linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   4 * Author: Joerg Roedel <jroedel@suse.de>
   5 *         Leo Duran <leo.duran@amd.com>
   6 */
   7
   8#define pr_fmt(fmt)     "AMD-Vi: " fmt
   9#define dev_fmt(fmt)    pr_fmt(fmt)
  10
  11#include <linux/ratelimit.h>
  12#include <linux/pci.h>
  13#include <linux/acpi.h>
  14#include <linux/amba/bus.h>
  15#include <linux/platform_device.h>
  16#include <linux/pci-ats.h>
  17#include <linux/bitmap.h>
  18#include <linux/slab.h>
  19#include <linux/debugfs.h>
  20#include <linux/scatterlist.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-direct.h>
  23#include <linux/iommu-helper.h>
  24#include <linux/iommu.h>
  25#include <linux/delay.h>
  26#include <linux/amd-iommu.h>
  27#include <linux/notifier.h>
  28#include <linux/export.h>
  29#include <linux/irq.h>
  30#include <linux/msi.h>
  31#include <linux/dma-contiguous.h>
  32#include <linux/irqdomain.h>
  33#include <linux/percpu.h>
  34#include <linux/iova.h>
  35#include <asm/irq_remapping.h>
  36#include <asm/io_apic.h>
  37#include <asm/apic.h>
  38#include <asm/hw_irq.h>
  39#include <asm/msidef.h>
  40#include <asm/proto.h>
  41#include <asm/iommu.h>
  42#include <asm/gart.h>
  43#include <asm/dma.h>
  44
  45#include "amd_iommu_proto.h"
  46#include "amd_iommu_types.h"
  47#include "irq_remapping.h"
  48
  49#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  50
  51#define LOOP_TIMEOUT    100000
  52
  53/* IO virtual address start page frame number */
  54#define IOVA_START_PFN          (1)
  55#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  56
  57/* Reserved IOVA ranges */
  58#define MSI_RANGE_START         (0xfee00000)
  59#define MSI_RANGE_END           (0xfeefffff)
  60#define HT_RANGE_START          (0xfd00000000ULL)
  61#define HT_RANGE_END            (0xffffffffffULL)
  62
  63/*
  64 * This bitmap is used to advertise the page sizes our hardware support
  65 * to the IOMMU core, which will then use this information to split
  66 * physically contiguous memory regions it is mapping into page sizes
  67 * that we support.
  68 *
  69 * 512GB Pages are not supported due to a hardware bug
  70 */
  71#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  72
  73static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  74static DEFINE_SPINLOCK(pd_bitmap_lock);
  75
  76/* List of all available dev_data structures */
  77static LLIST_HEAD(dev_data_list);
  78
  79LIST_HEAD(ioapic_map);
  80LIST_HEAD(hpet_map);
  81LIST_HEAD(acpihid_map);
  82
  83/*
  84 * Domain for untranslated devices - only allocated
  85 * if iommu=pt passed on kernel cmd line.
  86 */
  87const struct iommu_ops amd_iommu_ops;
  88
  89static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  90int amd_iommu_max_glx_val = -1;
  91
  92static const struct dma_map_ops amd_iommu_dma_ops;
  93
  94/*
  95 * general struct to manage commands send to an IOMMU
  96 */
  97struct iommu_cmd {
  98        u32 data[4];
  99};
 100
 101struct kmem_cache *amd_iommu_irq_cache;
 102
 103static void update_domain(struct protection_domain *domain);
 104static int protection_domain_init(struct protection_domain *domain);
 105static void detach_device(struct device *dev);
 106static void iova_domain_flush_tlb(struct iova_domain *iovad);
 107
 108/*
 109 * Data container for a dma_ops specific protection domain
 110 */
 111struct dma_ops_domain {
 112        /* generic protection domain information */
 113        struct protection_domain domain;
 114
 115        /* IOVA RB-Tree */
 116        struct iova_domain iovad;
 117};
 118
 119static struct iova_domain reserved_iova_ranges;
 120static struct lock_class_key reserved_rbtree_key;
 121
 122/****************************************************************************
 123 *
 124 * Helper functions
 125 *
 126 ****************************************************************************/
 127
 128static inline int match_hid_uid(struct device *dev,
 129                                struct acpihid_map_entry *entry)
 130{
 131        struct acpi_device *adev = ACPI_COMPANION(dev);
 132        const char *hid, *uid;
 133
 134        if (!adev)
 135                return -ENODEV;
 136
 137        hid = acpi_device_hid(adev);
 138        uid = acpi_device_uid(adev);
 139
 140        if (!hid || !(*hid))
 141                return -ENODEV;
 142
 143        if (!uid || !(*uid))
 144                return strcmp(hid, entry->hid);
 145
 146        if (!(*entry->uid))
 147                return strcmp(hid, entry->hid);
 148
 149        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 150}
 151
 152static inline u16 get_pci_device_id(struct device *dev)
 153{
 154        struct pci_dev *pdev = to_pci_dev(dev);
 155
 156        return pci_dev_id(pdev);
 157}
 158
 159static inline int get_acpihid_device_id(struct device *dev,
 160                                        struct acpihid_map_entry **entry)
 161{
 162        struct acpihid_map_entry *p;
 163
 164        list_for_each_entry(p, &acpihid_map, list) {
 165                if (!match_hid_uid(dev, p)) {
 166                        if (entry)
 167                                *entry = p;
 168                        return p->devid;
 169                }
 170        }
 171        return -EINVAL;
 172}
 173
 174static inline int get_device_id(struct device *dev)
 175{
 176        int devid;
 177
 178        if (dev_is_pci(dev))
 179                devid = get_pci_device_id(dev);
 180        else
 181                devid = get_acpihid_device_id(dev, NULL);
 182
 183        return devid;
 184}
 185
 186static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 187{
 188        return container_of(dom, struct protection_domain, domain);
 189}
 190
 191static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 192{
 193        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 194        return container_of(domain, struct dma_ops_domain, domain);
 195}
 196
 197static struct iommu_dev_data *alloc_dev_data(u16 devid)
 198{
 199        struct iommu_dev_data *dev_data;
 200
 201        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 202        if (!dev_data)
 203                return NULL;
 204
 205        dev_data->devid = devid;
 206        ratelimit_default_init(&dev_data->rs);
 207
 208        llist_add(&dev_data->dev_data_list, &dev_data_list);
 209        return dev_data;
 210}
 211
 212static struct iommu_dev_data *search_dev_data(u16 devid)
 213{
 214        struct iommu_dev_data *dev_data;
 215        struct llist_node *node;
 216
 217        if (llist_empty(&dev_data_list))
 218                return NULL;
 219
 220        node = dev_data_list.first;
 221        llist_for_each_entry(dev_data, node, dev_data_list) {
 222                if (dev_data->devid == devid)
 223                        return dev_data;
 224        }
 225
 226        return NULL;
 227}
 228
 229static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 230{
 231        *(u16 *)data = alias;
 232        return 0;
 233}
 234
 235static u16 get_alias(struct device *dev)
 236{
 237        struct pci_dev *pdev = to_pci_dev(dev);
 238        u16 devid, ivrs_alias, pci_alias;
 239
 240        /* The callers make sure that get_device_id() does not fail here */
 241        devid = get_device_id(dev);
 242
 243        /* For ACPI HID devices, we simply return the devid as such */
 244        if (!dev_is_pci(dev))
 245                return devid;
 246
 247        ivrs_alias = amd_iommu_alias_table[devid];
 248
 249        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 250
 251        if (ivrs_alias == pci_alias)
 252                return ivrs_alias;
 253
 254        /*
 255         * DMA alias showdown
 256         *
 257         * The IVRS is fairly reliable in telling us about aliases, but it
 258         * can't know about every screwy device.  If we don't have an IVRS
 259         * reported alias, use the PCI reported alias.  In that case we may
 260         * still need to initialize the rlookup and dev_table entries if the
 261         * alias is to a non-existent device.
 262         */
 263        if (ivrs_alias == devid) {
 264                if (!amd_iommu_rlookup_table[pci_alias]) {
 265                        amd_iommu_rlookup_table[pci_alias] =
 266                                amd_iommu_rlookup_table[devid];
 267                        memcpy(amd_iommu_dev_table[pci_alias].data,
 268                               amd_iommu_dev_table[devid].data,
 269                               sizeof(amd_iommu_dev_table[pci_alias].data));
 270                }
 271
 272                return pci_alias;
 273        }
 274
 275        pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
 276                "for device [%04x:%04x], kernel reported alias "
 277                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 278                PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
 279                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 280                PCI_FUNC(pci_alias));
 281
 282        /*
 283         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 284         * bus, then the IVRS table may know about a quirk that we don't.
 285         */
 286        if (pci_alias == devid &&
 287            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 288                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 289                pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
 290                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
 291        }
 292
 293        return ivrs_alias;
 294}
 295
 296static struct iommu_dev_data *find_dev_data(u16 devid)
 297{
 298        struct iommu_dev_data *dev_data;
 299        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 300
 301        dev_data = search_dev_data(devid);
 302
 303        if (dev_data == NULL) {
 304                dev_data = alloc_dev_data(devid);
 305                if (!dev_data)
 306                        return NULL;
 307
 308                if (translation_pre_enabled(iommu))
 309                        dev_data->defer_attach = true;
 310        }
 311
 312        return dev_data;
 313}
 314
 315struct iommu_dev_data *get_dev_data(struct device *dev)
 316{
 317        return dev->archdata.iommu;
 318}
 319EXPORT_SYMBOL(get_dev_data);
 320
 321/*
 322* Find or create an IOMMU group for a acpihid device.
 323*/
 324static struct iommu_group *acpihid_device_group(struct device *dev)
 325{
 326        struct acpihid_map_entry *p, *entry = NULL;
 327        int devid;
 328
 329        devid = get_acpihid_device_id(dev, &entry);
 330        if (devid < 0)
 331                return ERR_PTR(devid);
 332
 333        list_for_each_entry(p, &acpihid_map, list) {
 334                if ((devid == p->devid) && p->group)
 335                        entry->group = p->group;
 336        }
 337
 338        if (!entry->group)
 339                entry->group = generic_device_group(dev);
 340        else
 341                iommu_group_ref_get(entry->group);
 342
 343        return entry->group;
 344}
 345
 346static bool pci_iommuv2_capable(struct pci_dev *pdev)
 347{
 348        static const int caps[] = {
 349                PCI_EXT_CAP_ID_ATS,
 350                PCI_EXT_CAP_ID_PRI,
 351                PCI_EXT_CAP_ID_PASID,
 352        };
 353        int i, pos;
 354
 355        if (pci_ats_disabled())
 356                return false;
 357
 358        for (i = 0; i < 3; ++i) {
 359                pos = pci_find_ext_capability(pdev, caps[i]);
 360                if (pos == 0)
 361                        return false;
 362        }
 363
 364        return true;
 365}
 366
 367static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 368{
 369        struct iommu_dev_data *dev_data;
 370
 371        dev_data = get_dev_data(&pdev->dev);
 372
 373        return dev_data->errata & (1 << erratum) ? true : false;
 374}
 375
 376/*
 377 * This function checks if the driver got a valid device from the caller to
 378 * avoid dereferencing invalid pointers.
 379 */
 380static bool check_device(struct device *dev)
 381{
 382        int devid;
 383
 384        if (!dev || !dev->dma_mask)
 385                return false;
 386
 387        devid = get_device_id(dev);
 388        if (devid < 0)
 389                return false;
 390
 391        /* Out of our scope? */
 392        if (devid > amd_iommu_last_bdf)
 393                return false;
 394
 395        if (amd_iommu_rlookup_table[devid] == NULL)
 396                return false;
 397
 398        return true;
 399}
 400
 401static void init_iommu_group(struct device *dev)
 402{
 403        struct iommu_group *group;
 404
 405        group = iommu_group_get_for_dev(dev);
 406        if (IS_ERR(group))
 407                return;
 408
 409        iommu_group_put(group);
 410}
 411
 412static int iommu_init_device(struct device *dev)
 413{
 414        struct iommu_dev_data *dev_data;
 415        struct amd_iommu *iommu;
 416        int devid;
 417
 418        if (dev->archdata.iommu)
 419                return 0;
 420
 421        devid = get_device_id(dev);
 422        if (devid < 0)
 423                return devid;
 424
 425        iommu = amd_iommu_rlookup_table[devid];
 426
 427        dev_data = find_dev_data(devid);
 428        if (!dev_data)
 429                return -ENOMEM;
 430
 431        dev_data->alias = get_alias(dev);
 432
 433        /*
 434         * By default we use passthrough mode for IOMMUv2 capable device.
 435         * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
 436         * invalid address), we ignore the capability for the device so
 437         * it'll be forced to go into translation mode.
 438         */
 439        if ((iommu_pass_through || !amd_iommu_force_isolation) &&
 440            dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 441                struct amd_iommu *iommu;
 442
 443                iommu = amd_iommu_rlookup_table[dev_data->devid];
 444                dev_data->iommu_v2 = iommu->is_iommu_v2;
 445        }
 446
 447        dev->archdata.iommu = dev_data;
 448
 449        iommu_device_link(&iommu->iommu, dev);
 450
 451        return 0;
 452}
 453
 454static void iommu_ignore_device(struct device *dev)
 455{
 456        u16 alias;
 457        int devid;
 458
 459        devid = get_device_id(dev);
 460        if (devid < 0)
 461                return;
 462
 463        alias = get_alias(dev);
 464
 465        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 466        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 467
 468        amd_iommu_rlookup_table[devid] = NULL;
 469        amd_iommu_rlookup_table[alias] = NULL;
 470}
 471
 472static void iommu_uninit_device(struct device *dev)
 473{
 474        struct iommu_dev_data *dev_data;
 475        struct amd_iommu *iommu;
 476        int devid;
 477
 478        devid = get_device_id(dev);
 479        if (devid < 0)
 480                return;
 481
 482        iommu = amd_iommu_rlookup_table[devid];
 483
 484        dev_data = search_dev_data(devid);
 485        if (!dev_data)
 486                return;
 487
 488        if (dev_data->domain)
 489                detach_device(dev);
 490
 491        iommu_device_unlink(&iommu->iommu, dev);
 492
 493        iommu_group_remove_device(dev);
 494
 495        /* Remove dma-ops */
 496        dev->dma_ops = NULL;
 497
 498        /*
 499         * We keep dev_data around for unplugged devices and reuse it when the
 500         * device is re-plugged - not doing so would introduce a ton of races.
 501         */
 502}
 503
 504/****************************************************************************
 505 *
 506 * Interrupt handling functions
 507 *
 508 ****************************************************************************/
 509
 510static void dump_dte_entry(u16 devid)
 511{
 512        int i;
 513
 514        for (i = 0; i < 4; ++i)
 515                pr_err("DTE[%d]: %016llx\n", i,
 516                        amd_iommu_dev_table[devid].data[i]);
 517}
 518
 519static void dump_command(unsigned long phys_addr)
 520{
 521        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 522        int i;
 523
 524        for (i = 0; i < 4; ++i)
 525                pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
 526}
 527
 528static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 529                                        u64 address, int flags)
 530{
 531        struct iommu_dev_data *dev_data = NULL;
 532        struct pci_dev *pdev;
 533
 534        pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 535                                           devid & 0xff);
 536        if (pdev)
 537                dev_data = get_dev_data(&pdev->dev);
 538
 539        if (dev_data && __ratelimit(&dev_data->rs)) {
 540                pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
 541                        domain_id, address, flags);
 542        } else if (printk_ratelimit()) {
 543                pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
 544                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 545                        domain_id, address, flags);
 546        }
 547
 548        if (pdev)
 549                pci_dev_put(pdev);
 550}
 551
 552static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 553{
 554        struct device *dev = iommu->iommu.dev;
 555        int type, devid, pasid, flags, tag;
 556        volatile u32 *event = __evt;
 557        int count = 0;
 558        u64 address;
 559
 560retry:
 561        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 562        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 563        pasid   = PPR_PASID(*(u64 *)&event[0]);
 564        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 565        address = (u64)(((u64)event[3]) << 32) | event[2];
 566
 567        if (type == 0) {
 568                /* Did we hit the erratum? */
 569                if (++count == LOOP_TIMEOUT) {
 570                        pr_err("No event written to event log\n");
 571                        return;
 572                }
 573                udelay(1);
 574                goto retry;
 575        }
 576
 577        if (type == EVENT_TYPE_IO_FAULT) {
 578                amd_iommu_report_page_fault(devid, pasid, address, flags);
 579                return;
 580        }
 581
 582        switch (type) {
 583        case EVENT_TYPE_ILL_DEV:
 584                dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 585                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 586                        pasid, address, flags);
 587                dump_dte_entry(devid);
 588                break;
 589        case EVENT_TYPE_DEV_TAB_ERR:
 590                dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 591                        "address=0x%llx flags=0x%04x]\n",
 592                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 593                        address, flags);
 594                break;
 595        case EVENT_TYPE_PAGE_TAB_ERR:
 596                dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
 597                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 598                        pasid, address, flags);
 599                break;
 600        case EVENT_TYPE_ILL_CMD:
 601                dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
 602                dump_command(address);
 603                break;
 604        case EVENT_TYPE_CMD_HARD_ERR:
 605                dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
 606                        address, flags);
 607                break;
 608        case EVENT_TYPE_IOTLB_INV_TO:
 609                dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
 610                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 611                        address);
 612                break;
 613        case EVENT_TYPE_INV_DEV_REQ:
 614                dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 615                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 616                        pasid, address, flags);
 617                break;
 618        case EVENT_TYPE_INV_PPR_REQ:
 619                pasid = ((event[0] >> 16) & 0xFFFF)
 620                        | ((event[1] << 6) & 0xF0000);
 621                tag = event[1] & 0x03FF;
 622                dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 623                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 624                        pasid, address, flags);
 625                break;
 626        default:
 627                dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
 628                        event[0], event[1], event[2], event[3]);
 629        }
 630
 631        memset(__evt, 0, 4 * sizeof(u32));
 632}
 633
 634static void iommu_poll_events(struct amd_iommu *iommu)
 635{
 636        u32 head, tail;
 637
 638        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 639        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 640
 641        while (head != tail) {
 642                iommu_print_event(iommu, iommu->evt_buf + head);
 643                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 644        }
 645
 646        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 647}
 648
 649static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 650{
 651        struct amd_iommu_fault fault;
 652
 653        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 654                pr_err_ratelimited("Unknown PPR request received\n");
 655                return;
 656        }
 657
 658        fault.address   = raw[1];
 659        fault.pasid     = PPR_PASID(raw[0]);
 660        fault.device_id = PPR_DEVID(raw[0]);
 661        fault.tag       = PPR_TAG(raw[0]);
 662        fault.flags     = PPR_FLAGS(raw[0]);
 663
 664        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 665}
 666
 667static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 668{
 669        u32 head, tail;
 670
 671        if (iommu->ppr_log == NULL)
 672                return;
 673
 674        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 675        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 676
 677        while (head != tail) {
 678                volatile u64 *raw;
 679                u64 entry[2];
 680                int i;
 681
 682                raw = (u64 *)(iommu->ppr_log + head);
 683
 684                /*
 685                 * Hardware bug: Interrupt may arrive before the entry is
 686                 * written to memory. If this happens we need to wait for the
 687                 * entry to arrive.
 688                 */
 689                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 690                        if (PPR_REQ_TYPE(raw[0]) != 0)
 691                                break;
 692                        udelay(1);
 693                }
 694
 695                /* Avoid memcpy function-call overhead */
 696                entry[0] = raw[0];
 697                entry[1] = raw[1];
 698
 699                /*
 700                 * To detect the hardware bug we need to clear the entry
 701                 * back to zero.
 702                 */
 703                raw[0] = raw[1] = 0UL;
 704
 705                /* Update head pointer of hardware ring-buffer */
 706                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 707                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 708
 709                /* Handle PPR entry */
 710                iommu_handle_ppr_entry(iommu, entry);
 711
 712                /* Refresh ring-buffer information */
 713                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 714                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 715        }
 716}
 717
 718#ifdef CONFIG_IRQ_REMAP
 719static int (*iommu_ga_log_notifier)(u32);
 720
 721int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 722{
 723        iommu_ga_log_notifier = notifier;
 724
 725        return 0;
 726}
 727EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 728
 729static void iommu_poll_ga_log(struct amd_iommu *iommu)
 730{
 731        u32 head, tail, cnt = 0;
 732
 733        if (iommu->ga_log == NULL)
 734                return;
 735
 736        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 737        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 738
 739        while (head != tail) {
 740                volatile u64 *raw;
 741                u64 log_entry;
 742
 743                raw = (u64 *)(iommu->ga_log + head);
 744                cnt++;
 745
 746                /* Avoid memcpy function-call overhead */
 747                log_entry = *raw;
 748
 749                /* Update head pointer of hardware ring-buffer */
 750                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 751                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 752
 753                /* Handle GA entry */
 754                switch (GA_REQ_TYPE(log_entry)) {
 755                case GA_GUEST_NR:
 756                        if (!iommu_ga_log_notifier)
 757                                break;
 758
 759                        pr_debug("%s: devid=%#x, ga_tag=%#x\n",
 760                                 __func__, GA_DEVID(log_entry),
 761                                 GA_TAG(log_entry));
 762
 763                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 764                                pr_err("GA log notifier failed.\n");
 765                        break;
 766                default:
 767                        break;
 768                }
 769        }
 770}
 771#endif /* CONFIG_IRQ_REMAP */
 772
 773#define AMD_IOMMU_INT_MASK      \
 774        (MMIO_STATUS_EVT_INT_MASK | \
 775         MMIO_STATUS_PPR_INT_MASK | \
 776         MMIO_STATUS_GALOG_INT_MASK)
 777
 778irqreturn_t amd_iommu_int_thread(int irq, void *data)
 779{
 780        struct amd_iommu *iommu = (struct amd_iommu *) data;
 781        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 782
 783        while (status & AMD_IOMMU_INT_MASK) {
 784                /* Enable EVT and PPR and GA interrupts again */
 785                writel(AMD_IOMMU_INT_MASK,
 786                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 787
 788                if (status & MMIO_STATUS_EVT_INT_MASK) {
 789                        pr_devel("Processing IOMMU Event Log\n");
 790                        iommu_poll_events(iommu);
 791                }
 792
 793                if (status & MMIO_STATUS_PPR_INT_MASK) {
 794                        pr_devel("Processing IOMMU PPR Log\n");
 795                        iommu_poll_ppr_log(iommu);
 796                }
 797
 798#ifdef CONFIG_IRQ_REMAP
 799                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 800                        pr_devel("Processing IOMMU GA Log\n");
 801                        iommu_poll_ga_log(iommu);
 802                }
 803#endif
 804
 805                /*
 806                 * Hardware bug: ERBT1312
 807                 * When re-enabling interrupt (by writing 1
 808                 * to clear the bit), the hardware might also try to set
 809                 * the interrupt bit in the event status register.
 810                 * In this scenario, the bit will be set, and disable
 811                 * subsequent interrupts.
 812                 *
 813                 * Workaround: The IOMMU driver should read back the
 814                 * status register and check if the interrupt bits are cleared.
 815                 * If not, driver will need to go through the interrupt handler
 816                 * again and re-clear the bits
 817                 */
 818                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 819        }
 820        return IRQ_HANDLED;
 821}
 822
 823irqreturn_t amd_iommu_int_handler(int irq, void *data)
 824{
 825        return IRQ_WAKE_THREAD;
 826}
 827
 828/****************************************************************************
 829 *
 830 * IOMMU command queuing functions
 831 *
 832 ****************************************************************************/
 833
 834static int wait_on_sem(volatile u64 *sem)
 835{
 836        int i = 0;
 837
 838        while (*sem == 0 && i < LOOP_TIMEOUT) {
 839                udelay(1);
 840                i += 1;
 841        }
 842
 843        if (i == LOOP_TIMEOUT) {
 844                pr_alert("Completion-Wait loop timed out\n");
 845                return -EIO;
 846        }
 847
 848        return 0;
 849}
 850
 851static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 852                               struct iommu_cmd *cmd)
 853{
 854        u8 *target;
 855
 856        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 857
 858        iommu->cmd_buf_tail += sizeof(*cmd);
 859        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 860
 861        /* Copy command to buffer */
 862        memcpy(target, cmd, sizeof(*cmd));
 863
 864        /* Tell the IOMMU about it */
 865        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 866}
 867
 868static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 869{
 870        u64 paddr = iommu_virt_to_phys((void *)address);
 871
 872        WARN_ON(address & 0x7ULL);
 873
 874        memset(cmd, 0, sizeof(*cmd));
 875        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 876        cmd->data[1] = upper_32_bits(paddr);
 877        cmd->data[2] = 1;
 878        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 879}
 880
 881static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 882{
 883        memset(cmd, 0, sizeof(*cmd));
 884        cmd->data[0] = devid;
 885        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 886}
 887
 888static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 889                                  size_t size, u16 domid, int pde)
 890{
 891        u64 pages;
 892        bool s;
 893
 894        pages = iommu_num_pages(address, size, PAGE_SIZE);
 895        s     = false;
 896
 897        if (pages > 1) {
 898                /*
 899                 * If we have to flush more than one page, flush all
 900                 * TLB entries for this domain
 901                 */
 902                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 903                s = true;
 904        }
 905
 906        address &= PAGE_MASK;
 907
 908        memset(cmd, 0, sizeof(*cmd));
 909        cmd->data[1] |= domid;
 910        cmd->data[2]  = lower_32_bits(address);
 911        cmd->data[3]  = upper_32_bits(address);
 912        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 913        if (s) /* size bit - we flush more than one 4kb page */
 914                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 915        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 916                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 917}
 918
 919static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 920                                  u64 address, size_t size)
 921{
 922        u64 pages;
 923        bool s;
 924
 925        pages = iommu_num_pages(address, size, PAGE_SIZE);
 926        s     = false;
 927
 928        if (pages > 1) {
 929                /*
 930                 * If we have to flush more than one page, flush all
 931                 * TLB entries for this domain
 932                 */
 933                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 934                s = true;
 935        }
 936
 937        address &= PAGE_MASK;
 938
 939        memset(cmd, 0, sizeof(*cmd));
 940        cmd->data[0]  = devid;
 941        cmd->data[0] |= (qdep & 0xff) << 24;
 942        cmd->data[1]  = devid;
 943        cmd->data[2]  = lower_32_bits(address);
 944        cmd->data[3]  = upper_32_bits(address);
 945        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 946        if (s)
 947                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 948}
 949
 950static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 951                                  u64 address, bool size)
 952{
 953        memset(cmd, 0, sizeof(*cmd));
 954
 955        address &= ~(0xfffULL);
 956
 957        cmd->data[0]  = pasid;
 958        cmd->data[1]  = domid;
 959        cmd->data[2]  = lower_32_bits(address);
 960        cmd->data[3]  = upper_32_bits(address);
 961        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 962        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 963        if (size)
 964                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 965        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 966}
 967
 968static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 969                                  int qdep, u64 address, bool size)
 970{
 971        memset(cmd, 0, sizeof(*cmd));
 972
 973        address &= ~(0xfffULL);
 974
 975        cmd->data[0]  = devid;
 976        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 977        cmd->data[0] |= (qdep  & 0xff) << 24;
 978        cmd->data[1]  = devid;
 979        cmd->data[1] |= (pasid & 0xff) << 16;
 980        cmd->data[2]  = lower_32_bits(address);
 981        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 982        cmd->data[3]  = upper_32_bits(address);
 983        if (size)
 984                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 985        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 986}
 987
 988static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 989                               int status, int tag, bool gn)
 990{
 991        memset(cmd, 0, sizeof(*cmd));
 992
 993        cmd->data[0]  = devid;
 994        if (gn) {
 995                cmd->data[1]  = pasid;
 996                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 997        }
 998        cmd->data[3]  = tag & 0x1ff;
 999        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1000
1001        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1002}
1003
1004static void build_inv_all(struct iommu_cmd *cmd)
1005{
1006        memset(cmd, 0, sizeof(*cmd));
1007        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1008}
1009
1010static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1011{
1012        memset(cmd, 0, sizeof(*cmd));
1013        cmd->data[0] = devid;
1014        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1015}
1016
1017/*
1018 * Writes the command to the IOMMUs command buffer and informs the
1019 * hardware about the new command.
1020 */
1021static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1022                                      struct iommu_cmd *cmd,
1023                                      bool sync)
1024{
1025        unsigned int count = 0;
1026        u32 left, next_tail;
1027
1028        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1029again:
1030        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1031
1032        if (left <= 0x20) {
1033                /* Skip udelay() the first time around */
1034                if (count++) {
1035                        if (count == LOOP_TIMEOUT) {
1036                                pr_err("Command buffer timeout\n");
1037                                return -EIO;
1038                        }
1039
1040                        udelay(1);
1041                }
1042
1043                /* Update head and recheck remaining space */
1044                iommu->cmd_buf_head = readl(iommu->mmio_base +
1045                                            MMIO_CMD_HEAD_OFFSET);
1046
1047                goto again;
1048        }
1049
1050        copy_cmd_to_buffer(iommu, cmd);
1051
1052        /* Do we need to make sure all commands are processed? */
1053        iommu->need_sync = sync;
1054
1055        return 0;
1056}
1057
1058static int iommu_queue_command_sync(struct amd_iommu *iommu,
1059                                    struct iommu_cmd *cmd,
1060                                    bool sync)
1061{
1062        unsigned long flags;
1063        int ret;
1064
1065        raw_spin_lock_irqsave(&iommu->lock, flags);
1066        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1067        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1068
1069        return ret;
1070}
1071
1072static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1073{
1074        return iommu_queue_command_sync(iommu, cmd, true);
1075}
1076
1077/*
1078 * This function queues a completion wait command into the command
1079 * buffer of an IOMMU
1080 */
1081static int iommu_completion_wait(struct amd_iommu *iommu)
1082{
1083        struct iommu_cmd cmd;
1084        unsigned long flags;
1085        int ret;
1086
1087        if (!iommu->need_sync)
1088                return 0;
1089
1090
1091        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1092
1093        raw_spin_lock_irqsave(&iommu->lock, flags);
1094
1095        iommu->cmd_sem = 0;
1096
1097        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1098        if (ret)
1099                goto out_unlock;
1100
1101        ret = wait_on_sem(&iommu->cmd_sem);
1102
1103out_unlock:
1104        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1105
1106        return ret;
1107}
1108
1109static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1110{
1111        struct iommu_cmd cmd;
1112
1113        build_inv_dte(&cmd, devid);
1114
1115        return iommu_queue_command(iommu, &cmd);
1116}
1117
1118static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1119{
1120        u32 devid;
1121
1122        for (devid = 0; devid <= 0xffff; ++devid)
1123                iommu_flush_dte(iommu, devid);
1124
1125        iommu_completion_wait(iommu);
1126}
1127
1128/*
1129 * This function uses heavy locking and may disable irqs for some time. But
1130 * this is no issue because it is only called during resume.
1131 */
1132static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1133{
1134        u32 dom_id;
1135
1136        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1137                struct iommu_cmd cmd;
1138                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1139                                      dom_id, 1);
1140                iommu_queue_command(iommu, &cmd);
1141        }
1142
1143        iommu_completion_wait(iommu);
1144}
1145
1146static void amd_iommu_flush_all(struct amd_iommu *iommu)
1147{
1148        struct iommu_cmd cmd;
1149
1150        build_inv_all(&cmd);
1151
1152        iommu_queue_command(iommu, &cmd);
1153        iommu_completion_wait(iommu);
1154}
1155
1156static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1157{
1158        struct iommu_cmd cmd;
1159
1160        build_inv_irt(&cmd, devid);
1161
1162        iommu_queue_command(iommu, &cmd);
1163}
1164
1165static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1166{
1167        u32 devid;
1168
1169        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1170                iommu_flush_irt(iommu, devid);
1171
1172        iommu_completion_wait(iommu);
1173}
1174
1175void iommu_flush_all_caches(struct amd_iommu *iommu)
1176{
1177        if (iommu_feature(iommu, FEATURE_IA)) {
1178                amd_iommu_flush_all(iommu);
1179        } else {
1180                amd_iommu_flush_dte_all(iommu);
1181                amd_iommu_flush_irt_all(iommu);
1182                amd_iommu_flush_tlb_all(iommu);
1183        }
1184}
1185
1186/*
1187 * Command send function for flushing on-device TLB
1188 */
1189static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1190                              u64 address, size_t size)
1191{
1192        struct amd_iommu *iommu;
1193        struct iommu_cmd cmd;
1194        int qdep;
1195
1196        qdep     = dev_data->ats.qdep;
1197        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1198
1199        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1200
1201        return iommu_queue_command(iommu, &cmd);
1202}
1203
1204/*
1205 * Command send function for invalidating a device table entry
1206 */
1207static int device_flush_dte(struct iommu_dev_data *dev_data)
1208{
1209        struct amd_iommu *iommu;
1210        u16 alias;
1211        int ret;
1212
1213        iommu = amd_iommu_rlookup_table[dev_data->devid];
1214        alias = dev_data->alias;
1215
1216        ret = iommu_flush_dte(iommu, dev_data->devid);
1217        if (!ret && alias != dev_data->devid)
1218                ret = iommu_flush_dte(iommu, alias);
1219        if (ret)
1220                return ret;
1221
1222        if (dev_data->ats.enabled)
1223                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1224
1225        return ret;
1226}
1227
1228/*
1229 * TLB invalidation function which is called from the mapping functions.
1230 * It invalidates a single PTE if the range to flush is within a single
1231 * page. Otherwise it flushes the whole TLB of the IOMMU.
1232 */
1233static void __domain_flush_pages(struct protection_domain *domain,
1234                                 u64 address, size_t size, int pde)
1235{
1236        struct iommu_dev_data *dev_data;
1237        struct iommu_cmd cmd;
1238        int ret = 0, i;
1239
1240        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1241
1242        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1243                if (!domain->dev_iommu[i])
1244                        continue;
1245
1246                /*
1247                 * Devices of this domain are behind this IOMMU
1248                 * We need a TLB flush
1249                 */
1250                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1251        }
1252
1253        list_for_each_entry(dev_data, &domain->dev_list, list) {
1254
1255                if (!dev_data->ats.enabled)
1256                        continue;
1257
1258                ret |= device_flush_iotlb(dev_data, address, size);
1259        }
1260
1261        WARN_ON(ret);
1262}
1263
1264static void domain_flush_pages(struct protection_domain *domain,
1265                               u64 address, size_t size)
1266{
1267        __domain_flush_pages(domain, address, size, 0);
1268}
1269
1270/* Flush the whole IO/TLB for a given protection domain */
1271static void domain_flush_tlb(struct protection_domain *domain)
1272{
1273        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1274}
1275
1276/* Flush the whole IO/TLB for a given protection domain - including PDE */
1277static void domain_flush_tlb_pde(struct protection_domain *domain)
1278{
1279        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1280}
1281
1282static void domain_flush_complete(struct protection_domain *domain)
1283{
1284        int i;
1285
1286        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1287                if (domain && !domain->dev_iommu[i])
1288                        continue;
1289
1290                /*
1291                 * Devices of this domain are behind this IOMMU
1292                 * We need to wait for completion of all commands.
1293                 */
1294                iommu_completion_wait(amd_iommus[i]);
1295        }
1296}
1297
1298
1299/*
1300 * This function flushes the DTEs for all devices in domain
1301 */
1302static void domain_flush_devices(struct protection_domain *domain)
1303{
1304        struct iommu_dev_data *dev_data;
1305
1306        list_for_each_entry(dev_data, &domain->dev_list, list)
1307                device_flush_dte(dev_data);
1308}
1309
1310/****************************************************************************
1311 *
1312 * The functions below are used the create the page table mappings for
1313 * unity mapped regions.
1314 *
1315 ****************************************************************************/
1316
1317static void free_page_list(struct page *freelist)
1318{
1319        while (freelist != NULL) {
1320                unsigned long p = (unsigned long)page_address(freelist);
1321                freelist = freelist->freelist;
1322                free_page(p);
1323        }
1324}
1325
1326static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1327{
1328        struct page *p = virt_to_page((void *)pt);
1329
1330        p->freelist = freelist;
1331
1332        return p;
1333}
1334
1335#define DEFINE_FREE_PT_FN(LVL, FN)                                              \
1336static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)   \
1337{                                                                               \
1338        unsigned long p;                                                        \
1339        u64 *pt;                                                                \
1340        int i;                                                                  \
1341                                                                                \
1342        pt = (u64 *)__pt;                                                       \
1343                                                                                \
1344        for (i = 0; i < 512; ++i) {                                             \
1345                /* PTE present? */                                              \
1346                if (!IOMMU_PTE_PRESENT(pt[i]))                                  \
1347                        continue;                                               \
1348                                                                                \
1349                /* Large PTE? */                                                \
1350                if (PM_PTE_LEVEL(pt[i]) == 0 ||                                 \
1351                    PM_PTE_LEVEL(pt[i]) == 7)                                   \
1352                        continue;                                               \
1353                                                                                \
1354                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);                       \
1355                freelist = FN(p, freelist);                                     \
1356        }                                                                       \
1357                                                                                \
1358        return free_pt_page((unsigned long)pt, freelist);                       \
1359}
1360
1361DEFINE_FREE_PT_FN(l2, free_pt_page)
1362DEFINE_FREE_PT_FN(l3, free_pt_l2)
1363DEFINE_FREE_PT_FN(l4, free_pt_l3)
1364DEFINE_FREE_PT_FN(l5, free_pt_l4)
1365DEFINE_FREE_PT_FN(l6, free_pt_l5)
1366
1367static struct page *free_sub_pt(unsigned long root, int mode,
1368                                struct page *freelist)
1369{
1370        switch (mode) {
1371        case PAGE_MODE_NONE:
1372        case PAGE_MODE_7_LEVEL:
1373                break;
1374        case PAGE_MODE_1_LEVEL:
1375                freelist = free_pt_page(root, freelist);
1376                break;
1377        case PAGE_MODE_2_LEVEL:
1378                freelist = free_pt_l2(root, freelist);
1379                break;
1380        case PAGE_MODE_3_LEVEL:
1381                freelist = free_pt_l3(root, freelist);
1382                break;
1383        case PAGE_MODE_4_LEVEL:
1384                freelist = free_pt_l4(root, freelist);
1385                break;
1386        case PAGE_MODE_5_LEVEL:
1387                freelist = free_pt_l5(root, freelist);
1388                break;
1389        case PAGE_MODE_6_LEVEL:
1390                freelist = free_pt_l6(root, freelist);
1391                break;
1392        default:
1393                BUG();
1394        }
1395
1396        return freelist;
1397}
1398
1399static void free_pagetable(struct protection_domain *domain)
1400{
1401        unsigned long root = (unsigned long)domain->pt_root;
1402        struct page *freelist = NULL;
1403
1404        BUG_ON(domain->mode < PAGE_MODE_NONE ||
1405               domain->mode > PAGE_MODE_6_LEVEL);
1406
1407        free_sub_pt(root, domain->mode, freelist);
1408
1409        free_page_list(freelist);
1410}
1411
1412/*
1413 * This function is used to add another level to an IO page table. Adding
1414 * another level increases the size of the address space by 9 bits to a size up
1415 * to 64 bits.
1416 */
1417static bool increase_address_space(struct protection_domain *domain,
1418                                   gfp_t gfp)
1419{
1420        u64 *pte;
1421
1422        if (domain->mode == PAGE_MODE_6_LEVEL)
1423                /* address space already 64 bit large */
1424                return false;
1425
1426        pte = (void *)get_zeroed_page(gfp);
1427        if (!pte)
1428                return false;
1429
1430        *pte             = PM_LEVEL_PDE(domain->mode,
1431                                        iommu_virt_to_phys(domain->pt_root));
1432        domain->pt_root  = pte;
1433        domain->mode    += 1;
1434        domain->updated  = true;
1435
1436        return true;
1437}
1438
1439static u64 *alloc_pte(struct protection_domain *domain,
1440                      unsigned long address,
1441                      unsigned long page_size,
1442                      u64 **pte_page,
1443                      gfp_t gfp)
1444{
1445        int level, end_lvl;
1446        u64 *pte, *page;
1447
1448        BUG_ON(!is_power_of_2(page_size));
1449
1450        while (address > PM_LEVEL_SIZE(domain->mode))
1451                increase_address_space(domain, gfp);
1452
1453        level   = domain->mode - 1;
1454        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1455        address = PAGE_SIZE_ALIGN(address, page_size);
1456        end_lvl = PAGE_SIZE_LEVEL(page_size);
1457
1458        while (level > end_lvl) {
1459                u64 __pte, __npte;
1460                int pte_level;
1461
1462                __pte     = *pte;
1463                pte_level = PM_PTE_LEVEL(__pte);
1464
1465                if (!IOMMU_PTE_PRESENT(__pte) ||
1466                    pte_level == PAGE_MODE_7_LEVEL) {
1467                        page = (u64 *)get_zeroed_page(gfp);
1468                        if (!page)
1469                                return NULL;
1470
1471                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1472
1473                        /* pte could have been changed somewhere. */
1474                        if (cmpxchg64(pte, __pte, __npte) != __pte)
1475                                free_page((unsigned long)page);
1476                        else if (pte_level == PAGE_MODE_7_LEVEL)
1477                                domain->updated = true;
1478
1479                        continue;
1480                }
1481
1482                /* No level skipping support yet */
1483                if (pte_level != level)
1484                        return NULL;
1485
1486                level -= 1;
1487
1488                pte = IOMMU_PTE_PAGE(__pte);
1489
1490                if (pte_page && level == end_lvl)
1491                        *pte_page = pte;
1492
1493                pte = &pte[PM_LEVEL_INDEX(level, address)];
1494        }
1495
1496        return pte;
1497}
1498
1499/*
1500 * This function checks if there is a PTE for a given dma address. If
1501 * there is one, it returns the pointer to it.
1502 */
1503static u64 *fetch_pte(struct protection_domain *domain,
1504                      unsigned long address,
1505                      unsigned long *page_size)
1506{
1507        int level;
1508        u64 *pte;
1509
1510        *page_size = 0;
1511
1512        if (address > PM_LEVEL_SIZE(domain->mode))
1513                return NULL;
1514
1515        level      =  domain->mode - 1;
1516        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1517        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1518
1519        while (level > 0) {
1520
1521                /* Not Present */
1522                if (!IOMMU_PTE_PRESENT(*pte))
1523                        return NULL;
1524
1525                /* Large PTE */
1526                if (PM_PTE_LEVEL(*pte) == 7 ||
1527                    PM_PTE_LEVEL(*pte) == 0)
1528                        break;
1529
1530                /* No level skipping support yet */
1531                if (PM_PTE_LEVEL(*pte) != level)
1532                        return NULL;
1533
1534                level -= 1;
1535
1536                /* Walk to the next level */
1537                pte        = IOMMU_PTE_PAGE(*pte);
1538                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1539                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1540        }
1541
1542        if (PM_PTE_LEVEL(*pte) == 0x07) {
1543                unsigned long pte_mask;
1544
1545                /*
1546                 * If we have a series of large PTEs, make
1547                 * sure to return a pointer to the first one.
1548                 */
1549                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1550                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1551                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1552        }
1553
1554        return pte;
1555}
1556
1557static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1558{
1559        unsigned long pt;
1560        int mode;
1561
1562        while (cmpxchg64(pte, pteval, 0) != pteval) {
1563                pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1564                pteval = *pte;
1565        }
1566
1567        if (!IOMMU_PTE_PRESENT(pteval))
1568                return freelist;
1569
1570        pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1571        mode = IOMMU_PTE_MODE(pteval);
1572
1573        return free_sub_pt(pt, mode, freelist);
1574}
1575
1576/*
1577 * Generic mapping functions. It maps a physical address into a DMA
1578 * address space. It allocates the page table pages if necessary.
1579 * In the future it can be extended to a generic mapping function
1580 * supporting all features of AMD IOMMU page tables like level skipping
1581 * and full 64 bit address spaces.
1582 */
1583static int iommu_map_page(struct protection_domain *dom,
1584                          unsigned long bus_addr,
1585                          unsigned long phys_addr,
1586                          unsigned long page_size,
1587                          int prot,
1588                          gfp_t gfp)
1589{
1590        struct page *freelist = NULL;
1591        u64 __pte, *pte;
1592        int i, count;
1593
1594        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1595        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1596
1597        if (!(prot & IOMMU_PROT_MASK))
1598                return -EINVAL;
1599
1600        count = PAGE_SIZE_PTE_COUNT(page_size);
1601        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1602
1603        if (!pte)
1604                return -ENOMEM;
1605
1606        for (i = 0; i < count; ++i)
1607                freelist = free_clear_pte(&pte[i], pte[i], freelist);
1608
1609        if (freelist != NULL)
1610                dom->updated = true;
1611
1612        if (count > 1) {
1613                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1614                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1615        } else
1616                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1617
1618        if (prot & IOMMU_PROT_IR)
1619                __pte |= IOMMU_PTE_IR;
1620        if (prot & IOMMU_PROT_IW)
1621                __pte |= IOMMU_PTE_IW;
1622
1623        for (i = 0; i < count; ++i)
1624                pte[i] = __pte;
1625
1626        update_domain(dom);
1627
1628        /* Everything flushed out, free pages now */
1629        free_page_list(freelist);
1630
1631        return 0;
1632}
1633
1634static unsigned long iommu_unmap_page(struct protection_domain *dom,
1635                                      unsigned long bus_addr,
1636                                      unsigned long page_size)
1637{
1638        unsigned long long unmapped;
1639        unsigned long unmap_size;
1640        u64 *pte;
1641
1642        BUG_ON(!is_power_of_2(page_size));
1643
1644        unmapped = 0;
1645
1646        while (unmapped < page_size) {
1647
1648                pte = fetch_pte(dom, bus_addr, &unmap_size);
1649
1650                if (pte) {
1651                        int i, count;
1652
1653                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1654                        for (i = 0; i < count; i++)
1655                                pte[i] = 0ULL;
1656                }
1657
1658                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1659                unmapped += unmap_size;
1660        }
1661
1662        BUG_ON(unmapped && !is_power_of_2(unmapped));
1663
1664        return unmapped;
1665}
1666
1667/****************************************************************************
1668 *
1669 * The next functions belong to the address allocator for the dma_ops
1670 * interface functions.
1671 *
1672 ****************************************************************************/
1673
1674
1675static unsigned long dma_ops_alloc_iova(struct device *dev,
1676                                        struct dma_ops_domain *dma_dom,
1677                                        unsigned int pages, u64 dma_mask)
1678{
1679        unsigned long pfn = 0;
1680
1681        pages = __roundup_pow_of_two(pages);
1682
1683        if (dma_mask > DMA_BIT_MASK(32))
1684                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1685                                      IOVA_PFN(DMA_BIT_MASK(32)), false);
1686
1687        if (!pfn)
1688                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1689                                      IOVA_PFN(dma_mask), true);
1690
1691        return (pfn << PAGE_SHIFT);
1692}
1693
1694static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1695                              unsigned long address,
1696                              unsigned int pages)
1697{
1698        pages = __roundup_pow_of_two(pages);
1699        address >>= PAGE_SHIFT;
1700
1701        free_iova_fast(&dma_dom->iovad, address, pages);
1702}
1703
1704/****************************************************************************
1705 *
1706 * The next functions belong to the domain allocation. A domain is
1707 * allocated for every IOMMU as the default domain. If device isolation
1708 * is enabled, every device get its own domain. The most important thing
1709 * about domains is the page table mapping the DMA address space they
1710 * contain.
1711 *
1712 ****************************************************************************/
1713
1714static u16 domain_id_alloc(void)
1715{
1716        int id;
1717
1718        spin_lock(&pd_bitmap_lock);
1719        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1720        BUG_ON(id == 0);
1721        if (id > 0 && id < MAX_DOMAIN_ID)
1722                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1723        else
1724                id = 0;
1725        spin_unlock(&pd_bitmap_lock);
1726
1727        return id;
1728}
1729
1730static void domain_id_free(int id)
1731{
1732        spin_lock(&pd_bitmap_lock);
1733        if (id > 0 && id < MAX_DOMAIN_ID)
1734                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1735        spin_unlock(&pd_bitmap_lock);
1736}
1737
1738static void free_gcr3_tbl_level1(u64 *tbl)
1739{
1740        u64 *ptr;
1741        int i;
1742
1743        for (i = 0; i < 512; ++i) {
1744                if (!(tbl[i] & GCR3_VALID))
1745                        continue;
1746
1747                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1748
1749                free_page((unsigned long)ptr);
1750        }
1751}
1752
1753static void free_gcr3_tbl_level2(u64 *tbl)
1754{
1755        u64 *ptr;
1756        int i;
1757
1758        for (i = 0; i < 512; ++i) {
1759                if (!(tbl[i] & GCR3_VALID))
1760                        continue;
1761
1762                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1763
1764                free_gcr3_tbl_level1(ptr);
1765        }
1766}
1767
1768static void free_gcr3_table(struct protection_domain *domain)
1769{
1770        if (domain->glx == 2)
1771                free_gcr3_tbl_level2(domain->gcr3_tbl);
1772        else if (domain->glx == 1)
1773                free_gcr3_tbl_level1(domain->gcr3_tbl);
1774        else
1775                BUG_ON(domain->glx != 0);
1776
1777        free_page((unsigned long)domain->gcr3_tbl);
1778}
1779
1780static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1781{
1782        domain_flush_tlb(&dom->domain);
1783        domain_flush_complete(&dom->domain);
1784}
1785
1786static void iova_domain_flush_tlb(struct iova_domain *iovad)
1787{
1788        struct dma_ops_domain *dom;
1789
1790        dom = container_of(iovad, struct dma_ops_domain, iovad);
1791
1792        dma_ops_domain_flush_tlb(dom);
1793}
1794
1795/*
1796 * Free a domain, only used if something went wrong in the
1797 * allocation path and we need to free an already allocated page table
1798 */
1799static void dma_ops_domain_free(struct dma_ops_domain *dom)
1800{
1801        if (!dom)
1802                return;
1803
1804        put_iova_domain(&dom->iovad);
1805
1806        free_pagetable(&dom->domain);
1807
1808        if (dom->domain.id)
1809                domain_id_free(dom->domain.id);
1810
1811        kfree(dom);
1812}
1813
1814/*
1815 * Allocates a new protection domain usable for the dma_ops functions.
1816 * It also initializes the page table and the address allocator data
1817 * structures required for the dma_ops interface
1818 */
1819static struct dma_ops_domain *dma_ops_domain_alloc(void)
1820{
1821        struct dma_ops_domain *dma_dom;
1822
1823        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1824        if (!dma_dom)
1825                return NULL;
1826
1827        if (protection_domain_init(&dma_dom->domain))
1828                goto free_dma_dom;
1829
1830        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1831        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1832        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1833        if (!dma_dom->domain.pt_root)
1834                goto free_dma_dom;
1835
1836        init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1837
1838        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1839                goto free_dma_dom;
1840
1841        /* Initialize reserved ranges */
1842        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1843
1844        return dma_dom;
1845
1846free_dma_dom:
1847        dma_ops_domain_free(dma_dom);
1848
1849        return NULL;
1850}
1851
1852/*
1853 * little helper function to check whether a given protection domain is a
1854 * dma_ops domain
1855 */
1856static bool dma_ops_domain(struct protection_domain *domain)
1857{
1858        return domain->flags & PD_DMA_OPS_MASK;
1859}
1860
1861static void set_dte_entry(u16 devid, struct protection_domain *domain,
1862                          bool ats, bool ppr)
1863{
1864        u64 pte_root = 0;
1865        u64 flags = 0;
1866
1867        if (domain->mode != PAGE_MODE_NONE)
1868                pte_root = iommu_virt_to_phys(domain->pt_root);
1869
1870        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1871                    << DEV_ENTRY_MODE_SHIFT;
1872        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1873
1874        flags = amd_iommu_dev_table[devid].data[1];
1875
1876        if (ats)
1877                flags |= DTE_FLAG_IOTLB;
1878
1879        if (ppr) {
1880                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1881
1882                if (iommu_feature(iommu, FEATURE_EPHSUP))
1883                        pte_root |= 1ULL << DEV_ENTRY_PPR;
1884        }
1885
1886        if (domain->flags & PD_IOMMUV2_MASK) {
1887                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1888                u64 glx  = domain->glx;
1889                u64 tmp;
1890
1891                pte_root |= DTE_FLAG_GV;
1892                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1893
1894                /* First mask out possible old values for GCR3 table */
1895                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1896                flags    &= ~tmp;
1897
1898                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1899                flags    &= ~tmp;
1900
1901                /* Encode GCR3 table into DTE */
1902                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1903                pte_root |= tmp;
1904
1905                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1906                flags    |= tmp;
1907
1908                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1909                flags    |= tmp;
1910        }
1911
1912        flags &= ~DEV_DOMID_MASK;
1913        flags |= domain->id;
1914
1915        amd_iommu_dev_table[devid].data[1]  = flags;
1916        amd_iommu_dev_table[devid].data[0]  = pte_root;
1917}
1918
1919static void clear_dte_entry(u16 devid)
1920{
1921        /* remove entry from the device table seen by the hardware */
1922        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1923        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1924
1925        amd_iommu_apply_erratum_63(devid);
1926}
1927
1928static void do_attach(struct iommu_dev_data *dev_data,
1929                      struct protection_domain *domain)
1930{
1931        struct amd_iommu *iommu;
1932        u16 alias;
1933        bool ats;
1934
1935        iommu = amd_iommu_rlookup_table[dev_data->devid];
1936        alias = dev_data->alias;
1937        ats   = dev_data->ats.enabled;
1938
1939        /* Update data structures */
1940        dev_data->domain = domain;
1941        list_add(&dev_data->list, &domain->dev_list);
1942
1943        /* Do reference counting */
1944        domain->dev_iommu[iommu->index] += 1;
1945        domain->dev_cnt                 += 1;
1946
1947        /* Update device table */
1948        set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1949        if (alias != dev_data->devid)
1950                set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1951
1952        device_flush_dte(dev_data);
1953}
1954
1955static void do_detach(struct iommu_dev_data *dev_data)
1956{
1957        struct protection_domain *domain = dev_data->domain;
1958        struct amd_iommu *iommu;
1959        u16 alias;
1960
1961        iommu = amd_iommu_rlookup_table[dev_data->devid];
1962        alias = dev_data->alias;
1963
1964        /* Update data structures */
1965        dev_data->domain = NULL;
1966        list_del(&dev_data->list);
1967        clear_dte_entry(dev_data->devid);
1968        if (alias != dev_data->devid)
1969                clear_dte_entry(alias);
1970
1971        /* Flush the DTE entry */
1972        device_flush_dte(dev_data);
1973
1974        /* Flush IOTLB */
1975        domain_flush_tlb_pde(domain);
1976
1977        /* Wait for the flushes to finish */
1978        domain_flush_complete(domain);
1979
1980        /* decrease reference counters - needs to happen after the flushes */
1981        domain->dev_iommu[iommu->index] -= 1;
1982        domain->dev_cnt                 -= 1;
1983}
1984
1985/*
1986 * If a device is not yet associated with a domain, this function makes the
1987 * device visible in the domain
1988 */
1989static int __attach_device(struct iommu_dev_data *dev_data,
1990                           struct protection_domain *domain)
1991{
1992        int ret;
1993
1994        /* lock domain */
1995        spin_lock(&domain->lock);
1996
1997        ret = -EBUSY;
1998        if (dev_data->domain != NULL)
1999                goto out_unlock;
2000
2001        /* Attach alias group root */
2002        do_attach(dev_data, domain);
2003
2004        ret = 0;
2005
2006out_unlock:
2007
2008        /* ready */
2009        spin_unlock(&domain->lock);
2010
2011        return ret;
2012}
2013
2014
2015static void pdev_iommuv2_disable(struct pci_dev *pdev)
2016{
2017        pci_disable_ats(pdev);
2018        pci_disable_pri(pdev);
2019        pci_disable_pasid(pdev);
2020}
2021
2022/* FIXME: Change generic reset-function to do the same */
2023static int pri_reset_while_enabled(struct pci_dev *pdev)
2024{
2025        u16 control;
2026        int pos;
2027
2028        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2029        if (!pos)
2030                return -EINVAL;
2031
2032        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2033        control |= PCI_PRI_CTRL_RESET;
2034        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2035
2036        return 0;
2037}
2038
2039static int pdev_iommuv2_enable(struct pci_dev *pdev)
2040{
2041        bool reset_enable;
2042        int reqs, ret;
2043
2044        /* FIXME: Hardcode number of outstanding requests for now */
2045        reqs = 32;
2046        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2047                reqs = 1;
2048        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2049
2050        /* Only allow access to user-accessible pages */
2051        ret = pci_enable_pasid(pdev, 0);
2052        if (ret)
2053                goto out_err;
2054
2055        /* First reset the PRI state of the device */
2056        ret = pci_reset_pri(pdev);
2057        if (ret)
2058                goto out_err;
2059
2060        /* Enable PRI */
2061        ret = pci_enable_pri(pdev, reqs);
2062        if (ret)
2063                goto out_err;
2064
2065        if (reset_enable) {
2066                ret = pri_reset_while_enabled(pdev);
2067                if (ret)
2068                        goto out_err;
2069        }
2070
2071        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2072        if (ret)
2073                goto out_err;
2074
2075        return 0;
2076
2077out_err:
2078        pci_disable_pri(pdev);
2079        pci_disable_pasid(pdev);
2080
2081        return ret;
2082}
2083
2084/*
2085 * If a device is not yet associated with a domain, this function makes the
2086 * device visible in the domain
2087 */
2088static int attach_device(struct device *dev,
2089                         struct protection_domain *domain)
2090{
2091        struct pci_dev *pdev;
2092        struct iommu_dev_data *dev_data;
2093        unsigned long flags;
2094        int ret;
2095
2096        dev_data = get_dev_data(dev);
2097
2098        if (!dev_is_pci(dev))
2099                goto skip_ats_check;
2100
2101        pdev = to_pci_dev(dev);
2102        if (domain->flags & PD_IOMMUV2_MASK) {
2103                if (!dev_data->passthrough)
2104                        return -EINVAL;
2105
2106                if (dev_data->iommu_v2) {
2107                        if (pdev_iommuv2_enable(pdev) != 0)
2108                                return -EINVAL;
2109
2110                        dev_data->ats.enabled = true;
2111                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2112                        dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2113                }
2114        } else if (amd_iommu_iotlb_sup &&
2115                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2116                dev_data->ats.enabled = true;
2117                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2118        }
2119
2120skip_ats_check:
2121        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2122        ret = __attach_device(dev_data, domain);
2123        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2124
2125        /*
2126         * We might boot into a crash-kernel here. The crashed kernel
2127         * left the caches in the IOMMU dirty. So we have to flush
2128         * here to evict all dirty stuff.
2129         */
2130        domain_flush_tlb_pde(domain);
2131
2132        return ret;
2133}
2134
2135/*
2136 * Removes a device from a protection domain (unlocked)
2137 */
2138static void __detach_device(struct iommu_dev_data *dev_data)
2139{
2140        struct protection_domain *domain;
2141
2142        domain = dev_data->domain;
2143
2144        spin_lock(&domain->lock);
2145
2146        do_detach(dev_data);
2147
2148        spin_unlock(&domain->lock);
2149}
2150
2151/*
2152 * Removes a device from a protection domain (with devtable_lock held)
2153 */
2154static void detach_device(struct device *dev)
2155{
2156        struct protection_domain *domain;
2157        struct iommu_dev_data *dev_data;
2158        unsigned long flags;
2159
2160        dev_data = get_dev_data(dev);
2161        domain   = dev_data->domain;
2162
2163        /*
2164         * First check if the device is still attached. It might already
2165         * be detached from its domain because the generic
2166         * iommu_detach_group code detached it and we try again here in
2167         * our alias handling.
2168         */
2169        if (WARN_ON(!dev_data->domain))
2170                return;
2171
2172        /* lock device table */
2173        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2174        __detach_device(dev_data);
2175        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2176
2177        if (!dev_is_pci(dev))
2178                return;
2179
2180        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2181                pdev_iommuv2_disable(to_pci_dev(dev));
2182        else if (dev_data->ats.enabled)
2183                pci_disable_ats(to_pci_dev(dev));
2184
2185        dev_data->ats.enabled = false;
2186}
2187
2188static int amd_iommu_add_device(struct device *dev)
2189{
2190        struct iommu_dev_data *dev_data;
2191        struct iommu_domain *domain;
2192        struct amd_iommu *iommu;
2193        int ret, devid;
2194
2195        if (!check_device(dev) || get_dev_data(dev))
2196                return 0;
2197
2198        devid = get_device_id(dev);
2199        if (devid < 0)
2200                return devid;
2201
2202        iommu = amd_iommu_rlookup_table[devid];
2203
2204        ret = iommu_init_device(dev);
2205        if (ret) {
2206                if (ret != -ENOTSUPP)
2207                        dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2208
2209                iommu_ignore_device(dev);
2210                dev->dma_ops = NULL;
2211                goto out;
2212        }
2213        init_iommu_group(dev);
2214
2215        dev_data = get_dev_data(dev);
2216
2217        BUG_ON(!dev_data);
2218
2219        if (iommu_pass_through || dev_data->iommu_v2)
2220                iommu_request_dm_for_dev(dev);
2221
2222        /* Domains are initialized for this device - have a look what we ended up with */
2223        domain = iommu_get_domain_for_dev(dev);
2224        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2225                dev_data->passthrough = true;
2226        else
2227                dev->dma_ops = &amd_iommu_dma_ops;
2228
2229out:
2230        iommu_completion_wait(iommu);
2231
2232        return 0;
2233}
2234
2235static void amd_iommu_remove_device(struct device *dev)
2236{
2237        struct amd_iommu *iommu;
2238        int devid;
2239
2240        if (!check_device(dev))
2241                return;
2242
2243        devid = get_device_id(dev);
2244        if (devid < 0)
2245                return;
2246
2247        iommu = amd_iommu_rlookup_table[devid];
2248
2249        iommu_uninit_device(dev);
2250        iommu_completion_wait(iommu);
2251}
2252
2253static struct iommu_group *amd_iommu_device_group(struct device *dev)
2254{
2255        if (dev_is_pci(dev))
2256                return pci_device_group(dev);
2257
2258        return acpihid_device_group(dev);
2259}
2260
2261/*****************************************************************************
2262 *
2263 * The next functions belong to the dma_ops mapping/unmapping code.
2264 *
2265 *****************************************************************************/
2266
2267/*
2268 * In the dma_ops path we only have the struct device. This function
2269 * finds the corresponding IOMMU, the protection domain and the
2270 * requestor id for a given device.
2271 * If the device is not yet associated with a domain this is also done
2272 * in this function.
2273 */
2274static struct protection_domain *get_domain(struct device *dev)
2275{
2276        struct protection_domain *domain;
2277        struct iommu_domain *io_domain;
2278
2279        if (!check_device(dev))
2280                return ERR_PTR(-EINVAL);
2281
2282        domain = get_dev_data(dev)->domain;
2283        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2284                get_dev_data(dev)->defer_attach = false;
2285                io_domain = iommu_get_domain_for_dev(dev);
2286                domain = to_pdomain(io_domain);
2287                attach_device(dev, domain);
2288        }
2289        if (domain == NULL)
2290                return ERR_PTR(-EBUSY);
2291
2292        if (!dma_ops_domain(domain))
2293                return ERR_PTR(-EBUSY);
2294
2295        return domain;
2296}
2297
2298static void update_device_table(struct protection_domain *domain)
2299{
2300        struct iommu_dev_data *dev_data;
2301
2302        list_for_each_entry(dev_data, &domain->dev_list, list) {
2303                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2304                              dev_data->iommu_v2);
2305
2306                if (dev_data->devid == dev_data->alias)
2307                        continue;
2308
2309                /* There is an alias, update device table entry for it */
2310                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2311                              dev_data->iommu_v2);
2312        }
2313}
2314
2315static void update_domain(struct protection_domain *domain)
2316{
2317        if (!domain->updated)
2318                return;
2319
2320        update_device_table(domain);
2321
2322        domain_flush_devices(domain);
2323        domain_flush_tlb_pde(domain);
2324
2325        domain->updated = false;
2326}
2327
2328static int dir2prot(enum dma_data_direction direction)
2329{
2330        if (direction == DMA_TO_DEVICE)
2331                return IOMMU_PROT_IR;
2332        else if (direction == DMA_FROM_DEVICE)
2333                return IOMMU_PROT_IW;
2334        else if (direction == DMA_BIDIRECTIONAL)
2335                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2336        else
2337                return 0;
2338}
2339
2340/*
2341 * This function contains common code for mapping of a physically
2342 * contiguous memory region into DMA address space. It is used by all
2343 * mapping functions provided with this IOMMU driver.
2344 * Must be called with the domain lock held.
2345 */
2346static dma_addr_t __map_single(struct device *dev,
2347                               struct dma_ops_domain *dma_dom,
2348                               phys_addr_t paddr,
2349                               size_t size,
2350                               enum dma_data_direction direction,
2351                               u64 dma_mask)
2352{
2353        dma_addr_t offset = paddr & ~PAGE_MASK;
2354        dma_addr_t address, start, ret;
2355        unsigned int pages;
2356        int prot = 0;
2357        int i;
2358
2359        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2360        paddr &= PAGE_MASK;
2361
2362        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2363        if (!address)
2364                goto out;
2365
2366        prot = dir2prot(direction);
2367
2368        start = address;
2369        for (i = 0; i < pages; ++i) {
2370                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2371                                     PAGE_SIZE, prot, GFP_ATOMIC);
2372                if (ret)
2373                        goto out_unmap;
2374
2375                paddr += PAGE_SIZE;
2376                start += PAGE_SIZE;
2377        }
2378        address += offset;
2379
2380        if (unlikely(amd_iommu_np_cache)) {
2381                domain_flush_pages(&dma_dom->domain, address, size);
2382                domain_flush_complete(&dma_dom->domain);
2383        }
2384
2385out:
2386        return address;
2387
2388out_unmap:
2389
2390        for (--i; i >= 0; --i) {
2391                start -= PAGE_SIZE;
2392                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2393        }
2394
2395        domain_flush_tlb(&dma_dom->domain);
2396        domain_flush_complete(&dma_dom->domain);
2397
2398        dma_ops_free_iova(dma_dom, address, pages);
2399
2400        return DMA_MAPPING_ERROR;
2401}
2402
2403/*
2404 * Does the reverse of the __map_single function. Must be called with
2405 * the domain lock held too
2406 */
2407static void __unmap_single(struct dma_ops_domain *dma_dom,
2408                           dma_addr_t dma_addr,
2409                           size_t size,
2410                           int dir)
2411{
2412        dma_addr_t i, start;
2413        unsigned int pages;
2414
2415        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2416        dma_addr &= PAGE_MASK;
2417        start = dma_addr;
2418
2419        for (i = 0; i < pages; ++i) {
2420                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2421                start += PAGE_SIZE;
2422        }
2423
2424        if (amd_iommu_unmap_flush) {
2425                domain_flush_tlb(&dma_dom->domain);
2426                domain_flush_complete(&dma_dom->domain);
2427                dma_ops_free_iova(dma_dom, dma_addr, pages);
2428        } else {
2429                pages = __roundup_pow_of_two(pages);
2430                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2431        }
2432}
2433
2434/*
2435 * The exported map_single function for dma_ops.
2436 */
2437static dma_addr_t map_page(struct device *dev, struct page *page,
2438                           unsigned long offset, size_t size,
2439                           enum dma_data_direction dir,
2440                           unsigned long attrs)
2441{
2442        phys_addr_t paddr = page_to_phys(page) + offset;
2443        struct protection_domain *domain;
2444        struct dma_ops_domain *dma_dom;
2445        u64 dma_mask;
2446
2447        domain = get_domain(dev);
2448        if (PTR_ERR(domain) == -EINVAL)
2449                return (dma_addr_t)paddr;
2450        else if (IS_ERR(domain))
2451                return DMA_MAPPING_ERROR;
2452
2453        dma_mask = *dev->dma_mask;
2454        dma_dom = to_dma_ops_domain(domain);
2455
2456        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2457}
2458
2459/*
2460 * The exported unmap_single function for dma_ops.
2461 */
2462static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2463                       enum dma_data_direction dir, unsigned long attrs)
2464{
2465        struct protection_domain *domain;
2466        struct dma_ops_domain *dma_dom;
2467
2468        domain = get_domain(dev);
2469        if (IS_ERR(domain))
2470                return;
2471
2472        dma_dom = to_dma_ops_domain(domain);
2473
2474        __unmap_single(dma_dom, dma_addr, size, dir);
2475}
2476
2477static int sg_num_pages(struct device *dev,
2478                        struct scatterlist *sglist,
2479                        int nelems)
2480{
2481        unsigned long mask, boundary_size;
2482        struct scatterlist *s;
2483        int i, npages = 0;
2484
2485        mask          = dma_get_seg_boundary(dev);
2486        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2487                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2488
2489        for_each_sg(sglist, s, nelems, i) {
2490                int p, n;
2491
2492                s->dma_address = npages << PAGE_SHIFT;
2493                p = npages % boundary_size;
2494                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2495                if (p + n > boundary_size)
2496                        npages += boundary_size - p;
2497                npages += n;
2498        }
2499
2500        return npages;
2501}
2502
2503/*
2504 * The exported map_sg function for dma_ops (handles scatter-gather
2505 * lists).
2506 */
2507static int map_sg(struct device *dev, struct scatterlist *sglist,
2508                  int nelems, enum dma_data_direction direction,
2509                  unsigned long attrs)
2510{
2511        int mapped_pages = 0, npages = 0, prot = 0, i;
2512        struct protection_domain *domain;
2513        struct dma_ops_domain *dma_dom;
2514        struct scatterlist *s;
2515        unsigned long address;
2516        u64 dma_mask;
2517        int ret;
2518
2519        domain = get_domain(dev);
2520        if (IS_ERR(domain))
2521                return 0;
2522
2523        dma_dom  = to_dma_ops_domain(domain);
2524        dma_mask = *dev->dma_mask;
2525
2526        npages = sg_num_pages(dev, sglist, nelems);
2527
2528        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2529        if (address == DMA_MAPPING_ERROR)
2530                goto out_err;
2531
2532        prot = dir2prot(direction);
2533
2534        /* Map all sg entries */
2535        for_each_sg(sglist, s, nelems, i) {
2536                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2537
2538                for (j = 0; j < pages; ++j) {
2539                        unsigned long bus_addr, phys_addr;
2540
2541                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2542                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2543                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2544                        if (ret)
2545                                goto out_unmap;
2546
2547                        mapped_pages += 1;
2548                }
2549        }
2550
2551        /* Everything is mapped - write the right values into s->dma_address */
2552        for_each_sg(sglist, s, nelems, i) {
2553                /*
2554                 * Add in the remaining piece of the scatter-gather offset that
2555                 * was masked out when we were determining the physical address
2556                 * via (sg_phys(s) & PAGE_MASK) earlier.
2557                 */
2558                s->dma_address += address + (s->offset & ~PAGE_MASK);
2559                s->dma_length   = s->length;
2560        }
2561
2562        return nelems;
2563
2564out_unmap:
2565        dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2566                npages, ret);
2567
2568        for_each_sg(sglist, s, nelems, i) {
2569                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2570
2571                for (j = 0; j < pages; ++j) {
2572                        unsigned long bus_addr;
2573
2574                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2575                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2576
2577                        if (--mapped_pages == 0)
2578                                goto out_free_iova;
2579                }
2580        }
2581
2582out_free_iova:
2583        free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2584
2585out_err:
2586        return 0;
2587}
2588
2589/*
2590 * The exported map_sg function for dma_ops (handles scatter-gather
2591 * lists).
2592 */
2593static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2594                     int nelems, enum dma_data_direction dir,
2595                     unsigned long attrs)
2596{
2597        struct protection_domain *domain;
2598        struct dma_ops_domain *dma_dom;
2599        unsigned long startaddr;
2600        int npages = 2;
2601
2602        domain = get_domain(dev);
2603        if (IS_ERR(domain))
2604                return;
2605
2606        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2607        dma_dom   = to_dma_ops_domain(domain);
2608        npages    = sg_num_pages(dev, sglist, nelems);
2609
2610        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2611}
2612
2613/*
2614 * The exported alloc_coherent function for dma_ops.
2615 */
2616static void *alloc_coherent(struct device *dev, size_t size,
2617                            dma_addr_t *dma_addr, gfp_t flag,
2618                            unsigned long attrs)
2619{
2620        u64 dma_mask = dev->coherent_dma_mask;
2621        struct protection_domain *domain;
2622        struct dma_ops_domain *dma_dom;
2623        struct page *page;
2624
2625        domain = get_domain(dev);
2626        if (PTR_ERR(domain) == -EINVAL) {
2627                page = alloc_pages(flag, get_order(size));
2628                *dma_addr = page_to_phys(page);
2629                return page_address(page);
2630        } else if (IS_ERR(domain))
2631                return NULL;
2632
2633        dma_dom   = to_dma_ops_domain(domain);
2634        size      = PAGE_ALIGN(size);
2635        dma_mask  = dev->coherent_dma_mask;
2636        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2637        flag     |= __GFP_ZERO;
2638
2639        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2640        if (!page) {
2641                if (!gfpflags_allow_blocking(flag))
2642                        return NULL;
2643
2644                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2645                                        get_order(size), flag & __GFP_NOWARN);
2646                if (!page)
2647                        return NULL;
2648        }
2649
2650        if (!dma_mask)
2651                dma_mask = *dev->dma_mask;
2652
2653        *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2654                                 size, DMA_BIDIRECTIONAL, dma_mask);
2655
2656        if (*dma_addr == DMA_MAPPING_ERROR)
2657                goto out_free;
2658
2659        return page_address(page);
2660
2661out_free:
2662
2663        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2664                __free_pages(page, get_order(size));
2665
2666        return NULL;
2667}
2668
2669/*
2670 * The exported free_coherent function for dma_ops.
2671 */
2672static void free_coherent(struct device *dev, size_t size,
2673                          void *virt_addr, dma_addr_t dma_addr,
2674                          unsigned long attrs)
2675{
2676        struct protection_domain *domain;
2677        struct dma_ops_domain *dma_dom;
2678        struct page *page;
2679
2680        page = virt_to_page(virt_addr);
2681        size = PAGE_ALIGN(size);
2682
2683        domain = get_domain(dev);
2684        if (IS_ERR(domain))
2685                goto free_mem;
2686
2687        dma_dom = to_dma_ops_domain(domain);
2688
2689        __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2690
2691free_mem:
2692        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2693                __free_pages(page, get_order(size));
2694}
2695
2696/*
2697 * This function is called by the DMA layer to find out if we can handle a
2698 * particular device. It is part of the dma_ops.
2699 */
2700static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2701{
2702        if (!dma_direct_supported(dev, mask))
2703                return 0;
2704        return check_device(dev);
2705}
2706
2707static const struct dma_map_ops amd_iommu_dma_ops = {
2708        .alloc          = alloc_coherent,
2709        .free           = free_coherent,
2710        .map_page       = map_page,
2711        .unmap_page     = unmap_page,
2712        .map_sg         = map_sg,
2713        .unmap_sg       = unmap_sg,
2714        .dma_supported  = amd_iommu_dma_supported,
2715};
2716
2717static int init_reserved_iova_ranges(void)
2718{
2719        struct pci_dev *pdev = NULL;
2720        struct iova *val;
2721
2722        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2723
2724        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2725                          &reserved_rbtree_key);
2726
2727        /* MSI memory range */
2728        val = reserve_iova(&reserved_iova_ranges,
2729                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2730        if (!val) {
2731                pr_err("Reserving MSI range failed\n");
2732                return -ENOMEM;
2733        }
2734
2735        /* HT memory range */
2736        val = reserve_iova(&reserved_iova_ranges,
2737                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2738        if (!val) {
2739                pr_err("Reserving HT range failed\n");
2740                return -ENOMEM;
2741        }
2742
2743        /*
2744         * Memory used for PCI resources
2745         * FIXME: Check whether we can reserve the PCI-hole completly
2746         */
2747        for_each_pci_dev(pdev) {
2748                int i;
2749
2750                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2751                        struct resource *r = &pdev->resource[i];
2752
2753                        if (!(r->flags & IORESOURCE_MEM))
2754                                continue;
2755
2756                        val = reserve_iova(&reserved_iova_ranges,
2757                                           IOVA_PFN(r->start),
2758                                           IOVA_PFN(r->end));
2759                        if (!val) {
2760                                pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2761                                return -ENOMEM;
2762                        }
2763                }
2764        }
2765
2766        return 0;
2767}
2768
2769int __init amd_iommu_init_api(void)
2770{
2771        int ret, err = 0;
2772
2773        ret = iova_cache_get();
2774        if (ret)
2775                return ret;
2776
2777        ret = init_reserved_iova_ranges();
2778        if (ret)
2779                return ret;
2780
2781        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2782        if (err)
2783                return err;
2784#ifdef CONFIG_ARM_AMBA
2785        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2786        if (err)
2787                return err;
2788#endif
2789        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2790        if (err)
2791                return err;
2792
2793        return 0;
2794}
2795
2796int __init amd_iommu_init_dma_ops(void)
2797{
2798        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2799        iommu_detected = 1;
2800
2801        if (amd_iommu_unmap_flush)
2802                pr_info("IO/TLB flush on unmap enabled\n");
2803        else
2804                pr_info("Lazy IO/TLB flushing enabled\n");
2805
2806        return 0;
2807
2808}
2809
2810/*****************************************************************************
2811 *
2812 * The following functions belong to the exported interface of AMD IOMMU
2813 *
2814 * This interface allows access to lower level functions of the IOMMU
2815 * like protection domain handling and assignement of devices to domains
2816 * which is not possible with the dma_ops interface.
2817 *
2818 *****************************************************************************/
2819
2820static void cleanup_domain(struct protection_domain *domain)
2821{
2822        struct iommu_dev_data *entry;
2823        unsigned long flags;
2824
2825        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2826
2827        while (!list_empty(&domain->dev_list)) {
2828                entry = list_first_entry(&domain->dev_list,
2829                                         struct iommu_dev_data, list);
2830                BUG_ON(!entry->domain);
2831                __detach_device(entry);
2832        }
2833
2834        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2835}
2836
2837static void protection_domain_free(struct protection_domain *domain)
2838{
2839        if (!domain)
2840                return;
2841
2842        if (domain->id)
2843                domain_id_free(domain->id);
2844
2845        kfree(domain);
2846}
2847
2848static int protection_domain_init(struct protection_domain *domain)
2849{
2850        spin_lock_init(&domain->lock);
2851        mutex_init(&domain->api_lock);
2852        domain->id = domain_id_alloc();
2853        if (!domain->id)
2854                return -ENOMEM;
2855        INIT_LIST_HEAD(&domain->dev_list);
2856
2857        return 0;
2858}
2859
2860static struct protection_domain *protection_domain_alloc(void)
2861{
2862        struct protection_domain *domain;
2863
2864        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2865        if (!domain)
2866                return NULL;
2867
2868        if (protection_domain_init(domain))
2869                goto out_err;
2870
2871        return domain;
2872
2873out_err:
2874        kfree(domain);
2875
2876        return NULL;
2877}
2878
2879static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2880{
2881        struct protection_domain *pdomain;
2882        struct dma_ops_domain *dma_domain;
2883
2884        switch (type) {
2885        case IOMMU_DOMAIN_UNMANAGED:
2886                pdomain = protection_domain_alloc();
2887                if (!pdomain)
2888                        return NULL;
2889
2890                pdomain->mode    = PAGE_MODE_3_LEVEL;
2891                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2892                if (!pdomain->pt_root) {
2893                        protection_domain_free(pdomain);
2894                        return NULL;
2895                }
2896
2897                pdomain->domain.geometry.aperture_start = 0;
2898                pdomain->domain.geometry.aperture_end   = ~0ULL;
2899                pdomain->domain.geometry.force_aperture = true;
2900
2901                break;
2902        case IOMMU_DOMAIN_DMA:
2903                dma_domain = dma_ops_domain_alloc();
2904                if (!dma_domain) {
2905                        pr_err("Failed to allocate\n");
2906                        return NULL;
2907                }
2908                pdomain = &dma_domain->domain;
2909                break;
2910        case IOMMU_DOMAIN_IDENTITY:
2911                pdomain = protection_domain_alloc();
2912                if (!pdomain)
2913                        return NULL;
2914
2915                pdomain->mode = PAGE_MODE_NONE;
2916                break;
2917        default:
2918                return NULL;
2919        }
2920
2921        return &pdomain->domain;
2922}
2923
2924static void amd_iommu_domain_free(struct iommu_domain *dom)
2925{
2926        struct protection_domain *domain;
2927        struct dma_ops_domain *dma_dom;
2928
2929        domain = to_pdomain(dom);
2930
2931        if (domain->dev_cnt > 0)
2932                cleanup_domain(domain);
2933
2934        BUG_ON(domain->dev_cnt != 0);
2935
2936        if (!dom)
2937                return;
2938
2939        switch (dom->type) {
2940        case IOMMU_DOMAIN_DMA:
2941                /* Now release the domain */
2942                dma_dom = to_dma_ops_domain(domain);
2943                dma_ops_domain_free(dma_dom);
2944                break;
2945        default:
2946                if (domain->mode != PAGE_MODE_NONE)
2947                        free_pagetable(domain);
2948
2949                if (domain->flags & PD_IOMMUV2_MASK)
2950                        free_gcr3_table(domain);
2951
2952                protection_domain_free(domain);
2953                break;
2954        }
2955}
2956
2957static void amd_iommu_detach_device(struct iommu_domain *dom,
2958                                    struct device *dev)
2959{
2960        struct iommu_dev_data *dev_data = dev->archdata.iommu;
2961        struct amd_iommu *iommu;
2962        int devid;
2963
2964        if (!check_device(dev))
2965                return;
2966
2967        devid = get_device_id(dev);
2968        if (devid < 0)
2969                return;
2970
2971        if (dev_data->domain != NULL)
2972                detach_device(dev);
2973
2974        iommu = amd_iommu_rlookup_table[devid];
2975        if (!iommu)
2976                return;
2977
2978#ifdef CONFIG_IRQ_REMAP
2979        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2980            (dom->type == IOMMU_DOMAIN_UNMANAGED))
2981                dev_data->use_vapic = 0;
2982#endif
2983
2984        iommu_completion_wait(iommu);
2985}
2986
2987static int amd_iommu_attach_device(struct iommu_domain *dom,
2988                                   struct device *dev)
2989{
2990        struct protection_domain *domain = to_pdomain(dom);
2991        struct iommu_dev_data *dev_data;
2992        struct amd_iommu *iommu;
2993        int ret;
2994
2995        if (!check_device(dev))
2996                return -EINVAL;
2997
2998        dev_data = dev->archdata.iommu;
2999
3000        iommu = amd_iommu_rlookup_table[dev_data->devid];
3001        if (!iommu)
3002                return -EINVAL;
3003
3004        if (dev_data->domain)
3005                detach_device(dev);
3006
3007        ret = attach_device(dev, domain);
3008
3009#ifdef CONFIG_IRQ_REMAP
3010        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3011                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3012                        dev_data->use_vapic = 1;
3013                else
3014                        dev_data->use_vapic = 0;
3015        }
3016#endif
3017
3018        iommu_completion_wait(iommu);
3019
3020        return ret;
3021}
3022
3023static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3024                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3025{
3026        struct protection_domain *domain = to_pdomain(dom);
3027        int prot = 0;
3028        int ret;
3029
3030        if (domain->mode == PAGE_MODE_NONE)
3031                return -EINVAL;
3032
3033        if (iommu_prot & IOMMU_READ)
3034                prot |= IOMMU_PROT_IR;
3035        if (iommu_prot & IOMMU_WRITE)
3036                prot |= IOMMU_PROT_IW;
3037
3038        mutex_lock(&domain->api_lock);
3039        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3040        mutex_unlock(&domain->api_lock);
3041
3042        return ret;
3043}
3044
3045static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3046                           size_t page_size)
3047{
3048        struct protection_domain *domain = to_pdomain(dom);
3049        size_t unmap_size;
3050
3051        if (domain->mode == PAGE_MODE_NONE)
3052                return 0;
3053
3054        mutex_lock(&domain->api_lock);
3055        unmap_size = iommu_unmap_page(domain, iova, page_size);
3056        mutex_unlock(&domain->api_lock);
3057
3058        return unmap_size;
3059}
3060
3061static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3062                                          dma_addr_t iova)
3063{
3064        struct protection_domain *domain = to_pdomain(dom);
3065        unsigned long offset_mask, pte_pgsize;
3066        u64 *pte, __pte;
3067
3068        if (domain->mode == PAGE_MODE_NONE)
3069                return iova;
3070
3071        pte = fetch_pte(domain, iova, &pte_pgsize);
3072
3073        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3074                return 0;
3075
3076        offset_mask = pte_pgsize - 1;
3077        __pte       = __sme_clr(*pte & PM_ADDR_MASK);
3078
3079        return (__pte & ~offset_mask) | (iova & offset_mask);
3080}
3081
3082static bool amd_iommu_capable(enum iommu_cap cap)
3083{
3084        switch (cap) {
3085        case IOMMU_CAP_CACHE_COHERENCY:
3086                return true;
3087        case IOMMU_CAP_INTR_REMAP:
3088                return (irq_remapping_enabled == 1);
3089        case IOMMU_CAP_NOEXEC:
3090                return false;
3091        default:
3092                break;
3093        }
3094
3095        return false;
3096}
3097
3098static void amd_iommu_get_resv_regions(struct device *dev,
3099                                       struct list_head *head)
3100{
3101        struct iommu_resv_region *region;
3102        struct unity_map_entry *entry;
3103        int devid;
3104
3105        devid = get_device_id(dev);
3106        if (devid < 0)
3107                return;
3108
3109        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3110                int type, prot = 0;
3111                size_t length;
3112
3113                if (devid < entry->devid_start || devid > entry->devid_end)
3114                        continue;
3115
3116                type   = IOMMU_RESV_DIRECT;
3117                length = entry->address_end - entry->address_start;
3118                if (entry->prot & IOMMU_PROT_IR)
3119                        prot |= IOMMU_READ;
3120                if (entry->prot & IOMMU_PROT_IW)
3121                        prot |= IOMMU_WRITE;
3122                if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3123                        /* Exclusion range */
3124                        type = IOMMU_RESV_RESERVED;
3125
3126                region = iommu_alloc_resv_region(entry->address_start,
3127                                                 length, prot, type);
3128                if (!region) {
3129                        dev_err(dev, "Out of memory allocating dm-regions\n");
3130                        return;
3131                }
3132                list_add_tail(&region->list, head);
3133        }
3134
3135        region = iommu_alloc_resv_region(MSI_RANGE_START,
3136                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3137                                         0, IOMMU_RESV_MSI);
3138        if (!region)
3139                return;
3140        list_add_tail(&region->list, head);
3141
3142        region = iommu_alloc_resv_region(HT_RANGE_START,
3143                                         HT_RANGE_END - HT_RANGE_START + 1,
3144                                         0, IOMMU_RESV_RESERVED);
3145        if (!region)
3146                return;
3147        list_add_tail(&region->list, head);
3148}
3149
3150static void amd_iommu_put_resv_regions(struct device *dev,
3151                                     struct list_head *head)
3152{
3153        struct iommu_resv_region *entry, *next;
3154
3155        list_for_each_entry_safe(entry, next, head, list)
3156                kfree(entry);
3157}
3158
3159static void amd_iommu_apply_resv_region(struct device *dev,
3160                                      struct iommu_domain *domain,
3161                                      struct iommu_resv_region *region)
3162{
3163        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3164        unsigned long start, end;
3165
3166        start = IOVA_PFN(region->start);
3167        end   = IOVA_PFN(region->start + region->length - 1);
3168
3169        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3170}
3171
3172static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3173                                         struct device *dev)
3174{
3175        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3176        return dev_data->defer_attach;
3177}
3178
3179static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3180{
3181        struct protection_domain *dom = to_pdomain(domain);
3182
3183        domain_flush_tlb_pde(dom);
3184        domain_flush_complete(dom);
3185}
3186
3187static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3188                                      unsigned long iova, size_t size)
3189{
3190}
3191
3192const struct iommu_ops amd_iommu_ops = {
3193        .capable = amd_iommu_capable,
3194        .domain_alloc = amd_iommu_domain_alloc,
3195        .domain_free  = amd_iommu_domain_free,
3196        .attach_dev = amd_iommu_attach_device,
3197        .detach_dev = amd_iommu_detach_device,
3198        .map = amd_iommu_map,
3199        .unmap = amd_iommu_unmap,
3200        .iova_to_phys = amd_iommu_iova_to_phys,
3201        .add_device = amd_iommu_add_device,
3202        .remove_device = amd_iommu_remove_device,
3203        .device_group = amd_iommu_device_group,
3204        .get_resv_regions = amd_iommu_get_resv_regions,
3205        .put_resv_regions = amd_iommu_put_resv_regions,
3206        .apply_resv_region = amd_iommu_apply_resv_region,
3207        .is_attach_deferred = amd_iommu_is_attach_deferred,
3208        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3209        .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3210        .iotlb_range_add = amd_iommu_iotlb_range_add,
3211        .iotlb_sync = amd_iommu_flush_iotlb_all,
3212};
3213
3214/*****************************************************************************
3215 *
3216 * The next functions do a basic initialization of IOMMU for pass through
3217 * mode
3218 *
3219 * In passthrough mode the IOMMU is initialized and enabled but not used for
3220 * DMA-API translation.
3221 *
3222 *****************************************************************************/
3223
3224/* IOMMUv2 specific functions */
3225int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3226{
3227        return atomic_notifier_chain_register(&ppr_notifier, nb);
3228}
3229EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3230
3231int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3232{
3233        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3234}
3235EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3236
3237void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3238{
3239        struct protection_domain *domain = to_pdomain(dom);
3240        unsigned long flags;
3241
3242        spin_lock_irqsave(&domain->lock, flags);
3243
3244        /* Update data structure */
3245        domain->mode    = PAGE_MODE_NONE;
3246        domain->updated = true;
3247
3248        /* Make changes visible to IOMMUs */
3249        update_domain(domain);
3250
3251        /* Page-table is not visible to IOMMU anymore, so free it */
3252        free_pagetable(domain);
3253
3254        spin_unlock_irqrestore(&domain->lock, flags);
3255}
3256EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3257
3258int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3259{
3260        struct protection_domain *domain = to_pdomain(dom);
3261        unsigned long flags;
3262        int levels, ret;
3263
3264        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3265                return -EINVAL;
3266
3267        /* Number of GCR3 table levels required */
3268        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3269                levels += 1;
3270
3271        if (levels > amd_iommu_max_glx_val)
3272                return -EINVAL;
3273
3274        spin_lock_irqsave(&domain->lock, flags);
3275
3276        /*
3277         * Save us all sanity checks whether devices already in the
3278         * domain support IOMMUv2. Just force that the domain has no
3279         * devices attached when it is switched into IOMMUv2 mode.
3280         */
3281        ret = -EBUSY;
3282        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3283                goto out;
3284
3285        ret = -ENOMEM;
3286        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3287        if (domain->gcr3_tbl == NULL)
3288                goto out;
3289
3290        domain->glx      = levels;
3291        domain->flags   |= PD_IOMMUV2_MASK;
3292        domain->updated  = true;
3293
3294        update_domain(domain);
3295
3296        ret = 0;
3297
3298out:
3299        spin_unlock_irqrestore(&domain->lock, flags);
3300
3301        return ret;
3302}
3303EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3304
3305static int __flush_pasid(struct protection_domain *domain, int pasid,
3306                         u64 address, bool size)
3307{
3308        struct iommu_dev_data *dev_data;
3309        struct iommu_cmd cmd;
3310        int i, ret;
3311
3312        if (!(domain->flags & PD_IOMMUV2_MASK))
3313                return -EINVAL;
3314
3315        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3316
3317        /*
3318         * IOMMU TLB needs to be flushed before Device TLB to
3319         * prevent device TLB refill from IOMMU TLB
3320         */
3321        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3322                if (domain->dev_iommu[i] == 0)
3323                        continue;
3324
3325                ret = iommu_queue_command(amd_iommus[i], &cmd);
3326                if (ret != 0)
3327                        goto out;
3328        }
3329
3330        /* Wait until IOMMU TLB flushes are complete */
3331        domain_flush_complete(domain);
3332
3333        /* Now flush device TLBs */
3334        list_for_each_entry(dev_data, &domain->dev_list, list) {
3335                struct amd_iommu *iommu;
3336                int qdep;
3337
3338                /*
3339                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3340                 * domain.
3341                 */
3342                if (!dev_data->ats.enabled)
3343                        continue;
3344
3345                qdep  = dev_data->ats.qdep;
3346                iommu = amd_iommu_rlookup_table[dev_data->devid];
3347
3348                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3349                                      qdep, address, size);
3350
3351                ret = iommu_queue_command(iommu, &cmd);
3352                if (ret != 0)
3353                        goto out;
3354        }
3355
3356        /* Wait until all device TLBs are flushed */
3357        domain_flush_complete(domain);
3358
3359        ret = 0;
3360
3361out:
3362
3363        return ret;
3364}
3365
3366static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3367                                  u64 address)
3368{
3369        return __flush_pasid(domain, pasid, address, false);
3370}
3371
3372int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3373                         u64 address)
3374{
3375        struct protection_domain *domain = to_pdomain(dom);
3376        unsigned long flags;
3377        int ret;
3378
3379        spin_lock_irqsave(&domain->lock, flags);
3380        ret = __amd_iommu_flush_page(domain, pasid, address);
3381        spin_unlock_irqrestore(&domain->lock, flags);
3382
3383        return ret;
3384}
3385EXPORT_SYMBOL(amd_iommu_flush_page);
3386
3387static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3388{
3389        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3390                             true);
3391}
3392
3393int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3394{
3395        struct protection_domain *domain = to_pdomain(dom);
3396        unsigned long flags;
3397        int ret;
3398
3399        spin_lock_irqsave(&domain->lock, flags);
3400        ret = __amd_iommu_flush_tlb(domain, pasid);
3401        spin_unlock_irqrestore(&domain->lock, flags);
3402
3403        return ret;
3404}
3405EXPORT_SYMBOL(amd_iommu_flush_tlb);
3406
3407static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3408{
3409        int index;
3410        u64 *pte;
3411
3412        while (true) {
3413
3414                index = (pasid >> (9 * level)) & 0x1ff;
3415                pte   = &root[index];
3416
3417                if (level == 0)
3418                        break;
3419
3420                if (!(*pte & GCR3_VALID)) {
3421                        if (!alloc)
3422                                return NULL;
3423
3424                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3425                        if (root == NULL)
3426                                return NULL;
3427
3428                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3429                }
3430
3431                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3432
3433                level -= 1;
3434        }
3435
3436        return pte;
3437}
3438
3439static int __set_gcr3(struct protection_domain *domain, int pasid,
3440                      unsigned long cr3)
3441{
3442        u64 *pte;
3443
3444        if (domain->mode != PAGE_MODE_NONE)
3445                return -EINVAL;
3446
3447        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3448        if (pte == NULL)
3449                return -ENOMEM;
3450
3451        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3452
3453        return __amd_iommu_flush_tlb(domain, pasid);
3454}
3455
3456static int __clear_gcr3(struct protection_domain *domain, int pasid)
3457{
3458        u64 *pte;
3459
3460        if (domain->mode != PAGE_MODE_NONE)
3461                return -EINVAL;
3462
3463        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3464        if (pte == NULL)
3465                return 0;
3466
3467        *pte = 0;
3468
3469        return __amd_iommu_flush_tlb(domain, pasid);
3470}
3471
3472int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3473                              unsigned long cr3)
3474{
3475        struct protection_domain *domain = to_pdomain(dom);
3476        unsigned long flags;
3477        int ret;
3478
3479        spin_lock_irqsave(&domain->lock, flags);
3480        ret = __set_gcr3(domain, pasid, cr3);
3481        spin_unlock_irqrestore(&domain->lock, flags);
3482
3483        return ret;
3484}
3485EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3486
3487int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3488{
3489        struct protection_domain *domain = to_pdomain(dom);
3490        unsigned long flags;
3491        int ret;
3492
3493        spin_lock_irqsave(&domain->lock, flags);
3494        ret = __clear_gcr3(domain, pasid);
3495        spin_unlock_irqrestore(&domain->lock, flags);
3496
3497        return ret;
3498}
3499EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3500
3501int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3502                           int status, int tag)
3503{
3504        struct iommu_dev_data *dev_data;
3505        struct amd_iommu *iommu;
3506        struct iommu_cmd cmd;
3507
3508        dev_data = get_dev_data(&pdev->dev);
3509        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3510
3511        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3512                           tag, dev_data->pri_tlp);
3513
3514        return iommu_queue_command(iommu, &cmd);
3515}
3516EXPORT_SYMBOL(amd_iommu_complete_ppr);
3517
3518struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3519{
3520        struct protection_domain *pdomain;
3521
3522        pdomain = get_domain(&pdev->dev);
3523        if (IS_ERR(pdomain))
3524                return NULL;
3525
3526        /* Only return IOMMUv2 domains */
3527        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3528                return NULL;
3529
3530        return &pdomain->domain;
3531}
3532EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3533
3534void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3535{
3536        struct iommu_dev_data *dev_data;
3537
3538        if (!amd_iommu_v2_supported())
3539                return;
3540
3541        dev_data = get_dev_data(&pdev->dev);
3542        dev_data->errata |= (1 << erratum);
3543}
3544EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3545
3546int amd_iommu_device_info(struct pci_dev *pdev,
3547                          struct amd_iommu_device_info *info)
3548{
3549        int max_pasids;
3550        int pos;
3551
3552        if (pdev == NULL || info == NULL)
3553                return -EINVAL;
3554
3555        if (!amd_iommu_v2_supported())
3556                return -EINVAL;
3557
3558        memset(info, 0, sizeof(*info));
3559
3560        if (!pci_ats_disabled()) {
3561                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3562                if (pos)
3563                        info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3564        }
3565
3566        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3567        if (pos)
3568                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3569
3570        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3571        if (pos) {
3572                int features;
3573
3574                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3575                max_pasids = min(max_pasids, (1 << 20));
3576
3577                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3578                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3579
3580                features = pci_pasid_features(pdev);
3581                if (features & PCI_PASID_CAP_EXEC)
3582                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3583                if (features & PCI_PASID_CAP_PRIV)
3584                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3585        }
3586
3587        return 0;
3588}
3589EXPORT_SYMBOL(amd_iommu_device_info);
3590
3591#ifdef CONFIG_IRQ_REMAP
3592
3593/*****************************************************************************
3594 *
3595 * Interrupt Remapping Implementation
3596 *
3597 *****************************************************************************/
3598
3599static struct irq_chip amd_ir_chip;
3600static DEFINE_SPINLOCK(iommu_table_lock);
3601
3602static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3603{
3604        u64 dte;
3605
3606        dte     = amd_iommu_dev_table[devid].data[2];
3607        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3608        dte     |= iommu_virt_to_phys(table->table);
3609        dte     |= DTE_IRQ_REMAP_INTCTL;
3610        dte     |= DTE_IRQ_TABLE_LEN;
3611        dte     |= DTE_IRQ_REMAP_ENABLE;
3612
3613        amd_iommu_dev_table[devid].data[2] = dte;
3614}
3615
3616static struct irq_remap_table *get_irq_table(u16 devid)
3617{
3618        struct irq_remap_table *table;
3619
3620        if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3621                      "%s: no iommu for devid %x\n", __func__, devid))
3622                return NULL;
3623
3624        table = irq_lookup_table[devid];
3625        if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3626                return NULL;
3627
3628        return table;
3629}
3630
3631static struct irq_remap_table *__alloc_irq_table(void)
3632{
3633        struct irq_remap_table *table;
3634
3635        table = kzalloc(sizeof(*table), GFP_KERNEL);
3636        if (!table)
3637                return NULL;
3638
3639        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3640        if (!table->table) {
3641                kfree(table);
3642                return NULL;
3643        }
3644        raw_spin_lock_init(&table->lock);
3645
3646        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3647                memset(table->table, 0,
3648                       MAX_IRQS_PER_TABLE * sizeof(u32));
3649        else
3650                memset(table->table, 0,
3651                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3652        return table;
3653}
3654
3655static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3656                                  struct irq_remap_table *table)
3657{
3658        irq_lookup_table[devid] = table;
3659        set_dte_irq_entry(devid, table);
3660        iommu_flush_dte(iommu, devid);
3661}
3662
3663static struct irq_remap_table *alloc_irq_table(u16 devid)
3664{
3665        struct irq_remap_table *table = NULL;
3666        struct irq_remap_table *new_table = NULL;
3667        struct amd_iommu *iommu;
3668        unsigned long flags;
3669        u16 alias;
3670
3671        spin_lock_irqsave(&iommu_table_lock, flags);
3672
3673        iommu = amd_iommu_rlookup_table[devid];
3674        if (!iommu)
3675                goto out_unlock;
3676
3677        table = irq_lookup_table[devid];
3678        if (table)
3679                goto out_unlock;
3680
3681        alias = amd_iommu_alias_table[devid];
3682        table = irq_lookup_table[alias];
3683        if (table) {
3684                set_remap_table_entry(iommu, devid, table);
3685                goto out_wait;
3686        }
3687        spin_unlock_irqrestore(&iommu_table_lock, flags);
3688
3689        /* Nothing there yet, allocate new irq remapping table */
3690        new_table = __alloc_irq_table();
3691        if (!new_table)
3692                return NULL;
3693
3694        spin_lock_irqsave(&iommu_table_lock, flags);
3695
3696        table = irq_lookup_table[devid];
3697        if (table)
3698                goto out_unlock;
3699
3700        table = irq_lookup_table[alias];
3701        if (table) {
3702                set_remap_table_entry(iommu, devid, table);
3703                goto out_wait;
3704        }
3705
3706        table = new_table;
3707        new_table = NULL;
3708
3709        set_remap_table_entry(iommu, devid, table);
3710        if (devid != alias)
3711                set_remap_table_entry(iommu, alias, table);
3712
3713out_wait:
3714        iommu_completion_wait(iommu);
3715
3716out_unlock:
3717        spin_unlock_irqrestore(&iommu_table_lock, flags);
3718
3719        if (new_table) {
3720                kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3721                kfree(new_table);
3722        }
3723        return table;
3724}
3725
3726static int alloc_irq_index(u16 devid, int count, bool align)
3727{
3728        struct irq_remap_table *table;
3729        int index, c, alignment = 1;
3730        unsigned long flags;
3731        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3732
3733        if (!iommu)
3734                return -ENODEV;
3735
3736        table = alloc_irq_table(devid);
3737        if (!table)
3738                return -ENODEV;
3739
3740        if (align)
3741                alignment = roundup_pow_of_two(count);
3742
3743        raw_spin_lock_irqsave(&table->lock, flags);
3744
3745        /* Scan table for free entries */
3746        for (index = ALIGN(table->min_index, alignment), c = 0;
3747             index < MAX_IRQS_PER_TABLE;) {
3748                if (!iommu->irte_ops->is_allocated(table, index)) {
3749                        c += 1;
3750                } else {
3751                        c     = 0;
3752                        index = ALIGN(index + 1, alignment);
3753                        continue;
3754                }
3755
3756                if (c == count) {
3757                        for (; c != 0; --c)
3758                                iommu->irte_ops->set_allocated(table, index - c + 1);
3759
3760                        index -= count - 1;
3761                        goto out;
3762                }
3763
3764                index++;
3765        }
3766
3767        index = -ENOSPC;
3768
3769out:
3770        raw_spin_unlock_irqrestore(&table->lock, flags);
3771
3772        return index;
3773}
3774
3775static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3776                          struct amd_ir_data *data)
3777{
3778        struct irq_remap_table *table;
3779        struct amd_iommu *iommu;
3780        unsigned long flags;
3781        struct irte_ga *entry;
3782
3783        iommu = amd_iommu_rlookup_table[devid];
3784        if (iommu == NULL)
3785                return -EINVAL;
3786
3787        table = get_irq_table(devid);
3788        if (!table)
3789                return -ENOMEM;
3790
3791        raw_spin_lock_irqsave(&table->lock, flags);
3792
3793        entry = (struct irte_ga *)table->table;
3794        entry = &entry[index];
3795        entry->lo.fields_remap.valid = 0;
3796        entry->hi.val = irte->hi.val;
3797        entry->lo.val = irte->lo.val;
3798        entry->lo.fields_remap.valid = 1;
3799        if (data)
3800                data->ref = entry;
3801
3802        raw_spin_unlock_irqrestore(&table->lock, flags);
3803
3804        iommu_flush_irt(iommu, devid);
3805        iommu_completion_wait(iommu);
3806
3807        return 0;
3808}
3809
3810static int modify_irte(u16 devid, int index, union irte *irte)
3811{
3812        struct irq_remap_table *table;
3813        struct amd_iommu *iommu;
3814        unsigned long flags;
3815
3816        iommu = amd_iommu_rlookup_table[devid];
3817        if (iommu == NULL)
3818                return -EINVAL;
3819
3820        table = get_irq_table(devid);
3821        if (!table)
3822                return -ENOMEM;
3823
3824        raw_spin_lock_irqsave(&table->lock, flags);
3825        table->table[index] = irte->val;
3826        raw_spin_unlock_irqrestore(&table->lock, flags);
3827
3828        iommu_flush_irt(iommu, devid);
3829        iommu_completion_wait(iommu);
3830
3831        return 0;
3832}
3833
3834static void free_irte(u16 devid, int index)
3835{
3836        struct irq_remap_table *table;
3837        struct amd_iommu *iommu;
3838        unsigned long flags;
3839
3840        iommu = amd_iommu_rlookup_table[devid];
3841        if (iommu == NULL)
3842                return;
3843
3844        table = get_irq_table(devid);
3845        if (!table)
3846                return;
3847
3848        raw_spin_lock_irqsave(&table->lock, flags);
3849        iommu->irte_ops->clear_allocated(table, index);
3850        raw_spin_unlock_irqrestore(&table->lock, flags);
3851
3852        iommu_flush_irt(iommu, devid);
3853        iommu_completion_wait(iommu);
3854}
3855
3856static void irte_prepare(void *entry,
3857                         u32 delivery_mode, u32 dest_mode,
3858                         u8 vector, u32 dest_apicid, int devid)
3859{
3860        union irte *irte = (union irte *) entry;
3861
3862        irte->val                = 0;
3863        irte->fields.vector      = vector;
3864        irte->fields.int_type    = delivery_mode;
3865        irte->fields.destination = dest_apicid;
3866        irte->fields.dm          = dest_mode;
3867        irte->fields.valid       = 1;
3868}
3869
3870static void irte_ga_prepare(void *entry,
3871                            u32 delivery_mode, u32 dest_mode,
3872                            u8 vector, u32 dest_apicid, int devid)
3873{
3874        struct irte_ga *irte = (struct irte_ga *) entry;
3875
3876        irte->lo.val                      = 0;
3877        irte->hi.val                      = 0;
3878        irte->lo.fields_remap.int_type    = delivery_mode;
3879        irte->lo.fields_remap.dm          = dest_mode;
3880        irte->hi.fields.vector            = vector;
3881        irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3882        irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3883        irte->lo.fields_remap.valid       = 1;
3884}
3885
3886static void irte_activate(void *entry, u16 devid, u16 index)
3887{
3888        union irte *irte = (union irte *) entry;
3889
3890        irte->fields.valid = 1;
3891        modify_irte(devid, index, irte);
3892}
3893
3894static void irte_ga_activate(void *entry, u16 devid, u16 index)
3895{
3896        struct irte_ga *irte = (struct irte_ga *) entry;
3897
3898        irte->lo.fields_remap.valid = 1;
3899        modify_irte_ga(devid, index, irte, NULL);
3900}
3901
3902static void irte_deactivate(void *entry, u16 devid, u16 index)
3903{
3904        union irte *irte = (union irte *) entry;
3905
3906        irte->fields.valid = 0;
3907        modify_irte(devid, index, irte);
3908}
3909
3910static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3911{
3912        struct irte_ga *irte = (struct irte_ga *) entry;
3913
3914        irte->lo.fields_remap.valid = 0;
3915        modify_irte_ga(devid, index, irte, NULL);
3916}
3917
3918static void irte_set_affinity(void *entry, u16 devid, u16 index,
3919                              u8 vector, u32 dest_apicid)
3920{
3921        union irte *irte = (union irte *) entry;
3922
3923        irte->fields.vector = vector;
3924        irte->fields.destination = dest_apicid;
3925        modify_irte(devid, index, irte);
3926}
3927
3928static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3929                                 u8 vector, u32 dest_apicid)
3930{
3931        struct irte_ga *irte = (struct irte_ga *) entry;
3932
3933        if (!irte->lo.fields_remap.guest_mode) {
3934                irte->hi.fields.vector = vector;
3935                irte->lo.fields_remap.destination =
3936                                        APICID_TO_IRTE_DEST_LO(dest_apicid);
3937                irte->hi.fields.destination =
3938                                        APICID_TO_IRTE_DEST_HI(dest_apicid);
3939                modify_irte_ga(devid, index, irte, NULL);
3940        }
3941}
3942
3943#define IRTE_ALLOCATED (~1U)
3944static void irte_set_allocated(struct irq_remap_table *table, int index)
3945{
3946        table->table[index] = IRTE_ALLOCATED;
3947}
3948
3949static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3950{
3951        struct irte_ga *ptr = (struct irte_ga *)table->table;
3952        struct irte_ga *irte = &ptr[index];
3953
3954        memset(&irte->lo.val, 0, sizeof(u64));
3955        memset(&irte->hi.val, 0, sizeof(u64));
3956        irte->hi.fields.vector = 0xff;
3957}
3958
3959static bool irte_is_allocated(struct irq_remap_table *table, int index)
3960{
3961        union irte *ptr = (union irte *)table->table;
3962        union irte *irte = &ptr[index];
3963
3964        return irte->val != 0;
3965}
3966
3967static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3968{
3969        struct irte_ga *ptr = (struct irte_ga *)table->table;
3970        struct irte_ga *irte = &ptr[index];
3971
3972        return irte->hi.fields.vector != 0;
3973}
3974
3975static void irte_clear_allocated(struct irq_remap_table *table, int index)
3976{
3977        table->table[index] = 0;
3978}
3979
3980static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3981{
3982        struct irte_ga *ptr = (struct irte_ga *)table->table;
3983        struct irte_ga *irte = &ptr[index];
3984
3985        memset(&irte->lo.val, 0, sizeof(u64));
3986        memset(&irte->hi.val, 0, sizeof(u64));
3987}
3988
3989static int get_devid(struct irq_alloc_info *info)
3990{
3991        int devid = -1;
3992
3993        switch (info->type) {
3994        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3995                devid     = get_ioapic_devid(info->ioapic_id);
3996                break;
3997        case X86_IRQ_ALLOC_TYPE_HPET:
3998                devid     = get_hpet_devid(info->hpet_id);
3999                break;
4000        case X86_IRQ_ALLOC_TYPE_MSI:
4001        case X86_IRQ_ALLOC_TYPE_MSIX:
4002                devid = get_device_id(&info->msi_dev->dev);
4003                break;
4004        default:
4005                BUG_ON(1);
4006                break;
4007        }
4008
4009        return devid;
4010}
4011
4012static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4013{
4014        struct amd_iommu *iommu;
4015        int devid;
4016
4017        if (!info)
4018                return NULL;
4019
4020        devid = get_devid(info);
4021        if (devid >= 0) {
4022                iommu = amd_iommu_rlookup_table[devid];
4023                if (iommu)
4024                        return iommu->ir_domain;
4025        }
4026
4027        return NULL;
4028}
4029
4030static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4031{
4032        struct amd_iommu *iommu;
4033        int devid;
4034
4035        if (!info)
4036                return NULL;
4037
4038        switch (info->type) {
4039        case X86_IRQ_ALLOC_TYPE_MSI:
4040        case X86_IRQ_ALLOC_TYPE_MSIX:
4041                devid = get_device_id(&info->msi_dev->dev);
4042                if (devid < 0)
4043                        return NULL;
4044
4045                iommu = amd_iommu_rlookup_table[devid];
4046                if (iommu)
4047                        return iommu->msi_domain;
4048                break;
4049        default:
4050                break;
4051        }
4052
4053        return NULL;
4054}
4055
4056struct irq_remap_ops amd_iommu_irq_ops = {
4057        .prepare                = amd_iommu_prepare,
4058        .enable                 = amd_iommu_enable,
4059        .disable                = amd_iommu_disable,
4060        .reenable               = amd_iommu_reenable,
4061        .enable_faulting        = amd_iommu_enable_faulting,
4062        .get_ir_irq_domain      = get_ir_irq_domain,
4063        .get_irq_domain         = get_irq_domain,
4064};
4065
4066static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4067                                       struct irq_cfg *irq_cfg,
4068                                       struct irq_alloc_info *info,
4069                                       int devid, int index, int sub_handle)
4070{
4071        struct irq_2_irte *irte_info = &data->irq_2_irte;
4072        struct msi_msg *msg = &data->msi_entry;
4073        struct IO_APIC_route_entry *entry;
4074        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4075
4076        if (!iommu)
4077                return;
4078
4079        data->irq_2_irte.devid = devid;
4080        data->irq_2_irte.index = index + sub_handle;
4081        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4082                                 apic->irq_dest_mode, irq_cfg->vector,
4083                                 irq_cfg->dest_apicid, devid);
4084
4085        switch (info->type) {
4086        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4087                /* Setup IOAPIC entry */
4088                entry = info->ioapic_entry;
4089                info->ioapic_entry = NULL;
4090                memset(entry, 0, sizeof(*entry));
4091                entry->vector        = index;
4092                entry->mask          = 0;
4093                entry->trigger       = info->ioapic_trigger;
4094                entry->polarity      = info->ioapic_polarity;
4095                /* Mask level triggered irqs. */
4096                if (info->ioapic_trigger)
4097                        entry->mask = 1;
4098                break;
4099
4100        case X86_IRQ_ALLOC_TYPE_HPET:
4101        case X86_IRQ_ALLOC_TYPE_MSI:
4102        case X86_IRQ_ALLOC_TYPE_MSIX:
4103                msg->address_hi = MSI_ADDR_BASE_HI;
4104                msg->address_lo = MSI_ADDR_BASE_LO;
4105                msg->data = irte_info->index;
4106                break;
4107
4108        default:
4109                BUG_ON(1);
4110                break;
4111        }
4112}
4113
4114struct amd_irte_ops irte_32_ops = {
4115        .prepare = irte_prepare,
4116        .activate = irte_activate,
4117        .deactivate = irte_deactivate,
4118        .set_affinity = irte_set_affinity,
4119        .set_allocated = irte_set_allocated,
4120        .is_allocated = irte_is_allocated,
4121        .clear_allocated = irte_clear_allocated,
4122};
4123
4124struct amd_irte_ops irte_128_ops = {
4125        .prepare = irte_ga_prepare,
4126        .activate = irte_ga_activate,
4127        .deactivate = irte_ga_deactivate,
4128        .set_affinity = irte_ga_set_affinity,
4129        .set_allocated = irte_ga_set_allocated,
4130        .is_allocated = irte_ga_is_allocated,
4131        .clear_allocated = irte_ga_clear_allocated,
4132};
4133
4134static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4135                               unsigned int nr_irqs, void *arg)
4136{
4137        struct irq_alloc_info *info = arg;
4138        struct irq_data *irq_data;
4139        struct amd_ir_data *data = NULL;
4140        struct irq_cfg *cfg;
4141        int i, ret, devid;
4142        int index;
4143
4144        if (!info)
4145                return -EINVAL;
4146        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4147            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4148                return -EINVAL;
4149
4150        /*
4151         * With IRQ remapping enabled, don't need contiguous CPU vectors
4152         * to support multiple MSI interrupts.
4153         */
4154        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4155                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4156
4157        devid = get_devid(info);
4158        if (devid < 0)
4159                return -EINVAL;
4160
4161        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4162        if (ret < 0)
4163                return ret;
4164
4165        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4166                struct irq_remap_table *table;
4167                struct amd_iommu *iommu;
4168
4169                table = alloc_irq_table(devid);
4170                if (table) {
4171                        if (!table->min_index) {
4172                                /*
4173                                 * Keep the first 32 indexes free for IOAPIC
4174                                 * interrupts.
4175                                 */
4176                                table->min_index = 32;
4177                                iommu = amd_iommu_rlookup_table[devid];
4178                                for (i = 0; i < 32; ++i)
4179                                        iommu->irte_ops->set_allocated(table, i);
4180                        }
4181                        WARN_ON(table->min_index != 32);
4182                        index = info->ioapic_pin;
4183                } else {
4184                        index = -ENOMEM;
4185                }
4186        } else {
4187                bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4188
4189                index = alloc_irq_index(devid, nr_irqs, align);
4190        }
4191        if (index < 0) {
4192                pr_warn("Failed to allocate IRTE\n");
4193                ret = index;
4194                goto out_free_parent;
4195        }
4196
4197        for (i = 0; i < nr_irqs; i++) {
4198                irq_data = irq_domain_get_irq_data(domain, virq + i);
4199                cfg = irqd_cfg(irq_data);
4200                if (!irq_data || !cfg) {
4201                        ret = -EINVAL;
4202                        goto out_free_data;
4203                }
4204
4205                ret = -ENOMEM;
4206                data = kzalloc(sizeof(*data), GFP_KERNEL);
4207                if (!data)
4208                        goto out_free_data;
4209
4210                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4211                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4212                else
4213                        data->entry = kzalloc(sizeof(struct irte_ga),
4214                                                     GFP_KERNEL);
4215                if (!data->entry) {
4216                        kfree(data);
4217                        goto out_free_data;
4218                }
4219
4220                irq_data->hwirq = (devid << 16) + i;
4221                irq_data->chip_data = data;
4222                irq_data->chip = &amd_ir_chip;
4223                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4224                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4225        }
4226
4227        return 0;
4228
4229out_free_data:
4230        for (i--; i >= 0; i--) {
4231                irq_data = irq_domain_get_irq_data(domain, virq + i);
4232                if (irq_data)
4233                        kfree(irq_data->chip_data);
4234        }
4235        for (i = 0; i < nr_irqs; i++)
4236                free_irte(devid, index + i);
4237out_free_parent:
4238        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4239        return ret;
4240}
4241
4242static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4243                               unsigned int nr_irqs)
4244{
4245        struct irq_2_irte *irte_info;
4246        struct irq_data *irq_data;
4247        struct amd_ir_data *data;
4248        int i;
4249
4250        for (i = 0; i < nr_irqs; i++) {
4251                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4252                if (irq_data && irq_data->chip_data) {
4253                        data = irq_data->chip_data;
4254                        irte_info = &data->irq_2_irte;
4255                        free_irte(irte_info->devid, irte_info->index);
4256                        kfree(data->entry);
4257                        kfree(data);
4258                }
4259        }
4260        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4261}
4262
4263static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4264                               struct amd_ir_data *ir_data,
4265                               struct irq_2_irte *irte_info,
4266                               struct irq_cfg *cfg);
4267
4268static int irq_remapping_activate(struct irq_domain *domain,
4269                                  struct irq_data *irq_data, bool reserve)
4270{
4271        struct amd_ir_data *data = irq_data->chip_data;
4272        struct irq_2_irte *irte_info = &data->irq_2_irte;
4273        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4274        struct irq_cfg *cfg = irqd_cfg(irq_data);
4275
4276        if (!iommu)
4277                return 0;
4278
4279        iommu->irte_ops->activate(data->entry, irte_info->devid,
4280                                  irte_info->index);
4281        amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4282        return 0;
4283}
4284
4285static void irq_remapping_deactivate(struct irq_domain *domain,
4286                                     struct irq_data *irq_data)
4287{
4288        struct amd_ir_data *data = irq_data->chip_data;
4289        struct irq_2_irte *irte_info = &data->irq_2_irte;
4290        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4291
4292        if (iommu)
4293                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4294                                            irte_info->index);
4295}
4296
4297static const struct irq_domain_ops amd_ir_domain_ops = {
4298        .alloc = irq_remapping_alloc,
4299        .free = irq_remapping_free,
4300        .activate = irq_remapping_activate,
4301        .deactivate = irq_remapping_deactivate,
4302};
4303
4304static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4305{
4306        struct amd_iommu *iommu;
4307        struct amd_iommu_pi_data *pi_data = vcpu_info;
4308        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4309        struct amd_ir_data *ir_data = data->chip_data;
4310        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4311        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4312        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4313
4314        /* Note:
4315         * This device has never been set up for guest mode.
4316         * we should not modify the IRTE
4317         */
4318        if (!dev_data || !dev_data->use_vapic)
4319                return 0;
4320
4321        pi_data->ir_data = ir_data;
4322
4323        /* Note:
4324         * SVM tries to set up for VAPIC mode, but we are in
4325         * legacy mode. So, we force legacy mode instead.
4326         */
4327        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4328                pr_debug("%s: Fall back to using intr legacy remap\n",
4329                         __func__);
4330                pi_data->is_guest_mode = false;
4331        }
4332
4333        iommu = amd_iommu_rlookup_table[irte_info->devid];
4334        if (iommu == NULL)
4335                return -EINVAL;
4336
4337        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4338        if (pi_data->is_guest_mode) {
4339                /* Setting */
4340                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4341                irte->hi.fields.vector = vcpu_pi_info->vector;
4342                irte->lo.fields_vapic.ga_log_intr = 1;
4343                irte->lo.fields_vapic.guest_mode = 1;
4344                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4345
4346                ir_data->cached_ga_tag = pi_data->ga_tag;
4347        } else {
4348                /* Un-Setting */
4349                struct irq_cfg *cfg = irqd_cfg(data);
4350
4351                irte->hi.val = 0;
4352                irte->lo.val = 0;
4353                irte->hi.fields.vector = cfg->vector;
4354                irte->lo.fields_remap.guest_mode = 0;
4355                irte->lo.fields_remap.destination =
4356                                APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4357                irte->hi.fields.destination =
4358                                APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4359                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4360                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4361
4362                /*
4363                 * This communicates the ga_tag back to the caller
4364                 * so that it can do all the necessary clean up.
4365                 */
4366                ir_data->cached_ga_tag = 0;
4367        }
4368
4369        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4370}
4371
4372
4373static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4374                               struct amd_ir_data *ir_data,
4375                               struct irq_2_irte *irte_info,
4376                               struct irq_cfg *cfg)
4377{
4378
4379        /*
4380         * Atomically updates the IRTE with the new destination, vector
4381         * and flushes the interrupt entry cache.
4382         */
4383        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4384                                      irte_info->index, cfg->vector,
4385                                      cfg->dest_apicid);
4386}
4387
4388static int amd_ir_set_affinity(struct irq_data *data,
4389                               const struct cpumask *mask, bool force)
4390{
4391        struct amd_ir_data *ir_data = data->chip_data;
4392        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4393        struct irq_cfg *cfg = irqd_cfg(data);
4394        struct irq_data *parent = data->parent_data;
4395        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4396        int ret;
4397
4398        if (!iommu)
4399                return -ENODEV;
4400
4401        ret = parent->chip->irq_set_affinity(parent, mask, force);
4402        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4403                return ret;
4404
4405        amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4406        /*
4407         * After this point, all the interrupts will start arriving
4408         * at the new destination. So, time to cleanup the previous
4409         * vector allocation.
4410         */
4411        send_cleanup_vector(cfg);
4412
4413        return IRQ_SET_MASK_OK_DONE;
4414}
4415
4416static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4417{
4418        struct amd_ir_data *ir_data = irq_data->chip_data;
4419
4420        *msg = ir_data->msi_entry;
4421}
4422
4423static struct irq_chip amd_ir_chip = {
4424        .name                   = "AMD-IR",
4425        .irq_ack                = apic_ack_irq,
4426        .irq_set_affinity       = amd_ir_set_affinity,
4427        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4428        .irq_compose_msi_msg    = ir_compose_msi_msg,
4429};
4430
4431int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4432{
4433        struct fwnode_handle *fn;
4434
4435        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4436        if (!fn)
4437                return -ENOMEM;
4438        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4439        irq_domain_free_fwnode(fn);
4440        if (!iommu->ir_domain)
4441                return -ENOMEM;
4442
4443        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4444        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4445                                                             "AMD-IR-MSI",
4446                                                             iommu->index);
4447        return 0;
4448}
4449
4450int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4451{
4452        unsigned long flags;
4453        struct amd_iommu *iommu;
4454        struct irq_remap_table *table;
4455        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4456        int devid = ir_data->irq_2_irte.devid;
4457        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4458        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4459
4460        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4461            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4462                return 0;
4463
4464        iommu = amd_iommu_rlookup_table[devid];
4465        if (!iommu)
4466                return -ENODEV;
4467
4468        table = get_irq_table(devid);
4469        if (!table)
4470                return -ENODEV;
4471
4472        raw_spin_lock_irqsave(&table->lock, flags);
4473
4474        if (ref->lo.fields_vapic.guest_mode) {
4475                if (cpu >= 0) {
4476                        ref->lo.fields_vapic.destination =
4477                                                APICID_TO_IRTE_DEST_LO(cpu);
4478                        ref->hi.fields.destination =
4479                                                APICID_TO_IRTE_DEST_HI(cpu);
4480                }
4481                ref->lo.fields_vapic.is_run = is_run;
4482                barrier();
4483        }
4484
4485        raw_spin_unlock_irqrestore(&table->lock, flags);
4486
4487        iommu_flush_irt(iommu, devid);
4488        iommu_completion_wait(iommu);
4489        return 0;
4490}
4491EXPORT_SYMBOL(amd_iommu_update_ga);
4492#endif
4493