linux/drivers/iio/chemical/sps30.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Sensirion SPS30 particulate matter sensor driver
   4 *
   5 * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
   6 *
   7 * I2C slave address: 0x69
   8 */
   9
  10#include <asm/unaligned.h>
  11#include <linux/crc8.h>
  12#include <linux/delay.h>
  13#include <linux/i2c.h>
  14#include <linux/iio/buffer.h>
  15#include <linux/iio/iio.h>
  16#include <linux/iio/sysfs.h>
  17#include <linux/iio/trigger_consumer.h>
  18#include <linux/iio/triggered_buffer.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21
  22#define SPS30_CRC8_POLYNOMIAL 0x31
  23/* max number of bytes needed to store PM measurements or serial string */
  24#define SPS30_MAX_READ_SIZE 48
  25/* sensor measures reliably up to 3000 ug / m3 */
  26#define SPS30_MAX_PM 3000
  27/* minimum and maximum self cleaning periods in seconds */
  28#define SPS30_AUTO_CLEANING_PERIOD_MIN 0
  29#define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
  30
  31/* SPS30 commands */
  32#define SPS30_START_MEAS 0x0010
  33#define SPS30_STOP_MEAS 0x0104
  34#define SPS30_RESET 0xd304
  35#define SPS30_READ_DATA_READY_FLAG 0x0202
  36#define SPS30_READ_DATA 0x0300
  37#define SPS30_READ_SERIAL 0xd033
  38#define SPS30_START_FAN_CLEANING 0x5607
  39#define SPS30_AUTO_CLEANING_PERIOD 0x8004
  40/* not a sensor command per se, used only to distinguish write from read */
  41#define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005
  42
  43enum {
  44        PM1,
  45        PM2P5,
  46        PM4,
  47        PM10,
  48};
  49
  50enum {
  51        RESET,
  52        MEASURING,
  53};
  54
  55struct sps30_state {
  56        struct i2c_client *client;
  57        /*
  58         * Guards against concurrent access to sensor registers.
  59         * Must be held whenever sequence of commands is to be executed.
  60         */
  61        struct mutex lock;
  62        int state;
  63};
  64
  65DECLARE_CRC8_TABLE(sps30_crc8_table);
  66
  67static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
  68                                 int txsize, u8 *rxbuf, int rxsize)
  69{
  70        int ret;
  71
  72        /*
  73         * Sensor does not support repeated start so instead of
  74         * sending two i2c messages in a row we just send one by one.
  75         */
  76        ret = i2c_master_send(state->client, txbuf, txsize);
  77        if (ret != txsize)
  78                return ret < 0 ? ret : -EIO;
  79
  80        if (!rxbuf)
  81                return 0;
  82
  83        ret = i2c_master_recv(state->client, rxbuf, rxsize);
  84        if (ret != rxsize)
  85                return ret < 0 ? ret : -EIO;
  86
  87        return 0;
  88}
  89
  90static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
  91{
  92        /*
  93         * Internally sensor stores measurements in a following manner:
  94         *
  95         * PM1: upper two bytes, crc8, lower two bytes, crc8
  96         * PM2P5: upper two bytes, crc8, lower two bytes, crc8
  97         * PM4: upper two bytes, crc8, lower two bytes, crc8
  98         * PM10: upper two bytes, crc8, lower two bytes, crc8
  99         *
 100         * What follows next are number concentration measurements and
 101         * typical particle size measurement which we omit.
 102         */
 103        u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
 104        int i, ret = 0;
 105
 106        switch (cmd) {
 107        case SPS30_START_MEAS:
 108                buf[2] = 0x03;
 109                buf[3] = 0x00;
 110                buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 111                ret = sps30_write_then_read(state, buf, 5, NULL, 0);
 112                break;
 113        case SPS30_STOP_MEAS:
 114        case SPS30_RESET:
 115        case SPS30_START_FAN_CLEANING:
 116                ret = sps30_write_then_read(state, buf, 2, NULL, 0);
 117                break;
 118        case SPS30_READ_AUTO_CLEANING_PERIOD:
 119                buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8;
 120                buf[1] = (u8)SPS30_AUTO_CLEANING_PERIOD;
 121                /* fall through */
 122        case SPS30_READ_DATA_READY_FLAG:
 123        case SPS30_READ_DATA:
 124        case SPS30_READ_SERIAL:
 125                /* every two data bytes are checksummed */
 126                size += size / 2;
 127                ret = sps30_write_then_read(state, buf, 2, buf, size);
 128                break;
 129        case SPS30_AUTO_CLEANING_PERIOD:
 130                buf[2] = data[0];
 131                buf[3] = data[1];
 132                buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 133                buf[5] = data[2];
 134                buf[6] = data[3];
 135                buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE);
 136                ret = sps30_write_then_read(state, buf, 8, NULL, 0);
 137                break;
 138        }
 139
 140        if (ret)
 141                return ret;
 142
 143        /* validate received data and strip off crc bytes */
 144        for (i = 0; i < size; i += 3) {
 145                u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
 146
 147                if (crc != buf[i + 2]) {
 148                        dev_err(&state->client->dev,
 149                                "data integrity check failed\n");
 150                        return -EIO;
 151                }
 152
 153                *data++ = buf[i];
 154                *data++ = buf[i + 1];
 155        }
 156
 157        return 0;
 158}
 159
 160static s32 sps30_float_to_int_clamped(const u8 *fp)
 161{
 162        int val = get_unaligned_be32(fp);
 163        int mantissa = val & GENMASK(22, 0);
 164        /* this is fine since passed float is always non-negative */
 165        int exp = val >> 23;
 166        int fraction, shift;
 167
 168        /* special case 0 */
 169        if (!exp && !mantissa)
 170                return 0;
 171
 172        exp -= 127;
 173        if (exp < 0) {
 174                /* return values ranging from 1 to 99 */
 175                return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
 176        }
 177
 178        /* return values ranging from 100 to 300000 */
 179        shift = 23 - exp;
 180        val = (1 << exp) + (mantissa >> shift);
 181        if (val >= SPS30_MAX_PM)
 182                return SPS30_MAX_PM * 100;
 183
 184        fraction = mantissa & GENMASK(shift - 1, 0);
 185
 186        return val * 100 + ((fraction * 100) >> shift);
 187}
 188
 189static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
 190{
 191        int i, ret, tries = 5;
 192        u8 tmp[16];
 193
 194        if (state->state == RESET) {
 195                ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
 196                if (ret)
 197                        return ret;
 198
 199                state->state = MEASURING;
 200        }
 201
 202        while (tries--) {
 203                ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
 204                if (ret)
 205                        return -EIO;
 206
 207                /* new measurements ready to be read */
 208                if (tmp[1] == 1)
 209                        break;
 210
 211                msleep_interruptible(300);
 212        }
 213
 214        if (tries == -1)
 215                return -ETIMEDOUT;
 216
 217        ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
 218        if (ret)
 219                return ret;
 220
 221        for (i = 0; i < size; i++)
 222                data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
 223
 224        return 0;
 225}
 226
 227static irqreturn_t sps30_trigger_handler(int irq, void *p)
 228{
 229        struct iio_poll_func *pf = p;
 230        struct iio_dev *indio_dev = pf->indio_dev;
 231        struct sps30_state *state = iio_priv(indio_dev);
 232        int ret;
 233        s32 data[4 + 2]; /* PM1, PM2P5, PM4, PM10, timestamp */
 234
 235        mutex_lock(&state->lock);
 236        ret = sps30_do_meas(state, data, 4);
 237        mutex_unlock(&state->lock);
 238        if (ret)
 239                goto err;
 240
 241        iio_push_to_buffers_with_timestamp(indio_dev, data,
 242                                           iio_get_time_ns(indio_dev));
 243err:
 244        iio_trigger_notify_done(indio_dev->trig);
 245
 246        return IRQ_HANDLED;
 247}
 248
 249static int sps30_read_raw(struct iio_dev *indio_dev,
 250                          struct iio_chan_spec const *chan,
 251                          int *val, int *val2, long mask)
 252{
 253        struct sps30_state *state = iio_priv(indio_dev);
 254        int data[4], ret = -EINVAL;
 255
 256        switch (mask) {
 257        case IIO_CHAN_INFO_PROCESSED:
 258                switch (chan->type) {
 259                case IIO_MASSCONCENTRATION:
 260                        mutex_lock(&state->lock);
 261                        /* read up to the number of bytes actually needed */
 262                        switch (chan->channel2) {
 263                        case IIO_MOD_PM1:
 264                                ret = sps30_do_meas(state, data, 1);
 265                                break;
 266                        case IIO_MOD_PM2P5:
 267                                ret = sps30_do_meas(state, data, 2);
 268                                break;
 269                        case IIO_MOD_PM4:
 270                                ret = sps30_do_meas(state, data, 3);
 271                                break;
 272                        case IIO_MOD_PM10:
 273                                ret = sps30_do_meas(state, data, 4);
 274                                break;
 275                        }
 276                        mutex_unlock(&state->lock);
 277                        if (ret)
 278                                return ret;
 279
 280                        *val = data[chan->address] / 100;
 281                        *val2 = (data[chan->address] % 100) * 10000;
 282
 283                        return IIO_VAL_INT_PLUS_MICRO;
 284                default:
 285                        return -EINVAL;
 286                }
 287        case IIO_CHAN_INFO_SCALE:
 288                switch (chan->type) {
 289                case IIO_MASSCONCENTRATION:
 290                        switch (chan->channel2) {
 291                        case IIO_MOD_PM1:
 292                        case IIO_MOD_PM2P5:
 293                        case IIO_MOD_PM4:
 294                        case IIO_MOD_PM10:
 295                                *val = 0;
 296                                *val2 = 10000;
 297
 298                                return IIO_VAL_INT_PLUS_MICRO;
 299                        default:
 300                                return -EINVAL;
 301                        }
 302                default:
 303                        return -EINVAL;
 304                }
 305        }
 306
 307        return -EINVAL;
 308}
 309
 310static int sps30_do_cmd_reset(struct sps30_state *state)
 311{
 312        int ret;
 313
 314        ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
 315        msleep(300);
 316        /*
 317         * Power-on-reset causes sensor to produce some glitch on i2c bus and
 318         * some controllers end up in error state. Recover simply by placing
 319         * some data on the bus, for example STOP_MEAS command, which
 320         * is NOP in this case.
 321         */
 322        sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 323        state->state = RESET;
 324
 325        return ret;
 326}
 327
 328static ssize_t start_cleaning_store(struct device *dev,
 329                                    struct device_attribute *attr,
 330                                    const char *buf, size_t len)
 331{
 332        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 333        struct sps30_state *state = iio_priv(indio_dev);
 334        int val, ret;
 335
 336        if (kstrtoint(buf, 0, &val) || val != 1)
 337                return -EINVAL;
 338
 339        mutex_lock(&state->lock);
 340        ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0);
 341        mutex_unlock(&state->lock);
 342        if (ret)
 343                return ret;
 344
 345        return len;
 346}
 347
 348static ssize_t cleaning_period_show(struct device *dev,
 349                                      struct device_attribute *attr,
 350                                      char *buf)
 351{
 352        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 353        struct sps30_state *state = iio_priv(indio_dev);
 354        u8 tmp[4];
 355        int ret;
 356
 357        mutex_lock(&state->lock);
 358        ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4);
 359        mutex_unlock(&state->lock);
 360        if (ret)
 361                return ret;
 362
 363        return sprintf(buf, "%d\n", get_unaligned_be32(tmp));
 364}
 365
 366static ssize_t cleaning_period_store(struct device *dev,
 367                                       struct device_attribute *attr,
 368                                       const char *buf, size_t len)
 369{
 370        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 371        struct sps30_state *state = iio_priv(indio_dev);
 372        int val, ret;
 373        u8 tmp[4];
 374
 375        if (kstrtoint(buf, 0, &val))
 376                return -EINVAL;
 377
 378        if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
 379            (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
 380                return -EINVAL;
 381
 382        put_unaligned_be32(val, tmp);
 383
 384        mutex_lock(&state->lock);
 385        ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0);
 386        if (ret) {
 387                mutex_unlock(&state->lock);
 388                return ret;
 389        }
 390
 391        msleep(20);
 392
 393        /*
 394         * sensor requires reset in order to return up to date self cleaning
 395         * period
 396         */
 397        ret = sps30_do_cmd_reset(state);
 398        if (ret)
 399                dev_warn(dev,
 400                         "period changed but reads will return the old value\n");
 401
 402        mutex_unlock(&state->lock);
 403
 404        return len;
 405}
 406
 407static ssize_t cleaning_period_available_show(struct device *dev,
 408                                              struct device_attribute *attr,
 409                                              char *buf)
 410{
 411        return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n",
 412                        SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
 413                        SPS30_AUTO_CLEANING_PERIOD_MAX);
 414}
 415
 416static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
 417static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
 418static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
 419
 420static struct attribute *sps30_attrs[] = {
 421        &iio_dev_attr_start_cleaning.dev_attr.attr,
 422        &iio_dev_attr_cleaning_period.dev_attr.attr,
 423        &iio_dev_attr_cleaning_period_available.dev_attr.attr,
 424        NULL
 425};
 426
 427static const struct attribute_group sps30_attr_group = {
 428        .attrs = sps30_attrs,
 429};
 430
 431static const struct iio_info sps30_info = {
 432        .attrs = &sps30_attr_group,
 433        .read_raw = sps30_read_raw,
 434};
 435
 436#define SPS30_CHAN(_index, _mod) { \
 437        .type = IIO_MASSCONCENTRATION, \
 438        .modified = 1, \
 439        .channel2 = IIO_MOD_ ## _mod, \
 440        .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
 441        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
 442        .address = _mod, \
 443        .scan_index = _index, \
 444        .scan_type = { \
 445                .sign = 'u', \
 446                .realbits = 19, \
 447                .storagebits = 32, \
 448                .endianness = IIO_CPU, \
 449        }, \
 450}
 451
 452static const struct iio_chan_spec sps30_channels[] = {
 453        SPS30_CHAN(0, PM1),
 454        SPS30_CHAN(1, PM2P5),
 455        SPS30_CHAN(2, PM4),
 456        SPS30_CHAN(3, PM10),
 457        IIO_CHAN_SOFT_TIMESTAMP(4),
 458};
 459
 460static void sps30_stop_meas(void *data)
 461{
 462        struct sps30_state *state = data;
 463
 464        sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 465}
 466
 467static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
 468
 469static int sps30_probe(struct i2c_client *client)
 470{
 471        struct iio_dev *indio_dev;
 472        struct sps30_state *state;
 473        u8 buf[32];
 474        int ret;
 475
 476        if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
 477                return -EOPNOTSUPP;
 478
 479        indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
 480        if (!indio_dev)
 481                return -ENOMEM;
 482
 483        state = iio_priv(indio_dev);
 484        i2c_set_clientdata(client, indio_dev);
 485        state->client = client;
 486        state->state = RESET;
 487        indio_dev->dev.parent = &client->dev;
 488        indio_dev->info = &sps30_info;
 489        indio_dev->name = client->name;
 490        indio_dev->channels = sps30_channels;
 491        indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
 492        indio_dev->modes = INDIO_DIRECT_MODE;
 493        indio_dev->available_scan_masks = sps30_scan_masks;
 494
 495        mutex_init(&state->lock);
 496        crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
 497
 498        ret = sps30_do_cmd_reset(state);
 499        if (ret) {
 500                dev_err(&client->dev, "failed to reset device\n");
 501                return ret;
 502        }
 503
 504        ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
 505        if (ret) {
 506                dev_err(&client->dev, "failed to read serial number\n");
 507                return ret;
 508        }
 509        /* returned serial number is already NUL terminated */
 510        dev_info(&client->dev, "serial number: %s\n", buf);
 511
 512        ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
 513        if (ret)
 514                return ret;
 515
 516        ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
 517                                              sps30_trigger_handler, NULL);
 518        if (ret)
 519                return ret;
 520
 521        return devm_iio_device_register(&client->dev, indio_dev);
 522}
 523
 524static const struct i2c_device_id sps30_id[] = {
 525        { "sps30" },
 526        { }
 527};
 528MODULE_DEVICE_TABLE(i2c, sps30_id);
 529
 530static const struct of_device_id sps30_of_match[] = {
 531        { .compatible = "sensirion,sps30" },
 532        { }
 533};
 534MODULE_DEVICE_TABLE(of, sps30_of_match);
 535
 536static struct i2c_driver sps30_driver = {
 537        .driver = {
 538                .name = "sps30",
 539                .of_match_table = sps30_of_match,
 540        },
 541        .id_table = sps30_id,
 542        .probe_new = sps30_probe,
 543};
 544module_i2c_driver(sps30_driver);
 545
 546MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
 547MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
 548MODULE_LICENSE("GPL v2");
 549