linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203
 204        /*
 205         * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206         */
 207        PM_OUT_OF_METADATA_SPACE,
 208        PM_READ_ONLY,           /* metadata may not be changed */
 209
 210        PM_FAIL,                /* all I/O fails */
 211};
 212
 213struct pool_features {
 214        enum pool_mode mode;
 215
 216        bool zero_new_blocks:1;
 217        bool discard_enabled:1;
 218        bool discard_passdown:1;
 219        bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230        struct list_head list;
 231        struct dm_target *ti;   /* Only set if a pool target is bound */
 232
 233        struct mapped_device *pool_md;
 234        struct block_device *md_dev;
 235        struct dm_pool_metadata *pmd;
 236
 237        dm_block_t low_water_blocks;
 238        uint32_t sectors_per_block;
 239        int sectors_per_block_shift;
 240
 241        struct pool_features pf;
 242        bool low_water_triggered:1;     /* A dm event has been sent */
 243        bool suspended:1;
 244        bool out_of_data_space:1;
 245
 246        struct dm_bio_prison *prison;
 247        struct dm_kcopyd_client *copier;
 248
 249        struct work_struct worker;
 250        struct workqueue_struct *wq;
 251        struct throttle throttle;
 252        struct delayed_work waker;
 253        struct delayed_work no_space_timeout;
 254
 255        unsigned long last_commit_jiffies;
 256        unsigned ref_count;
 257
 258        spinlock_t lock;
 259        struct bio_list deferred_flush_bios;
 260        struct bio_list deferred_flush_completions;
 261        struct list_head prepared_mappings;
 262        struct list_head prepared_discards;
 263        struct list_head prepared_discards_pt2;
 264        struct list_head active_thins;
 265
 266        struct dm_deferred_set *shared_read_ds;
 267        struct dm_deferred_set *all_io_ds;
 268
 269        struct dm_thin_new_mapping *next_mapping;
 270
 271        process_bio_fn process_bio;
 272        process_bio_fn process_discard;
 273
 274        process_cell_fn process_cell;
 275        process_cell_fn process_discard_cell;
 276
 277        process_mapping_fn process_prepared_mapping;
 278        process_mapping_fn process_prepared_discard;
 279        process_mapping_fn process_prepared_discard_pt2;
 280
 281        struct dm_bio_prison_cell **cell_sort_array;
 282
 283        mempool_t mapping_pool;
 284};
 285
 286static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 287
 288static enum pool_mode get_pool_mode(struct pool *pool)
 289{
 290        return pool->pf.mode;
 291}
 292
 293static void notify_of_pool_mode_change(struct pool *pool)
 294{
 295        const char *descs[] = {
 296                "write",
 297                "out-of-data-space",
 298                "read-only",
 299                "read-only",
 300                "fail"
 301        };
 302        const char *extra_desc = NULL;
 303        enum pool_mode mode = get_pool_mode(pool);
 304
 305        if (mode == PM_OUT_OF_DATA_SPACE) {
 306                if (!pool->pf.error_if_no_space)
 307                        extra_desc = " (queue IO)";
 308                else
 309                        extra_desc = " (error IO)";
 310        }
 311
 312        dm_table_event(pool->ti->table);
 313        DMINFO("%s: switching pool to %s%s mode",
 314               dm_device_name(pool->pool_md),
 315               descs[(int)mode], extra_desc ? : "");
 316}
 317
 318/*
 319 * Target context for a pool.
 320 */
 321struct pool_c {
 322        struct dm_target *ti;
 323        struct pool *pool;
 324        struct dm_dev *data_dev;
 325        struct dm_dev *metadata_dev;
 326        struct dm_target_callbacks callbacks;
 327
 328        dm_block_t low_water_blocks;
 329        struct pool_features requested_pf; /* Features requested during table load */
 330        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 331};
 332
 333/*
 334 * Target context for a thin.
 335 */
 336struct thin_c {
 337        struct list_head list;
 338        struct dm_dev *pool_dev;
 339        struct dm_dev *origin_dev;
 340        sector_t origin_size;
 341        dm_thin_id dev_id;
 342
 343        struct pool *pool;
 344        struct dm_thin_device *td;
 345        struct mapped_device *thin_md;
 346
 347        bool requeue_mode:1;
 348        spinlock_t lock;
 349        struct list_head deferred_cells;
 350        struct bio_list deferred_bio_list;
 351        struct bio_list retry_on_resume_list;
 352        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 353
 354        /*
 355         * Ensures the thin is not destroyed until the worker has finished
 356         * iterating the active_thins list.
 357         */
 358        refcount_t refcount;
 359        struct completion can_destroy;
 360};
 361
 362/*----------------------------------------------------------------*/
 363
 364static bool block_size_is_power_of_two(struct pool *pool)
 365{
 366        return pool->sectors_per_block_shift >= 0;
 367}
 368
 369static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 370{
 371        return block_size_is_power_of_two(pool) ?
 372                (b << pool->sectors_per_block_shift) :
 373                (b * pool->sectors_per_block);
 374}
 375
 376/*----------------------------------------------------------------*/
 377
 378struct discard_op {
 379        struct thin_c *tc;
 380        struct blk_plug plug;
 381        struct bio *parent_bio;
 382        struct bio *bio;
 383};
 384
 385static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 386{
 387        BUG_ON(!parent);
 388
 389        op->tc = tc;
 390        blk_start_plug(&op->plug);
 391        op->parent_bio = parent;
 392        op->bio = NULL;
 393}
 394
 395static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 396{
 397        struct thin_c *tc = op->tc;
 398        sector_t s = block_to_sectors(tc->pool, data_b);
 399        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 400
 401        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 402                                      GFP_NOWAIT, 0, &op->bio);
 403}
 404
 405static void end_discard(struct discard_op *op, int r)
 406{
 407        if (op->bio) {
 408                /*
 409                 * Even if one of the calls to issue_discard failed, we
 410                 * need to wait for the chain to complete.
 411                 */
 412                bio_chain(op->bio, op->parent_bio);
 413                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 414                submit_bio(op->bio);
 415        }
 416
 417        blk_finish_plug(&op->plug);
 418
 419        /*
 420         * Even if r is set, there could be sub discards in flight that we
 421         * need to wait for.
 422         */
 423        if (r && !op->parent_bio->bi_status)
 424                op->parent_bio->bi_status = errno_to_blk_status(r);
 425        bio_endio(op->parent_bio);
 426}
 427
 428/*----------------------------------------------------------------*/
 429
 430/*
 431 * wake_worker() is used when new work is queued and when pool_resume is
 432 * ready to continue deferred IO processing.
 433 */
 434static void wake_worker(struct pool *pool)
 435{
 436        queue_work(pool->wq, &pool->worker);
 437}
 438
 439/*----------------------------------------------------------------*/
 440
 441static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 442                      struct dm_bio_prison_cell **cell_result)
 443{
 444        int r;
 445        struct dm_bio_prison_cell *cell_prealloc;
 446
 447        /*
 448         * Allocate a cell from the prison's mempool.
 449         * This might block but it can't fail.
 450         */
 451        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 452
 453        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 454        if (r)
 455                /*
 456                 * We reused an old cell; we can get rid of
 457                 * the new one.
 458                 */
 459                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 460
 461        return r;
 462}
 463
 464static void cell_release(struct pool *pool,
 465                         struct dm_bio_prison_cell *cell,
 466                         struct bio_list *bios)
 467{
 468        dm_cell_release(pool->prison, cell, bios);
 469        dm_bio_prison_free_cell(pool->prison, cell);
 470}
 471
 472static void cell_visit_release(struct pool *pool,
 473                               void (*fn)(void *, struct dm_bio_prison_cell *),
 474                               void *context,
 475                               struct dm_bio_prison_cell *cell)
 476{
 477        dm_cell_visit_release(pool->prison, fn, context, cell);
 478        dm_bio_prison_free_cell(pool->prison, cell);
 479}
 480
 481static void cell_release_no_holder(struct pool *pool,
 482                                   struct dm_bio_prison_cell *cell,
 483                                   struct bio_list *bios)
 484{
 485        dm_cell_release_no_holder(pool->prison, cell, bios);
 486        dm_bio_prison_free_cell(pool->prison, cell);
 487}
 488
 489static void cell_error_with_code(struct pool *pool,
 490                struct dm_bio_prison_cell *cell, blk_status_t error_code)
 491{
 492        dm_cell_error(pool->prison, cell, error_code);
 493        dm_bio_prison_free_cell(pool->prison, cell);
 494}
 495
 496static blk_status_t get_pool_io_error_code(struct pool *pool)
 497{
 498        return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 499}
 500
 501static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 502{
 503        cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 504}
 505
 506static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 507{
 508        cell_error_with_code(pool, cell, 0);
 509}
 510
 511static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 512{
 513        cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 514}
 515
 516/*----------------------------------------------------------------*/
 517
 518/*
 519 * A global list of pools that uses a struct mapped_device as a key.
 520 */
 521static struct dm_thin_pool_table {
 522        struct mutex mutex;
 523        struct list_head pools;
 524} dm_thin_pool_table;
 525
 526static void pool_table_init(void)
 527{
 528        mutex_init(&dm_thin_pool_table.mutex);
 529        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 530}
 531
 532static void pool_table_exit(void)
 533{
 534        mutex_destroy(&dm_thin_pool_table.mutex);
 535}
 536
 537static void __pool_table_insert(struct pool *pool)
 538{
 539        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 540        list_add(&pool->list, &dm_thin_pool_table.pools);
 541}
 542
 543static void __pool_table_remove(struct pool *pool)
 544{
 545        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 546        list_del(&pool->list);
 547}
 548
 549static struct pool *__pool_table_lookup(struct mapped_device *md)
 550{
 551        struct pool *pool = NULL, *tmp;
 552
 553        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 554
 555        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 556                if (tmp->pool_md == md) {
 557                        pool = tmp;
 558                        break;
 559                }
 560        }
 561
 562        return pool;
 563}
 564
 565static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 566{
 567        struct pool *pool = NULL, *tmp;
 568
 569        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 570
 571        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 572                if (tmp->md_dev == md_dev) {
 573                        pool = tmp;
 574                        break;
 575                }
 576        }
 577
 578        return pool;
 579}
 580
 581/*----------------------------------------------------------------*/
 582
 583struct dm_thin_endio_hook {
 584        struct thin_c *tc;
 585        struct dm_deferred_entry *shared_read_entry;
 586        struct dm_deferred_entry *all_io_entry;
 587        struct dm_thin_new_mapping *overwrite_mapping;
 588        struct rb_node rb_node;
 589        struct dm_bio_prison_cell *cell;
 590};
 591
 592static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 593{
 594        bio_list_merge(bios, master);
 595        bio_list_init(master);
 596}
 597
 598static void error_bio_list(struct bio_list *bios, blk_status_t error)
 599{
 600        struct bio *bio;
 601
 602        while ((bio = bio_list_pop(bios))) {
 603                bio->bi_status = error;
 604                bio_endio(bio);
 605        }
 606}
 607
 608static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 609                blk_status_t error)
 610{
 611        struct bio_list bios;
 612        unsigned long flags;
 613
 614        bio_list_init(&bios);
 615
 616        spin_lock_irqsave(&tc->lock, flags);
 617        __merge_bio_list(&bios, master);
 618        spin_unlock_irqrestore(&tc->lock, flags);
 619
 620        error_bio_list(&bios, error);
 621}
 622
 623static void requeue_deferred_cells(struct thin_c *tc)
 624{
 625        struct pool *pool = tc->pool;
 626        unsigned long flags;
 627        struct list_head cells;
 628        struct dm_bio_prison_cell *cell, *tmp;
 629
 630        INIT_LIST_HEAD(&cells);
 631
 632        spin_lock_irqsave(&tc->lock, flags);
 633        list_splice_init(&tc->deferred_cells, &cells);
 634        spin_unlock_irqrestore(&tc->lock, flags);
 635
 636        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 637                cell_requeue(pool, cell);
 638}
 639
 640static void requeue_io(struct thin_c *tc)
 641{
 642        struct bio_list bios;
 643        unsigned long flags;
 644
 645        bio_list_init(&bios);
 646
 647        spin_lock_irqsave(&tc->lock, flags);
 648        __merge_bio_list(&bios, &tc->deferred_bio_list);
 649        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 650        spin_unlock_irqrestore(&tc->lock, flags);
 651
 652        error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 653        requeue_deferred_cells(tc);
 654}
 655
 656static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 657{
 658        struct thin_c *tc;
 659
 660        rcu_read_lock();
 661        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 662                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 663        rcu_read_unlock();
 664}
 665
 666static void error_retry_list(struct pool *pool)
 667{
 668        error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 669}
 670
 671/*
 672 * This section of code contains the logic for processing a thin device's IO.
 673 * Much of the code depends on pool object resources (lists, workqueues, etc)
 674 * but most is exclusively called from the thin target rather than the thin-pool
 675 * target.
 676 */
 677
 678static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 679{
 680        struct pool *pool = tc->pool;
 681        sector_t block_nr = bio->bi_iter.bi_sector;
 682
 683        if (block_size_is_power_of_two(pool))
 684                block_nr >>= pool->sectors_per_block_shift;
 685        else
 686                (void) sector_div(block_nr, pool->sectors_per_block);
 687
 688        return block_nr;
 689}
 690
 691/*
 692 * Returns the _complete_ blocks that this bio covers.
 693 */
 694static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 695                                dm_block_t *begin, dm_block_t *end)
 696{
 697        struct pool *pool = tc->pool;
 698        sector_t b = bio->bi_iter.bi_sector;
 699        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 700
 701        b += pool->sectors_per_block - 1ull; /* so we round up */
 702
 703        if (block_size_is_power_of_two(pool)) {
 704                b >>= pool->sectors_per_block_shift;
 705                e >>= pool->sectors_per_block_shift;
 706        } else {
 707                (void) sector_div(b, pool->sectors_per_block);
 708                (void) sector_div(e, pool->sectors_per_block);
 709        }
 710
 711        if (e < b)
 712                /* Can happen if the bio is within a single block. */
 713                e = b;
 714
 715        *begin = b;
 716        *end = e;
 717}
 718
 719static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 720{
 721        struct pool *pool = tc->pool;
 722        sector_t bi_sector = bio->bi_iter.bi_sector;
 723
 724        bio_set_dev(bio, tc->pool_dev->bdev);
 725        if (block_size_is_power_of_two(pool))
 726                bio->bi_iter.bi_sector =
 727                        (block << pool->sectors_per_block_shift) |
 728                        (bi_sector & (pool->sectors_per_block - 1));
 729        else
 730                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 731                                 sector_div(bi_sector, pool->sectors_per_block);
 732}
 733
 734static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 735{
 736        bio_set_dev(bio, tc->origin_dev->bdev);
 737}
 738
 739static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 740{
 741        return op_is_flush(bio->bi_opf) &&
 742                dm_thin_changed_this_transaction(tc->td);
 743}
 744
 745static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 746{
 747        struct dm_thin_endio_hook *h;
 748
 749        if (bio_op(bio) == REQ_OP_DISCARD)
 750                return;
 751
 752        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 753        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 754}
 755
 756static void issue(struct thin_c *tc, struct bio *bio)
 757{
 758        struct pool *pool = tc->pool;
 759        unsigned long flags;
 760
 761        if (!bio_triggers_commit(tc, bio)) {
 762                generic_make_request(bio);
 763                return;
 764        }
 765
 766        /*
 767         * Complete bio with an error if earlier I/O caused changes to
 768         * the metadata that can't be committed e.g, due to I/O errors
 769         * on the metadata device.
 770         */
 771        if (dm_thin_aborted_changes(tc->td)) {
 772                bio_io_error(bio);
 773                return;
 774        }
 775
 776        /*
 777         * Batch together any bios that trigger commits and then issue a
 778         * single commit for them in process_deferred_bios().
 779         */
 780        spin_lock_irqsave(&pool->lock, flags);
 781        bio_list_add(&pool->deferred_flush_bios, bio);
 782        spin_unlock_irqrestore(&pool->lock, flags);
 783}
 784
 785static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 786{
 787        remap_to_origin(tc, bio);
 788        issue(tc, bio);
 789}
 790
 791static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 792                            dm_block_t block)
 793{
 794        remap(tc, bio, block);
 795        issue(tc, bio);
 796}
 797
 798/*----------------------------------------------------------------*/
 799
 800/*
 801 * Bio endio functions.
 802 */
 803struct dm_thin_new_mapping {
 804        struct list_head list;
 805
 806        bool pass_discard:1;
 807        bool maybe_shared:1;
 808
 809        /*
 810         * Track quiescing, copying and zeroing preparation actions.  When this
 811         * counter hits zero the block is prepared and can be inserted into the
 812         * btree.
 813         */
 814        atomic_t prepare_actions;
 815
 816        blk_status_t status;
 817        struct thin_c *tc;
 818        dm_block_t virt_begin, virt_end;
 819        dm_block_t data_block;
 820        struct dm_bio_prison_cell *cell;
 821
 822        /*
 823         * If the bio covers the whole area of a block then we can avoid
 824         * zeroing or copying.  Instead this bio is hooked.  The bio will
 825         * still be in the cell, so care has to be taken to avoid issuing
 826         * the bio twice.
 827         */
 828        struct bio *bio;
 829        bio_end_io_t *saved_bi_end_io;
 830};
 831
 832static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 833{
 834        struct pool *pool = m->tc->pool;
 835
 836        if (atomic_dec_and_test(&m->prepare_actions)) {
 837                list_add_tail(&m->list, &pool->prepared_mappings);
 838                wake_worker(pool);
 839        }
 840}
 841
 842static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 843{
 844        unsigned long flags;
 845        struct pool *pool = m->tc->pool;
 846
 847        spin_lock_irqsave(&pool->lock, flags);
 848        __complete_mapping_preparation(m);
 849        spin_unlock_irqrestore(&pool->lock, flags);
 850}
 851
 852static void copy_complete(int read_err, unsigned long write_err, void *context)
 853{
 854        struct dm_thin_new_mapping *m = context;
 855
 856        m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 857        complete_mapping_preparation(m);
 858}
 859
 860static void overwrite_endio(struct bio *bio)
 861{
 862        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 863        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 864
 865        bio->bi_end_io = m->saved_bi_end_io;
 866
 867        m->status = bio->bi_status;
 868        complete_mapping_preparation(m);
 869}
 870
 871/*----------------------------------------------------------------*/
 872
 873/*
 874 * Workqueue.
 875 */
 876
 877/*
 878 * Prepared mapping jobs.
 879 */
 880
 881/*
 882 * This sends the bios in the cell, except the original holder, back
 883 * to the deferred_bios list.
 884 */
 885static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 886{
 887        struct pool *pool = tc->pool;
 888        unsigned long flags;
 889
 890        spin_lock_irqsave(&tc->lock, flags);
 891        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 892        spin_unlock_irqrestore(&tc->lock, flags);
 893
 894        wake_worker(pool);
 895}
 896
 897static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 898
 899struct remap_info {
 900        struct thin_c *tc;
 901        struct bio_list defer_bios;
 902        struct bio_list issue_bios;
 903};
 904
 905static void __inc_remap_and_issue_cell(void *context,
 906                                       struct dm_bio_prison_cell *cell)
 907{
 908        struct remap_info *info = context;
 909        struct bio *bio;
 910
 911        while ((bio = bio_list_pop(&cell->bios))) {
 912                if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 913                        bio_list_add(&info->defer_bios, bio);
 914                else {
 915                        inc_all_io_entry(info->tc->pool, bio);
 916
 917                        /*
 918                         * We can't issue the bios with the bio prison lock
 919                         * held, so we add them to a list to issue on
 920                         * return from this function.
 921                         */
 922                        bio_list_add(&info->issue_bios, bio);
 923                }
 924        }
 925}
 926
 927static void inc_remap_and_issue_cell(struct thin_c *tc,
 928                                     struct dm_bio_prison_cell *cell,
 929                                     dm_block_t block)
 930{
 931        struct bio *bio;
 932        struct remap_info info;
 933
 934        info.tc = tc;
 935        bio_list_init(&info.defer_bios);
 936        bio_list_init(&info.issue_bios);
 937
 938        /*
 939         * We have to be careful to inc any bios we're about to issue
 940         * before the cell is released, and avoid a race with new bios
 941         * being added to the cell.
 942         */
 943        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 944                           &info, cell);
 945
 946        while ((bio = bio_list_pop(&info.defer_bios)))
 947                thin_defer_bio(tc, bio);
 948
 949        while ((bio = bio_list_pop(&info.issue_bios)))
 950                remap_and_issue(info.tc, bio, block);
 951}
 952
 953static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 954{
 955        cell_error(m->tc->pool, m->cell);
 956        list_del(&m->list);
 957        mempool_free(m, &m->tc->pool->mapping_pool);
 958}
 959
 960static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 961{
 962        struct pool *pool = tc->pool;
 963        unsigned long flags;
 964
 965        /*
 966         * If the bio has the REQ_FUA flag set we must commit the metadata
 967         * before signaling its completion.
 968         */
 969        if (!bio_triggers_commit(tc, bio)) {
 970                bio_endio(bio);
 971                return;
 972        }
 973
 974        /*
 975         * Complete bio with an error if earlier I/O caused changes to the
 976         * metadata that can't be committed, e.g, due to I/O errors on the
 977         * metadata device.
 978         */
 979        if (dm_thin_aborted_changes(tc->td)) {
 980                bio_io_error(bio);
 981                return;
 982        }
 983
 984        /*
 985         * Batch together any bios that trigger commits and then issue a
 986         * single commit for them in process_deferred_bios().
 987         */
 988        spin_lock_irqsave(&pool->lock, flags);
 989        bio_list_add(&pool->deferred_flush_completions, bio);
 990        spin_unlock_irqrestore(&pool->lock, flags);
 991}
 992
 993static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 994{
 995        struct thin_c *tc = m->tc;
 996        struct pool *pool = tc->pool;
 997        struct bio *bio = m->bio;
 998        int r;
 999
1000        if (m->status) {
1001                cell_error(pool, m->cell);
1002                goto out;
1003        }
1004
1005        /*
1006         * Commit the prepared block into the mapping btree.
1007         * Any I/O for this block arriving after this point will get
1008         * remapped to it directly.
1009         */
1010        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011        if (r) {
1012                metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013                cell_error(pool, m->cell);
1014                goto out;
1015        }
1016
1017        /*
1018         * Release any bios held while the block was being provisioned.
1019         * If we are processing a write bio that completely covers the block,
1020         * we already processed it so can ignore it now when processing
1021         * the bios in the cell.
1022         */
1023        if (bio) {
1024                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025                complete_overwrite_bio(tc, bio);
1026        } else {
1027                inc_all_io_entry(tc->pool, m->cell->holder);
1028                remap_and_issue(tc, m->cell->holder, m->data_block);
1029                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030        }
1031
1032out:
1033        list_del(&m->list);
1034        mempool_free(m, &pool->mapping_pool);
1035}
1036
1037/*----------------------------------------------------------------*/
1038
1039static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040{
1041        struct thin_c *tc = m->tc;
1042        if (m->cell)
1043                cell_defer_no_holder(tc, m->cell);
1044        mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049        bio_io_error(m->bio);
1050        free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055        bio_endio(m->bio);
1056        free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061        int r;
1062        struct thin_c *tc = m->tc;
1063
1064        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065        if (r) {
1066                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                bio_io_error(m->bio);
1068        } else
1069                bio_endio(m->bio);
1070
1071        cell_defer_no_holder(tc, m->cell);
1072        mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                   struct bio *discard_parent)
1079{
1080        /*
1081         * We've already unmapped this range of blocks, but before we
1082         * passdown we have to check that these blocks are now unused.
1083         */
1084        int r = 0;
1085        bool shared = true;
1086        struct thin_c *tc = m->tc;
1087        struct pool *pool = tc->pool;
1088        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089        struct discard_op op;
1090
1091        begin_discard(&op, tc, discard_parent);
1092        while (b != end) {
1093                /* find start of unmapped run */
1094                for (; b < end; b++) {
1095                        r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                        if (r)
1097                                goto out;
1098
1099                        if (!shared)
1100                                break;
1101                }
1102
1103                if (b == end)
1104                        break;
1105
1106                /* find end of run */
1107                for (e = b + 1; e != end; e++) {
1108                        r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                        if (r)
1110                                goto out;
1111
1112                        if (shared)
1113                                break;
1114                }
1115
1116                r = issue_discard(&op, b, e);
1117                if (r)
1118                        goto out;
1119
1120                b = e;
1121        }
1122out:
1123        end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128        unsigned long flags;
1129        struct pool *pool = m->tc->pool;
1130
1131        spin_lock_irqsave(&pool->lock, flags);
1132        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133        spin_unlock_irqrestore(&pool->lock, flags);
1134        wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139        /*
1140         * It doesn't matter if the passdown discard failed, we still want
1141         * to unmap (we ignore err).
1142         */
1143        queue_passdown_pt2(bio->bi_private);
1144        bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149        int r;
1150        struct thin_c *tc = m->tc;
1151        struct pool *pool = tc->pool;
1152        struct bio *discard_parent;
1153        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155        /*
1156         * Only this thread allocates blocks, so we can be sure that the
1157         * newly unmapped blocks will not be allocated before the end of
1158         * the function.
1159         */
1160        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161        if (r) {
1162                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                bio_io_error(m->bio);
1164                cell_defer_no_holder(tc, m->cell);
1165                mempool_free(m, &pool->mapping_pool);
1166                return;
1167        }
1168
1169        /*
1170         * Increment the unmapped blocks.  This prevents a race between the
1171         * passdown io and reallocation of freed blocks.
1172         */
1173        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174        if (r) {
1175                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                bio_io_error(m->bio);
1177                cell_defer_no_holder(tc, m->cell);
1178                mempool_free(m, &pool->mapping_pool);
1179                return;
1180        }
1181
1182        discard_parent = bio_alloc(GFP_NOIO, 1);
1183        if (!discard_parent) {
1184                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185                       dm_device_name(tc->pool->pool_md));
1186                queue_passdown_pt2(m);
1187
1188        } else {
1189                discard_parent->bi_end_io = passdown_endio;
1190                discard_parent->bi_private = m;
1191
1192                if (m->maybe_shared)
1193                        passdown_double_checking_shared_status(m, discard_parent);
1194                else {
1195                        struct discard_op op;
1196
1197                        begin_discard(&op, tc, discard_parent);
1198                        r = issue_discard(&op, m->data_block, data_end);
1199                        end_discard(&op, r);
1200                }
1201        }
1202}
1203
1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205{
1206        int r;
1207        struct thin_c *tc = m->tc;
1208        struct pool *pool = tc->pool;
1209
1210        /*
1211         * The passdown has completed, so now we can decrement all those
1212         * unmapped blocks.
1213         */
1214        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215                                   m->data_block + (m->virt_end - m->virt_begin));
1216        if (r) {
1217                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218                bio_io_error(m->bio);
1219        } else
1220                bio_endio(m->bio);
1221
1222        cell_defer_no_holder(tc, m->cell);
1223        mempool_free(m, &pool->mapping_pool);
1224}
1225
1226static void process_prepared(struct pool *pool, struct list_head *head,
1227                             process_mapping_fn *fn)
1228{
1229        unsigned long flags;
1230        struct list_head maps;
1231        struct dm_thin_new_mapping *m, *tmp;
1232
1233        INIT_LIST_HEAD(&maps);
1234        spin_lock_irqsave(&pool->lock, flags);
1235        list_splice_init(head, &maps);
1236        spin_unlock_irqrestore(&pool->lock, flags);
1237
1238        list_for_each_entry_safe(m, tmp, &maps, list)
1239                (*fn)(m);
1240}
1241
1242/*
1243 * Deferred bio jobs.
1244 */
1245static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246{
1247        return bio->bi_iter.bi_size ==
1248                (pool->sectors_per_block << SECTOR_SHIFT);
1249}
1250
1251static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252{
1253        return (bio_data_dir(bio) == WRITE) &&
1254                io_overlaps_block(pool, bio);
1255}
1256
1257static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258                               bio_end_io_t *fn)
1259{
1260        *save = bio->bi_end_io;
1261        bio->bi_end_io = fn;
1262}
1263
1264static int ensure_next_mapping(struct pool *pool)
1265{
1266        if (pool->next_mapping)
1267                return 0;
1268
1269        pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270
1271        return pool->next_mapping ? 0 : -ENOMEM;
1272}
1273
1274static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275{
1276        struct dm_thin_new_mapping *m = pool->next_mapping;
1277
1278        BUG_ON(!pool->next_mapping);
1279
1280        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281        INIT_LIST_HEAD(&m->list);
1282        m->bio = NULL;
1283
1284        pool->next_mapping = NULL;
1285
1286        return m;
1287}
1288
1289static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290                    sector_t begin, sector_t end)
1291{
1292        struct dm_io_region to;
1293
1294        to.bdev = tc->pool_dev->bdev;
1295        to.sector = begin;
1296        to.count = end - begin;
1297
1298        dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299}
1300
1301static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302                                      dm_block_t data_begin,
1303                                      struct dm_thin_new_mapping *m)
1304{
1305        struct pool *pool = tc->pool;
1306        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307
1308        h->overwrite_mapping = m;
1309        m->bio = bio;
1310        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311        inc_all_io_entry(pool, bio);
1312        remap_and_issue(tc, bio, data_begin);
1313}
1314
1315/*
1316 * A partial copy also needs to zero the uncopied region.
1317 */
1318static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319                          struct dm_dev *origin, dm_block_t data_origin,
1320                          dm_block_t data_dest,
1321                          struct dm_bio_prison_cell *cell, struct bio *bio,
1322                          sector_t len)
1323{
1324        struct pool *pool = tc->pool;
1325        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326
1327        m->tc = tc;
1328        m->virt_begin = virt_block;
1329        m->virt_end = virt_block + 1u;
1330        m->data_block = data_dest;
1331        m->cell = cell;
1332
1333        /*
1334         * quiesce action + copy action + an extra reference held for the
1335         * duration of this function (we may need to inc later for a
1336         * partial zero).
1337         */
1338        atomic_set(&m->prepare_actions, 3);
1339
1340        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341                complete_mapping_preparation(m); /* already quiesced */
1342
1343        /*
1344         * IO to pool_dev remaps to the pool target's data_dev.
1345         *
1346         * If the whole block of data is being overwritten, we can issue the
1347         * bio immediately. Otherwise we use kcopyd to clone the data first.
1348         */
1349        if (io_overwrites_block(pool, bio))
1350                remap_and_issue_overwrite(tc, bio, data_dest, m);
1351        else {
1352                struct dm_io_region from, to;
1353
1354                from.bdev = origin->bdev;
1355                from.sector = data_origin * pool->sectors_per_block;
1356                from.count = len;
1357
1358                to.bdev = tc->pool_dev->bdev;
1359                to.sector = data_dest * pool->sectors_per_block;
1360                to.count = len;
1361
1362                dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363                               0, copy_complete, m);
1364
1365                /*
1366                 * Do we need to zero a tail region?
1367                 */
1368                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369                        atomic_inc(&m->prepare_actions);
1370                        ll_zero(tc, m,
1371                                data_dest * pool->sectors_per_block + len,
1372                                (data_dest + 1) * pool->sectors_per_block);
1373                }
1374        }
1375
1376        complete_mapping_preparation(m); /* drop our ref */
1377}
1378
1379static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380                                   dm_block_t data_origin, dm_block_t data_dest,
1381                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1382{
1383        schedule_copy(tc, virt_block, tc->pool_dev,
1384                      data_origin, data_dest, cell, bio,
1385                      tc->pool->sectors_per_block);
1386}
1387
1388static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390                          struct bio *bio)
1391{
1392        struct pool *pool = tc->pool;
1393        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394
1395        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396        m->tc = tc;
1397        m->virt_begin = virt_block;
1398        m->virt_end = virt_block + 1u;
1399        m->data_block = data_block;
1400        m->cell = cell;
1401
1402        /*
1403         * If the whole block of data is being overwritten or we are not
1404         * zeroing pre-existing data, we can issue the bio immediately.
1405         * Otherwise we use kcopyd to zero the data first.
1406         */
1407        if (pool->pf.zero_new_blocks) {
1408                if (io_overwrites_block(pool, bio))
1409                        remap_and_issue_overwrite(tc, bio, data_block, m);
1410                else
1411                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1412                                (data_block + 1) * pool->sectors_per_block);
1413        } else
1414                process_prepared_mapping(m);
1415}
1416
1417static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418                                   dm_block_t data_dest,
1419                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1420{
1421        struct pool *pool = tc->pool;
1422        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424
1425        if (virt_block_end <= tc->origin_size)
1426                schedule_copy(tc, virt_block, tc->origin_dev,
1427                              virt_block, data_dest, cell, bio,
1428                              pool->sectors_per_block);
1429
1430        else if (virt_block_begin < tc->origin_size)
1431                schedule_copy(tc, virt_block, tc->origin_dev,
1432                              virt_block, data_dest, cell, bio,
1433                              tc->origin_size - virt_block_begin);
1434
1435        else
1436                schedule_zero(tc, virt_block, data_dest, cell, bio);
1437}
1438
1439static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440
1441static void requeue_bios(struct pool *pool);
1442
1443static bool is_read_only_pool_mode(enum pool_mode mode)
1444{
1445        return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446}
1447
1448static bool is_read_only(struct pool *pool)
1449{
1450        return is_read_only_pool_mode(get_pool_mode(pool));
1451}
1452
1453static void check_for_metadata_space(struct pool *pool)
1454{
1455        int r;
1456        const char *ooms_reason = NULL;
1457        dm_block_t nr_free;
1458
1459        r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460        if (r)
1461                ooms_reason = "Could not get free metadata blocks";
1462        else if (!nr_free)
1463                ooms_reason = "No free metadata blocks";
1464
1465        if (ooms_reason && !is_read_only(pool)) {
1466                DMERR("%s", ooms_reason);
1467                set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468        }
1469}
1470
1471static void check_for_data_space(struct pool *pool)
1472{
1473        int r;
1474        dm_block_t nr_free;
1475
1476        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477                return;
1478
1479        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480        if (r)
1481                return;
1482
1483        if (nr_free) {
1484                set_pool_mode(pool, PM_WRITE);
1485                requeue_bios(pool);
1486        }
1487}
1488
1489/*
1490 * A non-zero return indicates read_only or fail_io mode.
1491 * Many callers don't care about the return value.
1492 */
1493static int commit(struct pool *pool)
1494{
1495        int r;
1496
1497        if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498                return -EINVAL;
1499
1500        r = dm_pool_commit_metadata(pool->pmd);
1501        if (r)
1502                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503        else {
1504                check_for_metadata_space(pool);
1505                check_for_data_space(pool);
1506        }
1507
1508        return r;
1509}
1510
1511static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512{
1513        unsigned long flags;
1514
1515        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1516                DMWARN("%s: reached low water mark for data device: sending event.",
1517                       dm_device_name(pool->pool_md));
1518                spin_lock_irqsave(&pool->lock, flags);
1519                pool->low_water_triggered = true;
1520                spin_unlock_irqrestore(&pool->lock, flags);
1521                dm_table_event(pool->ti->table);
1522        }
1523}
1524
1525static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1526{
1527        int r;
1528        dm_block_t free_blocks;
1529        struct pool *pool = tc->pool;
1530
1531        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1532                return -EINVAL;
1533
1534        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1535        if (r) {
1536                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1537                return r;
1538        }
1539
1540        check_low_water_mark(pool, free_blocks);
1541
1542        if (!free_blocks) {
1543                /*
1544                 * Try to commit to see if that will free up some
1545                 * more space.
1546                 */
1547                r = commit(pool);
1548                if (r)
1549                        return r;
1550
1551                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1552                if (r) {
1553                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1554                        return r;
1555                }
1556
1557                if (!free_blocks) {
1558                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559                        return -ENOSPC;
1560                }
1561        }
1562
1563        r = dm_pool_alloc_data_block(pool->pmd, result);
1564        if (r) {
1565                if (r == -ENOSPC)
1566                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1567                else
1568                        metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1569                return r;
1570        }
1571
1572        r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1573        if (r) {
1574                metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1575                return r;
1576        }
1577
1578        if (!free_blocks) {
1579                /* Let's commit before we use up the metadata reserve. */
1580                r = commit(pool);
1581                if (r)
1582                        return r;
1583        }
1584
1585        return 0;
1586}
1587
1588/*
1589 * If we have run out of space, queue bios until the device is
1590 * resumed, presumably after having been reloaded with more space.
1591 */
1592static void retry_on_resume(struct bio *bio)
1593{
1594        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1595        struct thin_c *tc = h->tc;
1596        unsigned long flags;
1597
1598        spin_lock_irqsave(&tc->lock, flags);
1599        bio_list_add(&tc->retry_on_resume_list, bio);
1600        spin_unlock_irqrestore(&tc->lock, flags);
1601}
1602
1603static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1604{
1605        enum pool_mode m = get_pool_mode(pool);
1606
1607        switch (m) {
1608        case PM_WRITE:
1609                /* Shouldn't get here */
1610                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611                return BLK_STS_IOERR;
1612
1613        case PM_OUT_OF_DATA_SPACE:
1614                return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1615
1616        case PM_OUT_OF_METADATA_SPACE:
1617        case PM_READ_ONLY:
1618        case PM_FAIL:
1619                return BLK_STS_IOERR;
1620        default:
1621                /* Shouldn't get here */
1622                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623                return BLK_STS_IOERR;
1624        }
1625}
1626
1627static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1628{
1629        blk_status_t error = should_error_unserviceable_bio(pool);
1630
1631        if (error) {
1632                bio->bi_status = error;
1633                bio_endio(bio);
1634        } else
1635                retry_on_resume(bio);
1636}
1637
1638static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1639{
1640        struct bio *bio;
1641        struct bio_list bios;
1642        blk_status_t error;
1643
1644        error = should_error_unserviceable_bio(pool);
1645        if (error) {
1646                cell_error_with_code(pool, cell, error);
1647                return;
1648        }
1649
1650        bio_list_init(&bios);
1651        cell_release(pool, cell, &bios);
1652
1653        while ((bio = bio_list_pop(&bios)))
1654                retry_on_resume(bio);
1655}
1656
1657static void process_discard_cell_no_passdown(struct thin_c *tc,
1658                                             struct dm_bio_prison_cell *virt_cell)
1659{
1660        struct pool *pool = tc->pool;
1661        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1662
1663        /*
1664         * We don't need to lock the data blocks, since there's no
1665         * passdown.  We only lock data blocks for allocation and breaking sharing.
1666         */
1667        m->tc = tc;
1668        m->virt_begin = virt_cell->key.block_begin;
1669        m->virt_end = virt_cell->key.block_end;
1670        m->cell = virt_cell;
1671        m->bio = virt_cell->holder;
1672
1673        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1674                pool->process_prepared_discard(m);
1675}
1676
1677static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1678                                 struct bio *bio)
1679{
1680        struct pool *pool = tc->pool;
1681
1682        int r;
1683        bool maybe_shared;
1684        struct dm_cell_key data_key;
1685        struct dm_bio_prison_cell *data_cell;
1686        struct dm_thin_new_mapping *m;
1687        dm_block_t virt_begin, virt_end, data_begin;
1688
1689        while (begin != end) {
1690                r = ensure_next_mapping(pool);
1691                if (r)
1692                        /* we did our best */
1693                        return;
1694
1695                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1696                                              &data_begin, &maybe_shared);
1697                if (r)
1698                        /*
1699                         * Silently fail, letting any mappings we've
1700                         * created complete.
1701                         */
1702                        break;
1703
1704                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1705                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1706                        /* contention, we'll give up with this range */
1707                        begin = virt_end;
1708                        continue;
1709                }
1710
1711                /*
1712                 * IO may still be going to the destination block.  We must
1713                 * quiesce before we can do the removal.
1714                 */
1715                m = get_next_mapping(pool);
1716                m->tc = tc;
1717                m->maybe_shared = maybe_shared;
1718                m->virt_begin = virt_begin;
1719                m->virt_end = virt_end;
1720                m->data_block = data_begin;
1721                m->cell = data_cell;
1722                m->bio = bio;
1723
1724                /*
1725                 * The parent bio must not complete before sub discard bios are
1726                 * chained to it (see end_discard's bio_chain)!
1727                 *
1728                 * This per-mapping bi_remaining increment is paired with
1729                 * the implicit decrement that occurs via bio_endio() in
1730                 * end_discard().
1731                 */
1732                bio_inc_remaining(bio);
1733                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1734                        pool->process_prepared_discard(m);
1735
1736                begin = virt_end;
1737        }
1738}
1739
1740static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1741{
1742        struct bio *bio = virt_cell->holder;
1743        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1744
1745        /*
1746         * The virt_cell will only get freed once the origin bio completes.
1747         * This means it will remain locked while all the individual
1748         * passdown bios are in flight.
1749         */
1750        h->cell = virt_cell;
1751        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1752
1753        /*
1754         * We complete the bio now, knowing that the bi_remaining field
1755         * will prevent completion until the sub range discards have
1756         * completed.
1757         */
1758        bio_endio(bio);
1759}
1760
1761static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1762{
1763        dm_block_t begin, end;
1764        struct dm_cell_key virt_key;
1765        struct dm_bio_prison_cell *virt_cell;
1766
1767        get_bio_block_range(tc, bio, &begin, &end);
1768        if (begin == end) {
1769                /*
1770                 * The discard covers less than a block.
1771                 */
1772                bio_endio(bio);
1773                return;
1774        }
1775
1776        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1777        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1778                /*
1779                 * Potential starvation issue: We're relying on the
1780                 * fs/application being well behaved, and not trying to
1781                 * send IO to a region at the same time as discarding it.
1782                 * If they do this persistently then it's possible this
1783                 * cell will never be granted.
1784                 */
1785                return;
1786
1787        tc->pool->process_discard_cell(tc, virt_cell);
1788}
1789
1790static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791                          struct dm_cell_key *key,
1792                          struct dm_thin_lookup_result *lookup_result,
1793                          struct dm_bio_prison_cell *cell)
1794{
1795        int r;
1796        dm_block_t data_block;
1797        struct pool *pool = tc->pool;
1798
1799        r = alloc_data_block(tc, &data_block);
1800        switch (r) {
1801        case 0:
1802                schedule_internal_copy(tc, block, lookup_result->block,
1803                                       data_block, cell, bio);
1804                break;
1805
1806        case -ENOSPC:
1807                retry_bios_on_resume(pool, cell);
1808                break;
1809
1810        default:
1811                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812                            __func__, r);
1813                cell_error(pool, cell);
1814                break;
1815        }
1816}
1817
1818static void __remap_and_issue_shared_cell(void *context,
1819                                          struct dm_bio_prison_cell *cell)
1820{
1821        struct remap_info *info = context;
1822        struct bio *bio;
1823
1824        while ((bio = bio_list_pop(&cell->bios))) {
1825                if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1826                    bio_op(bio) == REQ_OP_DISCARD)
1827                        bio_list_add(&info->defer_bios, bio);
1828                else {
1829                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1830
1831                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1832                        inc_all_io_entry(info->tc->pool, bio);
1833                        bio_list_add(&info->issue_bios, bio);
1834                }
1835        }
1836}
1837
1838static void remap_and_issue_shared_cell(struct thin_c *tc,
1839                                        struct dm_bio_prison_cell *cell,
1840                                        dm_block_t block)
1841{
1842        struct bio *bio;
1843        struct remap_info info;
1844
1845        info.tc = tc;
1846        bio_list_init(&info.defer_bios);
1847        bio_list_init(&info.issue_bios);
1848
1849        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1850                           &info, cell);
1851
1852        while ((bio = bio_list_pop(&info.defer_bios)))
1853                thin_defer_bio(tc, bio);
1854
1855        while ((bio = bio_list_pop(&info.issue_bios)))
1856                remap_and_issue(tc, bio, block);
1857}
1858
1859static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1860                               dm_block_t block,
1861                               struct dm_thin_lookup_result *lookup_result,
1862                               struct dm_bio_prison_cell *virt_cell)
1863{
1864        struct dm_bio_prison_cell *data_cell;
1865        struct pool *pool = tc->pool;
1866        struct dm_cell_key key;
1867
1868        /*
1869         * If cell is already occupied, then sharing is already in the process
1870         * of being broken so we have nothing further to do here.
1871         */
1872        build_data_key(tc->td, lookup_result->block, &key);
1873        if (bio_detain(pool, &key, bio, &data_cell)) {
1874                cell_defer_no_holder(tc, virt_cell);
1875                return;
1876        }
1877
1878        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1879                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1880                cell_defer_no_holder(tc, virt_cell);
1881        } else {
1882                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1883
1884                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1885                inc_all_io_entry(pool, bio);
1886                remap_and_issue(tc, bio, lookup_result->block);
1887
1888                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1889                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890        }
1891}
1892
1893static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1894                            struct dm_bio_prison_cell *cell)
1895{
1896        int r;
1897        dm_block_t data_block;
1898        struct pool *pool = tc->pool;
1899
1900        /*
1901         * Remap empty bios (flushes) immediately, without provisioning.
1902         */
1903        if (!bio->bi_iter.bi_size) {
1904                inc_all_io_entry(pool, bio);
1905                cell_defer_no_holder(tc, cell);
1906
1907                remap_and_issue(tc, bio, 0);
1908                return;
1909        }
1910
1911        /*
1912         * Fill read bios with zeroes and complete them immediately.
1913         */
1914        if (bio_data_dir(bio) == READ) {
1915                zero_fill_bio(bio);
1916                cell_defer_no_holder(tc, cell);
1917                bio_endio(bio);
1918                return;
1919        }
1920
1921        r = alloc_data_block(tc, &data_block);
1922        switch (r) {
1923        case 0:
1924                if (tc->origin_dev)
1925                        schedule_external_copy(tc, block, data_block, cell, bio);
1926                else
1927                        schedule_zero(tc, block, data_block, cell, bio);
1928                break;
1929
1930        case -ENOSPC:
1931                retry_bios_on_resume(pool, cell);
1932                break;
1933
1934        default:
1935                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1936                            __func__, r);
1937                cell_error(pool, cell);
1938                break;
1939        }
1940}
1941
1942static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943{
1944        int r;
1945        struct pool *pool = tc->pool;
1946        struct bio *bio = cell->holder;
1947        dm_block_t block = get_bio_block(tc, bio);
1948        struct dm_thin_lookup_result lookup_result;
1949
1950        if (tc->requeue_mode) {
1951                cell_requeue(pool, cell);
1952                return;
1953        }
1954
1955        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1956        switch (r) {
1957        case 0:
1958                if (lookup_result.shared)
1959                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1960                else {
1961                        inc_all_io_entry(pool, bio);
1962                        remap_and_issue(tc, bio, lookup_result.block);
1963                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1964                }
1965                break;
1966
1967        case -ENODATA:
1968                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1969                        inc_all_io_entry(pool, bio);
1970                        cell_defer_no_holder(tc, cell);
1971
1972                        if (bio_end_sector(bio) <= tc->origin_size)
1973                                remap_to_origin_and_issue(tc, bio);
1974
1975                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1976                                zero_fill_bio(bio);
1977                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1978                                remap_to_origin_and_issue(tc, bio);
1979
1980                        } else {
1981                                zero_fill_bio(bio);
1982                                bio_endio(bio);
1983                        }
1984                } else
1985                        provision_block(tc, bio, block, cell);
1986                break;
1987
1988        default:
1989                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1990                            __func__, r);
1991                cell_defer_no_holder(tc, cell);
1992                bio_io_error(bio);
1993                break;
1994        }
1995}
1996
1997static void process_bio(struct thin_c *tc, struct bio *bio)
1998{
1999        struct pool *pool = tc->pool;
2000        dm_block_t block = get_bio_block(tc, bio);
2001        struct dm_bio_prison_cell *cell;
2002        struct dm_cell_key key;
2003
2004        /*
2005         * If cell is already occupied, then the block is already
2006         * being provisioned so we have nothing further to do here.
2007         */
2008        build_virtual_key(tc->td, block, &key);
2009        if (bio_detain(pool, &key, bio, &cell))
2010                return;
2011
2012        process_cell(tc, cell);
2013}
2014
2015static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2016                                    struct dm_bio_prison_cell *cell)
2017{
2018        int r;
2019        int rw = bio_data_dir(bio);
2020        dm_block_t block = get_bio_block(tc, bio);
2021        struct dm_thin_lookup_result lookup_result;
2022
2023        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2024        switch (r) {
2025        case 0:
2026                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2027                        handle_unserviceable_bio(tc->pool, bio);
2028                        if (cell)
2029                                cell_defer_no_holder(tc, cell);
2030                } else {
2031                        inc_all_io_entry(tc->pool, bio);
2032                        remap_and_issue(tc, bio, lookup_result.block);
2033                        if (cell)
2034                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2035                }
2036                break;
2037
2038        case -ENODATA:
2039                if (cell)
2040                        cell_defer_no_holder(tc, cell);
2041                if (rw != READ) {
2042                        handle_unserviceable_bio(tc->pool, bio);
2043                        break;
2044                }
2045
2046                if (tc->origin_dev) {
2047                        inc_all_io_entry(tc->pool, bio);
2048                        remap_to_origin_and_issue(tc, bio);
2049                        break;
2050                }
2051
2052                zero_fill_bio(bio);
2053                bio_endio(bio);
2054                break;
2055
2056        default:
2057                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2058                            __func__, r);
2059                if (cell)
2060                        cell_defer_no_holder(tc, cell);
2061                bio_io_error(bio);
2062                break;
2063        }
2064}
2065
2066static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2067{
2068        __process_bio_read_only(tc, bio, NULL);
2069}
2070
2071static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072{
2073        __process_bio_read_only(tc, cell->holder, cell);
2074}
2075
2076static void process_bio_success(struct thin_c *tc, struct bio *bio)
2077{
2078        bio_endio(bio);
2079}
2080
2081static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2082{
2083        bio_io_error(bio);
2084}
2085
2086static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087{
2088        cell_success(tc->pool, cell);
2089}
2090
2091static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2092{
2093        cell_error(tc->pool, cell);
2094}
2095
2096/*
2097 * FIXME: should we also commit due to size of transaction, measured in
2098 * metadata blocks?
2099 */
2100static int need_commit_due_to_time(struct pool *pool)
2101{
2102        return !time_in_range(jiffies, pool->last_commit_jiffies,
2103                              pool->last_commit_jiffies + COMMIT_PERIOD);
2104}
2105
2106#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2108
2109static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2110{
2111        struct rb_node **rbp, *parent;
2112        struct dm_thin_endio_hook *pbd;
2113        sector_t bi_sector = bio->bi_iter.bi_sector;
2114
2115        rbp = &tc->sort_bio_list.rb_node;
2116        parent = NULL;
2117        while (*rbp) {
2118                parent = *rbp;
2119                pbd = thin_pbd(parent);
2120
2121                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2122                        rbp = &(*rbp)->rb_left;
2123                else
2124                        rbp = &(*rbp)->rb_right;
2125        }
2126
2127        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2128        rb_link_node(&pbd->rb_node, parent, rbp);
2129        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2130}
2131
2132static void __extract_sorted_bios(struct thin_c *tc)
2133{
2134        struct rb_node *node;
2135        struct dm_thin_endio_hook *pbd;
2136        struct bio *bio;
2137
2138        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2139                pbd = thin_pbd(node);
2140                bio = thin_bio(pbd);
2141
2142                bio_list_add(&tc->deferred_bio_list, bio);
2143                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2144        }
2145
2146        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2147}
2148
2149static void __sort_thin_deferred_bios(struct thin_c *tc)
2150{
2151        struct bio *bio;
2152        struct bio_list bios;
2153
2154        bio_list_init(&bios);
2155        bio_list_merge(&bios, &tc->deferred_bio_list);
2156        bio_list_init(&tc->deferred_bio_list);
2157
2158        /* Sort deferred_bio_list using rb-tree */
2159        while ((bio = bio_list_pop(&bios)))
2160                __thin_bio_rb_add(tc, bio);
2161
2162        /*
2163         * Transfer the sorted bios in sort_bio_list back to
2164         * deferred_bio_list to allow lockless submission of
2165         * all bios.
2166         */
2167        __extract_sorted_bios(tc);
2168}
2169
2170static void process_thin_deferred_bios(struct thin_c *tc)
2171{
2172        struct pool *pool = tc->pool;
2173        unsigned long flags;
2174        struct bio *bio;
2175        struct bio_list bios;
2176        struct blk_plug plug;
2177        unsigned count = 0;
2178
2179        if (tc->requeue_mode) {
2180                error_thin_bio_list(tc, &tc->deferred_bio_list,
2181                                BLK_STS_DM_REQUEUE);
2182                return;
2183        }
2184
2185        bio_list_init(&bios);
2186
2187        spin_lock_irqsave(&tc->lock, flags);
2188
2189        if (bio_list_empty(&tc->deferred_bio_list)) {
2190                spin_unlock_irqrestore(&tc->lock, flags);
2191                return;
2192        }
2193
2194        __sort_thin_deferred_bios(tc);
2195
2196        bio_list_merge(&bios, &tc->deferred_bio_list);
2197        bio_list_init(&tc->deferred_bio_list);
2198
2199        spin_unlock_irqrestore(&tc->lock, flags);
2200
2201        blk_start_plug(&plug);
2202        while ((bio = bio_list_pop(&bios))) {
2203                /*
2204                 * If we've got no free new_mapping structs, and processing
2205                 * this bio might require one, we pause until there are some
2206                 * prepared mappings to process.
2207                 */
2208                if (ensure_next_mapping(pool)) {
2209                        spin_lock_irqsave(&tc->lock, flags);
2210                        bio_list_add(&tc->deferred_bio_list, bio);
2211                        bio_list_merge(&tc->deferred_bio_list, &bios);
2212                        spin_unlock_irqrestore(&tc->lock, flags);
2213                        break;
2214                }
2215
2216                if (bio_op(bio) == REQ_OP_DISCARD)
2217                        pool->process_discard(tc, bio);
2218                else
2219                        pool->process_bio(tc, bio);
2220
2221                if ((count++ & 127) == 0) {
2222                        throttle_work_update(&pool->throttle);
2223                        dm_pool_issue_prefetches(pool->pmd);
2224                }
2225        }
2226        blk_finish_plug(&plug);
2227}
2228
2229static int cmp_cells(const void *lhs, const void *rhs)
2230{
2231        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2232        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2233
2234        BUG_ON(!lhs_cell->holder);
2235        BUG_ON(!rhs_cell->holder);
2236
2237        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2238                return -1;
2239
2240        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2241                return 1;
2242
2243        return 0;
2244}
2245
2246static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2247{
2248        unsigned count = 0;
2249        struct dm_bio_prison_cell *cell, *tmp;
2250
2251        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2252                if (count >= CELL_SORT_ARRAY_SIZE)
2253                        break;
2254
2255                pool->cell_sort_array[count++] = cell;
2256                list_del(&cell->user_list);
2257        }
2258
2259        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2260
2261        return count;
2262}
2263
2264static void process_thin_deferred_cells(struct thin_c *tc)
2265{
2266        struct pool *pool = tc->pool;
2267        unsigned long flags;
2268        struct list_head cells;
2269        struct dm_bio_prison_cell *cell;
2270        unsigned i, j, count;
2271
2272        INIT_LIST_HEAD(&cells);
2273
2274        spin_lock_irqsave(&tc->lock, flags);
2275        list_splice_init(&tc->deferred_cells, &cells);
2276        spin_unlock_irqrestore(&tc->lock, flags);
2277
2278        if (list_empty(&cells))
2279                return;
2280
2281        do {
2282                count = sort_cells(tc->pool, &cells);
2283
2284                for (i = 0; i < count; i++) {
2285                        cell = pool->cell_sort_array[i];
2286                        BUG_ON(!cell->holder);
2287
2288                        /*
2289                         * If we've got no free new_mapping structs, and processing
2290                         * this bio might require one, we pause until there are some
2291                         * prepared mappings to process.
2292                         */
2293                        if (ensure_next_mapping(pool)) {
2294                                for (j = i; j < count; j++)
2295                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2296
2297                                spin_lock_irqsave(&tc->lock, flags);
2298                                list_splice(&cells, &tc->deferred_cells);
2299                                spin_unlock_irqrestore(&tc->lock, flags);
2300                                return;
2301                        }
2302
2303                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2304                                pool->process_discard_cell(tc, cell);
2305                        else
2306                                pool->process_cell(tc, cell);
2307                }
2308        } while (!list_empty(&cells));
2309}
2310
2311static void thin_get(struct thin_c *tc);
2312static void thin_put(struct thin_c *tc);
2313
2314/*
2315 * We can't hold rcu_read_lock() around code that can block.  So we
2316 * find a thin with the rcu lock held; bump a refcount; then drop
2317 * the lock.
2318 */
2319static struct thin_c *get_first_thin(struct pool *pool)
2320{
2321        struct thin_c *tc = NULL;
2322
2323        rcu_read_lock();
2324        if (!list_empty(&pool->active_thins)) {
2325                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2326                thin_get(tc);
2327        }
2328        rcu_read_unlock();
2329
2330        return tc;
2331}
2332
2333static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2334{
2335        struct thin_c *old_tc = tc;
2336
2337        rcu_read_lock();
2338        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2339                thin_get(tc);
2340                thin_put(old_tc);
2341                rcu_read_unlock();
2342                return tc;
2343        }
2344        thin_put(old_tc);
2345        rcu_read_unlock();
2346
2347        return NULL;
2348}
2349
2350static void process_deferred_bios(struct pool *pool)
2351{
2352        unsigned long flags;
2353        struct bio *bio;
2354        struct bio_list bios, bio_completions;
2355        struct thin_c *tc;
2356
2357        tc = get_first_thin(pool);
2358        while (tc) {
2359                process_thin_deferred_cells(tc);
2360                process_thin_deferred_bios(tc);
2361                tc = get_next_thin(pool, tc);
2362        }
2363
2364        /*
2365         * If there are any deferred flush bios, we must commit the metadata
2366         * before issuing them or signaling their completion.
2367         */
2368        bio_list_init(&bios);
2369        bio_list_init(&bio_completions);
2370
2371        spin_lock_irqsave(&pool->lock, flags);
2372        bio_list_merge(&bios, &pool->deferred_flush_bios);
2373        bio_list_init(&pool->deferred_flush_bios);
2374
2375        bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2376        bio_list_init(&pool->deferred_flush_completions);
2377        spin_unlock_irqrestore(&pool->lock, flags);
2378
2379        if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2380            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2381                return;
2382
2383        if (commit(pool)) {
2384                bio_list_merge(&bios, &bio_completions);
2385
2386                while ((bio = bio_list_pop(&bios)))
2387                        bio_io_error(bio);
2388                return;
2389        }
2390        pool->last_commit_jiffies = jiffies;
2391
2392        while ((bio = bio_list_pop(&bio_completions)))
2393                bio_endio(bio);
2394
2395        while ((bio = bio_list_pop(&bios)))
2396                generic_make_request(bio);
2397}
2398
2399static void do_worker(struct work_struct *ws)
2400{
2401        struct pool *pool = container_of(ws, struct pool, worker);
2402
2403        throttle_work_start(&pool->throttle);
2404        dm_pool_issue_prefetches(pool->pmd);
2405        throttle_work_update(&pool->throttle);
2406        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407        throttle_work_update(&pool->throttle);
2408        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409        throttle_work_update(&pool->throttle);
2410        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411        throttle_work_update(&pool->throttle);
2412        process_deferred_bios(pool);
2413        throttle_work_complete(&pool->throttle);
2414}
2415
2416/*
2417 * We want to commit periodically so that not too much
2418 * unwritten data builds up.
2419 */
2420static void do_waker(struct work_struct *ws)
2421{
2422        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423        wake_worker(pool);
2424        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2425}
2426
2427/*
2428 * We're holding onto IO to allow userland time to react.  After the
2429 * timeout either the pool will have been resized (and thus back in
2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2431 */
2432static void do_no_space_timeout(struct work_struct *ws)
2433{
2434        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435                                         no_space_timeout);
2436
2437        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438                pool->pf.error_if_no_space = true;
2439                notify_of_pool_mode_change(pool);
2440                error_retry_list_with_code(pool, BLK_STS_NOSPC);
2441        }
2442}
2443
2444/*----------------------------------------------------------------*/
2445
2446struct pool_work {
2447        struct work_struct worker;
2448        struct completion complete;
2449};
2450
2451static struct pool_work *to_pool_work(struct work_struct *ws)
2452{
2453        return container_of(ws, struct pool_work, worker);
2454}
2455
2456static void pool_work_complete(struct pool_work *pw)
2457{
2458        complete(&pw->complete);
2459}
2460
2461static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462                           void (*fn)(struct work_struct *))
2463{
2464        INIT_WORK_ONSTACK(&pw->worker, fn);
2465        init_completion(&pw->complete);
2466        queue_work(pool->wq, &pw->worker);
2467        wait_for_completion(&pw->complete);
2468}
2469
2470/*----------------------------------------------------------------*/
2471
2472struct noflush_work {
2473        struct pool_work pw;
2474        struct thin_c *tc;
2475};
2476
2477static struct noflush_work *to_noflush(struct work_struct *ws)
2478{
2479        return container_of(to_pool_work(ws), struct noflush_work, pw);
2480}
2481
2482static void do_noflush_start(struct work_struct *ws)
2483{
2484        struct noflush_work *w = to_noflush(ws);
2485        w->tc->requeue_mode = true;
2486        requeue_io(w->tc);
2487        pool_work_complete(&w->pw);
2488}
2489
2490static void do_noflush_stop(struct work_struct *ws)
2491{
2492        struct noflush_work *w = to_noflush(ws);
2493        w->tc->requeue_mode = false;
2494        pool_work_complete(&w->pw);
2495}
2496
2497static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2498{
2499        struct noflush_work w;
2500
2501        w.tc = tc;
2502        pool_work_wait(&w.pw, tc->pool, fn);
2503}
2504
2505/*----------------------------------------------------------------*/
2506
2507static bool passdown_enabled(struct pool_c *pt)
2508{
2509        return pt->adjusted_pf.discard_passdown;
2510}
2511
2512static void set_discard_callbacks(struct pool *pool)
2513{
2514        struct pool_c *pt = pool->ti->private;
2515
2516        if (passdown_enabled(pt)) {
2517                pool->process_discard_cell = process_discard_cell_passdown;
2518                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520        } else {
2521                pool->process_discard_cell = process_discard_cell_no_passdown;
2522                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2523        }
2524}
2525
2526static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2527{
2528        struct pool_c *pt = pool->ti->private;
2529        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530        enum pool_mode old_mode = get_pool_mode(pool);
2531        unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2532
2533        /*
2534         * Never allow the pool to transition to PM_WRITE mode if user
2535         * intervention is required to verify metadata and data consistency.
2536         */
2537        if (new_mode == PM_WRITE && needs_check) {
2538                DMERR("%s: unable to switch pool to write mode until repaired.",
2539                      dm_device_name(pool->pool_md));
2540                if (old_mode != new_mode)
2541                        new_mode = old_mode;
2542                else
2543                        new_mode = PM_READ_ONLY;
2544        }
2545        /*
2546         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2547         * not going to recover without a thin_repair.  So we never let the
2548         * pool move out of the old mode.
2549         */
2550        if (old_mode == PM_FAIL)
2551                new_mode = old_mode;
2552
2553        switch (new_mode) {
2554        case PM_FAIL:
2555                dm_pool_metadata_read_only(pool->pmd);
2556                pool->process_bio = process_bio_fail;
2557                pool->process_discard = process_bio_fail;
2558                pool->process_cell = process_cell_fail;
2559                pool->process_discard_cell = process_cell_fail;
2560                pool->process_prepared_mapping = process_prepared_mapping_fail;
2561                pool->process_prepared_discard = process_prepared_discard_fail;
2562
2563                error_retry_list(pool);
2564                break;
2565
2566        case PM_OUT_OF_METADATA_SPACE:
2567        case PM_READ_ONLY:
2568                dm_pool_metadata_read_only(pool->pmd);
2569                pool->process_bio = process_bio_read_only;
2570                pool->process_discard = process_bio_success;
2571                pool->process_cell = process_cell_read_only;
2572                pool->process_discard_cell = process_cell_success;
2573                pool->process_prepared_mapping = process_prepared_mapping_fail;
2574                pool->process_prepared_discard = process_prepared_discard_success;
2575
2576                error_retry_list(pool);
2577                break;
2578
2579        case PM_OUT_OF_DATA_SPACE:
2580                /*
2581                 * Ideally we'd never hit this state; the low water mark
2582                 * would trigger userland to extend the pool before we
2583                 * completely run out of data space.  However, many small
2584                 * IOs to unprovisioned space can consume data space at an
2585                 * alarming rate.  Adjust your low water mark if you're
2586                 * frequently seeing this mode.
2587                 */
2588                pool->out_of_data_space = true;
2589                pool->process_bio = process_bio_read_only;
2590                pool->process_discard = process_discard_bio;
2591                pool->process_cell = process_cell_read_only;
2592                pool->process_prepared_mapping = process_prepared_mapping;
2593                set_discard_callbacks(pool);
2594
2595                if (!pool->pf.error_if_no_space && no_space_timeout)
2596                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597                break;
2598
2599        case PM_WRITE:
2600                if (old_mode == PM_OUT_OF_DATA_SPACE)
2601                        cancel_delayed_work_sync(&pool->no_space_timeout);
2602                pool->out_of_data_space = false;
2603                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604                dm_pool_metadata_read_write(pool->pmd);
2605                pool->process_bio = process_bio;
2606                pool->process_discard = process_discard_bio;
2607                pool->process_cell = process_cell;
2608                pool->process_prepared_mapping = process_prepared_mapping;
2609                set_discard_callbacks(pool);
2610                break;
2611        }
2612
2613        pool->pf.mode = new_mode;
2614        /*
2615         * The pool mode may have changed, sync it so bind_control_target()
2616         * doesn't cause an unexpected mode transition on resume.
2617         */
2618        pt->adjusted_pf.mode = new_mode;
2619
2620        if (old_mode != new_mode)
2621                notify_of_pool_mode_change(pool);
2622}
2623
2624static void abort_transaction(struct pool *pool)
2625{
2626        const char *dev_name = dm_device_name(pool->pool_md);
2627
2628        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629        if (dm_pool_abort_metadata(pool->pmd)) {
2630                DMERR("%s: failed to abort metadata transaction", dev_name);
2631                set_pool_mode(pool, PM_FAIL);
2632        }
2633
2634        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636                set_pool_mode(pool, PM_FAIL);
2637        }
2638}
2639
2640static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2641{
2642        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643                    dm_device_name(pool->pool_md), op, r);
2644
2645        abort_transaction(pool);
2646        set_pool_mode(pool, PM_READ_ONLY);
2647}
2648
2649/*----------------------------------------------------------------*/
2650
2651/*
2652 * Mapping functions.
2653 */
2654
2655/*
2656 * Called only while mapping a thin bio to hand it over to the workqueue.
2657 */
2658static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2659{
2660        unsigned long flags;
2661        struct pool *pool = tc->pool;
2662
2663        spin_lock_irqsave(&tc->lock, flags);
2664        bio_list_add(&tc->deferred_bio_list, bio);
2665        spin_unlock_irqrestore(&tc->lock, flags);
2666
2667        wake_worker(pool);
2668}
2669
2670static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671{
2672        struct pool *pool = tc->pool;
2673
2674        throttle_lock(&pool->throttle);
2675        thin_defer_bio(tc, bio);
2676        throttle_unlock(&pool->throttle);
2677}
2678
2679static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680{
2681        unsigned long flags;
2682        struct pool *pool = tc->pool;
2683
2684        throttle_lock(&pool->throttle);
2685        spin_lock_irqsave(&tc->lock, flags);
2686        list_add_tail(&cell->user_list, &tc->deferred_cells);
2687        spin_unlock_irqrestore(&tc->lock, flags);
2688        throttle_unlock(&pool->throttle);
2689
2690        wake_worker(pool);
2691}
2692
2693static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694{
2695        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696
2697        h->tc = tc;
2698        h->shared_read_entry = NULL;
2699        h->all_io_entry = NULL;
2700        h->overwrite_mapping = NULL;
2701        h->cell = NULL;
2702}
2703
2704/*
2705 * Non-blocking function called from the thin target's map function.
2706 */
2707static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708{
2709        int r;
2710        struct thin_c *tc = ti->private;
2711        dm_block_t block = get_bio_block(tc, bio);
2712        struct dm_thin_device *td = tc->td;
2713        struct dm_thin_lookup_result result;
2714        struct dm_bio_prison_cell *virt_cell, *data_cell;
2715        struct dm_cell_key key;
2716
2717        thin_hook_bio(tc, bio);
2718
2719        if (tc->requeue_mode) {
2720                bio->bi_status = BLK_STS_DM_REQUEUE;
2721                bio_endio(bio);
2722                return DM_MAPIO_SUBMITTED;
2723        }
2724
2725        if (get_pool_mode(tc->pool) == PM_FAIL) {
2726                bio_io_error(bio);
2727                return DM_MAPIO_SUBMITTED;
2728        }
2729
2730        if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731                thin_defer_bio_with_throttle(tc, bio);
2732                return DM_MAPIO_SUBMITTED;
2733        }
2734
2735        /*
2736         * We must hold the virtual cell before doing the lookup, otherwise
2737         * there's a race with discard.
2738         */
2739        build_virtual_key(tc->td, block, &key);
2740        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741                return DM_MAPIO_SUBMITTED;
2742
2743        r = dm_thin_find_block(td, block, 0, &result);
2744
2745        /*
2746         * Note that we defer readahead too.
2747         */
2748        switch (r) {
2749        case 0:
2750                if (unlikely(result.shared)) {
2751                        /*
2752                         * We have a race condition here between the
2753                         * result.shared value returned by the lookup and
2754                         * snapshot creation, which may cause new
2755                         * sharing.
2756                         *
2757                         * To avoid this always quiesce the origin before
2758                         * taking the snap.  You want to do this anyway to
2759                         * ensure a consistent application view
2760                         * (i.e. lockfs).
2761                         *
2762                         * More distant ancestors are irrelevant. The
2763                         * shared flag will be set in their case.
2764                         */
2765                        thin_defer_cell(tc, virt_cell);
2766                        return DM_MAPIO_SUBMITTED;
2767                }
2768
2769                build_data_key(tc->td, result.block, &key);
2770                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771                        cell_defer_no_holder(tc, virt_cell);
2772                        return DM_MAPIO_SUBMITTED;
2773                }
2774
2775                inc_all_io_entry(tc->pool, bio);
2776                cell_defer_no_holder(tc, data_cell);
2777                cell_defer_no_holder(tc, virt_cell);
2778
2779                remap(tc, bio, result.block);
2780                return DM_MAPIO_REMAPPED;
2781
2782        case -ENODATA:
2783        case -EWOULDBLOCK:
2784                thin_defer_cell(tc, virt_cell);
2785                return DM_MAPIO_SUBMITTED;
2786
2787        default:
2788                /*
2789                 * Must always call bio_io_error on failure.
2790                 * dm_thin_find_block can fail with -EINVAL if the
2791                 * pool is switched to fail-io mode.
2792                 */
2793                bio_io_error(bio);
2794                cell_defer_no_holder(tc, virt_cell);
2795                return DM_MAPIO_SUBMITTED;
2796        }
2797}
2798
2799static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800{
2801        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802        struct request_queue *q;
2803
2804        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805                return 1;
2806
2807        q = bdev_get_queue(pt->data_dev->bdev);
2808        return bdi_congested(q->backing_dev_info, bdi_bits);
2809}
2810
2811static void requeue_bios(struct pool *pool)
2812{
2813        unsigned long flags;
2814        struct thin_c *tc;
2815
2816        rcu_read_lock();
2817        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2818                spin_lock_irqsave(&tc->lock, flags);
2819                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2820                bio_list_init(&tc->retry_on_resume_list);
2821                spin_unlock_irqrestore(&tc->lock, flags);
2822        }
2823        rcu_read_unlock();
2824}
2825
2826/*----------------------------------------------------------------
2827 * Binding of control targets to a pool object
2828 *--------------------------------------------------------------*/
2829static bool data_dev_supports_discard(struct pool_c *pt)
2830{
2831        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2832
2833        return q && blk_queue_discard(q);
2834}
2835
2836static bool is_factor(sector_t block_size, uint32_t n)
2837{
2838        return !sector_div(block_size, n);
2839}
2840
2841/*
2842 * If discard_passdown was enabled verify that the data device
2843 * supports discards.  Disable discard_passdown if not.
2844 */
2845static void disable_passdown_if_not_supported(struct pool_c *pt)
2846{
2847        struct pool *pool = pt->pool;
2848        struct block_device *data_bdev = pt->data_dev->bdev;
2849        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2850        const char *reason = NULL;
2851        char buf[BDEVNAME_SIZE];
2852
2853        if (!pt->adjusted_pf.discard_passdown)
2854                return;
2855
2856        if (!data_dev_supports_discard(pt))
2857                reason = "discard unsupported";
2858
2859        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2860                reason = "max discard sectors smaller than a block";
2861
2862        if (reason) {
2863                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2864                pt->adjusted_pf.discard_passdown = false;
2865        }
2866}
2867
2868static int bind_control_target(struct pool *pool, struct dm_target *ti)
2869{
2870        struct pool_c *pt = ti->private;
2871
2872        /*
2873         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874         */
2875        enum pool_mode old_mode = get_pool_mode(pool);
2876        enum pool_mode new_mode = pt->adjusted_pf.mode;
2877
2878        /*
2879         * Don't change the pool's mode until set_pool_mode() below.
2880         * Otherwise the pool's process_* function pointers may
2881         * not match the desired pool mode.
2882         */
2883        pt->adjusted_pf.mode = old_mode;
2884
2885        pool->ti = ti;
2886        pool->pf = pt->adjusted_pf;
2887        pool->low_water_blocks = pt->low_water_blocks;
2888
2889        set_pool_mode(pool, new_mode);
2890
2891        return 0;
2892}
2893
2894static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2895{
2896        if (pool->ti == ti)
2897                pool->ti = NULL;
2898}
2899
2900/*----------------------------------------------------------------
2901 * Pool creation
2902 *--------------------------------------------------------------*/
2903/* Initialize pool features. */
2904static void pool_features_init(struct pool_features *pf)
2905{
2906        pf->mode = PM_WRITE;
2907        pf->zero_new_blocks = true;
2908        pf->discard_enabled = true;
2909        pf->discard_passdown = true;
2910        pf->error_if_no_space = false;
2911}
2912
2913static void __pool_destroy(struct pool *pool)
2914{
2915        __pool_table_remove(pool);
2916
2917        vfree(pool->cell_sort_array);
2918        if (dm_pool_metadata_close(pool->pmd) < 0)
2919                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920
2921        dm_bio_prison_destroy(pool->prison);
2922        dm_kcopyd_client_destroy(pool->copier);
2923
2924        if (pool->wq)
2925                destroy_workqueue(pool->wq);
2926
2927        if (pool->next_mapping)
2928                mempool_free(pool->next_mapping, &pool->mapping_pool);
2929        mempool_exit(&pool->mapping_pool);
2930        dm_deferred_set_destroy(pool->shared_read_ds);
2931        dm_deferred_set_destroy(pool->all_io_ds);
2932        kfree(pool);
2933}
2934
2935static struct kmem_cache *_new_mapping_cache;
2936
2937static struct pool *pool_create(struct mapped_device *pool_md,
2938                                struct block_device *metadata_dev,
2939                                unsigned long block_size,
2940                                int read_only, char **error)
2941{
2942        int r;
2943        void *err_p;
2944        struct pool *pool;
2945        struct dm_pool_metadata *pmd;
2946        bool format_device = read_only ? false : true;
2947
2948        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949        if (IS_ERR(pmd)) {
2950                *error = "Error creating metadata object";
2951                return (struct pool *)pmd;
2952        }
2953
2954        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955        if (!pool) {
2956                *error = "Error allocating memory for pool";
2957                err_p = ERR_PTR(-ENOMEM);
2958                goto bad_pool;
2959        }
2960
2961        pool->pmd = pmd;
2962        pool->sectors_per_block = block_size;
2963        if (block_size & (block_size - 1))
2964                pool->sectors_per_block_shift = -1;
2965        else
2966                pool->sectors_per_block_shift = __ffs(block_size);
2967        pool->low_water_blocks = 0;
2968        pool_features_init(&pool->pf);
2969        pool->prison = dm_bio_prison_create();
2970        if (!pool->prison) {
2971                *error = "Error creating pool's bio prison";
2972                err_p = ERR_PTR(-ENOMEM);
2973                goto bad_prison;
2974        }
2975
2976        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977        if (IS_ERR(pool->copier)) {
2978                r = PTR_ERR(pool->copier);
2979                *error = "Error creating pool's kcopyd client";
2980                err_p = ERR_PTR(r);
2981                goto bad_kcopyd_client;
2982        }
2983
2984        /*
2985         * Create singlethreaded workqueue that will service all devices
2986         * that use this metadata.
2987         */
2988        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989        if (!pool->wq) {
2990                *error = "Error creating pool's workqueue";
2991                err_p = ERR_PTR(-ENOMEM);
2992                goto bad_wq;
2993        }
2994
2995        throttle_init(&pool->throttle);
2996        INIT_WORK(&pool->worker, do_worker);
2997        INIT_DELAYED_WORK(&pool->waker, do_waker);
2998        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999        spin_lock_init(&pool->lock);
3000        bio_list_init(&pool->deferred_flush_bios);
3001        bio_list_init(&pool->deferred_flush_completions);
3002        INIT_LIST_HEAD(&pool->prepared_mappings);
3003        INIT_LIST_HEAD(&pool->prepared_discards);
3004        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005        INIT_LIST_HEAD(&pool->active_thins);
3006        pool->low_water_triggered = false;
3007        pool->suspended = true;
3008        pool->out_of_data_space = false;
3009
3010        pool->shared_read_ds = dm_deferred_set_create();
3011        if (!pool->shared_read_ds) {
3012                *error = "Error creating pool's shared read deferred set";
3013                err_p = ERR_PTR(-ENOMEM);
3014                goto bad_shared_read_ds;
3015        }
3016
3017        pool->all_io_ds = dm_deferred_set_create();
3018        if (!pool->all_io_ds) {
3019                *error = "Error creating pool's all io deferred set";
3020                err_p = ERR_PTR(-ENOMEM);
3021                goto bad_all_io_ds;
3022        }
3023
3024        pool->next_mapping = NULL;
3025        r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026                                   _new_mapping_cache);
3027        if (r) {
3028                *error = "Error creating pool's mapping mempool";
3029                err_p = ERR_PTR(r);
3030                goto bad_mapping_pool;
3031        }
3032
3033        pool->cell_sort_array =
3034                vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035                                   sizeof(*pool->cell_sort_array)));
3036        if (!pool->cell_sort_array) {
3037                *error = "Error allocating cell sort array";
3038                err_p = ERR_PTR(-ENOMEM);
3039                goto bad_sort_array;
3040        }
3041
3042        pool->ref_count = 1;
3043        pool->last_commit_jiffies = jiffies;
3044        pool->pool_md = pool_md;
3045        pool->md_dev = metadata_dev;
3046        __pool_table_insert(pool);
3047
3048        return pool;
3049
3050bad_sort_array:
3051        mempool_exit(&pool->mapping_pool);
3052bad_mapping_pool:
3053        dm_deferred_set_destroy(pool->all_io_ds);
3054bad_all_io_ds:
3055        dm_deferred_set_destroy(pool->shared_read_ds);
3056bad_shared_read_ds:
3057        destroy_workqueue(pool->wq);
3058bad_wq:
3059        dm_kcopyd_client_destroy(pool->copier);
3060bad_kcopyd_client:
3061        dm_bio_prison_destroy(pool->prison);
3062bad_prison:
3063        kfree(pool);
3064bad_pool:
3065        if (dm_pool_metadata_close(pmd))
3066                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3067
3068        return err_p;
3069}
3070
3071static void __pool_inc(struct pool *pool)
3072{
3073        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074        pool->ref_count++;
3075}
3076
3077static void __pool_dec(struct pool *pool)
3078{
3079        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3080        BUG_ON(!pool->ref_count);
3081        if (!--pool->ref_count)
3082                __pool_destroy(pool);
3083}
3084
3085static struct pool *__pool_find(struct mapped_device *pool_md,
3086                                struct block_device *metadata_dev,
3087                                unsigned long block_size, int read_only,
3088                                char **error, int *created)
3089{
3090        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091
3092        if (pool) {
3093                if (pool->pool_md != pool_md) {
3094                        *error = "metadata device already in use by a pool";
3095                        return ERR_PTR(-EBUSY);
3096                }
3097                __pool_inc(pool);
3098
3099        } else {
3100                pool = __pool_table_lookup(pool_md);
3101                if (pool) {
3102                        if (pool->md_dev != metadata_dev) {
3103                                *error = "different pool cannot replace a pool";
3104                                return ERR_PTR(-EINVAL);
3105                        }
3106                        __pool_inc(pool);
3107
3108                } else {
3109                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3110                        *created = 1;
3111                }
3112        }
3113
3114        return pool;
3115}
3116
3117/*----------------------------------------------------------------
3118 * Pool target methods
3119 *--------------------------------------------------------------*/
3120static void pool_dtr(struct dm_target *ti)
3121{
3122        struct pool_c *pt = ti->private;
3123
3124        mutex_lock(&dm_thin_pool_table.mutex);
3125
3126        unbind_control_target(pt->pool, ti);
3127        __pool_dec(pt->pool);
3128        dm_put_device(ti, pt->metadata_dev);
3129        dm_put_device(ti, pt->data_dev);
3130        kfree(pt);
3131
3132        mutex_unlock(&dm_thin_pool_table.mutex);
3133}
3134
3135static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3136                               struct dm_target *ti)
3137{
3138        int r;
3139        unsigned argc;
3140        const char *arg_name;
3141
3142        static const struct dm_arg _args[] = {
3143                {0, 4, "Invalid number of pool feature arguments"},
3144        };
3145
3146        /*
3147         * No feature arguments supplied.
3148         */
3149        if (!as->argc)
3150                return 0;
3151
3152        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3153        if (r)
3154                return -EINVAL;
3155
3156        while (argc && !r) {
3157                arg_name = dm_shift_arg(as);
3158                argc--;
3159
3160                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3161                        pf->zero_new_blocks = false;
3162
3163                else if (!strcasecmp(arg_name, "ignore_discard"))
3164                        pf->discard_enabled = false;
3165
3166                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3167                        pf->discard_passdown = false;
3168
3169                else if (!strcasecmp(arg_name, "read_only"))
3170                        pf->mode = PM_READ_ONLY;
3171
3172                else if (!strcasecmp(arg_name, "error_if_no_space"))
3173                        pf->error_if_no_space = true;
3174
3175                else {
3176                        ti->error = "Unrecognised pool feature requested";
3177                        r = -EINVAL;
3178                        break;
3179                }
3180        }
3181
3182        return r;
3183}
3184
3185static void metadata_low_callback(void *context)
3186{
3187        struct pool *pool = context;
3188
3189        DMWARN("%s: reached low water mark for metadata device: sending event.",
3190               dm_device_name(pool->pool_md));
3191
3192        dm_table_event(pool->ti->table);
3193}
3194
3195static sector_t get_dev_size(struct block_device *bdev)
3196{
3197        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3198}
3199
3200static void warn_if_metadata_device_too_big(struct block_device *bdev)
3201{
3202        sector_t metadata_dev_size = get_dev_size(bdev);
3203        char buffer[BDEVNAME_SIZE];
3204
3205        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3206                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3207                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3208}
3209
3210static sector_t get_metadata_dev_size(struct block_device *bdev)
3211{
3212        sector_t metadata_dev_size = get_dev_size(bdev);
3213
3214        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3215                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3216
3217        return metadata_dev_size;
3218}
3219
3220static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3221{
3222        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3223
3224        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3225
3226        return metadata_dev_size;
3227}
3228
3229/*
3230 * When a metadata threshold is crossed a dm event is triggered, and
3231 * userland should respond by growing the metadata device.  We could let
3232 * userland set the threshold, like we do with the data threshold, but I'm
3233 * not sure they know enough to do this well.
3234 */
3235static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3236{
3237        /*
3238         * 4M is ample for all ops with the possible exception of thin
3239         * device deletion which is harmless if it fails (just retry the
3240         * delete after you've grown the device).
3241         */
3242        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3243        return min((dm_block_t)1024ULL /* 4M */, quarter);
3244}
3245
3246/*
3247 * thin-pool <metadata dev> <data dev>
3248 *           <data block size (sectors)>
3249 *           <low water mark (blocks)>
3250 *           [<#feature args> [<arg>]*]
3251 *
3252 * Optional feature arguments are:
3253 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3254 *           ignore_discard: disable discard
3255 *           no_discard_passdown: don't pass discards down to the data device
3256 *           read_only: Don't allow any changes to be made to the pool metadata.
3257 *           error_if_no_space: error IOs, instead of queueing, if no space.
3258 */
3259static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3260{
3261        int r, pool_created = 0;
3262        struct pool_c *pt;
3263        struct pool *pool;
3264        struct pool_features pf;
3265        struct dm_arg_set as;
3266        struct dm_dev *data_dev;
3267        unsigned long block_size;
3268        dm_block_t low_water_blocks;
3269        struct dm_dev *metadata_dev;
3270        fmode_t metadata_mode;
3271
3272        /*
3273         * FIXME Remove validation from scope of lock.
3274         */
3275        mutex_lock(&dm_thin_pool_table.mutex);
3276
3277        if (argc < 4) {
3278                ti->error = "Invalid argument count";
3279                r = -EINVAL;
3280                goto out_unlock;
3281        }
3282
3283        as.argc = argc;
3284        as.argv = argv;
3285
3286        /* make sure metadata and data are different devices */
3287        if (!strcmp(argv[0], argv[1])) {
3288                ti->error = "Error setting metadata or data device";
3289                r = -EINVAL;
3290                goto out_unlock;
3291        }
3292
3293        /*
3294         * Set default pool features.
3295         */
3296        pool_features_init(&pf);
3297
3298        dm_consume_args(&as, 4);
3299        r = parse_pool_features(&as, &pf, ti);
3300        if (r)
3301                goto out_unlock;
3302
3303        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3304        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3305        if (r) {
3306                ti->error = "Error opening metadata block device";
3307                goto out_unlock;
3308        }
3309        warn_if_metadata_device_too_big(metadata_dev->bdev);
3310
3311        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3312        if (r) {
3313                ti->error = "Error getting data device";
3314                goto out_metadata;
3315        }
3316
3317        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3318            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3319            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3320            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3321                ti->error = "Invalid block size";
3322                r = -EINVAL;
3323                goto out;
3324        }
3325
3326        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3327                ti->error = "Invalid low water mark";
3328                r = -EINVAL;
3329                goto out;
3330        }
3331
3332        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3333        if (!pt) {
3334                r = -ENOMEM;
3335                goto out;
3336        }
3337
3338        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3339                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3340        if (IS_ERR(pool)) {
3341                r = PTR_ERR(pool);
3342                goto out_free_pt;
3343        }
3344
3345        /*
3346         * 'pool_created' reflects whether this is the first table load.
3347         * Top level discard support is not allowed to be changed after
3348         * initial load.  This would require a pool reload to trigger thin
3349         * device changes.
3350         */
3351        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3352                ti->error = "Discard support cannot be disabled once enabled";
3353                r = -EINVAL;
3354                goto out_flags_changed;
3355        }
3356
3357        pt->pool = pool;
3358        pt->ti = ti;
3359        pt->metadata_dev = metadata_dev;
3360        pt->data_dev = data_dev;
3361        pt->low_water_blocks = low_water_blocks;
3362        pt->adjusted_pf = pt->requested_pf = pf;
3363        ti->num_flush_bios = 1;
3364
3365        /*
3366         * Only need to enable discards if the pool should pass
3367         * them down to the data device.  The thin device's discard
3368         * processing will cause mappings to be removed from the btree.
3369         */
3370        if (pf.discard_enabled && pf.discard_passdown) {
3371                ti->num_discard_bios = 1;
3372
3373                /*
3374                 * Setting 'discards_supported' circumvents the normal
3375                 * stacking of discard limits (this keeps the pool and
3376                 * thin devices' discard limits consistent).
3377                 */
3378                ti->discards_supported = true;
3379        }
3380        ti->private = pt;
3381
3382        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3383                                                calc_metadata_threshold(pt),
3384                                                metadata_low_callback,
3385                                                pool);
3386        if (r)
3387                goto out_flags_changed;
3388
3389        pt->callbacks.congested_fn = pool_is_congested;
3390        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3391
3392        mutex_unlock(&dm_thin_pool_table.mutex);
3393
3394        return 0;
3395
3396out_flags_changed:
3397        __pool_dec(pool);
3398out_free_pt:
3399        kfree(pt);
3400out:
3401        dm_put_device(ti, data_dev);
3402out_metadata:
3403        dm_put_device(ti, metadata_dev);
3404out_unlock:
3405        mutex_unlock(&dm_thin_pool_table.mutex);
3406
3407        return r;
3408}
3409
3410static int pool_map(struct dm_target *ti, struct bio *bio)
3411{
3412        int r;
3413        struct pool_c *pt = ti->private;
3414        struct pool *pool = pt->pool;
3415        unsigned long flags;
3416
3417        /*
3418         * As this is a singleton target, ti->begin is always zero.
3419         */
3420        spin_lock_irqsave(&pool->lock, flags);
3421        bio_set_dev(bio, pt->data_dev->bdev);
3422        r = DM_MAPIO_REMAPPED;
3423        spin_unlock_irqrestore(&pool->lock, flags);
3424
3425        return r;
3426}
3427
3428static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3429{
3430        int r;
3431        struct pool_c *pt = ti->private;
3432        struct pool *pool = pt->pool;
3433        sector_t data_size = ti->len;
3434        dm_block_t sb_data_size;
3435
3436        *need_commit = false;
3437
3438        (void) sector_div(data_size, pool->sectors_per_block);
3439
3440        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3441        if (r) {
3442                DMERR("%s: failed to retrieve data device size",
3443                      dm_device_name(pool->pool_md));
3444                return r;
3445        }
3446
3447        if (data_size < sb_data_size) {
3448                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3449                      dm_device_name(pool->pool_md),
3450                      (unsigned long long)data_size, sb_data_size);
3451                return -EINVAL;
3452
3453        } else if (data_size > sb_data_size) {
3454                if (dm_pool_metadata_needs_check(pool->pmd)) {
3455                        DMERR("%s: unable to grow the data device until repaired.",
3456                              dm_device_name(pool->pool_md));
3457                        return 0;
3458                }
3459
3460                if (sb_data_size)
3461                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3462                               dm_device_name(pool->pool_md),
3463                               sb_data_size, (unsigned long long)data_size);
3464                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3465                if (r) {
3466                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3467                        return r;
3468                }
3469
3470                *need_commit = true;
3471        }
3472
3473        return 0;
3474}
3475
3476static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3477{
3478        int r;
3479        struct pool_c *pt = ti->private;
3480        struct pool *pool = pt->pool;
3481        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3482
3483        *need_commit = false;
3484
3485        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3486
3487        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3488        if (r) {
3489                DMERR("%s: failed to retrieve metadata device size",
3490                      dm_device_name(pool->pool_md));
3491                return r;
3492        }
3493
3494        if (metadata_dev_size < sb_metadata_dev_size) {
3495                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3496                      dm_device_name(pool->pool_md),
3497                      metadata_dev_size, sb_metadata_dev_size);
3498                return -EINVAL;
3499
3500        } else if (metadata_dev_size > sb_metadata_dev_size) {
3501                if (dm_pool_metadata_needs_check(pool->pmd)) {
3502                        DMERR("%s: unable to grow the metadata device until repaired.",
3503                              dm_device_name(pool->pool_md));
3504                        return 0;
3505                }
3506
3507                warn_if_metadata_device_too_big(pool->md_dev);
3508                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3509                       dm_device_name(pool->pool_md),
3510                       sb_metadata_dev_size, metadata_dev_size);
3511
3512                if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3513                        set_pool_mode(pool, PM_WRITE);
3514
3515                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3516                if (r) {
3517                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3518                        return r;
3519                }
3520
3521                *need_commit = true;
3522        }
3523
3524        return 0;
3525}
3526
3527/*
3528 * Retrieves the number of blocks of the data device from
3529 * the superblock and compares it to the actual device size,
3530 * thus resizing the data device in case it has grown.
3531 *
3532 * This both copes with opening preallocated data devices in the ctr
3533 * being followed by a resume
3534 * -and-
3535 * calling the resume method individually after userspace has
3536 * grown the data device in reaction to a table event.
3537 */
3538static int pool_preresume(struct dm_target *ti)
3539{
3540        int r;
3541        bool need_commit1, need_commit2;
3542        struct pool_c *pt = ti->private;
3543        struct pool *pool = pt->pool;
3544
3545        /*
3546         * Take control of the pool object.
3547         */
3548        r = bind_control_target(pool, ti);
3549        if (r)
3550                return r;
3551
3552        r = maybe_resize_data_dev(ti, &need_commit1);
3553        if (r)
3554                return r;
3555
3556        r = maybe_resize_metadata_dev(ti, &need_commit2);
3557        if (r)
3558                return r;
3559
3560        if (need_commit1 || need_commit2)
3561                (void) commit(pool);
3562
3563        return 0;
3564}
3565
3566static void pool_suspend_active_thins(struct pool *pool)
3567{
3568        struct thin_c *tc;
3569
3570        /* Suspend all active thin devices */
3571        tc = get_first_thin(pool);
3572        while (tc) {
3573                dm_internal_suspend_noflush(tc->thin_md);
3574                tc = get_next_thin(pool, tc);
3575        }
3576}
3577
3578static void pool_resume_active_thins(struct pool *pool)
3579{
3580        struct thin_c *tc;
3581
3582        /* Resume all active thin devices */
3583        tc = get_first_thin(pool);
3584        while (tc) {
3585                dm_internal_resume(tc->thin_md);
3586                tc = get_next_thin(pool, tc);
3587        }
3588}
3589
3590static void pool_resume(struct dm_target *ti)
3591{
3592        struct pool_c *pt = ti->private;
3593        struct pool *pool = pt->pool;
3594        unsigned long flags;
3595
3596        /*
3597         * Must requeue active_thins' bios and then resume
3598         * active_thins _before_ clearing 'suspend' flag.
3599         */
3600        requeue_bios(pool);
3601        pool_resume_active_thins(pool);
3602
3603        spin_lock_irqsave(&pool->lock, flags);
3604        pool->low_water_triggered = false;
3605        pool->suspended = false;
3606        spin_unlock_irqrestore(&pool->lock, flags);
3607
3608        do_waker(&pool->waker.work);
3609}
3610
3611static void pool_presuspend(struct dm_target *ti)
3612{
3613        struct pool_c *pt = ti->private;
3614        struct pool *pool = pt->pool;
3615        unsigned long flags;
3616
3617        spin_lock_irqsave(&pool->lock, flags);
3618        pool->suspended = true;
3619        spin_unlock_irqrestore(&pool->lock, flags);
3620
3621        pool_suspend_active_thins(pool);
3622}
3623
3624static void pool_presuspend_undo(struct dm_target *ti)
3625{
3626        struct pool_c *pt = ti->private;
3627        struct pool *pool = pt->pool;
3628        unsigned long flags;
3629
3630        pool_resume_active_thins(pool);
3631
3632        spin_lock_irqsave(&pool->lock, flags);
3633        pool->suspended = false;
3634        spin_unlock_irqrestore(&pool->lock, flags);
3635}
3636
3637static void pool_postsuspend(struct dm_target *ti)
3638{
3639        struct pool_c *pt = ti->private;
3640        struct pool *pool = pt->pool;
3641
3642        cancel_delayed_work_sync(&pool->waker);
3643        cancel_delayed_work_sync(&pool->no_space_timeout);
3644        flush_workqueue(pool->wq);
3645        (void) commit(pool);
3646}
3647
3648static int check_arg_count(unsigned argc, unsigned args_required)
3649{
3650        if (argc != args_required) {
3651                DMWARN("Message received with %u arguments instead of %u.",
3652                       argc, args_required);
3653                return -EINVAL;
3654        }
3655
3656        return 0;
3657}
3658
3659static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660{
3661        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662            *dev_id <= MAX_DEV_ID)
3663                return 0;
3664
3665        if (warning)
3666                DMWARN("Message received with invalid device id: %s", arg);
3667
3668        return -EINVAL;
3669}
3670
3671static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672{
3673        dm_thin_id dev_id;
3674        int r;
3675
3676        r = check_arg_count(argc, 2);
3677        if (r)
3678                return r;
3679
3680        r = read_dev_id(argv[1], &dev_id, 1);
3681        if (r)
3682                return r;
3683
3684        r = dm_pool_create_thin(pool->pmd, dev_id);
3685        if (r) {
3686                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687                       argv[1]);
3688                return r;
3689        }
3690
3691        return 0;
3692}
3693
3694static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695{
3696        dm_thin_id dev_id;
3697        dm_thin_id origin_dev_id;
3698        int r;
3699
3700        r = check_arg_count(argc, 3);
3701        if (r)
3702                return r;
3703
3704        r = read_dev_id(argv[1], &dev_id, 1);
3705        if (r)
3706                return r;
3707
3708        r = read_dev_id(argv[2], &origin_dev_id, 1);
3709        if (r)
3710                return r;
3711
3712        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713        if (r) {
3714                DMWARN("Creation of new snapshot %s of device %s failed.",
3715                       argv[1], argv[2]);
3716                return r;
3717        }
3718
3719        return 0;
3720}
3721
3722static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723{
3724        dm_thin_id dev_id;
3725        int r;
3726
3727        r = check_arg_count(argc, 2);
3728        if (r)
3729                return r;
3730
3731        r = read_dev_id(argv[1], &dev_id, 1);
3732        if (r)
3733                return r;
3734
3735        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736        if (r)
3737                DMWARN("Deletion of thin device %s failed.", argv[1]);
3738
3739        return r;
3740}
3741
3742static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743{
3744        dm_thin_id old_id, new_id;
3745        int r;
3746
3747        r = check_arg_count(argc, 3);
3748        if (r)
3749                return r;
3750
3751        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753                return -EINVAL;
3754        }
3755
3756        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758                return -EINVAL;
3759        }
3760
3761        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762        if (r) {
3763                DMWARN("Failed to change transaction id from %s to %s.",
3764                       argv[1], argv[2]);
3765                return r;
3766        }
3767
3768        return 0;
3769}
3770
3771static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772{
3773        int r;
3774
3775        r = check_arg_count(argc, 1);
3776        if (r)
3777                return r;
3778
3779        (void) commit(pool);
3780
3781        r = dm_pool_reserve_metadata_snap(pool->pmd);
3782        if (r)
3783                DMWARN("reserve_metadata_snap message failed.");
3784
3785        return r;
3786}
3787
3788static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789{
3790        int r;
3791
3792        r = check_arg_count(argc, 1);
3793        if (r)
3794                return r;
3795
3796        r = dm_pool_release_metadata_snap(pool->pmd);
3797        if (r)
3798                DMWARN("release_metadata_snap message failed.");
3799
3800        return r;
3801}
3802
3803/*
3804 * Messages supported:
3805 *   create_thin        <dev_id>
3806 *   create_snap        <dev_id> <origin_id>
3807 *   delete             <dev_id>
3808 *   set_transaction_id <current_trans_id> <new_trans_id>
3809 *   reserve_metadata_snap
3810 *   release_metadata_snap
3811 */
3812static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813                        char *result, unsigned maxlen)
3814{
3815        int r = -EINVAL;
3816        struct pool_c *pt = ti->private;
3817        struct pool *pool = pt->pool;
3818
3819        if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821                      dm_device_name(pool->pool_md));
3822                return -EOPNOTSUPP;
3823        }
3824
3825        if (!strcasecmp(argv[0], "create_thin"))
3826                r = process_create_thin_mesg(argc, argv, pool);
3827
3828        else if (!strcasecmp(argv[0], "create_snap"))
3829                r = process_create_snap_mesg(argc, argv, pool);
3830
3831        else if (!strcasecmp(argv[0], "delete"))
3832                r = process_delete_mesg(argc, argv, pool);
3833
3834        else if (!strcasecmp(argv[0], "set_transaction_id"))
3835                r = process_set_transaction_id_mesg(argc, argv, pool);
3836
3837        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839
3840        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841                r = process_release_metadata_snap_mesg(argc, argv, pool);
3842
3843        else
3844                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845
3846        if (!r)
3847                (void) commit(pool);
3848
3849        return r;
3850}
3851
3852static void emit_flags(struct pool_features *pf, char *result,
3853                       unsigned sz, unsigned maxlen)
3854{
3855        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857                pf->error_if_no_space;
3858        DMEMIT("%u ", count);
3859
3860        if (!pf->zero_new_blocks)
3861                DMEMIT("skip_block_zeroing ");
3862
3863        if (!pf->discard_enabled)
3864                DMEMIT("ignore_discard ");
3865
3866        if (!pf->discard_passdown)
3867                DMEMIT("no_discard_passdown ");
3868
3869        if (pf->mode == PM_READ_ONLY)
3870                DMEMIT("read_only ");
3871
3872        if (pf->error_if_no_space)
3873                DMEMIT("error_if_no_space ");
3874}
3875
3876/*
3877 * Status line is:
3878 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879 *    <used data sectors>/<total data sectors> <held metadata root>
3880 *    <pool mode> <discard config> <no space config> <needs_check>
3881 */
3882static void pool_status(struct dm_target *ti, status_type_t type,
3883                        unsigned status_flags, char *result, unsigned maxlen)
3884{
3885        int r;
3886        unsigned sz = 0;
3887        uint64_t transaction_id;
3888        dm_block_t nr_free_blocks_data;
3889        dm_block_t nr_free_blocks_metadata;
3890        dm_block_t nr_blocks_data;
3891        dm_block_t nr_blocks_metadata;
3892        dm_block_t held_root;
3893        enum pool_mode mode;
3894        char buf[BDEVNAME_SIZE];
3895        char buf2[BDEVNAME_SIZE];
3896        struct pool_c *pt = ti->private;
3897        struct pool *pool = pt->pool;
3898
3899        switch (type) {
3900        case STATUSTYPE_INFO:
3901                if (get_pool_mode(pool) == PM_FAIL) {
3902                        DMEMIT("Fail");
3903                        break;
3904                }
3905
3906                /* Commit to ensure statistics aren't out-of-date */
3907                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908                        (void) commit(pool);
3909
3910                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911                if (r) {
3912                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913                              dm_device_name(pool->pool_md), r);
3914                        goto err;
3915                }
3916
3917                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918                if (r) {
3919                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920                              dm_device_name(pool->pool_md), r);
3921                        goto err;
3922                }
3923
3924                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925                if (r) {
3926                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927                              dm_device_name(pool->pool_md), r);
3928                        goto err;
3929                }
3930
3931                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932                if (r) {
3933                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3934                              dm_device_name(pool->pool_md), r);
3935                        goto err;
3936                }
3937
3938                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939                if (r) {
3940                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941                              dm_device_name(pool->pool_md), r);
3942                        goto err;
3943                }
3944
3945                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946                if (r) {
3947                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948                              dm_device_name(pool->pool_md), r);
3949                        goto err;
3950                }
3951
3952                DMEMIT("%llu %llu/%llu %llu/%llu ",
3953                       (unsigned long long)transaction_id,
3954                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955                       (unsigned long long)nr_blocks_metadata,
3956                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957                       (unsigned long long)nr_blocks_data);
3958
3959                if (held_root)
3960                        DMEMIT("%llu ", held_root);
3961                else
3962                        DMEMIT("- ");
3963
3964                mode = get_pool_mode(pool);
3965                if (mode == PM_OUT_OF_DATA_SPACE)
3966                        DMEMIT("out_of_data_space ");
3967                else if (is_read_only_pool_mode(mode))
3968                        DMEMIT("ro ");
3969                else
3970                        DMEMIT("rw ");
3971
3972                if (!pool->pf.discard_enabled)
3973                        DMEMIT("ignore_discard ");
3974                else if (pool->pf.discard_passdown)
3975                        DMEMIT("discard_passdown ");
3976                else
3977                        DMEMIT("no_discard_passdown ");
3978
3979                if (pool->pf.error_if_no_space)
3980                        DMEMIT("error_if_no_space ");
3981                else
3982                        DMEMIT("queue_if_no_space ");
3983
3984                if (dm_pool_metadata_needs_check(pool->pmd))
3985                        DMEMIT("needs_check ");
3986                else
3987                        DMEMIT("- ");
3988
3989                DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990
3991                break;
3992
3993        case STATUSTYPE_TABLE:
3994                DMEMIT("%s %s %lu %llu ",
3995                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997                       (unsigned long)pool->sectors_per_block,
3998                       (unsigned long long)pt->low_water_blocks);
3999                emit_flags(&pt->requested_pf, result, sz, maxlen);
4000                break;
4001        }
4002        return;
4003
4004err:
4005        DMEMIT("Error");
4006}
4007
4008static int pool_iterate_devices(struct dm_target *ti,
4009                                iterate_devices_callout_fn fn, void *data)
4010{
4011        struct pool_c *pt = ti->private;
4012
4013        return fn(ti, pt->data_dev, 0, ti->len, data);
4014}
4015
4016static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4017{
4018        struct pool_c *pt = ti->private;
4019        struct pool *pool = pt->pool;
4020        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4021
4022        /*
4023         * If max_sectors is smaller than pool->sectors_per_block adjust it
4024         * to the highest possible power-of-2 factor of pool->sectors_per_block.
4025         * This is especially beneficial when the pool's data device is a RAID
4026         * device that has a full stripe width that matches pool->sectors_per_block
4027         * -- because even though partial RAID stripe-sized IOs will be issued to a
4028         *    single RAID stripe; when aggregated they will end on a full RAID stripe
4029         *    boundary.. which avoids additional partial RAID stripe writes cascading
4030         */
4031        if (limits->max_sectors < pool->sectors_per_block) {
4032                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4033                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4034                                limits->max_sectors--;
4035                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4036                }
4037        }
4038
4039        /*
4040         * If the system-determined stacked limits are compatible with the
4041         * pool's blocksize (io_opt is a factor) do not override them.
4042         */
4043        if (io_opt_sectors < pool->sectors_per_block ||
4044            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4045                if (is_factor(pool->sectors_per_block, limits->max_sectors))
4046                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4047                else
4048                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4049                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4050        }
4051
4052        /*
4053         * pt->adjusted_pf is a staging area for the actual features to use.
4054         * They get transferred to the live pool in bind_control_target()
4055         * called from pool_preresume().
4056         */
4057        if (!pt->adjusted_pf.discard_enabled) {
4058                /*
4059                 * Must explicitly disallow stacking discard limits otherwise the
4060                 * block layer will stack them if pool's data device has support.
4061                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4062                 * user to see that, so make sure to set all discard limits to 0.
4063                 */
4064                limits->discard_granularity = 0;
4065                return;
4066        }
4067
4068        disable_passdown_if_not_supported(pt);
4069
4070        /*
4071         * The pool uses the same discard limits as the underlying data
4072         * device.  DM core has already set this up.
4073         */
4074}
4075
4076static struct target_type pool_target = {
4077        .name = "thin-pool",
4078        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4079                    DM_TARGET_IMMUTABLE,
4080        .version = {1, 21, 0},
4081        .module = THIS_MODULE,
4082        .ctr = pool_ctr,
4083        .dtr = pool_dtr,
4084        .map = pool_map,
4085        .presuspend = pool_presuspend,
4086        .presuspend_undo = pool_presuspend_undo,
4087        .postsuspend = pool_postsuspend,
4088        .preresume = pool_preresume,
4089        .resume = pool_resume,
4090        .message = pool_message,
4091        .status = pool_status,
4092        .iterate_devices = pool_iterate_devices,
4093        .io_hints = pool_io_hints,
4094};
4095
4096/*----------------------------------------------------------------
4097 * Thin target methods
4098 *--------------------------------------------------------------*/
4099static void thin_get(struct thin_c *tc)
4100{
4101        refcount_inc(&tc->refcount);
4102}
4103
4104static void thin_put(struct thin_c *tc)
4105{
4106        if (refcount_dec_and_test(&tc->refcount))
4107                complete(&tc->can_destroy);
4108}
4109
4110static void thin_dtr(struct dm_target *ti)
4111{
4112        struct thin_c *tc = ti->private;
4113        unsigned long flags;
4114
4115        spin_lock_irqsave(&tc->pool->lock, flags);
4116        list_del_rcu(&tc->list);
4117        spin_unlock_irqrestore(&tc->pool->lock, flags);
4118        synchronize_rcu();
4119
4120        thin_put(tc);
4121        wait_for_completion(&tc->can_destroy);
4122
4123        mutex_lock(&dm_thin_pool_table.mutex);
4124
4125        __pool_dec(tc->pool);
4126        dm_pool_close_thin_device(tc->td);
4127        dm_put_device(ti, tc->pool_dev);
4128        if (tc->origin_dev)
4129                dm_put_device(ti, tc->origin_dev);
4130        kfree(tc);
4131
4132        mutex_unlock(&dm_thin_pool_table.mutex);
4133}
4134
4135/*
4136 * Thin target parameters:
4137 *
4138 * <pool_dev> <dev_id> [origin_dev]
4139 *
4140 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4141 * dev_id: the internal device identifier
4142 * origin_dev: a device external to the pool that should act as the origin
4143 *
4144 * If the pool device has discards disabled, they get disabled for the thin
4145 * device as well.
4146 */
4147static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4148{
4149        int r;
4150        struct thin_c *tc;
4151        struct dm_dev *pool_dev, *origin_dev;
4152        struct mapped_device *pool_md;
4153        unsigned long flags;
4154
4155        mutex_lock(&dm_thin_pool_table.mutex);
4156
4157        if (argc != 2 && argc != 3) {
4158                ti->error = "Invalid argument count";
4159                r = -EINVAL;
4160                goto out_unlock;
4161        }
4162
4163        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164        if (!tc) {
4165                ti->error = "Out of memory";
4166                r = -ENOMEM;
4167                goto out_unlock;
4168        }
4169        tc->thin_md = dm_table_get_md(ti->table);
4170        spin_lock_init(&tc->lock);
4171        INIT_LIST_HEAD(&tc->deferred_cells);
4172        bio_list_init(&tc->deferred_bio_list);
4173        bio_list_init(&tc->retry_on_resume_list);
4174        tc->sort_bio_list = RB_ROOT;
4175
4176        if (argc == 3) {
4177                if (!strcmp(argv[0], argv[2])) {
4178                        ti->error = "Error setting origin device";
4179                        r = -EINVAL;
4180                        goto bad_origin_dev;
4181                }
4182
4183                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184                if (r) {
4185                        ti->error = "Error opening origin device";
4186                        goto bad_origin_dev;
4187                }
4188                tc->origin_dev = origin_dev;
4189        }
4190
4191        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192        if (r) {
4193                ti->error = "Error opening pool device";
4194                goto bad_pool_dev;
4195        }
4196        tc->pool_dev = pool_dev;
4197
4198        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199                ti->error = "Invalid device id";
4200                r = -EINVAL;
4201                goto bad_common;
4202        }
4203
4204        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205        if (!pool_md) {
4206                ti->error = "Couldn't get pool mapped device";
4207                r = -EINVAL;
4208                goto bad_common;
4209        }
4210
4211        tc->pool = __pool_table_lookup(pool_md);
4212        if (!tc->pool) {
4213                ti->error = "Couldn't find pool object";
4214                r = -EINVAL;
4215                goto bad_pool_lookup;
4216        }
4217        __pool_inc(tc->pool);
4218
4219        if (get_pool_mode(tc->pool) == PM_FAIL) {
4220                ti->error = "Couldn't open thin device, Pool is in fail mode";
4221                r = -EINVAL;
4222                goto bad_pool;
4223        }
4224
4225        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226        if (r) {
4227                ti->error = "Couldn't open thin internal device";
4228                goto bad_pool;
4229        }
4230
4231        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232        if (r)
4233                goto bad;
4234
4235        ti->num_flush_bios = 1;
4236        ti->flush_supported = true;
4237        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4238
4239        /* In case the pool supports discards, pass them on. */
4240        if (tc->pool->pf.discard_enabled) {
4241                ti->discards_supported = true;
4242                ti->num_discard_bios = 1;
4243        }
4244
4245        mutex_unlock(&dm_thin_pool_table.mutex);
4246
4247        spin_lock_irqsave(&tc->pool->lock, flags);
4248        if (tc->pool->suspended) {
4249                spin_unlock_irqrestore(&tc->pool->lock, flags);
4250                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4251                ti->error = "Unable to activate thin device while pool is suspended";
4252                r = -EINVAL;
4253                goto bad;
4254        }
4255        refcount_set(&tc->refcount, 1);
4256        init_completion(&tc->can_destroy);
4257        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4258        spin_unlock_irqrestore(&tc->pool->lock, flags);
4259        /*
4260         * This synchronize_rcu() call is needed here otherwise we risk a
4261         * wake_worker() call finding no bios to process (because the newly
4262         * added tc isn't yet visible).  So this reduces latency since we
4263         * aren't then dependent on the periodic commit to wake_worker().
4264         */
4265        synchronize_rcu();
4266
4267        dm_put(pool_md);
4268
4269        return 0;
4270
4271bad:
4272        dm_pool_close_thin_device(tc->td);
4273bad_pool:
4274        __pool_dec(tc->pool);
4275bad_pool_lookup:
4276        dm_put(pool_md);
4277bad_common:
4278        dm_put_device(ti, tc->pool_dev);
4279bad_pool_dev:
4280        if (tc->origin_dev)
4281                dm_put_device(ti, tc->origin_dev);
4282bad_origin_dev:
4283        kfree(tc);
4284out_unlock:
4285        mutex_unlock(&dm_thin_pool_table.mutex);
4286
4287        return r;
4288}
4289
4290static int thin_map(struct dm_target *ti, struct bio *bio)
4291{
4292        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4293
4294        return thin_bio_map(ti, bio);
4295}
4296
4297static int thin_endio(struct dm_target *ti, struct bio *bio,
4298                blk_status_t *err)
4299{
4300        unsigned long flags;
4301        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4302        struct list_head work;
4303        struct dm_thin_new_mapping *m, *tmp;
4304        struct pool *pool = h->tc->pool;
4305
4306        if (h->shared_read_entry) {
4307                INIT_LIST_HEAD(&work);
4308                dm_deferred_entry_dec(h->shared_read_entry, &work);
4309
4310                spin_lock_irqsave(&pool->lock, flags);
4311                list_for_each_entry_safe(m, tmp, &work, list) {
4312                        list_del(&m->list);
4313                        __complete_mapping_preparation(m);
4314                }
4315                spin_unlock_irqrestore(&pool->lock, flags);
4316        }
4317
4318        if (h->all_io_entry) {
4319                INIT_LIST_HEAD(&work);
4320                dm_deferred_entry_dec(h->all_io_entry, &work);
4321                if (!list_empty(&work)) {
4322                        spin_lock_irqsave(&pool->lock, flags);
4323                        list_for_each_entry_safe(m, tmp, &work, list)
4324                                list_add_tail(&m->list, &pool->prepared_discards);
4325                        spin_unlock_irqrestore(&pool->lock, flags);
4326                        wake_worker(pool);
4327                }
4328        }
4329
4330        if (h->cell)
4331                cell_defer_no_holder(h->tc, h->cell);
4332
4333        return DM_ENDIO_DONE;
4334}
4335
4336static void thin_presuspend(struct dm_target *ti)
4337{
4338        struct thin_c *tc = ti->private;
4339
4340        if (dm_noflush_suspending(ti))
4341                noflush_work(tc, do_noflush_start);
4342}
4343
4344static void thin_postsuspend(struct dm_target *ti)
4345{
4346        struct thin_c *tc = ti->private;
4347
4348        /*
4349         * The dm_noflush_suspending flag has been cleared by now, so
4350         * unfortunately we must always run this.
4351         */
4352        noflush_work(tc, do_noflush_stop);
4353}
4354
4355static int thin_preresume(struct dm_target *ti)
4356{
4357        struct thin_c *tc = ti->private;
4358
4359        if (tc->origin_dev)
4360                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4361
4362        return 0;
4363}
4364
4365/*
4366 * <nr mapped sectors> <highest mapped sector>
4367 */
4368static void thin_status(struct dm_target *ti, status_type_t type,
4369                        unsigned status_flags, char *result, unsigned maxlen)
4370{
4371        int r;
4372        ssize_t sz = 0;
4373        dm_block_t mapped, highest;
4374        char buf[BDEVNAME_SIZE];
4375        struct thin_c *tc = ti->private;
4376
4377        if (get_pool_mode(tc->pool) == PM_FAIL) {
4378                DMEMIT("Fail");
4379                return;
4380        }
4381
4382        if (!tc->td)
4383                DMEMIT("-");
4384        else {
4385                switch (type) {
4386                case STATUSTYPE_INFO:
4387                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4388                        if (r) {
4389                                DMERR("dm_thin_get_mapped_count returned %d", r);
4390                                goto err;
4391                        }
4392
4393                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4394                        if (r < 0) {
4395                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4396                                goto err;
4397                        }
4398
4399                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4400                        if (r)
4401                                DMEMIT("%llu", ((highest + 1) *
4402                                                tc->pool->sectors_per_block) - 1);
4403                        else
4404                                DMEMIT("-");
4405                        break;
4406
4407                case STATUSTYPE_TABLE:
4408                        DMEMIT("%s %lu",
4409                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4410                               (unsigned long) tc->dev_id);
4411                        if (tc->origin_dev)
4412                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4413                        break;
4414                }
4415        }
4416
4417        return;
4418
4419err:
4420        DMEMIT("Error");
4421}
4422
4423static int thin_iterate_devices(struct dm_target *ti,
4424                                iterate_devices_callout_fn fn, void *data)
4425{
4426        sector_t blocks;
4427        struct thin_c *tc = ti->private;
4428        struct pool *pool = tc->pool;
4429
4430        /*
4431         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4432         * we follow a more convoluted path through to the pool's target.
4433         */
4434        if (!pool->ti)
4435                return 0;       /* nothing is bound */
4436
4437        blocks = pool->ti->len;
4438        (void) sector_div(blocks, pool->sectors_per_block);
4439        if (blocks)
4440                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4441
4442        return 0;
4443}
4444
4445static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4446{
4447        struct thin_c *tc = ti->private;
4448        struct pool *pool = tc->pool;
4449
4450        if (!pool->pf.discard_enabled)
4451                return;
4452
4453        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4454        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4455}
4456
4457static struct target_type thin_target = {
4458        .name = "thin",
4459        .version = {1, 21, 0},
4460        .module = THIS_MODULE,
4461        .ctr = thin_ctr,
4462        .dtr = thin_dtr,
4463        .map = thin_map,
4464        .end_io = thin_endio,
4465        .preresume = thin_preresume,
4466        .presuspend = thin_presuspend,
4467        .postsuspend = thin_postsuspend,
4468        .status = thin_status,
4469        .iterate_devices = thin_iterate_devices,
4470        .io_hints = thin_io_hints,
4471};
4472
4473/*----------------------------------------------------------------*/
4474
4475static int __init dm_thin_init(void)
4476{
4477        int r = -ENOMEM;
4478
4479        pool_table_init();
4480
4481        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4482        if (!_new_mapping_cache)
4483                return r;
4484
4485        r = dm_register_target(&thin_target);
4486        if (r)
4487                goto bad_new_mapping_cache;
4488
4489        r = dm_register_target(&pool_target);
4490        if (r)
4491                goto bad_thin_target;
4492
4493        return 0;
4494
4495bad_thin_target:
4496        dm_unregister_target(&thin_target);
4497bad_new_mapping_cache:
4498        kmem_cache_destroy(_new_mapping_cache);
4499
4500        return r;
4501}
4502
4503static void dm_thin_exit(void)
4504{
4505        dm_unregister_target(&thin_target);
4506        dm_unregister_target(&pool_target);
4507
4508        kmem_cache_destroy(_new_mapping_cache);
4509
4510        pool_table_exit();
4511}
4512
4513module_init(dm_thin_init);
4514module_exit(dm_thin_exit);
4515
4516module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4517MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4518
4519MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4520MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4521MODULE_LICENSE("GPL");
4522