linux/drivers/infiniband/hw/hfi1/sdma.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2018 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/spinlock.h>
  49#include <linux/seqlock.h>
  50#include <linux/netdevice.h>
  51#include <linux/moduleparam.h>
  52#include <linux/bitops.h>
  53#include <linux/timer.h>
  54#include <linux/vmalloc.h>
  55#include <linux/highmem.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "qp.h"
  60#include "sdma.h"
  61#include "iowait.h"
  62#include "trace.h"
  63
  64/* must be a power of 2 >= 64 <= 32768 */
  65#define SDMA_DESCQ_CNT 2048
  66#define SDMA_DESC_INTR 64
  67#define INVALID_TAIL 0xffff
  68
  69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  70module_param(sdma_descq_cnt, uint, S_IRUGO);
  71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  72
  73static uint sdma_idle_cnt = 250;
  74module_param(sdma_idle_cnt, uint, S_IRUGO);
  75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  76
  77uint mod_num_sdma;
  78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  80
  81static uint sdma_desct_intr = SDMA_DESC_INTR;
  82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  84
  85#define SDMA_WAIT_BATCH_SIZE 20
  86/* max wait time for a SDMA engine to indicate it has halted */
  87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  88/* all SDMA engine errors that cause a halt */
  89
  90#define SD(name) SEND_DMA_##name
  91#define ALL_SDMA_ENG_HALT_ERRS \
  92        (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  93        | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  94        | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  95        | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  96        | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  97        | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  98        | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  99        | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 100        | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 101        | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 102        | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 103        | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 104        | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 105        | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 106        | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 107        | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 108        | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 109        | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 110
 111/* sdma_sendctrl operations */
 112#define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 114#define SDMA_SENDCTRL_OP_HALT      BIT(2)
 115#define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 116
 117/* handle long defines */
 118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 122
 123static const char * const sdma_state_names[] = {
 124        [sdma_state_s00_hw_down]                = "s00_HwDown",
 125        [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 126        [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 127        [sdma_state_s20_idle]                   = "s20_Idle",
 128        [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 129        [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 130        [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 131        [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 132        [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
 133        [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
 134        [sdma_state_s99_running]                = "s99_Running",
 135};
 136
 137#ifdef CONFIG_SDMA_VERBOSITY
 138static const char * const sdma_event_names[] = {
 139        [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 140        [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 141        [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 142        [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 143        [sdma_event_e30_go_running]   = "e30_GoRunning",
 144        [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 145        [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 146        [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 147        [sdma_event_e70_go_idle]      = "e70_GoIdle",
 148        [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 149        [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 150        [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 151        [sdma_event_e85_link_down]    = "e85_LinkDown",
 152        [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 153};
 154#endif
 155
 156static const struct sdma_set_state_action sdma_action_table[] = {
 157        [sdma_state_s00_hw_down] = {
 158                .go_s99_running_tofalse = 1,
 159                .op_enable = 0,
 160                .op_intenable = 0,
 161                .op_halt = 0,
 162                .op_cleanup = 0,
 163        },
 164        [sdma_state_s10_hw_start_up_halt_wait] = {
 165                .op_enable = 0,
 166                .op_intenable = 0,
 167                .op_halt = 1,
 168                .op_cleanup = 0,
 169        },
 170        [sdma_state_s15_hw_start_up_clean_wait] = {
 171                .op_enable = 0,
 172                .op_intenable = 1,
 173                .op_halt = 0,
 174                .op_cleanup = 1,
 175        },
 176        [sdma_state_s20_idle] = {
 177                .op_enable = 0,
 178                .op_intenable = 1,
 179                .op_halt = 0,
 180                .op_cleanup = 0,
 181        },
 182        [sdma_state_s30_sw_clean_up_wait] = {
 183                .op_enable = 0,
 184                .op_intenable = 0,
 185                .op_halt = 0,
 186                .op_cleanup = 0,
 187        },
 188        [sdma_state_s40_hw_clean_up_wait] = {
 189                .op_enable = 0,
 190                .op_intenable = 0,
 191                .op_halt = 0,
 192                .op_cleanup = 1,
 193        },
 194        [sdma_state_s50_hw_halt_wait] = {
 195                .op_enable = 0,
 196                .op_intenable = 0,
 197                .op_halt = 0,
 198                .op_cleanup = 0,
 199        },
 200        [sdma_state_s60_idle_halt_wait] = {
 201                .go_s99_running_tofalse = 1,
 202                .op_enable = 0,
 203                .op_intenable = 0,
 204                .op_halt = 1,
 205                .op_cleanup = 0,
 206        },
 207        [sdma_state_s80_hw_freeze] = {
 208                .op_enable = 0,
 209                .op_intenable = 0,
 210                .op_halt = 0,
 211                .op_cleanup = 0,
 212        },
 213        [sdma_state_s82_freeze_sw_clean] = {
 214                .op_enable = 0,
 215                .op_intenable = 0,
 216                .op_halt = 0,
 217                .op_cleanup = 0,
 218        },
 219        [sdma_state_s99_running] = {
 220                .op_enable = 1,
 221                .op_intenable = 1,
 222                .op_halt = 0,
 223                .op_cleanup = 0,
 224                .go_s99_running_totrue = 1,
 225        },
 226};
 227
 228#define SDMA_TAIL_UPDATE_THRESH 0x1F
 229
 230/* declare all statics here rather than keep sorting */
 231static void sdma_complete(struct kref *);
 232static void sdma_finalput(struct sdma_state *);
 233static void sdma_get(struct sdma_state *);
 234static void sdma_hw_clean_up_task(unsigned long);
 235static void sdma_put(struct sdma_state *);
 236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 237static void sdma_start_hw_clean_up(struct sdma_engine *);
 238static void sdma_sw_clean_up_task(unsigned long);
 239static void sdma_sendctrl(struct sdma_engine *, unsigned);
 240static void init_sdma_regs(struct sdma_engine *, u32, uint);
 241static void sdma_process_event(
 242        struct sdma_engine *sde,
 243        enum sdma_events event);
 244static void __sdma_process_event(
 245        struct sdma_engine *sde,
 246        enum sdma_events event);
 247static void dump_sdma_state(struct sdma_engine *sde);
 248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 249static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 250static void sdma_flush_descq(struct sdma_engine *sde);
 251
 252/**
 253 * sdma_state_name() - return state string from enum
 254 * @state: state
 255 */
 256static const char *sdma_state_name(enum sdma_states state)
 257{
 258        return sdma_state_names[state];
 259}
 260
 261static void sdma_get(struct sdma_state *ss)
 262{
 263        kref_get(&ss->kref);
 264}
 265
 266static void sdma_complete(struct kref *kref)
 267{
 268        struct sdma_state *ss =
 269                container_of(kref, struct sdma_state, kref);
 270
 271        complete(&ss->comp);
 272}
 273
 274static void sdma_put(struct sdma_state *ss)
 275{
 276        kref_put(&ss->kref, sdma_complete);
 277}
 278
 279static void sdma_finalput(struct sdma_state *ss)
 280{
 281        sdma_put(ss);
 282        wait_for_completion(&ss->comp);
 283}
 284
 285static inline void write_sde_csr(
 286        struct sdma_engine *sde,
 287        u32 offset0,
 288        u64 value)
 289{
 290        write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 291}
 292
 293static inline u64 read_sde_csr(
 294        struct sdma_engine *sde,
 295        u32 offset0)
 296{
 297        return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 298}
 299
 300/*
 301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 302 * sdma engine 'sde' to drop to 0.
 303 */
 304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 305                                        int pause)
 306{
 307        u64 off = 8 * sde->this_idx;
 308        struct hfi1_devdata *dd = sde->dd;
 309        int lcnt = 0;
 310        u64 reg_prev;
 311        u64 reg = 0;
 312
 313        while (1) {
 314                reg_prev = reg;
 315                reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 316
 317                reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 318                reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 319                if (reg == 0)
 320                        break;
 321                /* counter is reest if accupancy count changes */
 322                if (reg != reg_prev)
 323                        lcnt = 0;
 324                if (lcnt++ > 500) {
 325                        /* timed out - bounce the link */
 326                        dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 327                                   __func__, sde->this_idx, (u32)reg);
 328                        queue_work(dd->pport->link_wq,
 329                                   &dd->pport->link_bounce_work);
 330                        break;
 331                }
 332                udelay(1);
 333        }
 334}
 335
 336/*
 337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 338 * and pause for credit return.
 339 */
 340void sdma_wait(struct hfi1_devdata *dd)
 341{
 342        int i;
 343
 344        for (i = 0; i < dd->num_sdma; i++) {
 345                struct sdma_engine *sde = &dd->per_sdma[i];
 346
 347                sdma_wait_for_packet_egress(sde, 0);
 348        }
 349}
 350
 351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 352{
 353        u64 reg;
 354
 355        if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 356                return;
 357        reg = cnt;
 358        reg &= SD(DESC_CNT_CNT_MASK);
 359        reg <<= SD(DESC_CNT_CNT_SHIFT);
 360        write_sde_csr(sde, SD(DESC_CNT), reg);
 361}
 362
 363static inline void complete_tx(struct sdma_engine *sde,
 364                               struct sdma_txreq *tx,
 365                               int res)
 366{
 367        /* protect against complete modifying */
 368        struct iowait *wait = tx->wait;
 369        callback_t complete = tx->complete;
 370
 371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 372        trace_hfi1_sdma_out_sn(sde, tx->sn);
 373        if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 374                dd_dev_err(sde->dd, "expected %llu got %llu\n",
 375                           sde->head_sn, tx->sn);
 376        sde->head_sn++;
 377#endif
 378        __sdma_txclean(sde->dd, tx);
 379        if (complete)
 380                (*complete)(tx, res);
 381        if (iowait_sdma_dec(wait))
 382                iowait_drain_wakeup(wait);
 383}
 384
 385/*
 386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 387 *
 388 * Depending on timing there can be txreqs in two places:
 389 * - in the descq ring
 390 * - in the flush list
 391 *
 392 * To avoid ordering issues the descq ring needs to be flushed
 393 * first followed by the flush list.
 394 *
 395 * This routine is called from two places
 396 * - From a work queue item
 397 * - Directly from the state machine just before setting the
 398 *   state to running
 399 *
 400 * Must be called with head_lock held
 401 *
 402 */
 403static void sdma_flush(struct sdma_engine *sde)
 404{
 405        struct sdma_txreq *txp, *txp_next;
 406        LIST_HEAD(flushlist);
 407        unsigned long flags;
 408        uint seq;
 409
 410        /* flush from head to tail */
 411        sdma_flush_descq(sde);
 412        spin_lock_irqsave(&sde->flushlist_lock, flags);
 413        /* copy flush list */
 414        list_splice_init(&sde->flushlist, &flushlist);
 415        spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 416        /* flush from flush list */
 417        list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 418                complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 419        /* wakeup QPs orphaned on the dmawait list */
 420        do {
 421                struct iowait *w, *nw;
 422
 423                seq = read_seqbegin(&sde->waitlock);
 424                if (!list_empty(&sde->dmawait)) {
 425                        write_seqlock(&sde->waitlock);
 426                        list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
 427                                if (w->wakeup) {
 428                                        w->wakeup(w, SDMA_AVAIL_REASON);
 429                                        list_del_init(&w->list);
 430                                }
 431                        }
 432                        write_sequnlock(&sde->waitlock);
 433                }
 434        } while (read_seqretry(&sde->waitlock, seq));
 435}
 436
 437/*
 438 * Fields a work request for flushing the descq ring
 439 * and the flush list
 440 *
 441 * If the engine has been brought to running during
 442 * the scheduling delay, the flush is ignored, assuming
 443 * that the process of bringing the engine to running
 444 * would have done this flush prior to going to running.
 445 *
 446 */
 447static void sdma_field_flush(struct work_struct *work)
 448{
 449        unsigned long flags;
 450        struct sdma_engine *sde =
 451                container_of(work, struct sdma_engine, flush_worker);
 452
 453        write_seqlock_irqsave(&sde->head_lock, flags);
 454        if (!__sdma_running(sde))
 455                sdma_flush(sde);
 456        write_sequnlock_irqrestore(&sde->head_lock, flags);
 457}
 458
 459static void sdma_err_halt_wait(struct work_struct *work)
 460{
 461        struct sdma_engine *sde = container_of(work, struct sdma_engine,
 462                                                err_halt_worker);
 463        u64 statuscsr;
 464        unsigned long timeout;
 465
 466        timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 467        while (1) {
 468                statuscsr = read_sde_csr(sde, SD(STATUS));
 469                statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 470                if (statuscsr)
 471                        break;
 472                if (time_after(jiffies, timeout)) {
 473                        dd_dev_err(sde->dd,
 474                                   "SDMA engine %d - timeout waiting for engine to halt\n",
 475                                   sde->this_idx);
 476                        /*
 477                         * Continue anyway.  This could happen if there was
 478                         * an uncorrectable error in the wrong spot.
 479                         */
 480                        break;
 481                }
 482                usleep_range(80, 120);
 483        }
 484
 485        sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 486}
 487
 488static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 489{
 490        if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 491                unsigned index;
 492                struct hfi1_devdata *dd = sde->dd;
 493
 494                for (index = 0; index < dd->num_sdma; index++) {
 495                        struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 496
 497                        if (curr_sdma != sde)
 498                                curr_sdma->progress_check_head =
 499                                                        curr_sdma->descq_head;
 500                }
 501                dd_dev_err(sde->dd,
 502                           "SDMA engine %d - check scheduled\n",
 503                                sde->this_idx);
 504                mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 505        }
 506}
 507
 508static void sdma_err_progress_check(struct timer_list *t)
 509{
 510        unsigned index;
 511        struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 512
 513        dd_dev_err(sde->dd, "SDE progress check event\n");
 514        for (index = 0; index < sde->dd->num_sdma; index++) {
 515                struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 516                unsigned long flags;
 517
 518                /* check progress on each engine except the current one */
 519                if (curr_sde == sde)
 520                        continue;
 521                /*
 522                 * We must lock interrupts when acquiring sde->lock,
 523                 * to avoid a deadlock if interrupt triggers and spins on
 524                 * the same lock on same CPU
 525                 */
 526                spin_lock_irqsave(&curr_sde->tail_lock, flags);
 527                write_seqlock(&curr_sde->head_lock);
 528
 529                /* skip non-running queues */
 530                if (curr_sde->state.current_state != sdma_state_s99_running) {
 531                        write_sequnlock(&curr_sde->head_lock);
 532                        spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 533                        continue;
 534                }
 535
 536                if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 537                    (curr_sde->descq_head ==
 538                                curr_sde->progress_check_head))
 539                        __sdma_process_event(curr_sde,
 540                                             sdma_event_e90_sw_halted);
 541                write_sequnlock(&curr_sde->head_lock);
 542                spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 543        }
 544        schedule_work(&sde->err_halt_worker);
 545}
 546
 547static void sdma_hw_clean_up_task(unsigned long opaque)
 548{
 549        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 550        u64 statuscsr;
 551
 552        while (1) {
 553#ifdef CONFIG_SDMA_VERBOSITY
 554                dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 555                           sde->this_idx, slashstrip(__FILE__), __LINE__,
 556                        __func__);
 557#endif
 558                statuscsr = read_sde_csr(sde, SD(STATUS));
 559                statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 560                if (statuscsr)
 561                        break;
 562                udelay(10);
 563        }
 564
 565        sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 566}
 567
 568static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 569{
 570        return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 571}
 572
 573/*
 574 * flush ring for recovery
 575 */
 576static void sdma_flush_descq(struct sdma_engine *sde)
 577{
 578        u16 head, tail;
 579        int progress = 0;
 580        struct sdma_txreq *txp = get_txhead(sde);
 581
 582        /* The reason for some of the complexity of this code is that
 583         * not all descriptors have corresponding txps.  So, we have to
 584         * be able to skip over descs until we wander into the range of
 585         * the next txp on the list.
 586         */
 587        head = sde->descq_head & sde->sdma_mask;
 588        tail = sde->descq_tail & sde->sdma_mask;
 589        while (head != tail) {
 590                /* advance head, wrap if needed */
 591                head = ++sde->descq_head & sde->sdma_mask;
 592                /* if now past this txp's descs, do the callback */
 593                if (txp && txp->next_descq_idx == head) {
 594                        /* remove from list */
 595                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 596                        complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 597                        trace_hfi1_sdma_progress(sde, head, tail, txp);
 598                        txp = get_txhead(sde);
 599                }
 600                progress++;
 601        }
 602        if (progress)
 603                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 604}
 605
 606static void sdma_sw_clean_up_task(unsigned long opaque)
 607{
 608        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 609        unsigned long flags;
 610
 611        spin_lock_irqsave(&sde->tail_lock, flags);
 612        write_seqlock(&sde->head_lock);
 613
 614        /*
 615         * At this point, the following should always be true:
 616         * - We are halted, so no more descriptors are getting retired.
 617         * - We are not running, so no one is submitting new work.
 618         * - Only we can send the e40_sw_cleaned, so we can't start
 619         *   running again until we say so.  So, the active list and
 620         *   descq are ours to play with.
 621         */
 622
 623        /*
 624         * In the error clean up sequence, software clean must be called
 625         * before the hardware clean so we can use the hardware head in
 626         * the progress routine.  A hardware clean or SPC unfreeze will
 627         * reset the hardware head.
 628         *
 629         * Process all retired requests. The progress routine will use the
 630         * latest physical hardware head - we are not running so speed does
 631         * not matter.
 632         */
 633        sdma_make_progress(sde, 0);
 634
 635        sdma_flush(sde);
 636
 637        /*
 638         * Reset our notion of head and tail.
 639         * Note that the HW registers have been reset via an earlier
 640         * clean up.
 641         */
 642        sde->descq_tail = 0;
 643        sde->descq_head = 0;
 644        sde->desc_avail = sdma_descq_freecnt(sde);
 645        *sde->head_dma = 0;
 646
 647        __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 648
 649        write_sequnlock(&sde->head_lock);
 650        spin_unlock_irqrestore(&sde->tail_lock, flags);
 651}
 652
 653static void sdma_sw_tear_down(struct sdma_engine *sde)
 654{
 655        struct sdma_state *ss = &sde->state;
 656
 657        /* Releasing this reference means the state machine has stopped. */
 658        sdma_put(ss);
 659
 660        /* stop waiting for all unfreeze events to complete */
 661        atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 662        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 663}
 664
 665static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 666{
 667        tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 668}
 669
 670static void sdma_set_state(struct sdma_engine *sde,
 671                           enum sdma_states next_state)
 672{
 673        struct sdma_state *ss = &sde->state;
 674        const struct sdma_set_state_action *action = sdma_action_table;
 675        unsigned op = 0;
 676
 677        trace_hfi1_sdma_state(
 678                sde,
 679                sdma_state_names[ss->current_state],
 680                sdma_state_names[next_state]);
 681
 682        /* debugging bookkeeping */
 683        ss->previous_state = ss->current_state;
 684        ss->previous_op = ss->current_op;
 685        ss->current_state = next_state;
 686
 687        if (ss->previous_state != sdma_state_s99_running &&
 688            next_state == sdma_state_s99_running)
 689                sdma_flush(sde);
 690
 691        if (action[next_state].op_enable)
 692                op |= SDMA_SENDCTRL_OP_ENABLE;
 693
 694        if (action[next_state].op_intenable)
 695                op |= SDMA_SENDCTRL_OP_INTENABLE;
 696
 697        if (action[next_state].op_halt)
 698                op |= SDMA_SENDCTRL_OP_HALT;
 699
 700        if (action[next_state].op_cleanup)
 701                op |= SDMA_SENDCTRL_OP_CLEANUP;
 702
 703        if (action[next_state].go_s99_running_tofalse)
 704                ss->go_s99_running = 0;
 705
 706        if (action[next_state].go_s99_running_totrue)
 707                ss->go_s99_running = 1;
 708
 709        ss->current_op = op;
 710        sdma_sendctrl(sde, ss->current_op);
 711}
 712
 713/**
 714 * sdma_get_descq_cnt() - called when device probed
 715 *
 716 * Return a validated descq count.
 717 *
 718 * This is currently only used in the verbs initialization to build the tx
 719 * list.
 720 *
 721 * This will probably be deleted in favor of a more scalable approach to
 722 * alloc tx's.
 723 *
 724 */
 725u16 sdma_get_descq_cnt(void)
 726{
 727        u16 count = sdma_descq_cnt;
 728
 729        if (!count)
 730                return SDMA_DESCQ_CNT;
 731        /* count must be a power of 2 greater than 64 and less than
 732         * 32768.   Otherwise return default.
 733         */
 734        if (!is_power_of_2(count))
 735                return SDMA_DESCQ_CNT;
 736        if (count < 64 || count > 32768)
 737                return SDMA_DESCQ_CNT;
 738        return count;
 739}
 740
 741/**
 742 * sdma_engine_get_vl() - return vl for a given sdma engine
 743 * @sde: sdma engine
 744 *
 745 * This function returns the vl mapped to a given engine, or an error if
 746 * the mapping can't be found. The mapping fields are protected by RCU.
 747 */
 748int sdma_engine_get_vl(struct sdma_engine *sde)
 749{
 750        struct hfi1_devdata *dd = sde->dd;
 751        struct sdma_vl_map *m;
 752        u8 vl;
 753
 754        if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 755                return -EINVAL;
 756
 757        rcu_read_lock();
 758        m = rcu_dereference(dd->sdma_map);
 759        if (unlikely(!m)) {
 760                rcu_read_unlock();
 761                return -EINVAL;
 762        }
 763        vl = m->engine_to_vl[sde->this_idx];
 764        rcu_read_unlock();
 765
 766        return vl;
 767}
 768
 769/**
 770 * sdma_select_engine_vl() - select sdma engine
 771 * @dd: devdata
 772 * @selector: a spreading factor
 773 * @vl: this vl
 774 *
 775 *
 776 * This function returns an engine based on the selector and a vl.  The
 777 * mapping fields are protected by RCU.
 778 */
 779struct sdma_engine *sdma_select_engine_vl(
 780        struct hfi1_devdata *dd,
 781        u32 selector,
 782        u8 vl)
 783{
 784        struct sdma_vl_map *m;
 785        struct sdma_map_elem *e;
 786        struct sdma_engine *rval;
 787
 788        /* NOTE This should only happen if SC->VL changed after the initial
 789         *      checks on the QP/AH
 790         *      Default will return engine 0 below
 791         */
 792        if (vl >= num_vls) {
 793                rval = NULL;
 794                goto done;
 795        }
 796
 797        rcu_read_lock();
 798        m = rcu_dereference(dd->sdma_map);
 799        if (unlikely(!m)) {
 800                rcu_read_unlock();
 801                return &dd->per_sdma[0];
 802        }
 803        e = m->map[vl & m->mask];
 804        rval = e->sde[selector & e->mask];
 805        rcu_read_unlock();
 806
 807done:
 808        rval =  !rval ? &dd->per_sdma[0] : rval;
 809        trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 810        return rval;
 811}
 812
 813/**
 814 * sdma_select_engine_sc() - select sdma engine
 815 * @dd: devdata
 816 * @selector: a spreading factor
 817 * @sc5: the 5 bit sc
 818 *
 819 *
 820 * This function returns an engine based on the selector and an sc.
 821 */
 822struct sdma_engine *sdma_select_engine_sc(
 823        struct hfi1_devdata *dd,
 824        u32 selector,
 825        u8 sc5)
 826{
 827        u8 vl = sc_to_vlt(dd, sc5);
 828
 829        return sdma_select_engine_vl(dd, selector, vl);
 830}
 831
 832struct sdma_rht_map_elem {
 833        u32 mask;
 834        u8 ctr;
 835        struct sdma_engine *sde[0];
 836};
 837
 838struct sdma_rht_node {
 839        unsigned long cpu_id;
 840        struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 841        struct rhash_head node;
 842};
 843
 844#define NR_CPUS_HINT 192
 845
 846static const struct rhashtable_params sdma_rht_params = {
 847        .nelem_hint = NR_CPUS_HINT,
 848        .head_offset = offsetof(struct sdma_rht_node, node),
 849        .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 850        .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
 851        .max_size = NR_CPUS,
 852        .min_size = 8,
 853        .automatic_shrinking = true,
 854};
 855
 856/*
 857 * sdma_select_user_engine() - select sdma engine based on user setup
 858 * @dd: devdata
 859 * @selector: a spreading factor
 860 * @vl: this vl
 861 *
 862 * This function returns an sdma engine for a user sdma request.
 863 * User defined sdma engine affinity setting is honored when applicable,
 864 * otherwise system default sdma engine mapping is used. To ensure correct
 865 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 866 */
 867struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 868                                            u32 selector, u8 vl)
 869{
 870        struct sdma_rht_node *rht_node;
 871        struct sdma_engine *sde = NULL;
 872        const struct cpumask *current_mask = &current->cpus_allowed;
 873        unsigned long cpu_id;
 874
 875        /*
 876         * To ensure that always the same sdma engine(s) will be
 877         * selected make sure the process is pinned to this CPU only.
 878         */
 879        if (cpumask_weight(current_mask) != 1)
 880                goto out;
 881
 882        cpu_id = smp_processor_id();
 883        rcu_read_lock();
 884        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
 885                                          sdma_rht_params);
 886
 887        if (rht_node && rht_node->map[vl]) {
 888                struct sdma_rht_map_elem *map = rht_node->map[vl];
 889
 890                sde = map->sde[selector & map->mask];
 891        }
 892        rcu_read_unlock();
 893
 894        if (sde)
 895                return sde;
 896
 897out:
 898        return sdma_select_engine_vl(dd, selector, vl);
 899}
 900
 901static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 902{
 903        int i;
 904
 905        for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 906                map->sde[map->ctr + i] = map->sde[i];
 907}
 908
 909static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 910                                 struct sdma_engine *sde)
 911{
 912        unsigned int i, pow;
 913
 914        /* only need to check the first ctr entries for a match */
 915        for (i = 0; i < map->ctr; i++) {
 916                if (map->sde[i] == sde) {
 917                        memmove(&map->sde[i], &map->sde[i + 1],
 918                                (map->ctr - i - 1) * sizeof(map->sde[0]));
 919                        map->ctr--;
 920                        pow = roundup_pow_of_two(map->ctr ? : 1);
 921                        map->mask = pow - 1;
 922                        sdma_populate_sde_map(map);
 923                        break;
 924                }
 925        }
 926}
 927
 928/*
 929 * Prevents concurrent reads and writes of the sdma engine cpu_mask
 930 */
 931static DEFINE_MUTEX(process_to_sde_mutex);
 932
 933ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 934                                size_t count)
 935{
 936        struct hfi1_devdata *dd = sde->dd;
 937        cpumask_var_t mask, new_mask;
 938        unsigned long cpu;
 939        int ret, vl, sz;
 940        struct sdma_rht_node *rht_node;
 941
 942        vl = sdma_engine_get_vl(sde);
 943        if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
 944                return -EINVAL;
 945
 946        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 947        if (!ret)
 948                return -ENOMEM;
 949
 950        ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 951        if (!ret) {
 952                free_cpumask_var(mask);
 953                return -ENOMEM;
 954        }
 955        ret = cpulist_parse(buf, mask);
 956        if (ret)
 957                goto out_free;
 958
 959        if (!cpumask_subset(mask, cpu_online_mask)) {
 960                dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 961                ret = -EINVAL;
 962                goto out_free;
 963        }
 964
 965        sz = sizeof(struct sdma_rht_map_elem) +
 966                        (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 967
 968        mutex_lock(&process_to_sde_mutex);
 969
 970        for_each_cpu(cpu, mask) {
 971                /* Check if we have this already mapped */
 972                if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 973                        cpumask_set_cpu(cpu, new_mask);
 974                        continue;
 975                }
 976
 977                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 978                                                  sdma_rht_params);
 979                if (!rht_node) {
 980                        rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 981                        if (!rht_node) {
 982                                ret = -ENOMEM;
 983                                goto out;
 984                        }
 985
 986                        rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 987                        if (!rht_node->map[vl]) {
 988                                kfree(rht_node);
 989                                ret = -ENOMEM;
 990                                goto out;
 991                        }
 992                        rht_node->cpu_id = cpu;
 993                        rht_node->map[vl]->mask = 0;
 994                        rht_node->map[vl]->ctr = 1;
 995                        rht_node->map[vl]->sde[0] = sde;
 996
 997                        ret = rhashtable_insert_fast(dd->sdma_rht,
 998                                                     &rht_node->node,
 999                                                     sdma_rht_params);
1000                        if (ret) {
1001                                kfree(rht_node->map[vl]);
1002                                kfree(rht_node);
1003                                dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1004                                           cpu);
1005                                goto out;
1006                        }
1007
1008                } else {
1009                        int ctr, pow;
1010
1011                        /* Add new user mappings */
1012                        if (!rht_node->map[vl])
1013                                rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1014
1015                        if (!rht_node->map[vl]) {
1016                                ret = -ENOMEM;
1017                                goto out;
1018                        }
1019
1020                        rht_node->map[vl]->ctr++;
1021                        ctr = rht_node->map[vl]->ctr;
1022                        rht_node->map[vl]->sde[ctr - 1] = sde;
1023                        pow = roundup_pow_of_two(ctr);
1024                        rht_node->map[vl]->mask = pow - 1;
1025
1026                        /* Populate the sde map table */
1027                        sdma_populate_sde_map(rht_node->map[vl]);
1028                }
1029                cpumask_set_cpu(cpu, new_mask);
1030        }
1031
1032        /* Clean up old mappings */
1033        for_each_cpu(cpu, cpu_online_mask) {
1034                struct sdma_rht_node *rht_node;
1035
1036                /* Don't cleanup sdes that are set in the new mask */
1037                if (cpumask_test_cpu(cpu, mask))
1038                        continue;
1039
1040                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1041                                                  sdma_rht_params);
1042                if (rht_node) {
1043                        bool empty = true;
1044                        int i;
1045
1046                        /* Remove mappings for old sde */
1047                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1048                                if (rht_node->map[i])
1049                                        sdma_cleanup_sde_map(rht_node->map[i],
1050                                                             sde);
1051
1052                        /* Free empty hash table entries */
1053                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1054                                if (!rht_node->map[i])
1055                                        continue;
1056
1057                                if (rht_node->map[i]->ctr) {
1058                                        empty = false;
1059                                        break;
1060                                }
1061                        }
1062
1063                        if (empty) {
1064                                ret = rhashtable_remove_fast(dd->sdma_rht,
1065                                                             &rht_node->node,
1066                                                             sdma_rht_params);
1067                                WARN_ON(ret);
1068
1069                                for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1070                                        kfree(rht_node->map[i]);
1071
1072                                kfree(rht_node);
1073                        }
1074                }
1075        }
1076
1077        cpumask_copy(&sde->cpu_mask, new_mask);
1078out:
1079        mutex_unlock(&process_to_sde_mutex);
1080out_free:
1081        free_cpumask_var(mask);
1082        free_cpumask_var(new_mask);
1083        return ret ? : strnlen(buf, PAGE_SIZE);
1084}
1085
1086ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1087{
1088        mutex_lock(&process_to_sde_mutex);
1089        if (cpumask_empty(&sde->cpu_mask))
1090                snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1091        else
1092                cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1093        mutex_unlock(&process_to_sde_mutex);
1094        return strnlen(buf, PAGE_SIZE);
1095}
1096
1097static void sdma_rht_free(void *ptr, void *arg)
1098{
1099        struct sdma_rht_node *rht_node = ptr;
1100        int i;
1101
1102        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1103                kfree(rht_node->map[i]);
1104
1105        kfree(rht_node);
1106}
1107
1108/**
1109 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1110 * @s: seq file
1111 * @dd: hfi1_devdata
1112 * @cpuid: cpu id
1113 *
1114 * This routine dumps the process to sde mappings per cpu
1115 */
1116void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1117                                struct hfi1_devdata *dd,
1118                                unsigned long cpuid)
1119{
1120        struct sdma_rht_node *rht_node;
1121        int i, j;
1122
1123        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1124                                          sdma_rht_params);
1125        if (!rht_node)
1126                return;
1127
1128        seq_printf(s, "cpu%3lu: ", cpuid);
1129        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1130                if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1131                        continue;
1132
1133                seq_printf(s, " vl%d: [", i);
1134
1135                for (j = 0; j < rht_node->map[i]->ctr; j++) {
1136                        if (!rht_node->map[i]->sde[j])
1137                                continue;
1138
1139                        if (j > 0)
1140                                seq_puts(s, ",");
1141
1142                        seq_printf(s, " sdma%2d",
1143                                   rht_node->map[i]->sde[j]->this_idx);
1144                }
1145                seq_puts(s, " ]");
1146        }
1147
1148        seq_puts(s, "\n");
1149}
1150
1151/*
1152 * Free the indicated map struct
1153 */
1154static void sdma_map_free(struct sdma_vl_map *m)
1155{
1156        int i;
1157
1158        for (i = 0; m && i < m->actual_vls; i++)
1159                kfree(m->map[i]);
1160        kfree(m);
1161}
1162
1163/*
1164 * Handle RCU callback
1165 */
1166static void sdma_map_rcu_callback(struct rcu_head *list)
1167{
1168        struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1169
1170        sdma_map_free(m);
1171}
1172
1173/**
1174 * sdma_map_init - called when # vls change
1175 * @dd: hfi1_devdata
1176 * @port: port number
1177 * @num_vls: number of vls
1178 * @vl_engines: per vl engine mapping (optional)
1179 *
1180 * This routine changes the mapping based on the number of vls.
1181 *
1182 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183 * implies auto computing the loading and giving each VLs a uniform
1184 * distribution of engines per VL.
1185 *
1186 * The auto algorithm computes the sde_per_vl and the number of extra
1187 * engines.  Any extra engines are added from the last VL on down.
1188 *
1189 * rcu locking is used here to control access to the mapping fields.
1190 *
1191 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193 * up to the next highest power of 2 and the first entry is reused
1194 * in a round robin fashion.
1195 *
1196 * If an error occurs the map change is not done and the mapping is
1197 * not changed.
1198 *
1199 */
1200int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1201{
1202        int i, j;
1203        int extra, sde_per_vl;
1204        int engine = 0;
1205        u8 lvl_engines[OPA_MAX_VLS];
1206        struct sdma_vl_map *oldmap, *newmap;
1207
1208        if (!(dd->flags & HFI1_HAS_SEND_DMA))
1209                return 0;
1210
1211        if (!vl_engines) {
1212                /* truncate divide */
1213                sde_per_vl = dd->num_sdma / num_vls;
1214                /* extras */
1215                extra = dd->num_sdma % num_vls;
1216                vl_engines = lvl_engines;
1217                /* add extras from last vl down */
1218                for (i = num_vls - 1; i >= 0; i--, extra--)
1219                        vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1220        }
1221        /* build new map */
1222        newmap = kzalloc(
1223                sizeof(struct sdma_vl_map) +
1224                        roundup_pow_of_two(num_vls) *
1225                        sizeof(struct sdma_map_elem *),
1226                GFP_KERNEL);
1227        if (!newmap)
1228                goto bail;
1229        newmap->actual_vls = num_vls;
1230        newmap->vls = roundup_pow_of_two(num_vls);
1231        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1232        /* initialize back-map */
1233        for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1234                newmap->engine_to_vl[i] = -1;
1235        for (i = 0; i < newmap->vls; i++) {
1236                /* save for wrap around */
1237                int first_engine = engine;
1238
1239                if (i < newmap->actual_vls) {
1240                        int sz = roundup_pow_of_two(vl_engines[i]);
1241
1242                        /* only allocate once */
1243                        newmap->map[i] = kzalloc(
1244                                sizeof(struct sdma_map_elem) +
1245                                        sz * sizeof(struct sdma_engine *),
1246                                GFP_KERNEL);
1247                        if (!newmap->map[i])
1248                                goto bail;
1249                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1250                        /* assign engines */
1251                        for (j = 0; j < sz; j++) {
1252                                newmap->map[i]->sde[j] =
1253                                        &dd->per_sdma[engine];
1254                                if (++engine >= first_engine + vl_engines[i])
1255                                        /* wrap back to first engine */
1256                                        engine = first_engine;
1257                        }
1258                        /* assign back-map */
1259                        for (j = 0; j < vl_engines[i]; j++)
1260                                newmap->engine_to_vl[first_engine + j] = i;
1261                } else {
1262                        /* just re-use entry without allocating */
1263                        newmap->map[i] = newmap->map[i % num_vls];
1264                }
1265                engine = first_engine + vl_engines[i];
1266        }
1267        /* newmap in hand, save old map */
1268        spin_lock_irq(&dd->sde_map_lock);
1269        oldmap = rcu_dereference_protected(dd->sdma_map,
1270                                           lockdep_is_held(&dd->sde_map_lock));
1271
1272        /* publish newmap */
1273        rcu_assign_pointer(dd->sdma_map, newmap);
1274
1275        spin_unlock_irq(&dd->sde_map_lock);
1276        /* success, free any old map after grace period */
1277        if (oldmap)
1278                call_rcu(&oldmap->list, sdma_map_rcu_callback);
1279        return 0;
1280bail:
1281        /* free any partial allocation */
1282        sdma_map_free(newmap);
1283        return -ENOMEM;
1284}
1285
1286/**
1287 * sdma_clean()  Clean up allocated memory
1288 * @dd:          struct hfi1_devdata
1289 * @num_engines: num sdma engines
1290 *
1291 * This routine can be called regardless of the success of
1292 * sdma_init()
1293 */
1294void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1295{
1296        size_t i;
1297        struct sdma_engine *sde;
1298
1299        if (dd->sdma_pad_dma) {
1300                dma_free_coherent(&dd->pcidev->dev, 4,
1301                                  (void *)dd->sdma_pad_dma,
1302                                  dd->sdma_pad_phys);
1303                dd->sdma_pad_dma = NULL;
1304                dd->sdma_pad_phys = 0;
1305        }
1306        if (dd->sdma_heads_dma) {
1307                dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1308                                  (void *)dd->sdma_heads_dma,
1309                                  dd->sdma_heads_phys);
1310                dd->sdma_heads_dma = NULL;
1311                dd->sdma_heads_phys = 0;
1312        }
1313        for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1314                sde = &dd->per_sdma[i];
1315
1316                sde->head_dma = NULL;
1317                sde->head_phys = 0;
1318
1319                if (sde->descq) {
1320                        dma_free_coherent(
1321                                &dd->pcidev->dev,
1322                                sde->descq_cnt * sizeof(u64[2]),
1323                                sde->descq,
1324                                sde->descq_phys
1325                        );
1326                        sde->descq = NULL;
1327                        sde->descq_phys = 0;
1328                }
1329                kvfree(sde->tx_ring);
1330                sde->tx_ring = NULL;
1331        }
1332        spin_lock_irq(&dd->sde_map_lock);
1333        sdma_map_free(rcu_access_pointer(dd->sdma_map));
1334        RCU_INIT_POINTER(dd->sdma_map, NULL);
1335        spin_unlock_irq(&dd->sde_map_lock);
1336        synchronize_rcu();
1337        kfree(dd->per_sdma);
1338        dd->per_sdma = NULL;
1339
1340        if (dd->sdma_rht) {
1341                rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1342                kfree(dd->sdma_rht);
1343                dd->sdma_rht = NULL;
1344        }
1345}
1346
1347/**
1348 * sdma_init() - called when device probed
1349 * @dd: hfi1_devdata
1350 * @port: port number (currently only zero)
1351 *
1352 * Initializes each sde and its csrs.
1353 * Interrupts are not required to be enabled.
1354 *
1355 * Returns:
1356 * 0 - success, -errno on failure
1357 */
1358int sdma_init(struct hfi1_devdata *dd, u8 port)
1359{
1360        unsigned this_idx;
1361        struct sdma_engine *sde;
1362        struct rhashtable *tmp_sdma_rht;
1363        u16 descq_cnt;
1364        void *curr_head;
1365        struct hfi1_pportdata *ppd = dd->pport + port;
1366        u32 per_sdma_credits;
1367        uint idle_cnt = sdma_idle_cnt;
1368        size_t num_engines = chip_sdma_engines(dd);
1369        int ret = -ENOMEM;
1370
1371        if (!HFI1_CAP_IS_KSET(SDMA)) {
1372                HFI1_CAP_CLEAR(SDMA_AHG);
1373                return 0;
1374        }
1375        if (mod_num_sdma &&
1376            /* can't exceed chip support */
1377            mod_num_sdma <= chip_sdma_engines(dd) &&
1378            /* count must be >= vls */
1379            mod_num_sdma >= num_vls)
1380                num_engines = mod_num_sdma;
1381
1382        dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1383        dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1384        dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1385                    chip_sdma_mem_size(dd));
1386
1387        per_sdma_credits =
1388                chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1389
1390        /* set up freeze waitqueue */
1391        init_waitqueue_head(&dd->sdma_unfreeze_wq);
1392        atomic_set(&dd->sdma_unfreeze_count, 0);
1393
1394        descq_cnt = sdma_get_descq_cnt();
1395        dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1396                    num_engines, descq_cnt);
1397
1398        /* alloc memory for array of send engines */
1399        dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1400                                    GFP_KERNEL, dd->node);
1401        if (!dd->per_sdma)
1402                return ret;
1403
1404        idle_cnt = ns_to_cclock(dd, idle_cnt);
1405        if (idle_cnt)
1406                dd->default_desc1 =
1407                        SDMA_DESC1_HEAD_TO_HOST_FLAG;
1408        else
1409                dd->default_desc1 =
1410                        SDMA_DESC1_INT_REQ_FLAG;
1411
1412        if (!sdma_desct_intr)
1413                sdma_desct_intr = SDMA_DESC_INTR;
1414
1415        /* Allocate memory for SendDMA descriptor FIFOs */
1416        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1417                sde = &dd->per_sdma[this_idx];
1418                sde->dd = dd;
1419                sde->ppd = ppd;
1420                sde->this_idx = this_idx;
1421                sde->descq_cnt = descq_cnt;
1422                sde->desc_avail = sdma_descq_freecnt(sde);
1423                sde->sdma_shift = ilog2(descq_cnt);
1424                sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1425
1426                /* Create a mask specifically for each interrupt source */
1427                sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1428                                           this_idx);
1429                sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1430                                                this_idx);
1431                sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1432                                            this_idx);
1433                /* Create a combined mask to cover all 3 interrupt sources */
1434                sde->imask = sde->int_mask | sde->progress_mask |
1435                             sde->idle_mask;
1436
1437                spin_lock_init(&sde->tail_lock);
1438                seqlock_init(&sde->head_lock);
1439                spin_lock_init(&sde->senddmactrl_lock);
1440                spin_lock_init(&sde->flushlist_lock);
1441                seqlock_init(&sde->waitlock);
1442                /* insure there is always a zero bit */
1443                sde->ahg_bits = 0xfffffffe00000000ULL;
1444
1445                sdma_set_state(sde, sdma_state_s00_hw_down);
1446
1447                /* set up reference counting */
1448                kref_init(&sde->state.kref);
1449                init_completion(&sde->state.comp);
1450
1451                INIT_LIST_HEAD(&sde->flushlist);
1452                INIT_LIST_HEAD(&sde->dmawait);
1453
1454                sde->tail_csr =
1455                        get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1456
1457                tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1458                             (unsigned long)sde);
1459
1460                tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1461                             (unsigned long)sde);
1462                INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463                INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464
1465                sde->progress_check_head = 0;
1466
1467                timer_setup(&sde->err_progress_check_timer,
1468                            sdma_err_progress_check, 0);
1469
1470                sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471                                                descq_cnt * sizeof(u64[2]),
1472                                                &sde->descq_phys, GFP_KERNEL);
1473                if (!sde->descq)
1474                        goto bail;
1475                sde->tx_ring =
1476                        kvzalloc_node(array_size(descq_cnt,
1477                                                 sizeof(struct sdma_txreq *)),
1478                                      GFP_KERNEL, dd->node);
1479                if (!sde->tx_ring)
1480                        goto bail;
1481        }
1482
1483        dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484        /* Allocate memory for DMA of head registers to memory */
1485        dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486                                                dd->sdma_heads_size,
1487                                                &dd->sdma_heads_phys,
1488                                                GFP_KERNEL);
1489        if (!dd->sdma_heads_dma) {
1490                dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491                goto bail;
1492        }
1493
1494        /* Allocate memory for pad */
1495        dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1496                                              &dd->sdma_pad_phys, GFP_KERNEL);
1497        if (!dd->sdma_pad_dma) {
1498                dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499                goto bail;
1500        }
1501
1502        /* assign each engine to different cacheline and init registers */
1503        curr_head = (void *)dd->sdma_heads_dma;
1504        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505                unsigned long phys_offset;
1506
1507                sde = &dd->per_sdma[this_idx];
1508
1509                sde->head_dma = curr_head;
1510                curr_head += L1_CACHE_BYTES;
1511                phys_offset = (unsigned long)sde->head_dma -
1512                              (unsigned long)dd->sdma_heads_dma;
1513                sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514                init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515        }
1516        dd->flags |= HFI1_HAS_SEND_DMA;
1517        dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518        dd->num_sdma = num_engines;
1519        ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520        if (ret < 0)
1521                goto bail;
1522
1523        tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524        if (!tmp_sdma_rht) {
1525                ret = -ENOMEM;
1526                goto bail;
1527        }
1528
1529        ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530        if (ret < 0)
1531                goto bail;
1532        dd->sdma_rht = tmp_sdma_rht;
1533
1534        dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1535        return 0;
1536
1537bail:
1538        sdma_clean(dd, num_engines);
1539        return ret;
1540}
1541
1542/**
1543 * sdma_all_running() - called when the link goes up
1544 * @dd: hfi1_devdata
1545 *
1546 * This routine moves all engines to the running state.
1547 */
1548void sdma_all_running(struct hfi1_devdata *dd)
1549{
1550        struct sdma_engine *sde;
1551        unsigned int i;
1552
1553        /* move all engines to running */
1554        for (i = 0; i < dd->num_sdma; ++i) {
1555                sde = &dd->per_sdma[i];
1556                sdma_process_event(sde, sdma_event_e30_go_running);
1557        }
1558}
1559
1560/**
1561 * sdma_all_idle() - called when the link goes down
1562 * @dd: hfi1_devdata
1563 *
1564 * This routine moves all engines to the idle state.
1565 */
1566void sdma_all_idle(struct hfi1_devdata *dd)
1567{
1568        struct sdma_engine *sde;
1569        unsigned int i;
1570
1571        /* idle all engines */
1572        for (i = 0; i < dd->num_sdma; ++i) {
1573                sde = &dd->per_sdma[i];
1574                sdma_process_event(sde, sdma_event_e70_go_idle);
1575        }
1576}
1577
1578/**
1579 * sdma_start() - called to kick off state processing for all engines
1580 * @dd: hfi1_devdata
1581 *
1582 * This routine is for kicking off the state processing for all required
1583 * sdma engines.  Interrupts need to be working at this point.
1584 *
1585 */
1586void sdma_start(struct hfi1_devdata *dd)
1587{
1588        unsigned i;
1589        struct sdma_engine *sde;
1590
1591        /* kick off the engines state processing */
1592        for (i = 0; i < dd->num_sdma; ++i) {
1593                sde = &dd->per_sdma[i];
1594                sdma_process_event(sde, sdma_event_e10_go_hw_start);
1595        }
1596}
1597
1598/**
1599 * sdma_exit() - used when module is removed
1600 * @dd: hfi1_devdata
1601 */
1602void sdma_exit(struct hfi1_devdata *dd)
1603{
1604        unsigned this_idx;
1605        struct sdma_engine *sde;
1606
1607        for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1608                        ++this_idx) {
1609                sde = &dd->per_sdma[this_idx];
1610                if (!list_empty(&sde->dmawait))
1611                        dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1612                                   sde->this_idx);
1613                sdma_process_event(sde, sdma_event_e00_go_hw_down);
1614
1615                del_timer_sync(&sde->err_progress_check_timer);
1616
1617                /*
1618                 * This waits for the state machine to exit so it is not
1619                 * necessary to kill the sdma_sw_clean_up_task to make sure
1620                 * it is not running.
1621                 */
1622                sdma_finalput(&sde->state);
1623        }
1624}
1625
1626/*
1627 * unmap the indicated descriptor
1628 */
1629static inline void sdma_unmap_desc(
1630        struct hfi1_devdata *dd,
1631        struct sdma_desc *descp)
1632{
1633        switch (sdma_mapping_type(descp)) {
1634        case SDMA_MAP_SINGLE:
1635                dma_unmap_single(
1636                        &dd->pcidev->dev,
1637                        sdma_mapping_addr(descp),
1638                        sdma_mapping_len(descp),
1639                        DMA_TO_DEVICE);
1640                break;
1641        case SDMA_MAP_PAGE:
1642                dma_unmap_page(
1643                        &dd->pcidev->dev,
1644                        sdma_mapping_addr(descp),
1645                        sdma_mapping_len(descp),
1646                        DMA_TO_DEVICE);
1647                break;
1648        }
1649}
1650
1651/*
1652 * return the mode as indicated by the first
1653 * descriptor in the tx.
1654 */
1655static inline u8 ahg_mode(struct sdma_txreq *tx)
1656{
1657        return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1658                >> SDMA_DESC1_HEADER_MODE_SHIFT;
1659}
1660
1661/**
1662 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1663 * @dd: hfi1_devdata for unmapping
1664 * @tx: tx request to clean
1665 *
1666 * This is used in the progress routine to clean the tx or
1667 * by the ULP to toss an in-process tx build.
1668 *
1669 * The code can be called multiple times without issue.
1670 *
1671 */
1672void __sdma_txclean(
1673        struct hfi1_devdata *dd,
1674        struct sdma_txreq *tx)
1675{
1676        u16 i;
1677
1678        if (tx->num_desc) {
1679                u8 skip = 0, mode = ahg_mode(tx);
1680
1681                /* unmap first */
1682                sdma_unmap_desc(dd, &tx->descp[0]);
1683                /* determine number of AHG descriptors to skip */
1684                if (mode > SDMA_AHG_APPLY_UPDATE1)
1685                        skip = mode >> 1;
1686                for (i = 1 + skip; i < tx->num_desc; i++)
1687                        sdma_unmap_desc(dd, &tx->descp[i]);
1688                tx->num_desc = 0;
1689        }
1690        kfree(tx->coalesce_buf);
1691        tx->coalesce_buf = NULL;
1692        /* kmalloc'ed descp */
1693        if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1694                tx->desc_limit = ARRAY_SIZE(tx->descs);
1695                kfree(tx->descp);
1696        }
1697}
1698
1699static inline u16 sdma_gethead(struct sdma_engine *sde)
1700{
1701        struct hfi1_devdata *dd = sde->dd;
1702        int use_dmahead;
1703        u16 hwhead;
1704
1705#ifdef CONFIG_SDMA_VERBOSITY
1706        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1707                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1708#endif
1709
1710retry:
1711        use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1712                                        (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1713        hwhead = use_dmahead ?
1714                (u16)le64_to_cpu(*sde->head_dma) :
1715                (u16)read_sde_csr(sde, SD(HEAD));
1716
1717        if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1718                u16 cnt;
1719                u16 swtail;
1720                u16 swhead;
1721                int sane;
1722
1723                swhead = sde->descq_head & sde->sdma_mask;
1724                /* this code is really bad for cache line trading */
1725                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1726                cnt = sde->descq_cnt;
1727
1728                if (swhead < swtail)
1729                        /* not wrapped */
1730                        sane = (hwhead >= swhead) & (hwhead <= swtail);
1731                else if (swhead > swtail)
1732                        /* wrapped around */
1733                        sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1734                                (hwhead <= swtail);
1735                else
1736                        /* empty */
1737                        sane = (hwhead == swhead);
1738
1739                if (unlikely(!sane)) {
1740                        dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1741                                   sde->this_idx,
1742                                   use_dmahead ? "dma" : "kreg",
1743                                   hwhead, swhead, swtail, cnt);
1744                        if (use_dmahead) {
1745                                /* try one more time, using csr */
1746                                use_dmahead = 0;
1747                                goto retry;
1748                        }
1749                        /* proceed as if no progress */
1750                        hwhead = swhead;
1751                }
1752        }
1753        return hwhead;
1754}
1755
1756/*
1757 * This is called when there are send DMA descriptors that might be
1758 * available.
1759 *
1760 * This is called with head_lock held.
1761 */
1762static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1763{
1764        struct iowait *wait, *nw, *twait;
1765        struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1766        uint i, n = 0, seq, tidx = 0;
1767
1768#ifdef CONFIG_SDMA_VERBOSITY
1769        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1770                   slashstrip(__FILE__), __LINE__, __func__);
1771        dd_dev_err(sde->dd, "avail: %u\n", avail);
1772#endif
1773
1774        do {
1775                seq = read_seqbegin(&sde->waitlock);
1776                if (!list_empty(&sde->dmawait)) {
1777                        /* at least one item */
1778                        write_seqlock(&sde->waitlock);
1779                        /* Harvest waiters wanting DMA descriptors */
1780                        list_for_each_entry_safe(
1781                                        wait,
1782                                        nw,
1783                                        &sde->dmawait,
1784                                        list) {
1785                                u32 num_desc;
1786
1787                                if (!wait->wakeup)
1788                                        continue;
1789                                if (n == ARRAY_SIZE(waits))
1790                                        break;
1791                                iowait_init_priority(wait);
1792                                num_desc = iowait_get_all_desc(wait);
1793                                if (num_desc > avail)
1794                                        break;
1795                                avail -= num_desc;
1796                                /* Find the top-priority wait memeber */
1797                                if (n) {
1798                                        twait = waits[tidx];
1799                                        tidx =
1800                                            iowait_priority_update_top(wait,
1801                                                                       twait,
1802                                                                       n,
1803                                                                       tidx);
1804                                }
1805                                list_del_init(&wait->list);
1806                                waits[n++] = wait;
1807                        }
1808                        write_sequnlock(&sde->waitlock);
1809                        break;
1810                }
1811        } while (read_seqretry(&sde->waitlock, seq));
1812
1813        /* Schedule the top-priority entry first */
1814        if (n)
1815                waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1816
1817        for (i = 0; i < n; i++)
1818                if (i != tidx)
1819                        waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1820}
1821
1822/* head_lock must be held */
1823static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1824{
1825        struct sdma_txreq *txp = NULL;
1826        int progress = 0;
1827        u16 hwhead, swhead;
1828        int idle_check_done = 0;
1829
1830        hwhead = sdma_gethead(sde);
1831
1832        /* The reason for some of the complexity of this code is that
1833         * not all descriptors have corresponding txps.  So, we have to
1834         * be able to skip over descs until we wander into the range of
1835         * the next txp on the list.
1836         */
1837
1838retry:
1839        txp = get_txhead(sde);
1840        swhead = sde->descq_head & sde->sdma_mask;
1841        trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1842        while (swhead != hwhead) {
1843                /* advance head, wrap if needed */
1844                swhead = ++sde->descq_head & sde->sdma_mask;
1845
1846                /* if now past this txp's descs, do the callback */
1847                if (txp && txp->next_descq_idx == swhead) {
1848                        /* remove from list */
1849                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1850                        complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1851                        /* see if there is another txp */
1852                        txp = get_txhead(sde);
1853                }
1854                trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1855                progress++;
1856        }
1857
1858        /*
1859         * The SDMA idle interrupt is not guaranteed to be ordered with respect
1860         * to updates to the the dma_head location in host memory. The head
1861         * value read might not be fully up to date. If there are pending
1862         * descriptors and the SDMA idle interrupt fired then read from the
1863         * CSR SDMA head instead to get the latest value from the hardware.
1864         * The hardware SDMA head should be read at most once in this invocation
1865         * of sdma_make_progress(..) which is ensured by idle_check_done flag
1866         */
1867        if ((status & sde->idle_mask) && !idle_check_done) {
1868                u16 swtail;
1869
1870                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1871                if (swtail != hwhead) {
1872                        hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1873                        idle_check_done = 1;
1874                        goto retry;
1875                }
1876        }
1877
1878        sde->last_status = status;
1879        if (progress)
1880                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1881}
1882
1883/*
1884 * sdma_engine_interrupt() - interrupt handler for engine
1885 * @sde: sdma engine
1886 * @status: sdma interrupt reason
1887 *
1888 * Status is a mask of the 3 possible interrupts for this engine.  It will
1889 * contain bits _only_ for this SDMA engine.  It will contain at least one
1890 * bit, it may contain more.
1891 */
1892void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1893{
1894        trace_hfi1_sdma_engine_interrupt(sde, status);
1895        write_seqlock(&sde->head_lock);
1896        sdma_set_desc_cnt(sde, sdma_desct_intr);
1897        if (status & sde->idle_mask)
1898                sde->idle_int_cnt++;
1899        else if (status & sde->progress_mask)
1900                sde->progress_int_cnt++;
1901        else if (status & sde->int_mask)
1902                sde->sdma_int_cnt++;
1903        sdma_make_progress(sde, status);
1904        write_sequnlock(&sde->head_lock);
1905}
1906
1907/**
1908 * sdma_engine_error() - error handler for engine
1909 * @sde: sdma engine
1910 * @status: sdma interrupt reason
1911 */
1912void sdma_engine_error(struct sdma_engine *sde, u64 status)
1913{
1914        unsigned long flags;
1915
1916#ifdef CONFIG_SDMA_VERBOSITY
1917        dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1918                   sde->this_idx,
1919                   (unsigned long long)status,
1920                   sdma_state_names[sde->state.current_state]);
1921#endif
1922        spin_lock_irqsave(&sde->tail_lock, flags);
1923        write_seqlock(&sde->head_lock);
1924        if (status & ALL_SDMA_ENG_HALT_ERRS)
1925                __sdma_process_event(sde, sdma_event_e60_hw_halted);
1926        if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1927                dd_dev_err(sde->dd,
1928                           "SDMA (%u) engine error: 0x%llx state %s\n",
1929                           sde->this_idx,
1930                           (unsigned long long)status,
1931                           sdma_state_names[sde->state.current_state]);
1932                dump_sdma_state(sde);
1933        }
1934        write_sequnlock(&sde->head_lock);
1935        spin_unlock_irqrestore(&sde->tail_lock, flags);
1936}
1937
1938static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1939{
1940        u64 set_senddmactrl = 0;
1941        u64 clr_senddmactrl = 0;
1942        unsigned long flags;
1943
1944#ifdef CONFIG_SDMA_VERBOSITY
1945        dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1946                   sde->this_idx,
1947                   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1948                   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1949                   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1950                   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1951#endif
1952
1953        if (op & SDMA_SENDCTRL_OP_ENABLE)
1954                set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1955        else
1956                clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1957
1958        if (op & SDMA_SENDCTRL_OP_INTENABLE)
1959                set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1960        else
1961                clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1962
1963        if (op & SDMA_SENDCTRL_OP_HALT)
1964                set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1965        else
1966                clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1967
1968        spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1969
1970        sde->p_senddmactrl |= set_senddmactrl;
1971        sde->p_senddmactrl &= ~clr_senddmactrl;
1972
1973        if (op & SDMA_SENDCTRL_OP_CLEANUP)
1974                write_sde_csr(sde, SD(CTRL),
1975                              sde->p_senddmactrl |
1976                              SD(CTRL_SDMA_CLEANUP_SMASK));
1977        else
1978                write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1979
1980        spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1981
1982#ifdef CONFIG_SDMA_VERBOSITY
1983        sdma_dumpstate(sde);
1984#endif
1985}
1986
1987static void sdma_setlengen(struct sdma_engine *sde)
1988{
1989#ifdef CONFIG_SDMA_VERBOSITY
1990        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1991                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1992#endif
1993
1994        /*
1995         * Set SendDmaLenGen and clear-then-set the MSB of the generation
1996         * count to enable generation checking and load the internal
1997         * generation counter.
1998         */
1999        write_sde_csr(sde, SD(LEN_GEN),
2000                      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2001        write_sde_csr(sde, SD(LEN_GEN),
2002                      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2003                      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2004}
2005
2006static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2007{
2008        /* Commit writes to memory and advance the tail on the chip */
2009        smp_wmb(); /* see get_txhead() */
2010        writeq(tail, sde->tail_csr);
2011}
2012
2013/*
2014 * This is called when changing to state s10_hw_start_up_halt_wait as
2015 * a result of send buffer errors or send DMA descriptor errors.
2016 */
2017static void sdma_hw_start_up(struct sdma_engine *sde)
2018{
2019        u64 reg;
2020
2021#ifdef CONFIG_SDMA_VERBOSITY
2022        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2023                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2024#endif
2025
2026        sdma_setlengen(sde);
2027        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2028        *sde->head_dma = 0;
2029
2030        reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2031              SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2032        write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2033}
2034
2035/*
2036 * set_sdma_integrity
2037 *
2038 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2039 */
2040static void set_sdma_integrity(struct sdma_engine *sde)
2041{
2042        struct hfi1_devdata *dd = sde->dd;
2043
2044        write_sde_csr(sde, SD(CHECK_ENABLE),
2045                      hfi1_pkt_base_sdma_integrity(dd));
2046}
2047
2048static void init_sdma_regs(
2049        struct sdma_engine *sde,
2050        u32 credits,
2051        uint idle_cnt)
2052{
2053        u8 opval, opmask;
2054#ifdef CONFIG_SDMA_VERBOSITY
2055        struct hfi1_devdata *dd = sde->dd;
2056
2057        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2058                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2059#endif
2060
2061        write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2062        sdma_setlengen(sde);
2063        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2064        write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2065        write_sde_csr(sde, SD(DESC_CNT), 0);
2066        write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2067        write_sde_csr(sde, SD(MEMORY),
2068                      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2069                      ((u64)(credits * sde->this_idx) <<
2070                       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2071        write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2072        set_sdma_integrity(sde);
2073        opmask = OPCODE_CHECK_MASK_DISABLED;
2074        opval = OPCODE_CHECK_VAL_DISABLED;
2075        write_sde_csr(sde, SD(CHECK_OPCODE),
2076                      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2077                      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2078}
2079
2080#ifdef CONFIG_SDMA_VERBOSITY
2081
2082#define sdma_dumpstate_helper0(reg) do { \
2083                csr = read_csr(sde->dd, reg); \
2084                dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2085        } while (0)
2086
2087#define sdma_dumpstate_helper(reg) do { \
2088                csr = read_sde_csr(sde, reg); \
2089                dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2090                        #reg, sde->this_idx, csr); \
2091        } while (0)
2092
2093#define sdma_dumpstate_helper2(reg) do { \
2094                csr = read_csr(sde->dd, reg + (8 * i)); \
2095                dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2096                                #reg, i, csr); \
2097        } while (0)
2098
2099void sdma_dumpstate(struct sdma_engine *sde)
2100{
2101        u64 csr;
2102        unsigned i;
2103
2104        sdma_dumpstate_helper(SD(CTRL));
2105        sdma_dumpstate_helper(SD(STATUS));
2106        sdma_dumpstate_helper0(SD(ERR_STATUS));
2107        sdma_dumpstate_helper0(SD(ERR_MASK));
2108        sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2109        sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2110
2111        for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2112                sdma_dumpstate_helper2(CCE_INT_STATUS);
2113                sdma_dumpstate_helper2(CCE_INT_MASK);
2114                sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2115        }
2116
2117        sdma_dumpstate_helper(SD(TAIL));
2118        sdma_dumpstate_helper(SD(HEAD));
2119        sdma_dumpstate_helper(SD(PRIORITY_THLD));
2120        sdma_dumpstate_helper(SD(IDLE_CNT));
2121        sdma_dumpstate_helper(SD(RELOAD_CNT));
2122        sdma_dumpstate_helper(SD(DESC_CNT));
2123        sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2124        sdma_dumpstate_helper(SD(MEMORY));
2125        sdma_dumpstate_helper0(SD(ENGINES));
2126        sdma_dumpstate_helper0(SD(MEM_SIZE));
2127        /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2128        sdma_dumpstate_helper(SD(BASE_ADDR));
2129        sdma_dumpstate_helper(SD(LEN_GEN));
2130        sdma_dumpstate_helper(SD(HEAD_ADDR));
2131        sdma_dumpstate_helper(SD(CHECK_ENABLE));
2132        sdma_dumpstate_helper(SD(CHECK_VL));
2133        sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2134        sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2135        sdma_dumpstate_helper(SD(CHECK_SLID));
2136        sdma_dumpstate_helper(SD(CHECK_OPCODE));
2137}
2138#endif
2139
2140static void dump_sdma_state(struct sdma_engine *sde)
2141{
2142        struct hw_sdma_desc *descqp;
2143        u64 desc[2];
2144        u64 addr;
2145        u8 gen;
2146        u16 len;
2147        u16 head, tail, cnt;
2148
2149        head = sde->descq_head & sde->sdma_mask;
2150        tail = sde->descq_tail & sde->sdma_mask;
2151        cnt = sdma_descq_freecnt(sde);
2152
2153        dd_dev_err(sde->dd,
2154                   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2155                   sde->this_idx, head, tail, cnt,
2156                   !list_empty(&sde->flushlist));
2157
2158        /* print info for each entry in the descriptor queue */
2159        while (head != tail) {
2160                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2161
2162                descqp = &sde->descq[head];
2163                desc[0] = le64_to_cpu(descqp->qw[0]);
2164                desc[1] = le64_to_cpu(descqp->qw[1]);
2165                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2166                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2167                                'H' : '-';
2168                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2169                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2170                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2171                        & SDMA_DESC0_PHY_ADDR_MASK;
2172                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2173                        & SDMA_DESC1_GENERATION_MASK;
2174                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2175                        & SDMA_DESC0_BYTE_COUNT_MASK;
2176                dd_dev_err(sde->dd,
2177                           "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2178                           head, flags, addr, gen, len);
2179                dd_dev_err(sde->dd,
2180                           "\tdesc0:0x%016llx desc1 0x%016llx\n",
2181                           desc[0], desc[1]);
2182                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2183                        dd_dev_err(sde->dd,
2184                                   "\taidx: %u amode: %u alen: %u\n",
2185                                   (u8)((desc[1] &
2186                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2187                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2188                                   (u8)((desc[1] &
2189                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2190                                        SDMA_DESC1_HEADER_MODE_SHIFT),
2191                                   (u8)((desc[1] &
2192                                         SDMA_DESC1_HEADER_DWS_SMASK) >>
2193                                        SDMA_DESC1_HEADER_DWS_SHIFT));
2194                head++;
2195                head &= sde->sdma_mask;
2196        }
2197}
2198
2199#define SDE_FMT \
2200        "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2201/**
2202 * sdma_seqfile_dump_sde() - debugfs dump of sde
2203 * @s: seq file
2204 * @sde: send dma engine to dump
2205 *
2206 * This routine dumps the sde to the indicated seq file.
2207 */
2208void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2209{
2210        u16 head, tail;
2211        struct hw_sdma_desc *descqp;
2212        u64 desc[2];
2213        u64 addr;
2214        u8 gen;
2215        u16 len;
2216
2217        head = sde->descq_head & sde->sdma_mask;
2218        tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2219        seq_printf(s, SDE_FMT, sde->this_idx,
2220                   sde->cpu,
2221                   sdma_state_name(sde->state.current_state),
2222                   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2223                   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2224                   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2225                   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2226                   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2227                   (unsigned long long)le64_to_cpu(*sde->head_dma),
2228                   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2229                   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2230                   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2231                   (unsigned long long)sde->last_status,
2232                   (unsigned long long)sde->ahg_bits,
2233                   sde->tx_tail,
2234                   sde->tx_head,
2235                   sde->descq_tail,
2236                   sde->descq_head,
2237                   !list_empty(&sde->flushlist),
2238                   sde->descq_full_count,
2239                   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2240
2241        /* print info for each entry in the descriptor queue */
2242        while (head != tail) {
2243                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2244
2245                descqp = &sde->descq[head];
2246                desc[0] = le64_to_cpu(descqp->qw[0]);
2247                desc[1] = le64_to_cpu(descqp->qw[1]);
2248                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2249                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2250                                'H' : '-';
2251                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2252                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2253                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2254                        & SDMA_DESC0_PHY_ADDR_MASK;
2255                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2256                        & SDMA_DESC1_GENERATION_MASK;
2257                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2258                        & SDMA_DESC0_BYTE_COUNT_MASK;
2259                seq_printf(s,
2260                           "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2261                           head, flags, addr, gen, len);
2262                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2263                        seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2264                                   (u8)((desc[1] &
2265                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2266                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2267                                   (u8)((desc[1] &
2268                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2269                                        SDMA_DESC1_HEADER_MODE_SHIFT));
2270                head = (head + 1) & sde->sdma_mask;
2271        }
2272}
2273
2274/*
2275 * add the generation number into
2276 * the qw1 and return
2277 */
2278static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2279{
2280        u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2281
2282        qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2283        qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2284                        << SDMA_DESC1_GENERATION_SHIFT;
2285        return qw1;
2286}
2287
2288/*
2289 * This routine submits the indicated tx
2290 *
2291 * Space has already been guaranteed and
2292 * tail side of ring is locked.
2293 *
2294 * The hardware tail update is done
2295 * in the caller and that is facilitated
2296 * by returning the new tail.
2297 *
2298 * There is special case logic for ahg
2299 * to not add the generation number for
2300 * up to 2 descriptors that follow the
2301 * first descriptor.
2302 *
2303 */
2304static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2305{
2306        int i;
2307        u16 tail;
2308        struct sdma_desc *descp = tx->descp;
2309        u8 skip = 0, mode = ahg_mode(tx);
2310
2311        tail = sde->descq_tail & sde->sdma_mask;
2312        sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2313        sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2314        trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2315                                   tail, &sde->descq[tail]);
2316        tail = ++sde->descq_tail & sde->sdma_mask;
2317        descp++;
2318        if (mode > SDMA_AHG_APPLY_UPDATE1)
2319                skip = mode >> 1;
2320        for (i = 1; i < tx->num_desc; i++, descp++) {
2321                u64 qw1;
2322
2323                sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2324                if (skip) {
2325                        /* edits don't have generation */
2326                        qw1 = descp->qw[1];
2327                        skip--;
2328                } else {
2329                        /* replace generation with real one for non-edits */
2330                        qw1 = add_gen(sde, descp->qw[1]);
2331                }
2332                sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2333                trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2334                                           tail, &sde->descq[tail]);
2335                tail = ++sde->descq_tail & sde->sdma_mask;
2336        }
2337        tx->next_descq_idx = tail;
2338#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2339        tx->sn = sde->tail_sn++;
2340        trace_hfi1_sdma_in_sn(sde, tx->sn);
2341        WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2342#endif
2343        sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2344        sde->desc_avail -= tx->num_desc;
2345        return tail;
2346}
2347
2348/*
2349 * Check for progress
2350 */
2351static int sdma_check_progress(
2352        struct sdma_engine *sde,
2353        struct iowait_work *wait,
2354        struct sdma_txreq *tx,
2355        bool pkts_sent)
2356{
2357        int ret;
2358
2359        sde->desc_avail = sdma_descq_freecnt(sde);
2360        if (tx->num_desc <= sde->desc_avail)
2361                return -EAGAIN;
2362        /* pulse the head_lock */
2363        if (wait && iowait_ioww_to_iow(wait)->sleep) {
2364                unsigned seq;
2365
2366                seq = raw_seqcount_begin(
2367                        (const seqcount_t *)&sde->head_lock.seqcount);
2368                ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2369                if (ret == -EAGAIN)
2370                        sde->desc_avail = sdma_descq_freecnt(sde);
2371        } else {
2372                ret = -EBUSY;
2373        }
2374        return ret;
2375}
2376
2377/**
2378 * sdma_send_txreq() - submit a tx req to ring
2379 * @sde: sdma engine to use
2380 * @wait: SE wait structure to use when full (may be NULL)
2381 * @tx: sdma_txreq to submit
2382 * @pkts_sent: has any packet been sent yet?
2383 *
2384 * The call submits the tx into the ring.  If a iowait structure is non-NULL
2385 * the packet will be queued to the list in wait.
2386 *
2387 * Return:
2388 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2389 * ring (wait == NULL)
2390 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2391 */
2392int sdma_send_txreq(struct sdma_engine *sde,
2393                    struct iowait_work *wait,
2394                    struct sdma_txreq *tx,
2395                    bool pkts_sent)
2396{
2397        int ret = 0;
2398        u16 tail;
2399        unsigned long flags;
2400
2401        /* user should have supplied entire packet */
2402        if (unlikely(tx->tlen))
2403                return -EINVAL;
2404        tx->wait = iowait_ioww_to_iow(wait);
2405        spin_lock_irqsave(&sde->tail_lock, flags);
2406retry:
2407        if (unlikely(!__sdma_running(sde)))
2408                goto unlock_noconn;
2409        if (unlikely(tx->num_desc > sde->desc_avail))
2410                goto nodesc;
2411        tail = submit_tx(sde, tx);
2412        if (wait)
2413                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2414        sdma_update_tail(sde, tail);
2415unlock:
2416        spin_unlock_irqrestore(&sde->tail_lock, flags);
2417        return ret;
2418unlock_noconn:
2419        if (wait)
2420                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2421        tx->next_descq_idx = 0;
2422#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2423        tx->sn = sde->tail_sn++;
2424        trace_hfi1_sdma_in_sn(sde, tx->sn);
2425#endif
2426        spin_lock(&sde->flushlist_lock);
2427        list_add_tail(&tx->list, &sde->flushlist);
2428        spin_unlock(&sde->flushlist_lock);
2429        iowait_inc_wait_count(wait, tx->num_desc);
2430        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2431        ret = -ECOMM;
2432        goto unlock;
2433nodesc:
2434        ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2435        if (ret == -EAGAIN) {
2436                ret = 0;
2437                goto retry;
2438        }
2439        sde->descq_full_count++;
2440        goto unlock;
2441}
2442
2443/**
2444 * sdma_send_txlist() - submit a list of tx req to ring
2445 * @sde: sdma engine to use
2446 * @wait: SE wait structure to use when full (may be NULL)
2447 * @tx_list: list of sdma_txreqs to submit
2448 * @count: pointer to a u16 which, after return will contain the total number of
2449 *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2450 *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2451 *         which are added to SDMA engine flush list if the SDMA engine state is
2452 *         not running.
2453 *
2454 * The call submits the list into the ring.
2455 *
2456 * If the iowait structure is non-NULL and not equal to the iowait list
2457 * the unprocessed part of the list  will be appended to the list in wait.
2458 *
2459 * In all cases, the tx_list will be updated so the head of the tx_list is
2460 * the list of descriptors that have yet to be transmitted.
2461 *
2462 * The intent of this call is to provide a more efficient
2463 * way of submitting multiple packets to SDMA while holding the tail
2464 * side locking.
2465 *
2466 * Return:
2467 * 0 - Success,
2468 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2469 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2470 */
2471int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2472                     struct list_head *tx_list, u16 *count_out)
2473{
2474        struct sdma_txreq *tx, *tx_next;
2475        int ret = 0;
2476        unsigned long flags;
2477        u16 tail = INVALID_TAIL;
2478        u32 submit_count = 0, flush_count = 0, total_count;
2479
2480        spin_lock_irqsave(&sde->tail_lock, flags);
2481retry:
2482        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2483                tx->wait = iowait_ioww_to_iow(wait);
2484                if (unlikely(!__sdma_running(sde)))
2485                        goto unlock_noconn;
2486                if (unlikely(tx->num_desc > sde->desc_avail))
2487                        goto nodesc;
2488                if (unlikely(tx->tlen)) {
2489                        ret = -EINVAL;
2490                        goto update_tail;
2491                }
2492                list_del_init(&tx->list);
2493                tail = submit_tx(sde, tx);
2494                submit_count++;
2495                if (tail != INVALID_TAIL &&
2496                    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2497                        sdma_update_tail(sde, tail);
2498                        tail = INVALID_TAIL;
2499                }
2500        }
2501update_tail:
2502        total_count = submit_count + flush_count;
2503        if (wait) {
2504                iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2505                iowait_starve_clear(submit_count > 0,
2506                                    iowait_ioww_to_iow(wait));
2507        }
2508        if (tail != INVALID_TAIL)
2509                sdma_update_tail(sde, tail);
2510        spin_unlock_irqrestore(&sde->tail_lock, flags);
2511        *count_out = total_count;
2512        return ret;
2513unlock_noconn:
2514        spin_lock(&sde->flushlist_lock);
2515        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2516                tx->wait = iowait_ioww_to_iow(wait);
2517                list_del_init(&tx->list);
2518                tx->next_descq_idx = 0;
2519#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2520                tx->sn = sde->tail_sn++;
2521                trace_hfi1_sdma_in_sn(sde, tx->sn);
2522#endif
2523                list_add_tail(&tx->list, &sde->flushlist);
2524                flush_count++;
2525                iowait_inc_wait_count(wait, tx->num_desc);
2526        }
2527        spin_unlock(&sde->flushlist_lock);
2528        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2529        ret = -ECOMM;
2530        goto update_tail;
2531nodesc:
2532        ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2533        if (ret == -EAGAIN) {
2534                ret = 0;
2535                goto retry;
2536        }
2537        sde->descq_full_count++;
2538        goto update_tail;
2539}
2540
2541static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2542{
2543        unsigned long flags;
2544
2545        spin_lock_irqsave(&sde->tail_lock, flags);
2546        write_seqlock(&sde->head_lock);
2547
2548        __sdma_process_event(sde, event);
2549
2550        if (sde->state.current_state == sdma_state_s99_running)
2551                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2552
2553        write_sequnlock(&sde->head_lock);
2554        spin_unlock_irqrestore(&sde->tail_lock, flags);
2555}
2556
2557static void __sdma_process_event(struct sdma_engine *sde,
2558                                 enum sdma_events event)
2559{
2560        struct sdma_state *ss = &sde->state;
2561        int need_progress = 0;
2562
2563        /* CONFIG SDMA temporary */
2564#ifdef CONFIG_SDMA_VERBOSITY
2565        dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2566                   sdma_state_names[ss->current_state],
2567                   sdma_event_names[event]);
2568#endif
2569
2570        switch (ss->current_state) {
2571        case sdma_state_s00_hw_down:
2572                switch (event) {
2573                case sdma_event_e00_go_hw_down:
2574                        break;
2575                case sdma_event_e30_go_running:
2576                        /*
2577                         * If down, but running requested (usually result
2578                         * of link up, then we need to start up.
2579                         * This can happen when hw down is requested while
2580                         * bringing the link up with traffic active on
2581                         * 7220, e.g.
2582                         */
2583                        ss->go_s99_running = 1;
2584                        /* fall through -- and start dma engine */
2585                case sdma_event_e10_go_hw_start:
2586                        /* This reference means the state machine is started */
2587                        sdma_get(&sde->state);
2588                        sdma_set_state(sde,
2589                                       sdma_state_s10_hw_start_up_halt_wait);
2590                        break;
2591                case sdma_event_e15_hw_halt_done:
2592                        break;
2593                case sdma_event_e25_hw_clean_up_done:
2594                        break;
2595                case sdma_event_e40_sw_cleaned:
2596                        sdma_sw_tear_down(sde);
2597                        break;
2598                case sdma_event_e50_hw_cleaned:
2599                        break;
2600                case sdma_event_e60_hw_halted:
2601                        break;
2602                case sdma_event_e70_go_idle:
2603                        break;
2604                case sdma_event_e80_hw_freeze:
2605                        break;
2606                case sdma_event_e81_hw_frozen:
2607                        break;
2608                case sdma_event_e82_hw_unfreeze:
2609                        break;
2610                case sdma_event_e85_link_down:
2611                        break;
2612                case sdma_event_e90_sw_halted:
2613                        break;
2614                }
2615                break;
2616
2617        case sdma_state_s10_hw_start_up_halt_wait:
2618                switch (event) {
2619                case sdma_event_e00_go_hw_down:
2620                        sdma_set_state(sde, sdma_state_s00_hw_down);
2621                        sdma_sw_tear_down(sde);
2622                        break;
2623                case sdma_event_e10_go_hw_start:
2624                        break;
2625                case sdma_event_e15_hw_halt_done:
2626                        sdma_set_state(sde,
2627                                       sdma_state_s15_hw_start_up_clean_wait);
2628                        sdma_start_hw_clean_up(sde);
2629                        break;
2630                case sdma_event_e25_hw_clean_up_done:
2631                        break;
2632                case sdma_event_e30_go_running:
2633                        ss->go_s99_running = 1;
2634                        break;
2635                case sdma_event_e40_sw_cleaned:
2636                        break;
2637                case sdma_event_e50_hw_cleaned:
2638                        break;
2639                case sdma_event_e60_hw_halted:
2640                        schedule_work(&sde->err_halt_worker);
2641                        break;
2642                case sdma_event_e70_go_idle:
2643                        ss->go_s99_running = 0;
2644                        break;
2645                case sdma_event_e80_hw_freeze:
2646                        break;
2647                case sdma_event_e81_hw_frozen:
2648                        break;
2649                case sdma_event_e82_hw_unfreeze:
2650                        break;
2651                case sdma_event_e85_link_down:
2652                        break;
2653                case sdma_event_e90_sw_halted:
2654                        break;
2655                }
2656                break;
2657
2658        case sdma_state_s15_hw_start_up_clean_wait:
2659                switch (event) {
2660                case sdma_event_e00_go_hw_down:
2661                        sdma_set_state(sde, sdma_state_s00_hw_down);
2662                        sdma_sw_tear_down(sde);
2663                        break;
2664                case sdma_event_e10_go_hw_start:
2665                        break;
2666                case sdma_event_e15_hw_halt_done:
2667                        break;
2668                case sdma_event_e25_hw_clean_up_done:
2669                        sdma_hw_start_up(sde);
2670                        sdma_set_state(sde, ss->go_s99_running ?
2671                                       sdma_state_s99_running :
2672                                       sdma_state_s20_idle);
2673                        break;
2674                case sdma_event_e30_go_running:
2675                        ss->go_s99_running = 1;
2676                        break;
2677                case sdma_event_e40_sw_cleaned:
2678                        break;
2679                case sdma_event_e50_hw_cleaned:
2680                        break;
2681                case sdma_event_e60_hw_halted:
2682                        break;
2683                case sdma_event_e70_go_idle:
2684                        ss->go_s99_running = 0;
2685                        break;
2686                case sdma_event_e80_hw_freeze:
2687                        break;
2688                case sdma_event_e81_hw_frozen:
2689                        break;
2690                case sdma_event_e82_hw_unfreeze:
2691                        break;
2692                case sdma_event_e85_link_down:
2693                        break;
2694                case sdma_event_e90_sw_halted:
2695                        break;
2696                }
2697                break;
2698
2699        case sdma_state_s20_idle:
2700                switch (event) {
2701                case sdma_event_e00_go_hw_down:
2702                        sdma_set_state(sde, sdma_state_s00_hw_down);
2703                        sdma_sw_tear_down(sde);
2704                        break;
2705                case sdma_event_e10_go_hw_start:
2706                        break;
2707                case sdma_event_e15_hw_halt_done:
2708                        break;
2709                case sdma_event_e25_hw_clean_up_done:
2710                        break;
2711                case sdma_event_e30_go_running:
2712                        sdma_set_state(sde, sdma_state_s99_running);
2713                        ss->go_s99_running = 1;
2714                        break;
2715                case sdma_event_e40_sw_cleaned:
2716                        break;
2717                case sdma_event_e50_hw_cleaned:
2718                        break;
2719                case sdma_event_e60_hw_halted:
2720                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2721                        schedule_work(&sde->err_halt_worker);
2722                        break;
2723                case sdma_event_e70_go_idle:
2724                        break;
2725                case sdma_event_e85_link_down:
2726                        /* fall through */
2727                case sdma_event_e80_hw_freeze:
2728                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2729                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2730                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2731                        break;
2732                case sdma_event_e81_hw_frozen:
2733                        break;
2734                case sdma_event_e82_hw_unfreeze:
2735                        break;
2736                case sdma_event_e90_sw_halted:
2737                        break;
2738                }
2739                break;
2740
2741        case sdma_state_s30_sw_clean_up_wait:
2742                switch (event) {
2743                case sdma_event_e00_go_hw_down:
2744                        sdma_set_state(sde, sdma_state_s00_hw_down);
2745                        break;
2746                case sdma_event_e10_go_hw_start:
2747                        break;
2748                case sdma_event_e15_hw_halt_done:
2749                        break;
2750                case sdma_event_e25_hw_clean_up_done:
2751                        break;
2752                case sdma_event_e30_go_running:
2753                        ss->go_s99_running = 1;
2754                        break;
2755                case sdma_event_e40_sw_cleaned:
2756                        sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2757                        sdma_start_hw_clean_up(sde);
2758                        break;
2759                case sdma_event_e50_hw_cleaned:
2760                        break;
2761                case sdma_event_e60_hw_halted:
2762                        break;
2763                case sdma_event_e70_go_idle:
2764                        ss->go_s99_running = 0;
2765                        break;
2766                case sdma_event_e80_hw_freeze:
2767                        break;
2768                case sdma_event_e81_hw_frozen:
2769                        break;
2770                case sdma_event_e82_hw_unfreeze:
2771                        break;
2772                case sdma_event_e85_link_down:
2773                        ss->go_s99_running = 0;
2774                        break;
2775                case sdma_event_e90_sw_halted:
2776                        break;
2777                }
2778                break;
2779
2780        case sdma_state_s40_hw_clean_up_wait:
2781                switch (event) {
2782                case sdma_event_e00_go_hw_down:
2783                        sdma_set_state(sde, sdma_state_s00_hw_down);
2784                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2785                        break;
2786                case sdma_event_e10_go_hw_start:
2787                        break;
2788                case sdma_event_e15_hw_halt_done:
2789                        break;
2790                case sdma_event_e25_hw_clean_up_done:
2791                        sdma_hw_start_up(sde);
2792                        sdma_set_state(sde, ss->go_s99_running ?
2793                                       sdma_state_s99_running :
2794                                       sdma_state_s20_idle);
2795                        break;
2796                case sdma_event_e30_go_running:
2797                        ss->go_s99_running = 1;
2798                        break;
2799                case sdma_event_e40_sw_cleaned:
2800                        break;
2801                case sdma_event_e50_hw_cleaned:
2802                        break;
2803                case sdma_event_e60_hw_halted:
2804                        break;
2805                case sdma_event_e70_go_idle:
2806                        ss->go_s99_running = 0;
2807                        break;
2808                case sdma_event_e80_hw_freeze:
2809                        break;
2810                case sdma_event_e81_hw_frozen:
2811                        break;
2812                case sdma_event_e82_hw_unfreeze:
2813                        break;
2814                case sdma_event_e85_link_down:
2815                        ss->go_s99_running = 0;
2816                        break;
2817                case sdma_event_e90_sw_halted:
2818                        break;
2819                }
2820                break;
2821
2822        case sdma_state_s50_hw_halt_wait:
2823                switch (event) {
2824                case sdma_event_e00_go_hw_down:
2825                        sdma_set_state(sde, sdma_state_s00_hw_down);
2826                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2827                        break;
2828                case sdma_event_e10_go_hw_start:
2829                        break;
2830                case sdma_event_e15_hw_halt_done:
2831                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2832                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2833                        break;
2834                case sdma_event_e25_hw_clean_up_done:
2835                        break;
2836                case sdma_event_e30_go_running:
2837                        ss->go_s99_running = 1;
2838                        break;
2839                case sdma_event_e40_sw_cleaned:
2840                        break;
2841                case sdma_event_e50_hw_cleaned:
2842                        break;
2843                case sdma_event_e60_hw_halted:
2844                        schedule_work(&sde->err_halt_worker);
2845                        break;
2846                case sdma_event_e70_go_idle:
2847                        ss->go_s99_running = 0;
2848                        break;
2849                case sdma_event_e80_hw_freeze:
2850                        break;
2851                case sdma_event_e81_hw_frozen:
2852                        break;
2853                case sdma_event_e82_hw_unfreeze:
2854                        break;
2855                case sdma_event_e85_link_down:
2856                        ss->go_s99_running = 0;
2857                        break;
2858                case sdma_event_e90_sw_halted:
2859                        break;
2860                }
2861                break;
2862
2863        case sdma_state_s60_idle_halt_wait:
2864                switch (event) {
2865                case sdma_event_e00_go_hw_down:
2866                        sdma_set_state(sde, sdma_state_s00_hw_down);
2867                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868                        break;
2869                case sdma_event_e10_go_hw_start:
2870                        break;
2871                case sdma_event_e15_hw_halt_done:
2872                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2873                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2874                        break;
2875                case sdma_event_e25_hw_clean_up_done:
2876                        break;
2877                case sdma_event_e30_go_running:
2878                        ss->go_s99_running = 1;
2879                        break;
2880                case sdma_event_e40_sw_cleaned:
2881                        break;
2882                case sdma_event_e50_hw_cleaned:
2883                        break;
2884                case sdma_event_e60_hw_halted:
2885                        schedule_work(&sde->err_halt_worker);
2886                        break;
2887                case sdma_event_e70_go_idle:
2888                        ss->go_s99_running = 0;
2889                        break;
2890                case sdma_event_e80_hw_freeze:
2891                        break;
2892                case sdma_event_e81_hw_frozen:
2893                        break;
2894                case sdma_event_e82_hw_unfreeze:
2895                        break;
2896                case sdma_event_e85_link_down:
2897                        break;
2898                case sdma_event_e90_sw_halted:
2899                        break;
2900                }
2901                break;
2902
2903        case sdma_state_s80_hw_freeze:
2904                switch (event) {
2905                case sdma_event_e00_go_hw_down:
2906                        sdma_set_state(sde, sdma_state_s00_hw_down);
2907                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2908                        break;
2909                case sdma_event_e10_go_hw_start:
2910                        break;
2911                case sdma_event_e15_hw_halt_done:
2912                        break;
2913                case sdma_event_e25_hw_clean_up_done:
2914                        break;
2915                case sdma_event_e30_go_running:
2916                        ss->go_s99_running = 1;
2917                        break;
2918                case sdma_event_e40_sw_cleaned:
2919                        break;
2920                case sdma_event_e50_hw_cleaned:
2921                        break;
2922                case sdma_event_e60_hw_halted:
2923                        break;
2924                case sdma_event_e70_go_idle:
2925                        ss->go_s99_running = 0;
2926                        break;
2927                case sdma_event_e80_hw_freeze:
2928                        break;
2929                case sdma_event_e81_hw_frozen:
2930                        sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2931                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2932                        break;
2933                case sdma_event_e82_hw_unfreeze:
2934                        break;
2935                case sdma_event_e85_link_down:
2936                        break;
2937                case sdma_event_e90_sw_halted:
2938                        break;
2939                }
2940                break;
2941
2942        case sdma_state_s82_freeze_sw_clean:
2943                switch (event) {
2944                case sdma_event_e00_go_hw_down:
2945                        sdma_set_state(sde, sdma_state_s00_hw_down);
2946                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2947                        break;
2948                case sdma_event_e10_go_hw_start:
2949                        break;
2950                case sdma_event_e15_hw_halt_done:
2951                        break;
2952                case sdma_event_e25_hw_clean_up_done:
2953                        break;
2954                case sdma_event_e30_go_running:
2955                        ss->go_s99_running = 1;
2956                        break;
2957                case sdma_event_e40_sw_cleaned:
2958                        /* notify caller this engine is done cleaning */
2959                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2960                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2961                        break;
2962                case sdma_event_e50_hw_cleaned:
2963                        break;
2964                case sdma_event_e60_hw_halted:
2965                        break;
2966                case sdma_event_e70_go_idle:
2967                        ss->go_s99_running = 0;
2968                        break;
2969                case sdma_event_e80_hw_freeze:
2970                        break;
2971                case sdma_event_e81_hw_frozen:
2972                        break;
2973                case sdma_event_e82_hw_unfreeze:
2974                        sdma_hw_start_up(sde);
2975                        sdma_set_state(sde, ss->go_s99_running ?
2976                                       sdma_state_s99_running :
2977                                       sdma_state_s20_idle);
2978                        break;
2979                case sdma_event_e85_link_down:
2980                        break;
2981                case sdma_event_e90_sw_halted:
2982                        break;
2983                }
2984                break;
2985
2986        case sdma_state_s99_running:
2987                switch (event) {
2988                case sdma_event_e00_go_hw_down:
2989                        sdma_set_state(sde, sdma_state_s00_hw_down);
2990                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2991                        break;
2992                case sdma_event_e10_go_hw_start:
2993                        break;
2994                case sdma_event_e15_hw_halt_done:
2995                        break;
2996                case sdma_event_e25_hw_clean_up_done:
2997                        break;
2998                case sdma_event_e30_go_running:
2999                        break;
3000                case sdma_event_e40_sw_cleaned:
3001                        break;
3002                case sdma_event_e50_hw_cleaned:
3003                        break;
3004                case sdma_event_e60_hw_halted:
3005                        need_progress = 1;
3006                        sdma_err_progress_check_schedule(sde);
3007                        /* fall through */
3008                case sdma_event_e90_sw_halted:
3009                        /*
3010                        * SW initiated halt does not perform engines
3011                        * progress check
3012                        */
3013                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3014                        schedule_work(&sde->err_halt_worker);
3015                        break;
3016                case sdma_event_e70_go_idle:
3017                        sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3018                        break;
3019                case sdma_event_e85_link_down:
3020                        ss->go_s99_running = 0;
3021                        /* fall through */
3022                case sdma_event_e80_hw_freeze:
3023                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
3024                        atomic_dec(&sde->dd->sdma_unfreeze_count);
3025                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3026                        break;
3027                case sdma_event_e81_hw_frozen:
3028                        break;
3029                case sdma_event_e82_hw_unfreeze:
3030                        break;
3031                }
3032                break;
3033        }
3034
3035        ss->last_event = event;
3036        if (need_progress)
3037                sdma_make_progress(sde, 0);
3038}
3039
3040/*
3041 * _extend_sdma_tx_descs() - helper to extend txreq
3042 *
3043 * This is called once the initial nominal allocation
3044 * of descriptors in the sdma_txreq is exhausted.
3045 *
3046 * The code will bump the allocation up to the max
3047 * of MAX_DESC (64) descriptors. There doesn't seem
3048 * much point in an interim step. The last descriptor
3049 * is reserved for coalesce buffer in order to support
3050 * cases where input packet has >MAX_DESC iovecs.
3051 *
3052 */
3053static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3054{
3055        int i;
3056
3057        /* Handle last descriptor */
3058        if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3059                /* if tlen is 0, it is for padding, release last descriptor */
3060                if (!tx->tlen) {
3061                        tx->desc_limit = MAX_DESC;
3062                } else if (!tx->coalesce_buf) {
3063                        /* allocate coalesce buffer with space for padding */
3064                        tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3065                                                   GFP_ATOMIC);
3066                        if (!tx->coalesce_buf)
3067                                goto enomem;
3068                        tx->coalesce_idx = 0;
3069                }
3070                return 0;
3071        }
3072
3073        if (unlikely(tx->num_desc == MAX_DESC))
3074                goto enomem;
3075
3076        tx->descp = kmalloc_array(
3077                        MAX_DESC,
3078                        sizeof(struct sdma_desc),
3079                        GFP_ATOMIC);
3080        if (!tx->descp)
3081                goto enomem;
3082
3083        /* reserve last descriptor for coalescing */
3084        tx->desc_limit = MAX_DESC - 1;
3085        /* copy ones already built */
3086        for (i = 0; i < tx->num_desc; i++)
3087                tx->descp[i] = tx->descs[i];
3088        return 0;
3089enomem:
3090        __sdma_txclean(dd, tx);
3091        return -ENOMEM;
3092}
3093
3094/*
3095 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3096 *
3097 * This is called once the initial nominal allocation of descriptors
3098 * in the sdma_txreq is exhausted.
3099 *
3100 * This function calls _extend_sdma_tx_descs to extend or allocate
3101 * coalesce buffer. If there is a allocated coalesce buffer, it will
3102 * copy the input packet data into the coalesce buffer. It also adds
3103 * coalesce buffer descriptor once when whole packet is received.
3104 *
3105 * Return:
3106 * <0 - error
3107 * 0 - coalescing, don't populate descriptor
3108 * 1 - continue with populating descriptor
3109 */
3110int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3111                           int type, void *kvaddr, struct page *page,
3112                           unsigned long offset, u16 len)
3113{
3114        int pad_len, rval;
3115        dma_addr_t addr;
3116
3117        rval = _extend_sdma_tx_descs(dd, tx);
3118        if (rval) {
3119                __sdma_txclean(dd, tx);
3120                return rval;
3121        }
3122
3123        /* If coalesce buffer is allocated, copy data into it */
3124        if (tx->coalesce_buf) {
3125                if (type == SDMA_MAP_NONE) {
3126                        __sdma_txclean(dd, tx);
3127                        return -EINVAL;
3128                }
3129
3130                if (type == SDMA_MAP_PAGE) {
3131                        kvaddr = kmap(page);
3132                        kvaddr += offset;
3133                } else if (WARN_ON(!kvaddr)) {
3134                        __sdma_txclean(dd, tx);
3135                        return -EINVAL;
3136                }
3137
3138                memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3139                tx->coalesce_idx += len;
3140                if (type == SDMA_MAP_PAGE)
3141                        kunmap(page);
3142
3143                /* If there is more data, return */
3144                if (tx->tlen - tx->coalesce_idx)
3145                        return 0;
3146
3147                /* Whole packet is received; add any padding */
3148                pad_len = tx->packet_len & (sizeof(u32) - 1);
3149                if (pad_len) {
3150                        pad_len = sizeof(u32) - pad_len;
3151                        memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3152                        /* padding is taken care of for coalescing case */
3153                        tx->packet_len += pad_len;
3154                        tx->tlen += pad_len;
3155                }
3156
3157                /* dma map the coalesce buffer */
3158                addr = dma_map_single(&dd->pcidev->dev,
3159                                      tx->coalesce_buf,
3160                                      tx->tlen,
3161                                      DMA_TO_DEVICE);
3162
3163                if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3164                        __sdma_txclean(dd, tx);
3165                        return -ENOSPC;
3166                }
3167
3168                /* Add descriptor for coalesce buffer */
3169                tx->desc_limit = MAX_DESC;
3170                return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3171                                         addr, tx->tlen);
3172        }
3173
3174        return 1;
3175}
3176
3177/* Update sdes when the lmc changes */
3178void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3179{
3180        struct sdma_engine *sde;
3181        int i;
3182        u64 sreg;
3183
3184        sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3185                SD(CHECK_SLID_MASK_SHIFT)) |
3186                (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3187                SD(CHECK_SLID_VALUE_SHIFT));
3188
3189        for (i = 0; i < dd->num_sdma; i++) {
3190                hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3191                          i, (u32)sreg);
3192                sde = &dd->per_sdma[i];
3193                write_sde_csr(sde, SD(CHECK_SLID), sreg);
3194        }
3195}
3196
3197/* tx not dword sized - pad */
3198int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3199{
3200        int rval = 0;
3201
3202        tx->num_desc++;
3203        if ((unlikely(tx->num_desc == tx->desc_limit))) {
3204                rval = _extend_sdma_tx_descs(dd, tx);
3205                if (rval) {
3206                        __sdma_txclean(dd, tx);
3207                        return rval;
3208                }
3209        }
3210        /* finish the one just added */
3211        make_tx_sdma_desc(
3212                tx,
3213                SDMA_MAP_NONE,
3214                dd->sdma_pad_phys,
3215                sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3216        _sdma_close_tx(dd, tx);
3217        return rval;
3218}
3219
3220/*
3221 * Add ahg to the sdma_txreq
3222 *
3223 * The logic will consume up to 3
3224 * descriptors at the beginning of
3225 * sdma_txreq.
3226 */
3227void _sdma_txreq_ahgadd(
3228        struct sdma_txreq *tx,
3229        u8 num_ahg,
3230        u8 ahg_entry,
3231        u32 *ahg,
3232        u8 ahg_hlen)
3233{
3234        u32 i, shift = 0, desc = 0;
3235        u8 mode;
3236
3237        WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3238        /* compute mode */
3239        if (num_ahg == 1)
3240                mode = SDMA_AHG_APPLY_UPDATE1;
3241        else if (num_ahg <= 5)
3242                mode = SDMA_AHG_APPLY_UPDATE2;
3243        else
3244                mode = SDMA_AHG_APPLY_UPDATE3;
3245        tx->num_desc++;
3246        /* initialize to consumed descriptors to zero */
3247        switch (mode) {
3248        case SDMA_AHG_APPLY_UPDATE3:
3249                tx->num_desc++;
3250                tx->descs[2].qw[0] = 0;
3251                tx->descs[2].qw[1] = 0;
3252                /* FALLTHROUGH */
3253        case SDMA_AHG_APPLY_UPDATE2:
3254                tx->num_desc++;
3255                tx->descs[1].qw[0] = 0;
3256                tx->descs[1].qw[1] = 0;
3257                break;
3258        }
3259        ahg_hlen >>= 2;
3260        tx->descs[0].qw[1] |=
3261                (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3262                        << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3263                (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3264                        << SDMA_DESC1_HEADER_DWS_SHIFT) |
3265                (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3266                        << SDMA_DESC1_HEADER_MODE_SHIFT) |
3267                (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3268                        << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3269        for (i = 0; i < (num_ahg - 1); i++) {
3270                if (!shift && !(i & 2))
3271                        desc++;
3272                tx->descs[desc].qw[!!(i & 2)] |=
3273                        (((u64)ahg[i + 1])
3274                                << shift);
3275                shift = (shift + 32) & 63;
3276        }
3277}
3278
3279/**
3280 * sdma_ahg_alloc - allocate an AHG entry
3281 * @sde: engine to allocate from
3282 *
3283 * Return:
3284 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3285 * -ENOSPC if an entry is not available
3286 */
3287int sdma_ahg_alloc(struct sdma_engine *sde)
3288{
3289        int nr;
3290        int oldbit;
3291
3292        if (!sde) {
3293                trace_hfi1_ahg_allocate(sde, -EINVAL);
3294                return -EINVAL;
3295        }
3296        while (1) {
3297                nr = ffz(READ_ONCE(sde->ahg_bits));
3298                if (nr > 31) {
3299                        trace_hfi1_ahg_allocate(sde, -ENOSPC);
3300                        return -ENOSPC;
3301                }
3302                oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3303                if (!oldbit)
3304                        break;
3305                cpu_relax();
3306        }
3307        trace_hfi1_ahg_allocate(sde, nr);
3308        return nr;
3309}
3310
3311/**
3312 * sdma_ahg_free - free an AHG entry
3313 * @sde: engine to return AHG entry
3314 * @ahg_index: index to free
3315 *
3316 * This routine frees the indicate AHG entry.
3317 */
3318void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3319{
3320        if (!sde)
3321                return;
3322        trace_hfi1_ahg_deallocate(sde, ahg_index);
3323        if (ahg_index < 0 || ahg_index > 31)
3324                return;
3325        clear_bit(ahg_index, &sde->ahg_bits);
3326}
3327
3328/*
3329 * SPC freeze handling for SDMA engines.  Called when the driver knows
3330 * the SPC is going into a freeze but before the freeze is fully
3331 * settled.  Generally an error interrupt.
3332 *
3333 * This event will pull the engine out of running so no more entries can be
3334 * added to the engine's queue.
3335 */
3336void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3337{
3338        int i;
3339        enum sdma_events event = link_down ? sdma_event_e85_link_down :
3340                                             sdma_event_e80_hw_freeze;
3341
3342        /* set up the wait but do not wait here */
3343        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3344
3345        /* tell all engines to stop running and wait */
3346        for (i = 0; i < dd->num_sdma; i++)
3347                sdma_process_event(&dd->per_sdma[i], event);
3348
3349        /* sdma_freeze() will wait for all engines to have stopped */
3350}
3351
3352/*
3353 * SPC freeze handling for SDMA engines.  Called when the driver knows
3354 * the SPC is fully frozen.
3355 */
3356void sdma_freeze(struct hfi1_devdata *dd)
3357{
3358        int i;
3359        int ret;
3360
3361        /*
3362         * Make sure all engines have moved out of the running state before
3363         * continuing.
3364         */
3365        ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3366                                       atomic_read(&dd->sdma_unfreeze_count) <=
3367                                       0);
3368        /* interrupted or count is negative, then unloading - just exit */
3369        if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3370                return;
3371
3372        /* set up the count for the next wait */
3373        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3374
3375        /* tell all engines that the SPC is frozen, they can start cleaning */
3376        for (i = 0; i < dd->num_sdma; i++)
3377                sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3378
3379        /*
3380         * Wait for everyone to finish software clean before exiting.  The
3381         * software clean will read engine CSRs, so must be completed before
3382         * the next step, which will clear the engine CSRs.
3383         */
3384        (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3385                                atomic_read(&dd->sdma_unfreeze_count) <= 0);
3386        /* no need to check results - done no matter what */
3387}
3388
3389/*
3390 * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3391 *
3392 * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3393 * that is left is a software clean.  We could do it after the SPC is fully
3394 * frozen, but then we'd have to add another state to wait for the unfreeze.
3395 * Instead, just defer the software clean until the unfreeze step.
3396 */
3397void sdma_unfreeze(struct hfi1_devdata *dd)
3398{
3399        int i;
3400
3401        /* tell all engines start freeze clean up */
3402        for (i = 0; i < dd->num_sdma; i++)
3403                sdma_process_event(&dd->per_sdma[i],
3404                                   sdma_event_e82_hw_unfreeze);
3405}
3406
3407/**
3408 * _sdma_engine_progress_schedule() - schedule progress on engine
3409 * @sde: sdma_engine to schedule progress
3410 *
3411 */
3412void _sdma_engine_progress_schedule(
3413        struct sdma_engine *sde)
3414{
3415        trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3416        /* assume we have selected a good cpu */
3417        write_csr(sde->dd,
3418                  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3419                  sde->progress_mask);
3420}
3421