linux/drivers/infiniband/hw/hfi1/init.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2018 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/pci.h>
  49#include <linux/netdevice.h>
  50#include <linux/vmalloc.h>
  51#include <linux/delay.h>
  52#include <linux/xarray.h>
  53#include <linux/module.h>
  54#include <linux/printk.h>
  55#include <linux/hrtimer.h>
  56#include <linux/bitmap.h>
  57#include <linux/numa.h>
  58#include <rdma/rdma_vt.h>
  59
  60#include "hfi.h"
  61#include "device.h"
  62#include "common.h"
  63#include "trace.h"
  64#include "mad.h"
  65#include "sdma.h"
  66#include "debugfs.h"
  67#include "verbs.h"
  68#include "aspm.h"
  69#include "affinity.h"
  70#include "vnic.h"
  71#include "exp_rcv.h"
  72
  73#undef pr_fmt
  74#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  75
  76/*
  77 * min buffers we want to have per context, after driver
  78 */
  79#define HFI1_MIN_USER_CTXT_BUFCNT 7
  80
  81#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
  82#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
  83#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
  84#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
  85
  86#define NUM_IB_PORTS 1
  87
  88/*
  89 * Number of user receive contexts we are configured to use (to allow for more
  90 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
  91 */
  92int num_user_contexts = -1;
  93module_param_named(num_user_contexts, num_user_contexts, int, 0444);
  94MODULE_PARM_DESC(
  95        num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
  96
  97uint krcvqs[RXE_NUM_DATA_VL];
  98int krcvqsset;
  99module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
 100MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
 101
 102/* computed based on above array */
 103unsigned long n_krcvqs;
 104
 105static unsigned hfi1_rcvarr_split = 25;
 106module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
 107MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
 108
 109static uint eager_buffer_size = (8 << 20); /* 8MB */
 110module_param(eager_buffer_size, uint, S_IRUGO);
 111MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
 112
 113static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
 114module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
 115MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
 116
 117static uint hfi1_hdrq_entsize = 32;
 118module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
 119MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
 120
 121unsigned int user_credit_return_threshold = 33; /* default is 33% */
 122module_param(user_credit_return_threshold, uint, S_IRUGO);
 123MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
 124
 125static inline u64 encode_rcv_header_entry_size(u16 size);
 126
 127DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
 128
 129static int hfi1_create_kctxt(struct hfi1_devdata *dd,
 130                             struct hfi1_pportdata *ppd)
 131{
 132        struct hfi1_ctxtdata *rcd;
 133        int ret;
 134
 135        /* Control context has to be always 0 */
 136        BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
 137
 138        ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
 139        if (ret < 0) {
 140                dd_dev_err(dd, "Kernel receive context allocation failed\n");
 141                return ret;
 142        }
 143
 144        /*
 145         * Set up the kernel context flags here and now because they use
 146         * default values for all receive side memories.  User contexts will
 147         * be handled as they are created.
 148         */
 149        rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
 150                HFI1_CAP_KGET(NODROP_RHQ_FULL) |
 151                HFI1_CAP_KGET(NODROP_EGR_FULL) |
 152                HFI1_CAP_KGET(DMA_RTAIL);
 153
 154        /* Control context must use DMA_RTAIL */
 155        if (rcd->ctxt == HFI1_CTRL_CTXT)
 156                rcd->flags |= HFI1_CAP_DMA_RTAIL;
 157        rcd->seq_cnt = 1;
 158
 159        rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
 160        if (!rcd->sc) {
 161                dd_dev_err(dd, "Kernel send context allocation failed\n");
 162                return -ENOMEM;
 163        }
 164        hfi1_init_ctxt(rcd->sc);
 165
 166        return 0;
 167}
 168
 169/*
 170 * Create the receive context array and one or more kernel contexts
 171 */
 172int hfi1_create_kctxts(struct hfi1_devdata *dd)
 173{
 174        u16 i;
 175        int ret;
 176
 177        dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
 178                               GFP_KERNEL, dd->node);
 179        if (!dd->rcd)
 180                return -ENOMEM;
 181
 182        for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 183                ret = hfi1_create_kctxt(dd, dd->pport);
 184                if (ret)
 185                        goto bail;
 186        }
 187
 188        return 0;
 189bail:
 190        for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
 191                hfi1_free_ctxt(dd->rcd[i]);
 192
 193        /* All the contexts should be freed, free the array */
 194        kfree(dd->rcd);
 195        dd->rcd = NULL;
 196        return ret;
 197}
 198
 199/*
 200 * Helper routines for the receive context reference count (rcd and uctxt).
 201 */
 202static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
 203{
 204        kref_init(&rcd->kref);
 205}
 206
 207/**
 208 * hfi1_rcd_free - When reference is zero clean up.
 209 * @kref: pointer to an initialized rcd data structure
 210 *
 211 */
 212static void hfi1_rcd_free(struct kref *kref)
 213{
 214        unsigned long flags;
 215        struct hfi1_ctxtdata *rcd =
 216                container_of(kref, struct hfi1_ctxtdata, kref);
 217
 218        spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
 219        rcd->dd->rcd[rcd->ctxt] = NULL;
 220        spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
 221
 222        hfi1_free_ctxtdata(rcd->dd, rcd);
 223
 224        kfree(rcd);
 225}
 226
 227/**
 228 * hfi1_rcd_put - decrement reference for rcd
 229 * @rcd: pointer to an initialized rcd data structure
 230 *
 231 * Use this to put a reference after the init.
 232 */
 233int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
 234{
 235        if (rcd)
 236                return kref_put(&rcd->kref, hfi1_rcd_free);
 237
 238        return 0;
 239}
 240
 241/**
 242 * hfi1_rcd_get - increment reference for rcd
 243 * @rcd: pointer to an initialized rcd data structure
 244 *
 245 * Use this to get a reference after the init.
 246 *
 247 * Return : reflect kref_get_unless_zero(), which returns non-zero on
 248 * increment, otherwise 0.
 249 */
 250int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
 251{
 252        return kref_get_unless_zero(&rcd->kref);
 253}
 254
 255/**
 256 * allocate_rcd_index - allocate an rcd index from the rcd array
 257 * @dd: pointer to a valid devdata structure
 258 * @rcd: rcd data structure to assign
 259 * @index: pointer to index that is allocated
 260 *
 261 * Find an empty index in the rcd array, and assign the given rcd to it.
 262 * If the array is full, we are EBUSY.
 263 *
 264 */
 265static int allocate_rcd_index(struct hfi1_devdata *dd,
 266                              struct hfi1_ctxtdata *rcd, u16 *index)
 267{
 268        unsigned long flags;
 269        u16 ctxt;
 270
 271        spin_lock_irqsave(&dd->uctxt_lock, flags);
 272        for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
 273                if (!dd->rcd[ctxt])
 274                        break;
 275
 276        if (ctxt < dd->num_rcv_contexts) {
 277                rcd->ctxt = ctxt;
 278                dd->rcd[ctxt] = rcd;
 279                hfi1_rcd_init(rcd);
 280        }
 281        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 282
 283        if (ctxt >= dd->num_rcv_contexts)
 284                return -EBUSY;
 285
 286        *index = ctxt;
 287
 288        return 0;
 289}
 290
 291/**
 292 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
 293 * array
 294 * @dd: pointer to a valid devdata structure
 295 * @ctxt: the index of an possilbe rcd
 296 *
 297 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
 298 * ctxt index is valid.
 299 *
 300 * The caller is responsible for making the _put().
 301 *
 302 */
 303struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
 304                                                 u16 ctxt)
 305{
 306        if (ctxt < dd->num_rcv_contexts)
 307                return hfi1_rcd_get_by_index(dd, ctxt);
 308
 309        return NULL;
 310}
 311
 312/**
 313 * hfi1_rcd_get_by_index
 314 * @dd: pointer to a valid devdata structure
 315 * @ctxt: the index of an possilbe rcd
 316 *
 317 * We need to protect access to the rcd array.  If access is needed to
 318 * one or more index, get the protecting spinlock and then increment the
 319 * kref.
 320 *
 321 * The caller is responsible for making the _put().
 322 *
 323 */
 324struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
 325{
 326        unsigned long flags;
 327        struct hfi1_ctxtdata *rcd = NULL;
 328
 329        spin_lock_irqsave(&dd->uctxt_lock, flags);
 330        if (dd->rcd[ctxt]) {
 331                rcd = dd->rcd[ctxt];
 332                if (!hfi1_rcd_get(rcd))
 333                        rcd = NULL;
 334        }
 335        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 336
 337        return rcd;
 338}
 339
 340/*
 341 * Common code for user and kernel context create and setup.
 342 * NOTE: the initial kref is done here (hf1_rcd_init()).
 343 */
 344int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
 345                         struct hfi1_ctxtdata **context)
 346{
 347        struct hfi1_devdata *dd = ppd->dd;
 348        struct hfi1_ctxtdata *rcd;
 349        unsigned kctxt_ngroups = 0;
 350        u32 base;
 351
 352        if (dd->rcv_entries.nctxt_extra >
 353            dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
 354                kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
 355                         (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
 356        rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
 357        if (rcd) {
 358                u32 rcvtids, max_entries;
 359                u16 ctxt;
 360                int ret;
 361
 362                ret = allocate_rcd_index(dd, rcd, &ctxt);
 363                if (ret) {
 364                        *context = NULL;
 365                        kfree(rcd);
 366                        return ret;
 367                }
 368
 369                INIT_LIST_HEAD(&rcd->qp_wait_list);
 370                hfi1_exp_tid_group_init(rcd);
 371                rcd->ppd = ppd;
 372                rcd->dd = dd;
 373                rcd->numa_id = numa;
 374                rcd->rcv_array_groups = dd->rcv_entries.ngroups;
 375                rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
 376
 377                mutex_init(&rcd->exp_mutex);
 378                spin_lock_init(&rcd->exp_lock);
 379                INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
 380                INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
 381
 382                hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
 383
 384                /*
 385                 * Calculate the context's RcvArray entry starting point.
 386                 * We do this here because we have to take into account all
 387                 * the RcvArray entries that previous context would have
 388                 * taken and we have to account for any extra groups assigned
 389                 * to the static (kernel) or dynamic (vnic/user) contexts.
 390                 */
 391                if (ctxt < dd->first_dyn_alloc_ctxt) {
 392                        if (ctxt < kctxt_ngroups) {
 393                                base = ctxt * (dd->rcv_entries.ngroups + 1);
 394                                rcd->rcv_array_groups++;
 395                        } else {
 396                                base = kctxt_ngroups +
 397                                        (ctxt * dd->rcv_entries.ngroups);
 398                        }
 399                } else {
 400                        u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
 401
 402                        base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
 403                                kctxt_ngroups);
 404                        if (ct < dd->rcv_entries.nctxt_extra) {
 405                                base += ct * (dd->rcv_entries.ngroups + 1);
 406                                rcd->rcv_array_groups++;
 407                        } else {
 408                                base += dd->rcv_entries.nctxt_extra +
 409                                        (ct * dd->rcv_entries.ngroups);
 410                        }
 411                }
 412                rcd->eager_base = base * dd->rcv_entries.group_size;
 413
 414                rcd->rcvhdrq_cnt = rcvhdrcnt;
 415                rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
 416                rcd->rhf_offset =
 417                        rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
 418                /*
 419                 * Simple Eager buffer allocation: we have already pre-allocated
 420                 * the number of RcvArray entry groups. Each ctxtdata structure
 421                 * holds the number of groups for that context.
 422                 *
 423                 * To follow CSR requirements and maintain cacheline alignment,
 424                 * make sure all sizes and bases are multiples of group_size.
 425                 *
 426                 * The expected entry count is what is left after assigning
 427                 * eager.
 428                 */
 429                max_entries = rcd->rcv_array_groups *
 430                        dd->rcv_entries.group_size;
 431                rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
 432                rcd->egrbufs.count = round_down(rcvtids,
 433                                                dd->rcv_entries.group_size);
 434                if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
 435                        dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
 436                                   rcd->ctxt);
 437                        rcd->egrbufs.count = MAX_EAGER_ENTRIES;
 438                }
 439                hfi1_cdbg(PROC,
 440                          "ctxt%u: max Eager buffer RcvArray entries: %u\n",
 441                          rcd->ctxt, rcd->egrbufs.count);
 442
 443                /*
 444                 * Allocate array that will hold the eager buffer accounting
 445                 * data.
 446                 * This will allocate the maximum possible buffer count based
 447                 * on the value of the RcvArray split parameter.
 448                 * The resulting value will be rounded down to the closest
 449                 * multiple of dd->rcv_entries.group_size.
 450                 */
 451                rcd->egrbufs.buffers =
 452                        kcalloc_node(rcd->egrbufs.count,
 453                                     sizeof(*rcd->egrbufs.buffers),
 454                                     GFP_KERNEL, numa);
 455                if (!rcd->egrbufs.buffers)
 456                        goto bail;
 457                rcd->egrbufs.rcvtids =
 458                        kcalloc_node(rcd->egrbufs.count,
 459                                     sizeof(*rcd->egrbufs.rcvtids),
 460                                     GFP_KERNEL, numa);
 461                if (!rcd->egrbufs.rcvtids)
 462                        goto bail;
 463                rcd->egrbufs.size = eager_buffer_size;
 464                /*
 465                 * The size of the buffers programmed into the RcvArray
 466                 * entries needs to be big enough to handle the highest
 467                 * MTU supported.
 468                 */
 469                if (rcd->egrbufs.size < hfi1_max_mtu) {
 470                        rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
 471                        hfi1_cdbg(PROC,
 472                                  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
 473                                    rcd->ctxt, rcd->egrbufs.size);
 474                }
 475                rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
 476
 477                /* Applicable only for statically created kernel contexts */
 478                if (ctxt < dd->first_dyn_alloc_ctxt) {
 479                        rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
 480                                                    GFP_KERNEL, numa);
 481                        if (!rcd->opstats)
 482                                goto bail;
 483
 484                        /* Initialize TID flow generations for the context */
 485                        hfi1_kern_init_ctxt_generations(rcd);
 486                }
 487
 488                *context = rcd;
 489                return 0;
 490        }
 491
 492bail:
 493        *context = NULL;
 494        hfi1_free_ctxt(rcd);
 495        return -ENOMEM;
 496}
 497
 498/**
 499 * hfi1_free_ctxt
 500 * @rcd: pointer to an initialized rcd data structure
 501 *
 502 * This wrapper is the free function that matches hfi1_create_ctxtdata().
 503 * When a context is done being used (kernel or user), this function is called
 504 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
 505 * Other users of the context do a get/put sequence to make sure that the
 506 * structure isn't removed while in use.
 507 */
 508void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
 509{
 510        hfi1_rcd_put(rcd);
 511}
 512
 513/*
 514 * Convert a receive header entry size that to the encoding used in the CSR.
 515 *
 516 * Return a zero if the given size is invalid.
 517 */
 518static inline u64 encode_rcv_header_entry_size(u16 size)
 519{
 520        /* there are only 3 valid receive header entry sizes */
 521        if (size == 2)
 522                return 1;
 523        if (size == 16)
 524                return 2;
 525        else if (size == 32)
 526                return 4;
 527        return 0; /* invalid */
 528}
 529
 530/*
 531 * Select the largest ccti value over all SLs to determine the intra-
 532 * packet gap for the link.
 533 *
 534 * called with cca_timer_lock held (to protect access to cca_timer
 535 * array), and rcu_read_lock() (to protect access to cc_state).
 536 */
 537void set_link_ipg(struct hfi1_pportdata *ppd)
 538{
 539        struct hfi1_devdata *dd = ppd->dd;
 540        struct cc_state *cc_state;
 541        int i;
 542        u16 cce, ccti_limit, max_ccti = 0;
 543        u16 shift, mult;
 544        u64 src;
 545        u32 current_egress_rate; /* Mbits /sec */
 546        u32 max_pkt_time;
 547        /*
 548         * max_pkt_time is the maximum packet egress time in units
 549         * of the fabric clock period 1/(805 MHz).
 550         */
 551
 552        cc_state = get_cc_state(ppd);
 553
 554        if (!cc_state)
 555                /*
 556                 * This should _never_ happen - rcu_read_lock() is held,
 557                 * and set_link_ipg() should not be called if cc_state
 558                 * is NULL.
 559                 */
 560                return;
 561
 562        for (i = 0; i < OPA_MAX_SLS; i++) {
 563                u16 ccti = ppd->cca_timer[i].ccti;
 564
 565                if (ccti > max_ccti)
 566                        max_ccti = ccti;
 567        }
 568
 569        ccti_limit = cc_state->cct.ccti_limit;
 570        if (max_ccti > ccti_limit)
 571                max_ccti = ccti_limit;
 572
 573        cce = cc_state->cct.entries[max_ccti].entry;
 574        shift = (cce & 0xc000) >> 14;
 575        mult = (cce & 0x3fff);
 576
 577        current_egress_rate = active_egress_rate(ppd);
 578
 579        max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
 580
 581        src = (max_pkt_time >> shift) * mult;
 582
 583        src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
 584        src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
 585
 586        write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
 587}
 588
 589static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
 590{
 591        struct cca_timer *cca_timer;
 592        struct hfi1_pportdata *ppd;
 593        int sl;
 594        u16 ccti_timer, ccti_min;
 595        struct cc_state *cc_state;
 596        unsigned long flags;
 597        enum hrtimer_restart ret = HRTIMER_NORESTART;
 598
 599        cca_timer = container_of(t, struct cca_timer, hrtimer);
 600        ppd = cca_timer->ppd;
 601        sl = cca_timer->sl;
 602
 603        rcu_read_lock();
 604
 605        cc_state = get_cc_state(ppd);
 606
 607        if (!cc_state) {
 608                rcu_read_unlock();
 609                return HRTIMER_NORESTART;
 610        }
 611
 612        /*
 613         * 1) decrement ccti for SL
 614         * 2) calculate IPG for link (set_link_ipg())
 615         * 3) restart timer, unless ccti is at min value
 616         */
 617
 618        ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
 619        ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
 620
 621        spin_lock_irqsave(&ppd->cca_timer_lock, flags);
 622
 623        if (cca_timer->ccti > ccti_min) {
 624                cca_timer->ccti--;
 625                set_link_ipg(ppd);
 626        }
 627
 628        if (cca_timer->ccti > ccti_min) {
 629                unsigned long nsec = 1024 * ccti_timer;
 630                /* ccti_timer is in units of 1.024 usec */
 631                hrtimer_forward_now(t, ns_to_ktime(nsec));
 632                ret = HRTIMER_RESTART;
 633        }
 634
 635        spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
 636        rcu_read_unlock();
 637        return ret;
 638}
 639
 640/*
 641 * Common code for initializing the physical port structure.
 642 */
 643void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
 644                         struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
 645{
 646        int i;
 647        uint default_pkey_idx;
 648        struct cc_state *cc_state;
 649
 650        ppd->dd = dd;
 651        ppd->hw_pidx = hw_pidx;
 652        ppd->port = port; /* IB port number, not index */
 653        ppd->prev_link_width = LINK_WIDTH_DEFAULT;
 654        /*
 655         * There are C_VL_COUNT number of PortVLXmitWait counters.
 656         * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
 657         */
 658        for (i = 0; i < C_VL_COUNT + 1; i++) {
 659                ppd->port_vl_xmit_wait_last[i] = 0;
 660                ppd->vl_xmit_flit_cnt[i] = 0;
 661        }
 662
 663        default_pkey_idx = 1;
 664
 665        ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
 666        ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
 667
 668        if (loopback) {
 669                dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
 670                           !default_pkey_idx);
 671                ppd->pkeys[!default_pkey_idx] = 0x8001;
 672        }
 673
 674        INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
 675        INIT_WORK(&ppd->link_up_work, handle_link_up);
 676        INIT_WORK(&ppd->link_down_work, handle_link_down);
 677        INIT_WORK(&ppd->freeze_work, handle_freeze);
 678        INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
 679        INIT_WORK(&ppd->sma_message_work, handle_sma_message);
 680        INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
 681        INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
 682        INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
 683        INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
 684
 685        mutex_init(&ppd->hls_lock);
 686        spin_lock_init(&ppd->qsfp_info.qsfp_lock);
 687
 688        ppd->qsfp_info.ppd = ppd;
 689        ppd->sm_trap_qp = 0x0;
 690        ppd->sa_qp = 0x1;
 691
 692        ppd->hfi1_wq = NULL;
 693
 694        spin_lock_init(&ppd->cca_timer_lock);
 695
 696        for (i = 0; i < OPA_MAX_SLS; i++) {
 697                hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
 698                             HRTIMER_MODE_REL);
 699                ppd->cca_timer[i].ppd = ppd;
 700                ppd->cca_timer[i].sl = i;
 701                ppd->cca_timer[i].ccti = 0;
 702                ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
 703        }
 704
 705        ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
 706
 707        spin_lock_init(&ppd->cc_state_lock);
 708        spin_lock_init(&ppd->cc_log_lock);
 709        cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
 710        RCU_INIT_POINTER(ppd->cc_state, cc_state);
 711        if (!cc_state)
 712                goto bail;
 713        return;
 714
 715bail:
 716        dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
 717}
 718
 719/*
 720 * Do initialization for device that is only needed on
 721 * first detect, not on resets.
 722 */
 723static int loadtime_init(struct hfi1_devdata *dd)
 724{
 725        return 0;
 726}
 727
 728/**
 729 * init_after_reset - re-initialize after a reset
 730 * @dd: the hfi1_ib device
 731 *
 732 * sanity check at least some of the values after reset, and
 733 * ensure no receive or transmit (explicitly, in case reset
 734 * failed
 735 */
 736static int init_after_reset(struct hfi1_devdata *dd)
 737{
 738        int i;
 739        struct hfi1_ctxtdata *rcd;
 740        /*
 741         * Ensure chip does no sends or receives, tail updates, or
 742         * pioavail updates while we re-initialize.  This is mostly
 743         * for the driver data structures, not chip registers.
 744         */
 745        for (i = 0; i < dd->num_rcv_contexts; i++) {
 746                rcd = hfi1_rcd_get_by_index(dd, i);
 747                hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 748                             HFI1_RCVCTRL_INTRAVAIL_DIS |
 749                             HFI1_RCVCTRL_TAILUPD_DIS, rcd);
 750                hfi1_rcd_put(rcd);
 751        }
 752        pio_send_control(dd, PSC_GLOBAL_DISABLE);
 753        for (i = 0; i < dd->num_send_contexts; i++)
 754                sc_disable(dd->send_contexts[i].sc);
 755
 756        return 0;
 757}
 758
 759static void enable_chip(struct hfi1_devdata *dd)
 760{
 761        struct hfi1_ctxtdata *rcd;
 762        u32 rcvmask;
 763        u16 i;
 764
 765        /* enable PIO send */
 766        pio_send_control(dd, PSC_GLOBAL_ENABLE);
 767
 768        /*
 769         * Enable kernel ctxts' receive and receive interrupt.
 770         * Other ctxts done as user opens and initializes them.
 771         */
 772        for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 773                rcd = hfi1_rcd_get_by_index(dd, i);
 774                if (!rcd)
 775                        continue;
 776                rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
 777                rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
 778                        HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
 779                if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
 780                        rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
 781                if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
 782                        rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
 783                if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
 784                        rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
 785                if (HFI1_CAP_IS_KSET(TID_RDMA))
 786                        rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
 787                hfi1_rcvctrl(dd, rcvmask, rcd);
 788                sc_enable(rcd->sc);
 789                hfi1_rcd_put(rcd);
 790        }
 791}
 792
 793/**
 794 * create_workqueues - create per port workqueues
 795 * @dd: the hfi1_ib device
 796 */
 797static int create_workqueues(struct hfi1_devdata *dd)
 798{
 799        int pidx;
 800        struct hfi1_pportdata *ppd;
 801
 802        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 803                ppd = dd->pport + pidx;
 804                if (!ppd->hfi1_wq) {
 805                        ppd->hfi1_wq =
 806                                alloc_workqueue(
 807                                    "hfi%d_%d",
 808                                    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
 809                                    WQ_MEM_RECLAIM,
 810                                    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
 811                                    dd->unit, pidx);
 812                        if (!ppd->hfi1_wq)
 813                                goto wq_error;
 814                }
 815                if (!ppd->link_wq) {
 816                        /*
 817                         * Make the link workqueue single-threaded to enforce
 818                         * serialization.
 819                         */
 820                        ppd->link_wq =
 821                                alloc_workqueue(
 822                                    "hfi_link_%d_%d",
 823                                    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
 824                                    1, /* max_active */
 825                                    dd->unit, pidx);
 826                        if (!ppd->link_wq)
 827                                goto wq_error;
 828                }
 829        }
 830        return 0;
 831wq_error:
 832        pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
 833        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 834                ppd = dd->pport + pidx;
 835                if (ppd->hfi1_wq) {
 836                        destroy_workqueue(ppd->hfi1_wq);
 837                        ppd->hfi1_wq = NULL;
 838                }
 839                if (ppd->link_wq) {
 840                        destroy_workqueue(ppd->link_wq);
 841                        ppd->link_wq = NULL;
 842                }
 843        }
 844        return -ENOMEM;
 845}
 846
 847/**
 848 * enable_general_intr() - Enable the IRQs that will be handled by the
 849 * general interrupt handler.
 850 * @dd: valid devdata
 851 *
 852 */
 853static void enable_general_intr(struct hfi1_devdata *dd)
 854{
 855        set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
 856        set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
 857        set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
 858        set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
 859        set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
 860        set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
 861        set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
 862}
 863
 864/**
 865 * hfi1_init - do the actual initialization sequence on the chip
 866 * @dd: the hfi1_ib device
 867 * @reinit: re-initializing, so don't allocate new memory
 868 *
 869 * Do the actual initialization sequence on the chip.  This is done
 870 * both from the init routine called from the PCI infrastructure, and
 871 * when we reset the chip, or detect that it was reset internally,
 872 * or it's administratively re-enabled.
 873 *
 874 * Memory allocation here and in called routines is only done in
 875 * the first case (reinit == 0).  We have to be careful, because even
 876 * without memory allocation, we need to re-write all the chip registers
 877 * TIDs, etc. after the reset or enable has completed.
 878 */
 879int hfi1_init(struct hfi1_devdata *dd, int reinit)
 880{
 881        int ret = 0, pidx, lastfail = 0;
 882        unsigned long len;
 883        u16 i;
 884        struct hfi1_ctxtdata *rcd;
 885        struct hfi1_pportdata *ppd;
 886
 887        /* Set up send low level handlers */
 888        dd->process_pio_send = hfi1_verbs_send_pio;
 889        dd->process_dma_send = hfi1_verbs_send_dma;
 890        dd->pio_inline_send = pio_copy;
 891        dd->process_vnic_dma_send = hfi1_vnic_send_dma;
 892
 893        if (is_ax(dd)) {
 894                atomic_set(&dd->drop_packet, DROP_PACKET_ON);
 895                dd->do_drop = 1;
 896        } else {
 897                atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
 898                dd->do_drop = 0;
 899        }
 900
 901        /* make sure the link is not "up" */
 902        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 903                ppd = dd->pport + pidx;
 904                ppd->linkup = 0;
 905        }
 906
 907        if (reinit)
 908                ret = init_after_reset(dd);
 909        else
 910                ret = loadtime_init(dd);
 911        if (ret)
 912                goto done;
 913
 914        /* allocate dummy tail memory for all receive contexts */
 915        dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
 916                                                         sizeof(u64),
 917                                                         &dd->rcvhdrtail_dummy_dma,
 918                                                         GFP_KERNEL);
 919
 920        if (!dd->rcvhdrtail_dummy_kvaddr) {
 921                dd_dev_err(dd, "cannot allocate dummy tail memory\n");
 922                ret = -ENOMEM;
 923                goto done;
 924        }
 925
 926        /* dd->rcd can be NULL if early initialization failed */
 927        for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
 928                /*
 929                 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
 930                 * re-init, the simplest way to handle this is to free
 931                 * existing, and re-allocate.
 932                 * Need to re-create rest of ctxt 0 ctxtdata as well.
 933                 */
 934                rcd = hfi1_rcd_get_by_index(dd, i);
 935                if (!rcd)
 936                        continue;
 937
 938                rcd->do_interrupt = &handle_receive_interrupt;
 939
 940                lastfail = hfi1_create_rcvhdrq(dd, rcd);
 941                if (!lastfail)
 942                        lastfail = hfi1_setup_eagerbufs(rcd);
 943                if (!lastfail)
 944                        lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
 945                if (lastfail) {
 946                        dd_dev_err(dd,
 947                                   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
 948                        ret = lastfail;
 949                }
 950                /* enable IRQ */
 951                hfi1_rcd_put(rcd);
 952        }
 953
 954        /* Allocate enough memory for user event notification. */
 955        len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
 956                         sizeof(*dd->events));
 957        dd->events = vmalloc_user(len);
 958        if (!dd->events)
 959                dd_dev_err(dd, "Failed to allocate user events page\n");
 960        /*
 961         * Allocate a page for device and port status.
 962         * Page will be shared amongst all user processes.
 963         */
 964        dd->status = vmalloc_user(PAGE_SIZE);
 965        if (!dd->status)
 966                dd_dev_err(dd, "Failed to allocate dev status page\n");
 967        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 968                ppd = dd->pport + pidx;
 969                if (dd->status)
 970                        /* Currently, we only have one port */
 971                        ppd->statusp = &dd->status->port;
 972
 973                set_mtu(ppd);
 974        }
 975
 976        /* enable chip even if we have an error, so we can debug cause */
 977        enable_chip(dd);
 978
 979done:
 980        /*
 981         * Set status even if port serdes is not initialized
 982         * so that diags will work.
 983         */
 984        if (dd->status)
 985                dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
 986                        HFI1_STATUS_INITTED;
 987        if (!ret) {
 988                /* enable all interrupts from the chip */
 989                enable_general_intr(dd);
 990                init_qsfp_int(dd);
 991
 992                /* chip is OK for user apps; mark it as initialized */
 993                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 994                        ppd = dd->pport + pidx;
 995
 996                        /*
 997                         * start the serdes - must be after interrupts are
 998                         * enabled so we are notified when the link goes up
 999                         */
1000                        lastfail = bringup_serdes(ppd);
1001                        if (lastfail)
1002                                dd_dev_info(dd,
1003                                            "Failed to bring up port %u\n",
1004                                            ppd->port);
1005
1006                        /*
1007                         * Set status even if port serdes is not initialized
1008                         * so that diags will work.
1009                         */
1010                        if (ppd->statusp)
1011                                *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1012                                                        HFI1_STATUS_INITTED;
1013                        if (!ppd->link_speed_enabled)
1014                                continue;
1015                }
1016        }
1017
1018        /* if ret is non-zero, we probably should do some cleanup here... */
1019        return ret;
1020}
1021
1022struct hfi1_devdata *hfi1_lookup(int unit)
1023{
1024        return xa_load(&hfi1_dev_table, unit);
1025}
1026
1027/*
1028 * Stop the timers during unit shutdown, or after an error late
1029 * in initialization.
1030 */
1031static void stop_timers(struct hfi1_devdata *dd)
1032{
1033        struct hfi1_pportdata *ppd;
1034        int pidx;
1035
1036        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1037                ppd = dd->pport + pidx;
1038                if (ppd->led_override_timer.function) {
1039                        del_timer_sync(&ppd->led_override_timer);
1040                        atomic_set(&ppd->led_override_timer_active, 0);
1041                }
1042        }
1043}
1044
1045/**
1046 * shutdown_device - shut down a device
1047 * @dd: the hfi1_ib device
1048 *
1049 * This is called to make the device quiet when we are about to
1050 * unload the driver, and also when the device is administratively
1051 * disabled.   It does not free any data structures.
1052 * Everything it does has to be setup again by hfi1_init(dd, 1)
1053 */
1054static void shutdown_device(struct hfi1_devdata *dd)
1055{
1056        struct hfi1_pportdata *ppd;
1057        struct hfi1_ctxtdata *rcd;
1058        unsigned pidx;
1059        int i;
1060
1061        if (dd->flags & HFI1_SHUTDOWN)
1062                return;
1063        dd->flags |= HFI1_SHUTDOWN;
1064
1065        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1066                ppd = dd->pport + pidx;
1067
1068                ppd->linkup = 0;
1069                if (ppd->statusp)
1070                        *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1071                                           HFI1_STATUS_IB_READY);
1072        }
1073        dd->flags &= ~HFI1_INITTED;
1074
1075        /* mask and clean up interrupts */
1076        set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1077        msix_clean_up_interrupts(dd);
1078
1079        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1080                ppd = dd->pport + pidx;
1081                for (i = 0; i < dd->num_rcv_contexts; i++) {
1082                        rcd = hfi1_rcd_get_by_index(dd, i);
1083                        hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1084                                     HFI1_RCVCTRL_CTXT_DIS |
1085                                     HFI1_RCVCTRL_INTRAVAIL_DIS |
1086                                     HFI1_RCVCTRL_PKEY_DIS |
1087                                     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1088                        hfi1_rcd_put(rcd);
1089                }
1090                /*
1091                 * Gracefully stop all sends allowing any in progress to
1092                 * trickle out first.
1093                 */
1094                for (i = 0; i < dd->num_send_contexts; i++)
1095                        sc_flush(dd->send_contexts[i].sc);
1096        }
1097
1098        /*
1099         * Enough for anything that's going to trickle out to have actually
1100         * done so.
1101         */
1102        udelay(20);
1103
1104        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1105                ppd = dd->pport + pidx;
1106
1107                /* disable all contexts */
1108                for (i = 0; i < dd->num_send_contexts; i++)
1109                        sc_disable(dd->send_contexts[i].sc);
1110                /* disable the send device */
1111                pio_send_control(dd, PSC_GLOBAL_DISABLE);
1112
1113                shutdown_led_override(ppd);
1114
1115                /*
1116                 * Clear SerdesEnable.
1117                 * We can't count on interrupts since we are stopping.
1118                 */
1119                hfi1_quiet_serdes(ppd);
1120
1121                if (ppd->hfi1_wq) {
1122                        destroy_workqueue(ppd->hfi1_wq);
1123                        ppd->hfi1_wq = NULL;
1124                }
1125                if (ppd->link_wq) {
1126                        destroy_workqueue(ppd->link_wq);
1127                        ppd->link_wq = NULL;
1128                }
1129        }
1130        sdma_exit(dd);
1131}
1132
1133/**
1134 * hfi1_free_ctxtdata - free a context's allocated data
1135 * @dd: the hfi1_ib device
1136 * @rcd: the ctxtdata structure
1137 *
1138 * free up any allocated data for a context
1139 * It should never change any chip state, or global driver state.
1140 */
1141void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1142{
1143        u32 e;
1144
1145        if (!rcd)
1146                return;
1147
1148        if (rcd->rcvhdrq) {
1149                dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1150                                  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1151                rcd->rcvhdrq = NULL;
1152                if (rcd->rcvhdrtail_kvaddr) {
1153                        dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1154                                          (void *)rcd->rcvhdrtail_kvaddr,
1155                                          rcd->rcvhdrqtailaddr_dma);
1156                        rcd->rcvhdrtail_kvaddr = NULL;
1157                }
1158        }
1159
1160        /* all the RcvArray entries should have been cleared by now */
1161        kfree(rcd->egrbufs.rcvtids);
1162        rcd->egrbufs.rcvtids = NULL;
1163
1164        for (e = 0; e < rcd->egrbufs.alloced; e++) {
1165                if (rcd->egrbufs.buffers[e].dma)
1166                        dma_free_coherent(&dd->pcidev->dev,
1167                                          rcd->egrbufs.buffers[e].len,
1168                                          rcd->egrbufs.buffers[e].addr,
1169                                          rcd->egrbufs.buffers[e].dma);
1170        }
1171        kfree(rcd->egrbufs.buffers);
1172        rcd->egrbufs.alloced = 0;
1173        rcd->egrbufs.buffers = NULL;
1174
1175        sc_free(rcd->sc);
1176        rcd->sc = NULL;
1177
1178        vfree(rcd->subctxt_uregbase);
1179        vfree(rcd->subctxt_rcvegrbuf);
1180        vfree(rcd->subctxt_rcvhdr_base);
1181        kfree(rcd->opstats);
1182
1183        rcd->subctxt_uregbase = NULL;
1184        rcd->subctxt_rcvegrbuf = NULL;
1185        rcd->subctxt_rcvhdr_base = NULL;
1186        rcd->opstats = NULL;
1187}
1188
1189/*
1190 * Release our hold on the shared asic data.  If we are the last one,
1191 * return the structure to be finalized outside the lock.  Must be
1192 * holding hfi1_dev_table lock.
1193 */
1194static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1195{
1196        struct hfi1_asic_data *ad;
1197        int other;
1198
1199        if (!dd->asic_data)
1200                return NULL;
1201        dd->asic_data->dds[dd->hfi1_id] = NULL;
1202        other = dd->hfi1_id ? 0 : 1;
1203        ad = dd->asic_data;
1204        dd->asic_data = NULL;
1205        /* return NULL if the other dd still has a link */
1206        return ad->dds[other] ? NULL : ad;
1207}
1208
1209static void finalize_asic_data(struct hfi1_devdata *dd,
1210                               struct hfi1_asic_data *ad)
1211{
1212        clean_up_i2c(dd, ad);
1213        kfree(ad);
1214}
1215
1216/**
1217 * hfi1_clean_devdata - cleans up per-unit data structure
1218 * @dd: pointer to a valid devdata structure
1219 *
1220 * It cleans up all data structures set up by
1221 * by hfi1_alloc_devdata().
1222 */
1223static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1224{
1225        struct hfi1_asic_data *ad;
1226        unsigned long flags;
1227
1228        xa_lock_irqsave(&hfi1_dev_table, flags);
1229        __xa_erase(&hfi1_dev_table, dd->unit);
1230        ad = release_asic_data(dd);
1231        xa_unlock_irqrestore(&hfi1_dev_table, flags);
1232
1233        finalize_asic_data(dd, ad);
1234        free_platform_config(dd);
1235        rcu_barrier(); /* wait for rcu callbacks to complete */
1236        free_percpu(dd->int_counter);
1237        free_percpu(dd->rcv_limit);
1238        free_percpu(dd->send_schedule);
1239        free_percpu(dd->tx_opstats);
1240        dd->int_counter   = NULL;
1241        dd->rcv_limit     = NULL;
1242        dd->send_schedule = NULL;
1243        dd->tx_opstats    = NULL;
1244        kfree(dd->comp_vect);
1245        dd->comp_vect = NULL;
1246        sdma_clean(dd, dd->num_sdma);
1247        rvt_dealloc_device(&dd->verbs_dev.rdi);
1248}
1249
1250static void __hfi1_free_devdata(struct kobject *kobj)
1251{
1252        struct hfi1_devdata *dd =
1253                container_of(kobj, struct hfi1_devdata, kobj);
1254
1255        hfi1_clean_devdata(dd);
1256}
1257
1258static struct kobj_type hfi1_devdata_type = {
1259        .release = __hfi1_free_devdata,
1260};
1261
1262void hfi1_free_devdata(struct hfi1_devdata *dd)
1263{
1264        kobject_put(&dd->kobj);
1265}
1266
1267/**
1268 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1269 * @pdev: Valid PCI device
1270 * @extra: How many bytes to alloc past the default
1271 *
1272 * Must be done via verbs allocator, because the verbs cleanup process
1273 * both does cleanup and free of the data structure.
1274 * "extra" is for chip-specific data.
1275 */
1276static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1277                                               size_t extra)
1278{
1279        struct hfi1_devdata *dd;
1280        int ret, nports;
1281
1282        /* extra is * number of ports */
1283        nports = extra / sizeof(struct hfi1_pportdata);
1284
1285        dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1286                                                     nports);
1287        if (!dd)
1288                return ERR_PTR(-ENOMEM);
1289        dd->num_pports = nports;
1290        dd->pport = (struct hfi1_pportdata *)(dd + 1);
1291        dd->pcidev = pdev;
1292        pci_set_drvdata(pdev, dd);
1293        dd->node = NUMA_NO_NODE;
1294
1295        ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1296                        GFP_KERNEL);
1297        if (ret < 0) {
1298                dev_err(&pdev->dev,
1299                        "Could not allocate unit ID: error %d\n", -ret);
1300                goto bail;
1301        }
1302        rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1303
1304        /*
1305         * Initialize all locks for the device. This needs to be as early as
1306         * possible so locks are usable.
1307         */
1308        spin_lock_init(&dd->sc_lock);
1309        spin_lock_init(&dd->sendctrl_lock);
1310        spin_lock_init(&dd->rcvctrl_lock);
1311        spin_lock_init(&dd->uctxt_lock);
1312        spin_lock_init(&dd->hfi1_diag_trans_lock);
1313        spin_lock_init(&dd->sc_init_lock);
1314        spin_lock_init(&dd->dc8051_memlock);
1315        seqlock_init(&dd->sc2vl_lock);
1316        spin_lock_init(&dd->sde_map_lock);
1317        spin_lock_init(&dd->pio_map_lock);
1318        mutex_init(&dd->dc8051_lock);
1319        init_waitqueue_head(&dd->event_queue);
1320        spin_lock_init(&dd->irq_src_lock);
1321
1322        dd->int_counter = alloc_percpu(u64);
1323        if (!dd->int_counter) {
1324                ret = -ENOMEM;
1325                goto bail;
1326        }
1327
1328        dd->rcv_limit = alloc_percpu(u64);
1329        if (!dd->rcv_limit) {
1330                ret = -ENOMEM;
1331                goto bail;
1332        }
1333
1334        dd->send_schedule = alloc_percpu(u64);
1335        if (!dd->send_schedule) {
1336                ret = -ENOMEM;
1337                goto bail;
1338        }
1339
1340        dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1341        if (!dd->tx_opstats) {
1342                ret = -ENOMEM;
1343                goto bail;
1344        }
1345
1346        dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1347        if (!dd->comp_vect) {
1348                ret = -ENOMEM;
1349                goto bail;
1350        }
1351
1352        kobject_init(&dd->kobj, &hfi1_devdata_type);
1353        return dd;
1354
1355bail:
1356        hfi1_clean_devdata(dd);
1357        return ERR_PTR(ret);
1358}
1359
1360/*
1361 * Called from freeze mode handlers, and from PCI error
1362 * reporting code.  Should be paranoid about state of
1363 * system and data structures.
1364 */
1365void hfi1_disable_after_error(struct hfi1_devdata *dd)
1366{
1367        if (dd->flags & HFI1_INITTED) {
1368                u32 pidx;
1369
1370                dd->flags &= ~HFI1_INITTED;
1371                if (dd->pport)
1372                        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1373                                struct hfi1_pportdata *ppd;
1374
1375                                ppd = dd->pport + pidx;
1376                                if (dd->flags & HFI1_PRESENT)
1377                                        set_link_state(ppd, HLS_DN_DISABLE);
1378
1379                                if (ppd->statusp)
1380                                        *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1381                        }
1382        }
1383
1384        /*
1385         * Mark as having had an error for driver, and also
1386         * for /sys and status word mapped to user programs.
1387         * This marks unit as not usable, until reset.
1388         */
1389        if (dd->status)
1390                dd->status->dev |= HFI1_STATUS_HWERROR;
1391}
1392
1393static void remove_one(struct pci_dev *);
1394static int init_one(struct pci_dev *, const struct pci_device_id *);
1395static void shutdown_one(struct pci_dev *);
1396
1397#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1398#define PFX DRIVER_NAME ": "
1399
1400const struct pci_device_id hfi1_pci_tbl[] = {
1401        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1402        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1403        { 0, }
1404};
1405
1406MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1407
1408static struct pci_driver hfi1_pci_driver = {
1409        .name = DRIVER_NAME,
1410        .probe = init_one,
1411        .remove = remove_one,
1412        .shutdown = shutdown_one,
1413        .id_table = hfi1_pci_tbl,
1414        .err_handler = &hfi1_pci_err_handler,
1415};
1416
1417static void __init compute_krcvqs(void)
1418{
1419        int i;
1420
1421        for (i = 0; i < krcvqsset; i++)
1422                n_krcvqs += krcvqs[i];
1423}
1424
1425/*
1426 * Do all the generic driver unit- and chip-independent memory
1427 * allocation and initialization.
1428 */
1429static int __init hfi1_mod_init(void)
1430{
1431        int ret;
1432
1433        ret = dev_init();
1434        if (ret)
1435                goto bail;
1436
1437        ret = node_affinity_init();
1438        if (ret)
1439                goto bail;
1440
1441        /* validate max MTU before any devices start */
1442        if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1443                pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1444                       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1445                hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1446        }
1447        /* valid CUs run from 1-128 in powers of 2 */
1448        if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1449                hfi1_cu = 1;
1450        /* valid credit return threshold is 0-100, variable is unsigned */
1451        if (user_credit_return_threshold > 100)
1452                user_credit_return_threshold = 100;
1453
1454        compute_krcvqs();
1455        /*
1456         * sanitize receive interrupt count, time must wait until after
1457         * the hardware type is known
1458         */
1459        if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1460                rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1461        /* reject invalid combinations */
1462        if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1463                pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1464                rcv_intr_count = 1;
1465        }
1466        if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1467                /*
1468                 * Avoid indefinite packet delivery by requiring a timeout
1469                 * if count is > 1.
1470                 */
1471                pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1472                rcv_intr_timeout = 1;
1473        }
1474        if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1475                /*
1476                 * The dynamic algorithm expects a non-zero timeout
1477                 * and a count > 1.
1478                 */
1479                pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1480                rcv_intr_dynamic = 0;
1481        }
1482
1483        /* sanitize link CRC options */
1484        link_crc_mask &= SUPPORTED_CRCS;
1485
1486        ret = opfn_init();
1487        if (ret < 0) {
1488                pr_err("Failed to allocate opfn_wq");
1489                goto bail_dev;
1490        }
1491
1492        hfi1_compute_tid_rdma_flow_wt();
1493        /*
1494         * These must be called before the driver is registered with
1495         * the PCI subsystem.
1496         */
1497        hfi1_dbg_init();
1498        ret = pci_register_driver(&hfi1_pci_driver);
1499        if (ret < 0) {
1500                pr_err("Unable to register driver: error %d\n", -ret);
1501                goto bail_dev;
1502        }
1503        goto bail; /* all OK */
1504
1505bail_dev:
1506        hfi1_dbg_exit();
1507        dev_cleanup();
1508bail:
1509        return ret;
1510}
1511
1512module_init(hfi1_mod_init);
1513
1514/*
1515 * Do the non-unit driver cleanup, memory free, etc. at unload.
1516 */
1517static void __exit hfi1_mod_cleanup(void)
1518{
1519        pci_unregister_driver(&hfi1_pci_driver);
1520        opfn_exit();
1521        node_affinity_destroy_all();
1522        hfi1_dbg_exit();
1523
1524        WARN_ON(!xa_empty(&hfi1_dev_table));
1525        dispose_firmware();     /* asymmetric with obtain_firmware() */
1526        dev_cleanup();
1527}
1528
1529module_exit(hfi1_mod_cleanup);
1530
1531/* this can only be called after a successful initialization */
1532static void cleanup_device_data(struct hfi1_devdata *dd)
1533{
1534        int ctxt;
1535        int pidx;
1536
1537        /* users can't do anything more with chip */
1538        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1539                struct hfi1_pportdata *ppd = &dd->pport[pidx];
1540                struct cc_state *cc_state;
1541                int i;
1542
1543                if (ppd->statusp)
1544                        *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1545
1546                for (i = 0; i < OPA_MAX_SLS; i++)
1547                        hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1548
1549                spin_lock(&ppd->cc_state_lock);
1550                cc_state = get_cc_state_protected(ppd);
1551                RCU_INIT_POINTER(ppd->cc_state, NULL);
1552                spin_unlock(&ppd->cc_state_lock);
1553
1554                if (cc_state)
1555                        kfree_rcu(cc_state, rcu);
1556        }
1557
1558        free_credit_return(dd);
1559
1560        if (dd->rcvhdrtail_dummy_kvaddr) {
1561                dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1562                                  (void *)dd->rcvhdrtail_dummy_kvaddr,
1563                                  dd->rcvhdrtail_dummy_dma);
1564                dd->rcvhdrtail_dummy_kvaddr = NULL;
1565        }
1566
1567        /*
1568         * Free any resources still in use (usually just kernel contexts)
1569         * at unload; we do for ctxtcnt, because that's what we allocate.
1570         */
1571        for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1572                struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1573
1574                if (rcd) {
1575                        hfi1_free_ctxt_rcv_groups(rcd);
1576                        hfi1_free_ctxt(rcd);
1577                }
1578        }
1579
1580        kfree(dd->rcd);
1581        dd->rcd = NULL;
1582
1583        free_pio_map(dd);
1584        /* must follow rcv context free - need to remove rcv's hooks */
1585        for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1586                sc_free(dd->send_contexts[ctxt].sc);
1587        dd->num_send_contexts = 0;
1588        kfree(dd->send_contexts);
1589        dd->send_contexts = NULL;
1590        kfree(dd->hw_to_sw);
1591        dd->hw_to_sw = NULL;
1592        kfree(dd->boardname);
1593        vfree(dd->events);
1594        vfree(dd->status);
1595}
1596
1597/*
1598 * Clean up on unit shutdown, or error during unit load after
1599 * successful initialization.
1600 */
1601static void postinit_cleanup(struct hfi1_devdata *dd)
1602{
1603        hfi1_start_cleanup(dd);
1604        hfi1_comp_vectors_clean_up(dd);
1605        hfi1_dev_affinity_clean_up(dd);
1606
1607        hfi1_pcie_ddcleanup(dd);
1608        hfi1_pcie_cleanup(dd->pcidev);
1609
1610        cleanup_device_data(dd);
1611
1612        hfi1_free_devdata(dd);
1613}
1614
1615static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1616{
1617        if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1618                dd_dev_err(dd, "Receive header queue count too small\n");
1619                return -EINVAL;
1620        }
1621
1622        if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1623                dd_dev_err(dd,
1624                           "Receive header queue count cannot be greater than %u\n",
1625                           HFI1_MAX_HDRQ_EGRBUF_CNT);
1626                return -EINVAL;
1627        }
1628
1629        if (thecnt % HDRQ_INCREMENT) {
1630                dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1631                           thecnt, HDRQ_INCREMENT);
1632                return -EINVAL;
1633        }
1634
1635        return 0;
1636}
1637
1638static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1639{
1640        int ret = 0, j, pidx, initfail;
1641        struct hfi1_devdata *dd;
1642        struct hfi1_pportdata *ppd;
1643
1644        /* First, lock the non-writable module parameters */
1645        HFI1_CAP_LOCK();
1646
1647        /* Validate dev ids */
1648        if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1649              ent->device == PCI_DEVICE_ID_INTEL1)) {
1650                dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1651                        ent->device);
1652                ret = -ENODEV;
1653                goto bail;
1654        }
1655
1656        /* Allocate the dd so we can get to work */
1657        dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1658                                sizeof(struct hfi1_pportdata));
1659        if (IS_ERR(dd)) {
1660                ret = PTR_ERR(dd);
1661                goto bail;
1662        }
1663
1664        /* Validate some global module parameters */
1665        ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1666        if (ret)
1667                goto bail;
1668
1669        /* use the encoding function as a sanitization check */
1670        if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1671                dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1672                           hfi1_hdrq_entsize);
1673                ret = -EINVAL;
1674                goto bail;
1675        }
1676
1677        /* The receive eager buffer size must be set before the receive
1678         * contexts are created.
1679         *
1680         * Set the eager buffer size.  Validate that it falls in a range
1681         * allowed by the hardware - all powers of 2 between the min and
1682         * max.  The maximum valid MTU is within the eager buffer range
1683         * so we do not need to cap the max_mtu by an eager buffer size
1684         * setting.
1685         */
1686        if (eager_buffer_size) {
1687                if (!is_power_of_2(eager_buffer_size))
1688                        eager_buffer_size =
1689                                roundup_pow_of_two(eager_buffer_size);
1690                eager_buffer_size =
1691                        clamp_val(eager_buffer_size,
1692                                  MIN_EAGER_BUFFER * 8,
1693                                  MAX_EAGER_BUFFER_TOTAL);
1694                dd_dev_info(dd, "Eager buffer size %u\n",
1695                            eager_buffer_size);
1696        } else {
1697                dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1698                ret = -EINVAL;
1699                goto bail;
1700        }
1701
1702        /* restrict value of hfi1_rcvarr_split */
1703        hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1704
1705        ret = hfi1_pcie_init(dd);
1706        if (ret)
1707                goto bail;
1708
1709        /*
1710         * Do device-specific initialization, function table setup, dd
1711         * allocation, etc.
1712         */
1713        ret = hfi1_init_dd(dd);
1714        if (ret)
1715                goto clean_bail; /* error already printed */
1716
1717        ret = create_workqueues(dd);
1718        if (ret)
1719                goto clean_bail;
1720
1721        /* do the generic initialization */
1722        initfail = hfi1_init(dd, 0);
1723
1724        /* setup vnic */
1725        hfi1_vnic_setup(dd);
1726
1727        ret = hfi1_register_ib_device(dd);
1728
1729        /*
1730         * Now ready for use.  this should be cleared whenever we
1731         * detect a reset, or initiate one.  If earlier failure,
1732         * we still create devices, so diags, etc. can be used
1733         * to determine cause of problem.
1734         */
1735        if (!initfail && !ret) {
1736                dd->flags |= HFI1_INITTED;
1737                /* create debufs files after init and ib register */
1738                hfi1_dbg_ibdev_init(&dd->verbs_dev);
1739        }
1740
1741        j = hfi1_device_create(dd);
1742        if (j)
1743                dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1744
1745        if (initfail || ret) {
1746                msix_clean_up_interrupts(dd);
1747                stop_timers(dd);
1748                flush_workqueue(ib_wq);
1749                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1750                        hfi1_quiet_serdes(dd->pport + pidx);
1751                        ppd = dd->pport + pidx;
1752                        if (ppd->hfi1_wq) {
1753                                destroy_workqueue(ppd->hfi1_wq);
1754                                ppd->hfi1_wq = NULL;
1755                        }
1756                        if (ppd->link_wq) {
1757                                destroy_workqueue(ppd->link_wq);
1758                                ppd->link_wq = NULL;
1759                        }
1760                }
1761                if (!j)
1762                        hfi1_device_remove(dd);
1763                if (!ret)
1764                        hfi1_unregister_ib_device(dd);
1765                hfi1_vnic_cleanup(dd);
1766                postinit_cleanup(dd);
1767                if (initfail)
1768                        ret = initfail;
1769                goto bail;      /* everything already cleaned */
1770        }
1771
1772        sdma_start(dd);
1773
1774        return 0;
1775
1776clean_bail:
1777        hfi1_pcie_cleanup(pdev);
1778bail:
1779        return ret;
1780}
1781
1782static void wait_for_clients(struct hfi1_devdata *dd)
1783{
1784        /*
1785         * Remove the device init value and complete the device if there is
1786         * no clients or wait for active clients to finish.
1787         */
1788        if (atomic_dec_and_test(&dd->user_refcount))
1789                complete(&dd->user_comp);
1790
1791        wait_for_completion(&dd->user_comp);
1792}
1793
1794static void remove_one(struct pci_dev *pdev)
1795{
1796        struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1797
1798        /* close debugfs files before ib unregister */
1799        hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1800
1801        /* remove the /dev hfi1 interface */
1802        hfi1_device_remove(dd);
1803
1804        /* wait for existing user space clients to finish */
1805        wait_for_clients(dd);
1806
1807        /* unregister from IB core */
1808        hfi1_unregister_ib_device(dd);
1809
1810        /* cleanup vnic */
1811        hfi1_vnic_cleanup(dd);
1812
1813        /*
1814         * Disable the IB link, disable interrupts on the device,
1815         * clear dma engines, etc.
1816         */
1817        shutdown_device(dd);
1818
1819        stop_timers(dd);
1820
1821        /* wait until all of our (qsfp) queue_work() calls complete */
1822        flush_workqueue(ib_wq);
1823
1824        postinit_cleanup(dd);
1825}
1826
1827static void shutdown_one(struct pci_dev *pdev)
1828{
1829        struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1830
1831        shutdown_device(dd);
1832}
1833
1834/**
1835 * hfi1_create_rcvhdrq - create a receive header queue
1836 * @dd: the hfi1_ib device
1837 * @rcd: the context data
1838 *
1839 * This must be contiguous memory (from an i/o perspective), and must be
1840 * DMA'able (which means for some systems, it will go through an IOMMU,
1841 * or be forced into a low address range).
1842 */
1843int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1844{
1845        unsigned amt;
1846        u64 reg;
1847
1848        if (!rcd->rcvhdrq) {
1849                gfp_t gfp_flags;
1850
1851                amt = rcvhdrq_size(rcd);
1852
1853                if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1854                        gfp_flags = GFP_KERNEL;
1855                else
1856                        gfp_flags = GFP_USER;
1857                rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1858                                                  &rcd->rcvhdrq_dma,
1859                                                  gfp_flags | __GFP_COMP);
1860
1861                if (!rcd->rcvhdrq) {
1862                        dd_dev_err(dd,
1863                                   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1864                                   amt, rcd->ctxt);
1865                        goto bail;
1866                }
1867
1868                if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1869                    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1870                        rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1871                                                                    PAGE_SIZE,
1872                                                                    &rcd->rcvhdrqtailaddr_dma,
1873                                                                    gfp_flags);
1874                        if (!rcd->rcvhdrtail_kvaddr)
1875                                goto bail_free;
1876                }
1877        }
1878        /*
1879         * These values are per-context:
1880         *      RcvHdrCnt
1881         *      RcvHdrEntSize
1882         *      RcvHdrSize
1883         */
1884        reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1885                        & RCV_HDR_CNT_CNT_MASK)
1886                << RCV_HDR_CNT_CNT_SHIFT;
1887        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1888        reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1889                        & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1890                << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1891        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1892        reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1893                << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1894        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1895
1896        /*
1897         * Program dummy tail address for every receive context
1898         * before enabling any receive context
1899         */
1900        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1901                        dd->rcvhdrtail_dummy_dma);
1902
1903        return 0;
1904
1905bail_free:
1906        dd_dev_err(dd,
1907                   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1908                   rcd->ctxt);
1909        dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1910                          rcd->rcvhdrq_dma);
1911        rcd->rcvhdrq = NULL;
1912bail:
1913        return -ENOMEM;
1914}
1915
1916/**
1917 * allocate eager buffers, both kernel and user contexts.
1918 * @rcd: the context we are setting up.
1919 *
1920 * Allocate the eager TID buffers and program them into hip.
1921 * They are no longer completely contiguous, we do multiple allocation
1922 * calls.  Otherwise we get the OOM code involved, by asking for too
1923 * much per call, with disastrous results on some kernels.
1924 */
1925int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1926{
1927        struct hfi1_devdata *dd = rcd->dd;
1928        u32 max_entries, egrtop, alloced_bytes = 0;
1929        gfp_t gfp_flags;
1930        u16 order, idx = 0;
1931        int ret = 0;
1932        u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1933
1934        /*
1935         * GFP_USER, but without GFP_FS, so buffer cache can be
1936         * coalesced (we hope); otherwise, even at order 4,
1937         * heavy filesystem activity makes these fail, and we can
1938         * use compound pages.
1939         */
1940        gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1941
1942        /*
1943         * The minimum size of the eager buffers is a groups of MTU-sized
1944         * buffers.
1945         * The global eager_buffer_size parameter is checked against the
1946         * theoretical lower limit of the value. Here, we check against the
1947         * MTU.
1948         */
1949        if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1950                rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1951        /*
1952         * If using one-pkt-per-egr-buffer, lower the eager buffer
1953         * size to the max MTU (page-aligned).
1954         */
1955        if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1956                rcd->egrbufs.rcvtid_size = round_mtu;
1957
1958        /*
1959         * Eager buffers sizes of 1MB or less require smaller TID sizes
1960         * to satisfy the "multiple of 8 RcvArray entries" requirement.
1961         */
1962        if (rcd->egrbufs.size <= (1 << 20))
1963                rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1964                        rounddown_pow_of_two(rcd->egrbufs.size / 8));
1965
1966        while (alloced_bytes < rcd->egrbufs.size &&
1967               rcd->egrbufs.alloced < rcd->egrbufs.count) {
1968                rcd->egrbufs.buffers[idx].addr =
1969                        dma_alloc_coherent(&dd->pcidev->dev,
1970                                           rcd->egrbufs.rcvtid_size,
1971                                           &rcd->egrbufs.buffers[idx].dma,
1972                                           gfp_flags);
1973                if (rcd->egrbufs.buffers[idx].addr) {
1974                        rcd->egrbufs.buffers[idx].len =
1975                                rcd->egrbufs.rcvtid_size;
1976                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1977                                rcd->egrbufs.buffers[idx].addr;
1978                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1979                                rcd->egrbufs.buffers[idx].dma;
1980                        rcd->egrbufs.alloced++;
1981                        alloced_bytes += rcd->egrbufs.rcvtid_size;
1982                        idx++;
1983                } else {
1984                        u32 new_size, i, j;
1985                        u64 offset = 0;
1986
1987                        /*
1988                         * Fail the eager buffer allocation if:
1989                         *   - we are already using the lowest acceptable size
1990                         *   - we are using one-pkt-per-egr-buffer (this implies
1991                         *     that we are accepting only one size)
1992                         */
1993                        if (rcd->egrbufs.rcvtid_size == round_mtu ||
1994                            !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1995                                dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1996                                           rcd->ctxt);
1997                                ret = -ENOMEM;
1998                                goto bail_rcvegrbuf_phys;
1999                        }
2000
2001                        new_size = rcd->egrbufs.rcvtid_size / 2;
2002
2003                        /*
2004                         * If the first attempt to allocate memory failed, don't
2005                         * fail everything but continue with the next lower
2006                         * size.
2007                         */
2008                        if (idx == 0) {
2009                                rcd->egrbufs.rcvtid_size = new_size;
2010                                continue;
2011                        }
2012
2013                        /*
2014                         * Re-partition already allocated buffers to a smaller
2015                         * size.
2016                         */
2017                        rcd->egrbufs.alloced = 0;
2018                        for (i = 0, j = 0, offset = 0; j < idx; i++) {
2019                                if (i >= rcd->egrbufs.count)
2020                                        break;
2021                                rcd->egrbufs.rcvtids[i].dma =
2022                                        rcd->egrbufs.buffers[j].dma + offset;
2023                                rcd->egrbufs.rcvtids[i].addr =
2024                                        rcd->egrbufs.buffers[j].addr + offset;
2025                                rcd->egrbufs.alloced++;
2026                                if ((rcd->egrbufs.buffers[j].dma + offset +
2027                                     new_size) ==
2028                                    (rcd->egrbufs.buffers[j].dma +
2029                                     rcd->egrbufs.buffers[j].len)) {
2030                                        j++;
2031                                        offset = 0;
2032                                } else {
2033                                        offset += new_size;
2034                                }
2035                        }
2036                        rcd->egrbufs.rcvtid_size = new_size;
2037                }
2038        }
2039        rcd->egrbufs.numbufs = idx;
2040        rcd->egrbufs.size = alloced_bytes;
2041
2042        hfi1_cdbg(PROC,
2043                  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
2044                  rcd->ctxt, rcd->egrbufs.alloced,
2045                  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2046
2047        /*
2048         * Set the contexts rcv array head update threshold to the closest
2049         * power of 2 (so we can use a mask instead of modulo) below half
2050         * the allocated entries.
2051         */
2052        rcd->egrbufs.threshold =
2053                rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2054        /*
2055         * Compute the expected RcvArray entry base. This is done after
2056         * allocating the eager buffers in order to maximize the
2057         * expected RcvArray entries for the context.
2058         */
2059        max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2060        egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2061        rcd->expected_count = max_entries - egrtop;
2062        if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2063                rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2064
2065        rcd->expected_base = rcd->eager_base + egrtop;
2066        hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2067                  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2068                  rcd->eager_base, rcd->expected_base);
2069
2070        if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2071                hfi1_cdbg(PROC,
2072                          "ctxt%u: current Eager buffer size is invalid %u\n",
2073                          rcd->ctxt, rcd->egrbufs.rcvtid_size);
2074                ret = -EINVAL;
2075                goto bail_rcvegrbuf_phys;
2076        }
2077
2078        for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2079                hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2080                             rcd->egrbufs.rcvtids[idx].dma, order);
2081                cond_resched();
2082        }
2083
2084        return 0;
2085
2086bail_rcvegrbuf_phys:
2087        for (idx = 0; idx < rcd->egrbufs.alloced &&
2088             rcd->egrbufs.buffers[idx].addr;
2089             idx++) {
2090                dma_free_coherent(&dd->pcidev->dev,
2091                                  rcd->egrbufs.buffers[idx].len,
2092                                  rcd->egrbufs.buffers[idx].addr,
2093                                  rcd->egrbufs.buffers[idx].dma);
2094                rcd->egrbufs.buffers[idx].addr = NULL;
2095                rcd->egrbufs.buffers[idx].dma = 0;
2096                rcd->egrbufs.buffers[idx].len = 0;
2097        }
2098
2099        return ret;
2100}
2101