linux/drivers/interconnect/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interconnect framework core driver
   4 *
   5 * Copyright (c) 2017-2019, Linaro Ltd.
   6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/device.h>
  11#include <linux/idr.h>
  12#include <linux/init.h>
  13#include <linux/interconnect.h>
  14#include <linux/interconnect-provider.h>
  15#include <linux/list.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/overflow.h>
  21
  22static DEFINE_IDR(icc_idr);
  23static LIST_HEAD(icc_providers);
  24static DEFINE_MUTEX(icc_lock);
  25static struct dentry *icc_debugfs_dir;
  26
  27/**
  28 * struct icc_req - constraints that are attached to each node
  29 * @req_node: entry in list of requests for the particular @node
  30 * @node: the interconnect node to which this constraint applies
  31 * @dev: reference to the device that sets the constraints
  32 * @avg_bw: an integer describing the average bandwidth in kBps
  33 * @peak_bw: an integer describing the peak bandwidth in kBps
  34 */
  35struct icc_req {
  36        struct hlist_node req_node;
  37        struct icc_node *node;
  38        struct device *dev;
  39        u32 avg_bw;
  40        u32 peak_bw;
  41};
  42
  43/**
  44 * struct icc_path - interconnect path structure
  45 * @num_nodes: number of hops (nodes)
  46 * @reqs: array of the requests applicable to this path of nodes
  47 */
  48struct icc_path {
  49        size_t num_nodes;
  50        struct icc_req reqs[];
  51};
  52
  53static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
  54{
  55        if (!n)
  56                return;
  57
  58        seq_printf(s, "%-30s %12u %12u\n",
  59                   n->name, n->avg_bw, n->peak_bw);
  60}
  61
  62static int icc_summary_show(struct seq_file *s, void *data)
  63{
  64        struct icc_provider *provider;
  65
  66        seq_puts(s, " node                                   avg         peak\n");
  67        seq_puts(s, "--------------------------------------------------------\n");
  68
  69        mutex_lock(&icc_lock);
  70
  71        list_for_each_entry(provider, &icc_providers, provider_list) {
  72                struct icc_node *n;
  73
  74                list_for_each_entry(n, &provider->nodes, node_list) {
  75                        struct icc_req *r;
  76
  77                        icc_summary_show_one(s, n);
  78                        hlist_for_each_entry(r, &n->req_list, req_node) {
  79                                if (!r->dev)
  80                                        continue;
  81
  82                                seq_printf(s, "    %-26s %12u %12u\n",
  83                                           dev_name(r->dev), r->avg_bw,
  84                                           r->peak_bw);
  85                        }
  86                }
  87        }
  88
  89        mutex_unlock(&icc_lock);
  90
  91        return 0;
  92}
  93DEFINE_SHOW_ATTRIBUTE(icc_summary);
  94
  95static struct icc_node *node_find(const int id)
  96{
  97        return idr_find(&icc_idr, id);
  98}
  99
 100static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
 101                                  ssize_t num_nodes)
 102{
 103        struct icc_node *node = dst;
 104        struct icc_path *path;
 105        int i;
 106
 107        path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
 108        if (!path)
 109                return ERR_PTR(-ENOMEM);
 110
 111        path->num_nodes = num_nodes;
 112
 113        for (i = num_nodes - 1; i >= 0; i--) {
 114                node->provider->users++;
 115                hlist_add_head(&path->reqs[i].req_node, &node->req_list);
 116                path->reqs[i].node = node;
 117                path->reqs[i].dev = dev;
 118                /* reference to previous node was saved during path traversal */
 119                node = node->reverse;
 120        }
 121
 122        return path;
 123}
 124
 125static struct icc_path *path_find(struct device *dev, struct icc_node *src,
 126                                  struct icc_node *dst)
 127{
 128        struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 129        struct icc_node *n, *node = NULL;
 130        struct list_head traverse_list;
 131        struct list_head edge_list;
 132        struct list_head visited_list;
 133        size_t i, depth = 1;
 134        bool found = false;
 135
 136        INIT_LIST_HEAD(&traverse_list);
 137        INIT_LIST_HEAD(&edge_list);
 138        INIT_LIST_HEAD(&visited_list);
 139
 140        list_add(&src->search_list, &traverse_list);
 141        src->reverse = NULL;
 142
 143        do {
 144                list_for_each_entry_safe(node, n, &traverse_list, search_list) {
 145                        if (node == dst) {
 146                                found = true;
 147                                list_splice_init(&edge_list, &visited_list);
 148                                list_splice_init(&traverse_list, &visited_list);
 149                                break;
 150                        }
 151                        for (i = 0; i < node->num_links; i++) {
 152                                struct icc_node *tmp = node->links[i];
 153
 154                                if (!tmp) {
 155                                        path = ERR_PTR(-ENOENT);
 156                                        goto out;
 157                                }
 158
 159                                if (tmp->is_traversed)
 160                                        continue;
 161
 162                                tmp->is_traversed = true;
 163                                tmp->reverse = node;
 164                                list_add_tail(&tmp->search_list, &edge_list);
 165                        }
 166                }
 167
 168                if (found)
 169                        break;
 170
 171                list_splice_init(&traverse_list, &visited_list);
 172                list_splice_init(&edge_list, &traverse_list);
 173
 174                /* count the hops including the source */
 175                depth++;
 176
 177        } while (!list_empty(&traverse_list));
 178
 179out:
 180
 181        /* reset the traversed state */
 182        list_for_each_entry_reverse(n, &visited_list, search_list)
 183                n->is_traversed = false;
 184
 185        if (found)
 186                path = path_init(dev, dst, depth);
 187
 188        return path;
 189}
 190
 191/*
 192 * We want the path to honor all bandwidth requests, so the average and peak
 193 * bandwidth requirements from each consumer are aggregated at each node.
 194 * The aggregation is platform specific, so each platform can customize it by
 195 * implementing its own aggregate() function.
 196 */
 197
 198static int aggregate_requests(struct icc_node *node)
 199{
 200        struct icc_provider *p = node->provider;
 201        struct icc_req *r;
 202
 203        node->avg_bw = 0;
 204        node->peak_bw = 0;
 205
 206        hlist_for_each_entry(r, &node->req_list, req_node)
 207                p->aggregate(node, r->avg_bw, r->peak_bw,
 208                             &node->avg_bw, &node->peak_bw);
 209
 210        return 0;
 211}
 212
 213static int apply_constraints(struct icc_path *path)
 214{
 215        struct icc_node *next, *prev = NULL;
 216        int ret = -EINVAL;
 217        int i;
 218
 219        for (i = 0; i < path->num_nodes; i++) {
 220                next = path->reqs[i].node;
 221
 222                /*
 223                 * Both endpoints should be valid master-slave pairs of the
 224                 * same interconnect provider that will be configured.
 225                 */
 226                if (!prev || next->provider != prev->provider) {
 227                        prev = next;
 228                        continue;
 229                }
 230
 231                /* set the constraints */
 232                ret = next->provider->set(prev, next);
 233                if (ret)
 234                        goto out;
 235
 236                prev = next;
 237        }
 238out:
 239        return ret;
 240}
 241
 242/* of_icc_xlate_onecell() - Translate function using a single index.
 243 * @spec: OF phandle args to map into an interconnect node.
 244 * @data: private data (pointer to struct icc_onecell_data)
 245 *
 246 * This is a generic translate function that can be used to model simple
 247 * interconnect providers that have one device tree node and provide
 248 * multiple interconnect nodes. A single cell is used as an index into
 249 * an array of icc nodes specified in the icc_onecell_data struct when
 250 * registering the provider.
 251 */
 252struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
 253                                      void *data)
 254{
 255        struct icc_onecell_data *icc_data = data;
 256        unsigned int idx = spec->args[0];
 257
 258        if (idx >= icc_data->num_nodes) {
 259                pr_err("%s: invalid index %u\n", __func__, idx);
 260                return ERR_PTR(-EINVAL);
 261        }
 262
 263        return icc_data->nodes[idx];
 264}
 265EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
 266
 267/**
 268 * of_icc_get_from_provider() - Look-up interconnect node
 269 * @spec: OF phandle args to use for look-up
 270 *
 271 * Looks for interconnect provider under the node specified by @spec and if
 272 * found, uses xlate function of the provider to map phandle args to node.
 273 *
 274 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
 275 * on failure.
 276 */
 277static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
 278{
 279        struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
 280        struct icc_provider *provider;
 281
 282        if (!spec || spec->args_count != 1)
 283                return ERR_PTR(-EINVAL);
 284
 285        mutex_lock(&icc_lock);
 286        list_for_each_entry(provider, &icc_providers, provider_list) {
 287                if (provider->dev->of_node == spec->np)
 288                        node = provider->xlate(spec, provider->data);
 289                if (!IS_ERR(node))
 290                        break;
 291        }
 292        mutex_unlock(&icc_lock);
 293
 294        return node;
 295}
 296
 297/**
 298 * of_icc_get() - get a path handle from a DT node based on name
 299 * @dev: device pointer for the consumer device
 300 * @name: interconnect path name
 301 *
 302 * This function will search for a path between two endpoints and return an
 303 * icc_path handle on success. Use icc_put() to release constraints when they
 304 * are not needed anymore.
 305 * If the interconnect API is disabled, NULL is returned and the consumer
 306 * drivers will still build. Drivers are free to handle this specifically,
 307 * but they don't have to.
 308 *
 309 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 310 * when the API is disabled or the "interconnects" DT property is missing.
 311 */
 312struct icc_path *of_icc_get(struct device *dev, const char *name)
 313{
 314        struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 315        struct icc_node *src_node, *dst_node;
 316        struct device_node *np = NULL;
 317        struct of_phandle_args src_args, dst_args;
 318        int idx = 0;
 319        int ret;
 320
 321        if (!dev || !dev->of_node)
 322                return ERR_PTR(-ENODEV);
 323
 324        np = dev->of_node;
 325
 326        /*
 327         * When the consumer DT node do not have "interconnects" property
 328         * return a NULL path to skip setting constraints.
 329         */
 330        if (!of_find_property(np, "interconnects", NULL))
 331                return NULL;
 332
 333        /*
 334         * We use a combination of phandle and specifier for endpoint. For now
 335         * lets support only global ids and extend this in the future if needed
 336         * without breaking DT compatibility.
 337         */
 338        if (name) {
 339                idx = of_property_match_string(np, "interconnect-names", name);
 340                if (idx < 0)
 341                        return ERR_PTR(idx);
 342        }
 343
 344        ret = of_parse_phandle_with_args(np, "interconnects",
 345                                         "#interconnect-cells", idx * 2,
 346                                         &src_args);
 347        if (ret)
 348                return ERR_PTR(ret);
 349
 350        of_node_put(src_args.np);
 351
 352        ret = of_parse_phandle_with_args(np, "interconnects",
 353                                         "#interconnect-cells", idx * 2 + 1,
 354                                         &dst_args);
 355        if (ret)
 356                return ERR_PTR(ret);
 357
 358        of_node_put(dst_args.np);
 359
 360        src_node = of_icc_get_from_provider(&src_args);
 361
 362        if (IS_ERR(src_node)) {
 363                if (PTR_ERR(src_node) != -EPROBE_DEFER)
 364                        dev_err(dev, "error finding src node: %ld\n",
 365                                PTR_ERR(src_node));
 366                return ERR_CAST(src_node);
 367        }
 368
 369        dst_node = of_icc_get_from_provider(&dst_args);
 370
 371        if (IS_ERR(dst_node)) {
 372                if (PTR_ERR(dst_node) != -EPROBE_DEFER)
 373                        dev_err(dev, "error finding dst node: %ld\n",
 374                                PTR_ERR(dst_node));
 375                return ERR_CAST(dst_node);
 376        }
 377
 378        mutex_lock(&icc_lock);
 379        path = path_find(dev, src_node, dst_node);
 380        if (IS_ERR(path))
 381                dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 382        mutex_unlock(&icc_lock);
 383
 384        return path;
 385}
 386EXPORT_SYMBOL_GPL(of_icc_get);
 387
 388/**
 389 * icc_set_bw() - set bandwidth constraints on an interconnect path
 390 * @path: reference to the path returned by icc_get()
 391 * @avg_bw: average bandwidth in kilobytes per second
 392 * @peak_bw: peak bandwidth in kilobytes per second
 393 *
 394 * This function is used by an interconnect consumer to express its own needs
 395 * in terms of bandwidth for a previously requested path between two endpoints.
 396 * The requests are aggregated and each node is updated accordingly. The entire
 397 * path is locked by a mutex to ensure that the set() is completed.
 398 * The @path can be NULL when the "interconnects" DT properties is missing,
 399 * which will mean that no constraints will be set.
 400 *
 401 * Returns 0 on success, or an appropriate error code otherwise.
 402 */
 403int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
 404{
 405        struct icc_node *node;
 406        u32 old_avg, old_peak;
 407        size_t i;
 408        int ret;
 409
 410        if (!path || !path->num_nodes)
 411                return 0;
 412
 413        mutex_lock(&icc_lock);
 414
 415        old_avg = path->reqs[0].avg_bw;
 416        old_peak = path->reqs[0].peak_bw;
 417
 418        for (i = 0; i < path->num_nodes; i++) {
 419                node = path->reqs[i].node;
 420
 421                /* update the consumer request for this path */
 422                path->reqs[i].avg_bw = avg_bw;
 423                path->reqs[i].peak_bw = peak_bw;
 424
 425                /* aggregate requests for this node */
 426                aggregate_requests(node);
 427        }
 428
 429        ret = apply_constraints(path);
 430        if (ret) {
 431                pr_debug("interconnect: error applying constraints (%d)\n",
 432                         ret);
 433
 434                for (i = 0; i < path->num_nodes; i++) {
 435                        node = path->reqs[i].node;
 436                        path->reqs[i].avg_bw = old_avg;
 437                        path->reqs[i].peak_bw = old_peak;
 438                        aggregate_requests(node);
 439                }
 440                apply_constraints(path);
 441        }
 442
 443        mutex_unlock(&icc_lock);
 444
 445        return ret;
 446}
 447EXPORT_SYMBOL_GPL(icc_set_bw);
 448
 449/**
 450 * icc_get() - return a handle for path between two endpoints
 451 * @dev: the device requesting the path
 452 * @src_id: source device port id
 453 * @dst_id: destination device port id
 454 *
 455 * This function will search for a path between two endpoints and return an
 456 * icc_path handle on success. Use icc_put() to release
 457 * constraints when they are not needed anymore.
 458 * If the interconnect API is disabled, NULL is returned and the consumer
 459 * drivers will still build. Drivers are free to handle this specifically,
 460 * but they don't have to.
 461 *
 462 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
 463 * interconnect API is disabled.
 464 */
 465struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
 466{
 467        struct icc_node *src, *dst;
 468        struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 469
 470        mutex_lock(&icc_lock);
 471
 472        src = node_find(src_id);
 473        if (!src)
 474                goto out;
 475
 476        dst = node_find(dst_id);
 477        if (!dst)
 478                goto out;
 479
 480        path = path_find(dev, src, dst);
 481        if (IS_ERR(path))
 482                dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 483
 484out:
 485        mutex_unlock(&icc_lock);
 486        return path;
 487}
 488EXPORT_SYMBOL_GPL(icc_get);
 489
 490/**
 491 * icc_put() - release the reference to the icc_path
 492 * @path: interconnect path
 493 *
 494 * Use this function to release the constraints on a path when the path is
 495 * no longer needed. The constraints will be re-aggregated.
 496 */
 497void icc_put(struct icc_path *path)
 498{
 499        struct icc_node *node;
 500        size_t i;
 501        int ret;
 502
 503        if (!path || WARN_ON(IS_ERR(path)))
 504                return;
 505
 506        ret = icc_set_bw(path, 0, 0);
 507        if (ret)
 508                pr_err("%s: error (%d)\n", __func__, ret);
 509
 510        mutex_lock(&icc_lock);
 511        for (i = 0; i < path->num_nodes; i++) {
 512                node = path->reqs[i].node;
 513                hlist_del(&path->reqs[i].req_node);
 514                if (!WARN_ON(!node->provider->users))
 515                        node->provider->users--;
 516        }
 517        mutex_unlock(&icc_lock);
 518
 519        kfree(path);
 520}
 521EXPORT_SYMBOL_GPL(icc_put);
 522
 523static struct icc_node *icc_node_create_nolock(int id)
 524{
 525        struct icc_node *node;
 526
 527        /* check if node already exists */
 528        node = node_find(id);
 529        if (node)
 530                return node;
 531
 532        node = kzalloc(sizeof(*node), GFP_KERNEL);
 533        if (!node)
 534                return ERR_PTR(-ENOMEM);
 535
 536        id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
 537        if (id < 0) {
 538                WARN(1, "%s: couldn't get idr\n", __func__);
 539                kfree(node);
 540                return ERR_PTR(id);
 541        }
 542
 543        node->id = id;
 544
 545        return node;
 546}
 547
 548/**
 549 * icc_node_create() - create a node
 550 * @id: node id
 551 *
 552 * Return: icc_node pointer on success, or ERR_PTR() on error
 553 */
 554struct icc_node *icc_node_create(int id)
 555{
 556        struct icc_node *node;
 557
 558        mutex_lock(&icc_lock);
 559
 560        node = icc_node_create_nolock(id);
 561
 562        mutex_unlock(&icc_lock);
 563
 564        return node;
 565}
 566EXPORT_SYMBOL_GPL(icc_node_create);
 567
 568/**
 569 * icc_node_destroy() - destroy a node
 570 * @id: node id
 571 */
 572void icc_node_destroy(int id)
 573{
 574        struct icc_node *node;
 575
 576        mutex_lock(&icc_lock);
 577
 578        node = node_find(id);
 579        if (node) {
 580                idr_remove(&icc_idr, node->id);
 581                WARN_ON(!hlist_empty(&node->req_list));
 582        }
 583
 584        mutex_unlock(&icc_lock);
 585
 586        kfree(node);
 587}
 588EXPORT_SYMBOL_GPL(icc_node_destroy);
 589
 590/**
 591 * icc_link_create() - create a link between two nodes
 592 * @node: source node id
 593 * @dst_id: destination node id
 594 *
 595 * Create a link between two nodes. The nodes might belong to different
 596 * interconnect providers and the @dst_id node might not exist (if the
 597 * provider driver has not probed yet). So just create the @dst_id node
 598 * and when the actual provider driver is probed, the rest of the node
 599 * data is filled.
 600 *
 601 * Return: 0 on success, or an error code otherwise
 602 */
 603int icc_link_create(struct icc_node *node, const int dst_id)
 604{
 605        struct icc_node *dst;
 606        struct icc_node **new;
 607        int ret = 0;
 608
 609        if (!node->provider)
 610                return -EINVAL;
 611
 612        mutex_lock(&icc_lock);
 613
 614        dst = node_find(dst_id);
 615        if (!dst) {
 616                dst = icc_node_create_nolock(dst_id);
 617
 618                if (IS_ERR(dst)) {
 619                        ret = PTR_ERR(dst);
 620                        goto out;
 621                }
 622        }
 623
 624        new = krealloc(node->links,
 625                       (node->num_links + 1) * sizeof(*node->links),
 626                       GFP_KERNEL);
 627        if (!new) {
 628                ret = -ENOMEM;
 629                goto out;
 630        }
 631
 632        node->links = new;
 633        node->links[node->num_links++] = dst;
 634
 635out:
 636        mutex_unlock(&icc_lock);
 637
 638        return ret;
 639}
 640EXPORT_SYMBOL_GPL(icc_link_create);
 641
 642/**
 643 * icc_link_destroy() - destroy a link between two nodes
 644 * @src: pointer to source node
 645 * @dst: pointer to destination node
 646 *
 647 * Return: 0 on success, or an error code otherwise
 648 */
 649int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
 650{
 651        struct icc_node **new;
 652        size_t slot;
 653        int ret = 0;
 654
 655        if (IS_ERR_OR_NULL(src))
 656                return -EINVAL;
 657
 658        if (IS_ERR_OR_NULL(dst))
 659                return -EINVAL;
 660
 661        mutex_lock(&icc_lock);
 662
 663        for (slot = 0; slot < src->num_links; slot++)
 664                if (src->links[slot] == dst)
 665                        break;
 666
 667        if (WARN_ON(slot == src->num_links)) {
 668                ret = -ENXIO;
 669                goto out;
 670        }
 671
 672        src->links[slot] = src->links[--src->num_links];
 673
 674        new = krealloc(src->links, src->num_links * sizeof(*src->links),
 675                       GFP_KERNEL);
 676        if (new)
 677                src->links = new;
 678
 679out:
 680        mutex_unlock(&icc_lock);
 681
 682        return ret;
 683}
 684EXPORT_SYMBOL_GPL(icc_link_destroy);
 685
 686/**
 687 * icc_node_add() - add interconnect node to interconnect provider
 688 * @node: pointer to the interconnect node
 689 * @provider: pointer to the interconnect provider
 690 */
 691void icc_node_add(struct icc_node *node, struct icc_provider *provider)
 692{
 693        mutex_lock(&icc_lock);
 694
 695        node->provider = provider;
 696        list_add_tail(&node->node_list, &provider->nodes);
 697
 698        mutex_unlock(&icc_lock);
 699}
 700EXPORT_SYMBOL_GPL(icc_node_add);
 701
 702/**
 703 * icc_node_del() - delete interconnect node from interconnect provider
 704 * @node: pointer to the interconnect node
 705 */
 706void icc_node_del(struct icc_node *node)
 707{
 708        mutex_lock(&icc_lock);
 709
 710        list_del(&node->node_list);
 711
 712        mutex_unlock(&icc_lock);
 713}
 714EXPORT_SYMBOL_GPL(icc_node_del);
 715
 716/**
 717 * icc_provider_add() - add a new interconnect provider
 718 * @provider: the interconnect provider that will be added into topology
 719 *
 720 * Return: 0 on success, or an error code otherwise
 721 */
 722int icc_provider_add(struct icc_provider *provider)
 723{
 724        if (WARN_ON(!provider->set))
 725                return -EINVAL;
 726        if (WARN_ON(!provider->xlate))
 727                return -EINVAL;
 728
 729        mutex_lock(&icc_lock);
 730
 731        INIT_LIST_HEAD(&provider->nodes);
 732        list_add_tail(&provider->provider_list, &icc_providers);
 733
 734        mutex_unlock(&icc_lock);
 735
 736        dev_dbg(provider->dev, "interconnect provider added to topology\n");
 737
 738        return 0;
 739}
 740EXPORT_SYMBOL_GPL(icc_provider_add);
 741
 742/**
 743 * icc_provider_del() - delete previously added interconnect provider
 744 * @provider: the interconnect provider that will be removed from topology
 745 *
 746 * Return: 0 on success, or an error code otherwise
 747 */
 748int icc_provider_del(struct icc_provider *provider)
 749{
 750        mutex_lock(&icc_lock);
 751        if (provider->users) {
 752                pr_warn("interconnect provider still has %d users\n",
 753                        provider->users);
 754                mutex_unlock(&icc_lock);
 755                return -EBUSY;
 756        }
 757
 758        if (!list_empty(&provider->nodes)) {
 759                pr_warn("interconnect provider still has nodes\n");
 760                mutex_unlock(&icc_lock);
 761                return -EBUSY;
 762        }
 763
 764        list_del(&provider->provider_list);
 765        mutex_unlock(&icc_lock);
 766
 767        return 0;
 768}
 769EXPORT_SYMBOL_GPL(icc_provider_del);
 770
 771static int __init icc_init(void)
 772{
 773        icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
 774        debugfs_create_file("interconnect_summary", 0444,
 775                            icc_debugfs_dir, NULL, &icc_summary_fops);
 776        return 0;
 777}
 778
 779static void __exit icc_exit(void)
 780{
 781        debugfs_remove_recursive(icc_debugfs_dir);
 782}
 783module_init(icc_init);
 784module_exit(icc_exit);
 785
 786MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
 787MODULE_DESCRIPTION("Interconnect Driver Core");
 788MODULE_LICENSE("GPL v2");
 789