoid use after free.
1396         */
1397        if (buf && WARN_ON(buf != etr_buf))
1398                goto free_etr_perf_buffer;
1399
1400        tmc_free_etr_buf(etr_perf->etr_buf);
1401
1402free_etr_perf_buffer:
1403        kfree(etr_perf);
1404}
1405
1406/*
1407 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1408 * buffer to the perf ring buffer.
1409 */
1410static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf)
1411{
1412        long bytes, to_copy;
1413        long pg_idx, pg_offset, src_offset;
1414        unsigned long head = etr_perf->head;
1415        char **dst_pages, *src_buf;
1416        struct etr_buf *etr_buf = etr_perf->etr_buf;
1417
1418        head = etr_perf->head;
1419        pg_idx = head >> PAGE_SHIFT;
1420        pg_offset = head & (PAGE_SIZE - 1);
1421        dst_pages = (char **)etr_perf->pages;
1422        src_offset = etr_buf->offset;
1423        to_copy = etr_buf->len;
1424
1425        while (to_copy > 0) {
1426                /*
1427                 * In one iteration, we can copy minimum of :
1428                 *  1) what is available in the source buffer,
1429                 *  2) what is available in the source buffer, before it
1430                 *     wraps around.
1431                 *  3) what is available in the destination page.
1432                 * in one iteration.
1433                 */
1434                bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1435                                             &src_buf);
1436                if (WARN_ON_ONCE(bytes <= 0))
1437                        break;
1438                bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1439
1440                memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1441
1442                to_copy -= bytes;
1443
1444                /* Move destination pointers */
1445                pg_offset += bytes;
1446                if (pg_offset == PAGE_SIZE) {
1447                        pg_offset = 0;
1448                        if (++pg_idx == etr_perf->nr_pages)
1449                                pg_idx = 0;
1450                }
1451
1452                /* Move source pointers */
1453                src_offset += bytes;
1454                if (src_offset >= etr_buf->size)
1455                        src_offset -= etr_buf->size;
1456        }
1457}
1458
1459/*
1460 * tmc_update_etr_buffer : Update the perf ring buffer with the
1461 * available trace data. We use software double buffering at the moment.
1462 *
1463 * TODO: Add support for reusing the perf ring buffer.
1464 */
1465static unsigned long
1466tmc_update_etr_buffer(struct coresight_device *csdev,
1467                      struct perf_output_handle *handle,
1468                      void *config)
1469{
1470        bool lost = false;
1471        unsigned long flags, size = 0;
1472        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1473        struct etr_perf_buffer *etr_perf = config;
1474        struct etr_buf *etr_buf = etr_perf->etr_buf;
1475
1476        spin_lock_irqsave(&drvdata->spinlock, flags);
1477
1478        /* Don't do anything if another tracer is using this sink */
1479        if (atomic_read(csdev->refcnt) != 1) {
1480                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1481                goto out;
1482        }
1483
1484        if (WARN_ON(drvdata->perf_data != etr_perf)) {
1485                lost = true;
1486                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1487                goto out;
1488        }
1489
1490        CS_UNLOCK(drvdata->base);
1491
1492        tmc_flush_and_stop(drvdata);
1493        tmc_sync_etr_buf(drvdata);
1494
1495        CS_LOCK(drvdata->base);
1496        /* Reset perf specific data */
1497        drvdata->perf_data = NULL;
1498        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1499
1500        size = etr_buf->len;
1501        tmc_etr_sync_perf_buffer(etr_perf);
1502
1503        /*
1504         * Update handle->head in snapshot mode. Also update the size to the
1505         * hardware buffer size if there was an overflow.
1506         */
1507        if (etr_perf->snapshot) {
1508                handle->head += size;
1509                if (etr_buf->full)
1510                        size = etr_buf->size;
1511        }
1512
1513        lost |= etr_buf->full;
1514out:
1515        if (lost)
1516                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1517        return size;
1518}
1519
1520static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1521{
1522        int rc = 0;
1523        pid_t pid;
1524        unsigned long flags;
1525        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1526        struct perf_output_handle *handle = data;
1527        struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1528
1529        spin_lock_irqsave(&drvdata->spinlock, flags);
1530         /* Don't use this sink if it is already claimed by sysFS */
1531        if (drvdata->mode == CS_MODE_SYSFS) {
1532                rc = -EBUSY;
1533                goto unlock_out;
1534        }
1535
1536        if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1537                rc = -EINVAL;
1538                goto unlock_out;
1539        }
1540
1541        /* Get a handle on the pid of the process to monitor */
1542        pid = etr_perf->pid;
1543
1544        /* Do not proceed if this device is associated with another session */
1545        if (drvdata->pid != -1 && drvdata->pid != pid) {
1546                rc = -EBUSY;
1547                goto unlock_out;
1548        }
1549
1550        etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1551        drvdata->perf_data = etr_perf;
1552
1553        /*
1554         * No HW configuration is needed if the sink is already in
1555         * use for this session.
1556         */
1557        if (drvdata->pid == pid) {
1558                atomic_inc(csdev->refcnt);
1559                goto unlock_out;
1560        }
1561
1562        rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1563        if (!rc) {
1564                /* Associate with monitored process. */
1565                drvdata->pid = pid;
1566                drvdata->mode = CS_MODE_PERF;
1567                atomic_inc(csdev->refcnt);
1568        }
1569
1570unlock_out:
1571        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1572        return rc;
1573}
1574
1575static int tmc_enable_etr_sink(struct coresight_device *csdev,
1576                               u32 mode, void *data)
1577{
1578        switch (mode) {
1579        case CS_MODE_SYSFS:
1580                return tmc_enable_etr_sink_sysfs(csdev);
1581        case CS_MODE_PERF:
1582                return tmc_enable_etr_sink_perf(csdev, data);
1583        }
1584
1585        /* We shouldn't be here */
1586        return -EINVAL;
1587}
1588
1589static int tmc_disable_etr_sink(struct coresight_device *csdev)
1590{
1591        unsigned long flags;
1592        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1593
1594        spin_lock_irqsave(&drvdata->spinlock, flags);
1595
1596        if (drvdata->reading) {
1597                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1598                return -EBUSY;
1599        }
1600
1601        if (atomic_dec_return(csdev->refcnt)) {
1602                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1603                return -EBUSY;
1604        }
1605
1606        /* Complain if we (somehow) got out of sync */
1607        WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1608        tmc_etr_disable_hw(drvdata);
1609        /* Dissociate from monitored process. */
1610        drvdata->pid = -1;
1611        drvdata->mode = CS_MODE_DISABLED;
1612
1613        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1614
1615        dev_dbg(drvdata->dev, "TMC-ETR disabled\n");
1616        return 0;
1617}
1618
1619static const struct coresight_ops_sink tmc_etr_sink_ops = {
1620        .enable         = tmc_enable_etr_sink,
1621        .disable        = tmc_disable_etr_sink,
1622        .alloc_buffer   = tmc_alloc_etr_buffer,
1623        .update_buffer  = tmc_update_etr_buffer,
1624        .free_buffer    = tmc_free_etr_buffer,
1625};
1626
1627const struct coresight_ops tmc_etr_cs_ops = {
1628        .sink_ops       = &tmc_etr_sink_ops,
1629};
1630
1631int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1632{
1633        int ret = 0;
1634        unsigned long flags;
1635
1636        /* config types are set a boot time and never change */
1637        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1638                return -EINVAL;
1639
1640        spin_lock_irqsave(&drvdata->spinlock, flags);
1641        if (drvdata->reading) {
1642                ret = -EBUSY;
1643                goto out;
1644        }
1645
1646        /*
1647         * We can safely allow reads even if the ETR is operating in PERF mode,
1648         * since the sysfs session is captured in mode specific data.
1649         * If drvdata::sysfs_data is NULL the trace data has been read already.
1650         */
1651        if (!drvdata->sysfs_buf) {
1652                ret = -EINVAL;
1653                goto out;
1654        }
1655
1656        /* Disable the TMC if we are trying to read from a running session. */
1657        if (drvdata->mode == CS_MODE_SYSFS)
1658                __tmc_etr_disable_hw(drvdata);
1659
1660        drvdata->reading = true;
1661out:
1662        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1663
1664        return ret;
1665}
1666
1667int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1668{
1669        unsigned long flags;
1670        struct etr_buf *sysfs_buf = NULL;
1671
1672        /* config types are set a boot time and never change */
1673        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1674                return -EINVAL;
1675
1676        spin_lock_irqsave(&drvdata->spinlock, flags);
1677
1678        /* RE-enable the TMC if need be */
1679        if (drvdata->mode == CS_MODE_SYSFS) {
1680                /*
1681                 * The trace run will continue with the same allocated trace
1682                 * buffer. Since the tracer is still enabled drvdata::buf can't
1683                 * be NULL.
1684                 */
1685                __tmc_etr_enable_hw(drvdata);
1686        } else {
1687                /*
1688                 * The ETR is not tracing and the buffer was just read.
1689                 * As such prepare to free the trace buffer.
1690                 */
1691                sysfs_buf = drvdata->sysfs_buf;
1692                drvdata->sysfs_buf = NULL;
1693        }
1694
1695        drvdata->reading = false;
1696        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1697
1698        /* Free allocated memory out side of the spinlock */
1699        if (sysfs_buf)
1700                tmc_etr_free_sysfs_buf(sysfs_buf);
1701
1702        return 0;
1703}
1704