linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6 */
   7
   8/*
   9 * UBI wear-leveling sub-system.
  10 *
  11 * This sub-system is responsible for wear-leveling. It works in terms of
  12 * physical eraseblocks and erase counters and knows nothing about logical
  13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17 *
  18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20 *
  21 * When physical eraseblocks are returned to the WL sub-system by means of the
  22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23 * done asynchronously in context of the per-UBI device background thread,
  24 * which is also managed by the WL sub-system.
  25 *
  26 * The wear-leveling is ensured by means of moving the contents of used
  27 * physical eraseblocks with low erase counter to free physical eraseblocks
  28 * with high erase counter.
  29 *
  30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31 * bad.
  32 *
  33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34 * in a physical eraseblock, it has to be moved. Technically this is the same
  35 * as moving it for wear-leveling reasons.
  36 *
  37 * As it was said, for the UBI sub-system all physical eraseblocks are either
  38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41 *
  42 * When the WL sub-system returns a physical eraseblock, the physical
  43 * eraseblock is protected from being moved for some "time". For this reason,
  44 * the physical eraseblock is not directly moved from the @wl->free tree to the
  45 * @wl->used tree. There is a protection queue in between where this
  46 * physical eraseblock is temporarily stored (@wl->pq).
  47 *
  48 * All this protection stuff is needed because:
  49 *  o we don't want to move physical eraseblocks just after we have given them
  50 *    to the user; instead, we first want to let users fill them up with data;
  51 *
  52 *  o there is a chance that the user will put the physical eraseblock very
  53 *    soon, so it makes sense not to move it for some time, but wait.
  54 *
  55 * Physical eraseblocks stay protected only for limited time. But the "time" is
  56 * measured in erase cycles in this case. This is implemented with help of the
  57 * protection queue. Eraseblocks are put to the tail of this queue when they
  58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59 * head of the queue on each erase operation (for any eraseblock). So the
  60 * length of the queue defines how may (global) erase cycles PEBs are protected.
  61 *
  62 * To put it differently, each physical eraseblock has 2 main states: free and
  63 * used. The former state corresponds to the @wl->free tree. The latter state
  64 * is split up on several sub-states:
  65 * o the WL movement is allowed (@wl->used tree);
  66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67 *   erroneous - e.g., there was a read error;
  68 * o the WL movement is temporarily prohibited (@wl->pq queue);
  69 * o scrubbing is needed (@wl->scrub tree).
  70 *
  71 * Depending on the sub-state, wear-leveling entries of the used physical
  72 * eraseblocks may be kept in one of those structures.
  73 *
  74 * Note, in this implementation, we keep a small in-RAM object for each physical
  75 * eraseblock. This is surely not a scalable solution. But it appears to be good
  76 * enough for moderately large flashes and it is simple. In future, one may
  77 * re-work this sub-system and make it more scalable.
  78 *
  79 * At the moment this sub-system does not utilize the sequence number, which
  80 * was introduced relatively recently. But it would be wise to do this because
  81 * the sequence number of a logical eraseblock characterizes how old is it. For
  82 * example, when we move a PEB with low erase counter, and we need to pick the
  83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84 * pick target PEB with an average EC if our PEB is not very "old". This is a
  85 * room for future re-works of the WL sub-system.
  86 */
  87
  88#include <linux/slab.h>
  89#include <linux/crc32.h>
  90#include <linux/freezer.h>
  91#include <linux/kthread.h>
  92#include "ubi.h"
  93#include "wl.h"
  94
  95/* Number of physical eraseblocks reserved for wear-leveling purposes */
  96#define WL_RESERVED_PEBS 1
  97
  98/*
  99 * Maximum difference between two erase counters. If this threshold is
 100 * exceeded, the WL sub-system starts moving data from used physical
 101 * eraseblocks with low erase counter to free physical eraseblocks with high
 102 * erase counter.
 103 */
 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 105
 106/*
 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 108 * physical eraseblock to move to. The simplest way would be just to pick the
 109 * one with the highest erase counter. But in certain workloads this could lead
 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 111 * situation when the picked physical eraseblock is constantly erased after the
 112 * data is written to it. So, we have a constant which limits the highest erase
 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 114 * does not pick eraseblocks with erase counter greater than the lowest erase
 115 * counter plus %WL_FREE_MAX_DIFF.
 116 */
 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 118
 119/*
 120 * Maximum number of consecutive background thread failures which is enough to
 121 * switch to read-only mode.
 122 */
 123#define WL_MAX_FAILURES 32
 124
 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 126static int self_check_in_wl_tree(const struct ubi_device *ubi,
 127                                 struct ubi_wl_entry *e, struct rb_root *root);
 128static int self_check_in_pq(const struct ubi_device *ubi,
 129                            struct ubi_wl_entry *e);
 130
 131/**
 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 133 * @e: the wear-leveling entry to add
 134 * @root: the root of the tree
 135 *
 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 137 * the @ubi->used and @ubi->free RB-trees.
 138 */
 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 140{
 141        struct rb_node **p, *parent = NULL;
 142
 143        p = &root->rb_node;
 144        while (*p) {
 145                struct ubi_wl_entry *e1;
 146
 147                parent = *p;
 148                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 149
 150                if (e->ec < e1->ec)
 151                        p = &(*p)->rb_left;
 152                else if (e->ec > e1->ec)
 153                        p = &(*p)->rb_right;
 154                else {
 155                        ubi_assert(e->pnum != e1->pnum);
 156                        if (e->pnum < e1->pnum)
 157                                p = &(*p)->rb_left;
 158                        else
 159                                p = &(*p)->rb_right;
 160                }
 161        }
 162
 163        rb_link_node(&e->u.rb, parent, p);
 164        rb_insert_color(&e->u.rb, root);
 165}
 166
 167/**
 168 * wl_tree_destroy - destroy a wear-leveling entry.
 169 * @ubi: UBI device description object
 170 * @e: the wear-leveling entry to add
 171 *
 172 * This function destroys a wear leveling entry and removes
 173 * the reference from the lookup table.
 174 */
 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 176{
 177        ubi->lookuptbl[e->pnum] = NULL;
 178        kmem_cache_free(ubi_wl_entry_slab, e);
 179}
 180
 181/**
 182 * do_work - do one pending work.
 183 * @ubi: UBI device description object
 184 *
 185 * This function returns zero in case of success and a negative error code in
 186 * case of failure.
 187 */
 188static int do_work(struct ubi_device *ubi)
 189{
 190        int err;
 191        struct ubi_work *wrk;
 192
 193        cond_resched();
 194
 195        /*
 196         * @ubi->work_sem is used to synchronize with the workers. Workers take
 197         * it in read mode, so many of them may be doing works at a time. But
 198         * the queue flush code has to be sure the whole queue of works is
 199         * done, and it takes the mutex in write mode.
 200         */
 201        down_read(&ubi->work_sem);
 202        spin_lock(&ubi->wl_lock);
 203        if (list_empty(&ubi->works)) {
 204                spin_unlock(&ubi->wl_lock);
 205                up_read(&ubi->work_sem);
 206                return 0;
 207        }
 208
 209        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 210        list_del(&wrk->list);
 211        ubi->works_count -= 1;
 212        ubi_assert(ubi->works_count >= 0);
 213        spin_unlock(&ubi->wl_lock);
 214
 215        /*
 216         * Call the worker function. Do not touch the work structure
 217         * after this call as it will have been freed or reused by that
 218         * time by the worker function.
 219         */
 220        err = wrk->func(ubi, wrk, 0);
 221        if (err)
 222                ubi_err(ubi, "work failed with error code %d", err);
 223        up_read(&ubi->work_sem);
 224
 225        return err;
 226}
 227
 228/**
 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 230 * @e: the wear-leveling entry to check
 231 * @root: the root of the tree
 232 *
 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 234 * is not.
 235 */
 236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 237{
 238        struct rb_node *p;
 239
 240        p = root->rb_node;
 241        while (p) {
 242                struct ubi_wl_entry *e1;
 243
 244                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 245
 246                if (e->pnum == e1->pnum) {
 247                        ubi_assert(e == e1);
 248                        return 1;
 249                }
 250
 251                if (e->ec < e1->ec)
 252                        p = p->rb_left;
 253                else if (e->ec > e1->ec)
 254                        p = p->rb_right;
 255                else {
 256                        ubi_assert(e->pnum != e1->pnum);
 257                        if (e->pnum < e1->pnum)
 258                                p = p->rb_left;
 259                        else
 260                                p = p->rb_right;
 261                }
 262        }
 263
 264        return 0;
 265}
 266
 267/**
 268 * in_pq - check if a wear-leveling entry is present in the protection queue.
 269 * @ubi: UBI device description object
 270 * @e: the wear-leveling entry to check
 271 *
 272 * This function returns non-zero if @e is in the protection queue and zero
 273 * if it is not.
 274 */
 275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
 276{
 277        struct ubi_wl_entry *p;
 278        int i;
 279
 280        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
 281                list_for_each_entry(p, &ubi->pq[i], u.list)
 282                        if (p == e)
 283                                return 1;
 284
 285        return 0;
 286}
 287
 288/**
 289 * prot_queue_add - add physical eraseblock to the protection queue.
 290 * @ubi: UBI device description object
 291 * @e: the physical eraseblock to add
 292 *
 293 * This function adds @e to the tail of the protection queue @ubi->pq, where
 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 296 * be locked.
 297 */
 298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 299{
 300        int pq_tail = ubi->pq_head - 1;
 301
 302        if (pq_tail < 0)
 303                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 304        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 305        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 306        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 307}
 308
 309/**
 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 311 * @ubi: UBI device description object
 312 * @root: the RB-tree where to look for
 313 * @diff: maximum possible difference from the smallest erase counter
 314 *
 315 * This function looks for a wear leveling entry with erase counter closest to
 316 * min + @diff, where min is the smallest erase counter.
 317 */
 318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 319                                          struct rb_root *root, int diff)
 320{
 321        struct rb_node *p;
 322        struct ubi_wl_entry *e, *prev_e = NULL;
 323        int max;
 324
 325        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 326        max = e->ec + diff;
 327
 328        p = root->rb_node;
 329        while (p) {
 330                struct ubi_wl_entry *e1;
 331
 332                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 333                if (e1->ec >= max)
 334                        p = p->rb_left;
 335                else {
 336                        p = p->rb_right;
 337                        prev_e = e;
 338                        e = e1;
 339                }
 340        }
 341
 342        /* If no fastmap has been written and this WL entry can be used
 343         * as anchor PEB, hold it back and return the second best WL entry
 344         * such that fastmap can use the anchor PEB later. */
 345        if (prev_e && !ubi->fm_disabled &&
 346            !ubi->fm && e->pnum < UBI_FM_MAX_START)
 347                return prev_e;
 348
 349        return e;
 350}
 351
 352/**
 353 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 354 * @ubi: UBI device description object
 355 * @root: the RB-tree where to look for
 356 *
 357 * This function looks for a wear leveling entry with medium erase counter,
 358 * but not greater or equivalent than the lowest erase counter plus
 359 * %WL_FREE_MAX_DIFF/2.
 360 */
 361static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 362                                               struct rb_root *root)
 363{
 364        struct ubi_wl_entry *e, *first, *last;
 365
 366        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 367        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 368
 369        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 370                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 371
 372                /* If no fastmap has been written and this WL entry can be used
 373                 * as anchor PEB, hold it back and return the second best
 374                 * WL entry such that fastmap can use the anchor PEB later. */
 375                e = may_reserve_for_fm(ubi, e, root);
 376        } else
 377                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 378
 379        return e;
 380}
 381
 382/**
 383 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 384 * refill_wl_user_pool().
 385 * @ubi: UBI device description object
 386 *
 387 * This function returns a a wear leveling entry in case of success and
 388 * NULL in case of failure.
 389 */
 390static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 391{
 392        struct ubi_wl_entry *e;
 393
 394        e = find_mean_wl_entry(ubi, &ubi->free);
 395        if (!e) {
 396                ubi_err(ubi, "no free eraseblocks");
 397                return NULL;
 398        }
 399
 400        self_check_in_wl_tree(ubi, e, &ubi->free);
 401
 402        /*
 403         * Move the physical eraseblock to the protection queue where it will
 404         * be protected from being moved for some time.
 405         */
 406        rb_erase(&e->u.rb, &ubi->free);
 407        ubi->free_count--;
 408        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 409
 410        return e;
 411}
 412
 413/**
 414 * prot_queue_del - remove a physical eraseblock from the protection queue.
 415 * @ubi: UBI device description object
 416 * @pnum: the physical eraseblock to remove
 417 *
 418 * This function deletes PEB @pnum from the protection queue and returns zero
 419 * in case of success and %-ENODEV if the PEB was not found.
 420 */
 421static int prot_queue_del(struct ubi_device *ubi, int pnum)
 422{
 423        struct ubi_wl_entry *e;
 424
 425        e = ubi->lookuptbl[pnum];
 426        if (!e)
 427                return -ENODEV;
 428
 429        if (self_check_in_pq(ubi, e))
 430                return -ENODEV;
 431
 432        list_del(&e->u.list);
 433        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 434        return 0;
 435}
 436
 437/**
 438 * sync_erase - synchronously erase a physical eraseblock.
 439 * @ubi: UBI device description object
 440 * @e: the the physical eraseblock to erase
 441 * @torture: if the physical eraseblock has to be tortured
 442 *
 443 * This function returns zero in case of success and a negative error code in
 444 * case of failure.
 445 */
 446static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 447                      int torture)
 448{
 449        int err;
 450        struct ubi_ec_hdr *ec_hdr;
 451        unsigned long long ec = e->ec;
 452
 453        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 454
 455        err = self_check_ec(ubi, e->pnum, e->ec);
 456        if (err)
 457                return -EINVAL;
 458
 459        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 460        if (!ec_hdr)
 461                return -ENOMEM;
 462
 463        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 464        if (err < 0)
 465                goto out_free;
 466
 467        ec += err;
 468        if (ec > UBI_MAX_ERASECOUNTER) {
 469                /*
 470                 * Erase counter overflow. Upgrade UBI and use 64-bit
 471                 * erase counters internally.
 472                 */
 473                ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 474                        e->pnum, ec);
 475                err = -EINVAL;
 476                goto out_free;
 477        }
 478
 479        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 480
 481        ec_hdr->ec = cpu_to_be64(ec);
 482
 483        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 484        if (err)
 485                goto out_free;
 486
 487        e->ec = ec;
 488        spin_lock(&ubi->wl_lock);
 489        if (e->ec > ubi->max_ec)
 490                ubi->max_ec = e->ec;
 491        spin_unlock(&ubi->wl_lock);
 492
 493out_free:
 494        kfree(ec_hdr);
 495        return err;
 496}
 497
 498/**
 499 * serve_prot_queue - check if it is time to stop protecting PEBs.
 500 * @ubi: UBI device description object
 501 *
 502 * This function is called after each erase operation and removes PEBs from the
 503 * tail of the protection queue. These PEBs have been protected for long enough
 504 * and should be moved to the used tree.
 505 */
 506static void serve_prot_queue(struct ubi_device *ubi)
 507{
 508        struct ubi_wl_entry *e, *tmp;
 509        int count;
 510
 511        /*
 512         * There may be several protected physical eraseblock to remove,
 513         * process them all.
 514         */
 515repeat:
 516        count = 0;
 517        spin_lock(&ubi->wl_lock);
 518        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 519                dbg_wl("PEB %d EC %d protection over, move to used tree",
 520                        e->pnum, e->ec);
 521
 522                list_del(&e->u.list);
 523                wl_tree_add(e, &ubi->used);
 524                if (count++ > 32) {
 525                        /*
 526                         * Let's be nice and avoid holding the spinlock for
 527                         * too long.
 528                         */
 529                        spin_unlock(&ubi->wl_lock);
 530                        cond_resched();
 531                        goto repeat;
 532                }
 533        }
 534
 535        ubi->pq_head += 1;
 536        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 537                ubi->pq_head = 0;
 538        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 539        spin_unlock(&ubi->wl_lock);
 540}
 541
 542/**
 543 * __schedule_ubi_work - schedule a work.
 544 * @ubi: UBI device description object
 545 * @wrk: the work to schedule
 546 *
 547 * This function adds a work defined by @wrk to the tail of the pending works
 548 * list. Can only be used if ubi->work_sem is already held in read mode!
 549 */
 550static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 551{
 552        spin_lock(&ubi->wl_lock);
 553        list_add_tail(&wrk->list, &ubi->works);
 554        ubi_assert(ubi->works_count >= 0);
 555        ubi->works_count += 1;
 556        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 557                wake_up_process(ubi->bgt_thread);
 558        spin_unlock(&ubi->wl_lock);
 559}
 560
 561/**
 562 * schedule_ubi_work - schedule a work.
 563 * @ubi: UBI device description object
 564 * @wrk: the work to schedule
 565 *
 566 * This function adds a work defined by @wrk to the tail of the pending works
 567 * list.
 568 */
 569static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 570{
 571        down_read(&ubi->work_sem);
 572        __schedule_ubi_work(ubi, wrk);
 573        up_read(&ubi->work_sem);
 574}
 575
 576static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 577                        int shutdown);
 578
 579/**
 580 * schedule_erase - schedule an erase work.
 581 * @ubi: UBI device description object
 582 * @e: the WL entry of the physical eraseblock to erase
 583 * @vol_id: the volume ID that last used this PEB
 584 * @lnum: the last used logical eraseblock number for the PEB
 585 * @torture: if the physical eraseblock has to be tortured
 586 *
 587 * This function returns zero in case of success and a %-ENOMEM in case of
 588 * failure.
 589 */
 590static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 591                          int vol_id, int lnum, int torture, bool nested)
 592{
 593        struct ubi_work *wl_wrk;
 594
 595        ubi_assert(e);
 596
 597        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 598               e->pnum, e->ec, torture);
 599
 600        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 601        if (!wl_wrk)
 602                return -ENOMEM;
 603
 604        wl_wrk->func = &erase_worker;
 605        wl_wrk->e = e;
 606        wl_wrk->vol_id = vol_id;
 607        wl_wrk->lnum = lnum;
 608        wl_wrk->torture = torture;
 609
 610        if (nested)
 611                __schedule_ubi_work(ubi, wl_wrk);
 612        else
 613                schedule_ubi_work(ubi, wl_wrk);
 614        return 0;
 615}
 616
 617static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 618/**
 619 * do_sync_erase - run the erase worker synchronously.
 620 * @ubi: UBI device description object
 621 * @e: the WL entry of the physical eraseblock to erase
 622 * @vol_id: the volume ID that last used this PEB
 623 * @lnum: the last used logical eraseblock number for the PEB
 624 * @torture: if the physical eraseblock has to be tortured
 625 *
 626 */
 627static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 628                         int vol_id, int lnum, int torture)
 629{
 630        struct ubi_work wl_wrk;
 631
 632        dbg_wl("sync erase of PEB %i", e->pnum);
 633
 634        wl_wrk.e = e;
 635        wl_wrk.vol_id = vol_id;
 636        wl_wrk.lnum = lnum;
 637        wl_wrk.torture = torture;
 638
 639        return __erase_worker(ubi, &wl_wrk);
 640}
 641
 642static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 643/**
 644 * wear_leveling_worker - wear-leveling worker function.
 645 * @ubi: UBI device description object
 646 * @wrk: the work object
 647 * @shutdown: non-zero if the worker has to free memory and exit
 648 * because the WL-subsystem is shutting down
 649 *
 650 * This function copies a more worn out physical eraseblock to a less worn out
 651 * one. Returns zero in case of success and a negative error code in case of
 652 * failure.
 653 */
 654static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 655                                int shutdown)
 656{
 657        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 658        int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 659#ifdef CONFIG_MTD_UBI_FASTMAP
 660        int anchor = wrk->anchor;
 661#endif
 662        struct ubi_wl_entry *e1, *e2;
 663        struct ubi_vid_io_buf *vidb;
 664        struct ubi_vid_hdr *vid_hdr;
 665        int dst_leb_clean = 0;
 666
 667        kfree(wrk);
 668        if (shutdown)
 669                return 0;
 670
 671        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 672        if (!vidb)
 673                return -ENOMEM;
 674
 675        vid_hdr = ubi_get_vid_hdr(vidb);
 676
 677        down_read(&ubi->fm_eba_sem);
 678        mutex_lock(&ubi->move_mutex);
 679        spin_lock(&ubi->wl_lock);
 680        ubi_assert(!ubi->move_from && !ubi->move_to);
 681        ubi_assert(!ubi->move_to_put);
 682
 683        if (!ubi->free.rb_node ||
 684            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 685                /*
 686                 * No free physical eraseblocks? Well, they must be waiting in
 687                 * the queue to be erased. Cancel movement - it will be
 688                 * triggered again when a free physical eraseblock appears.
 689                 *
 690                 * No used physical eraseblocks? They must be temporarily
 691                 * protected from being moved. They will be moved to the
 692                 * @ubi->used tree later and the wear-leveling will be
 693                 * triggered again.
 694                 */
 695                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 696                       !ubi->free.rb_node, !ubi->used.rb_node);
 697                goto out_cancel;
 698        }
 699
 700#ifdef CONFIG_MTD_UBI_FASTMAP
 701        /* Check whether we need to produce an anchor PEB */
 702        if (!anchor)
 703                anchor = !anchor_pebs_available(&ubi->free);
 704
 705        if (anchor) {
 706                e1 = find_anchor_wl_entry(&ubi->used);
 707                if (!e1)
 708                        goto out_cancel;
 709                e2 = get_peb_for_wl(ubi);
 710                if (!e2)
 711                        goto out_cancel;
 712
 713                self_check_in_wl_tree(ubi, e1, &ubi->used);
 714                rb_erase(&e1->u.rb, &ubi->used);
 715                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 716        } else if (!ubi->scrub.rb_node) {
 717#else
 718        if (!ubi->scrub.rb_node) {
 719#endif
 720                /*
 721                 * Now pick the least worn-out used physical eraseblock and a
 722                 * highly worn-out free physical eraseblock. If the erase
 723                 * counters differ much enough, start wear-leveling.
 724                 */
 725                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 726                e2 = get_peb_for_wl(ubi);
 727                if (!e2)
 728                        goto out_cancel;
 729
 730                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 731                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 732                               e1->ec, e2->ec);
 733
 734                        /* Give the unused PEB back */
 735                        wl_tree_add(e2, &ubi->free);
 736                        ubi->free_count++;
 737                        goto out_cancel;
 738                }
 739                self_check_in_wl_tree(ubi, e1, &ubi->used);
 740                rb_erase(&e1->u.rb, &ubi->used);
 741                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 742                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 743        } else {
 744                /* Perform scrubbing */
 745                scrubbing = 1;
 746                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 747                e2 = get_peb_for_wl(ubi);
 748                if (!e2)
 749                        goto out_cancel;
 750
 751                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 752                rb_erase(&e1->u.rb, &ubi->scrub);
 753                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 754        }
 755
 756        ubi->move_from = e1;
 757        ubi->move_to = e2;
 758        spin_unlock(&ubi->wl_lock);
 759
 760        /*
 761         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 762         * We so far do not know which logical eraseblock our physical
 763         * eraseblock (@e1) belongs to. We have to read the volume identifier
 764         * header first.
 765         *
 766         * Note, we are protected from this PEB being unmapped and erased. The
 767         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 768         * which is being moved was unmapped.
 769         */
 770
 771        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 772        if (err && err != UBI_IO_BITFLIPS) {
 773                dst_leb_clean = 1;
 774                if (err == UBI_IO_FF) {
 775                        /*
 776                         * We are trying to move PEB without a VID header. UBI
 777                         * always write VID headers shortly after the PEB was
 778                         * given, so we have a situation when it has not yet
 779                         * had a chance to write it, because it was preempted.
 780                         * So add this PEB to the protection queue so far,
 781                         * because presumably more data will be written there
 782                         * (including the missing VID header), and then we'll
 783                         * move it.
 784                         */
 785                        dbg_wl("PEB %d has no VID header", e1->pnum);
 786                        protect = 1;
 787                        goto out_not_moved;
 788                } else if (err == UBI_IO_FF_BITFLIPS) {
 789                        /*
 790                         * The same situation as %UBI_IO_FF, but bit-flips were
 791                         * detected. It is better to schedule this PEB for
 792                         * scrubbing.
 793                         */
 794                        dbg_wl("PEB %d has no VID header but has bit-flips",
 795                               e1->pnum);
 796                        scrubbing = 1;
 797                        goto out_not_moved;
 798                } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 799                        /*
 800                         * While a full scan would detect interrupted erasures
 801                         * at attach time we can face them here when attached from
 802                         * Fastmap.
 803                         */
 804                        dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 805                               e1->pnum);
 806                        erase = 1;
 807                        goto out_not_moved;
 808                }
 809
 810                ubi_err(ubi, "error %d while reading VID header from PEB %d",
 811                        err, e1->pnum);
 812                goto out_error;
 813        }
 814
 815        vol_id = be32_to_cpu(vid_hdr->vol_id);
 816        lnum = be32_to_cpu(vid_hdr->lnum);
 817
 818        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 819        if (err) {
 820                if (err == MOVE_CANCEL_RACE) {
 821                        /*
 822                         * The LEB has not been moved because the volume is
 823                         * being deleted or the PEB has been put meanwhile. We
 824                         * should prevent this PEB from being selected for
 825                         * wear-leveling movement again, so put it to the
 826                         * protection queue.
 827                         */
 828                        protect = 1;
 829                        dst_leb_clean = 1;
 830                        goto out_not_moved;
 831                }
 832                if (err == MOVE_RETRY) {
 833                        scrubbing = 1;
 834                        dst_leb_clean = 1;
 835                        goto out_not_moved;
 836                }
 837                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 838                    err == MOVE_TARGET_RD_ERR) {
 839                        /*
 840                         * Target PEB had bit-flips or write error - torture it.
 841                         */
 842                        torture = 1;
 843                        keep = 1;
 844                        goto out_not_moved;
 845                }
 846
 847                if (err == MOVE_SOURCE_RD_ERR) {
 848                        /*
 849                         * An error happened while reading the source PEB. Do
 850                         * not switch to R/O mode in this case, and give the
 851                         * upper layers a possibility to recover from this,
 852                         * e.g. by unmapping corresponding LEB. Instead, just
 853                         * put this PEB to the @ubi->erroneous list to prevent
 854                         * UBI from trying to move it over and over again.
 855                         */
 856                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 857                                ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 858                                        ubi->erroneous_peb_count);
 859                                goto out_error;
 860                        }
 861                        dst_leb_clean = 1;
 862                        erroneous = 1;
 863                        goto out_not_moved;
 864                }
 865
 866                if (err < 0)
 867                        goto out_error;
 868
 869                ubi_assert(0);
 870        }
 871
 872        /* The PEB has been successfully moved */
 873        if (scrubbing)
 874                ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 875                        e1->pnum, vol_id, lnum, e2->pnum);
 876        ubi_free_vid_buf(vidb);
 877
 878        spin_lock(&ubi->wl_lock);
 879        if (!ubi->move_to_put) {
 880                wl_tree_add(e2, &ubi->used);
 881                e2 = NULL;
 882        }
 883        ubi->move_from = ubi->move_to = NULL;
 884        ubi->move_to_put = ubi->wl_scheduled = 0;
 885        spin_unlock(&ubi->wl_lock);
 886
 887        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 888        if (err) {
 889                if (e2)
 890                        wl_entry_destroy(ubi, e2);
 891                goto out_ro;
 892        }
 893
 894        if (e2) {
 895                /*
 896                 * Well, the target PEB was put meanwhile, schedule it for
 897                 * erasure.
 898                 */
 899                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 900                       e2->pnum, vol_id, lnum);
 901                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 902                if (err)
 903                        goto out_ro;
 904        }
 905
 906        dbg_wl("done");
 907        mutex_unlock(&ubi->move_mutex);
 908        up_read(&ubi->fm_eba_sem);
 909        return 0;
 910
 911        /*
 912         * For some reasons the LEB was not moved, might be an error, might be
 913         * something else. @e1 was not changed, so return it back. @e2 might
 914         * have been changed, schedule it for erasure.
 915         */
 916out_not_moved:
 917        if (vol_id != -1)
 918                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 919                       e1->pnum, vol_id, lnum, e2->pnum, err);
 920        else
 921                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 922                       e1->pnum, e2->pnum, err);
 923        spin_lock(&ubi->wl_lock);
 924        if (protect)
 925                prot_queue_add(ubi, e1);
 926        else if (erroneous) {
 927                wl_tree_add(e1, &ubi->erroneous);
 928                ubi->erroneous_peb_count += 1;
 929        } else if (scrubbing)
 930                wl_tree_add(e1, &ubi->scrub);
 931        else if (keep)
 932                wl_tree_add(e1, &ubi->used);
 933        if (dst_leb_clean) {
 934                wl_tree_add(e2, &ubi->free);
 935                ubi->free_count++;
 936        }
 937
 938        ubi_assert(!ubi->move_to_put);
 939        ubi->move_from = ubi->move_to = NULL;
 940        ubi->wl_scheduled = 0;
 941        spin_unlock(&ubi->wl_lock);
 942
 943        ubi_free_vid_buf(vidb);
 944        if (dst_leb_clean) {
 945                ensure_wear_leveling(ubi, 1);
 946        } else {
 947                err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 948                if (err)
 949                        goto out_ro;
 950        }
 951
 952        if (erase) {
 953                err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 954                if (err)
 955                        goto out_ro;
 956        }
 957
 958        mutex_unlock(&ubi->move_mutex);
 959        up_read(&ubi->fm_eba_sem);
 960        return 0;
 961
 962out_error:
 963        if (vol_id != -1)
 964                ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 965                        err, e1->pnum, e2->pnum);
 966        else
 967                ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 968                        err, e1->pnum, vol_id, lnum, e2->pnum);
 969        spin_lock(&ubi->wl_lock);
 970        ubi->move_from = ubi->move_to = NULL;
 971        ubi->move_to_put = ubi->wl_scheduled = 0;
 972        spin_unlock(&ubi->wl_lock);
 973
 974        ubi_free_vid_buf(vidb);
 975        wl_entry_destroy(ubi, e1);
 976        wl_entry_destroy(ubi, e2);
 977
 978out_ro:
 979        ubi_ro_mode(ubi);
 980        mutex_unlock(&ubi->move_mutex);
 981        up_read(&ubi->fm_eba_sem);
 982        ubi_assert(err != 0);
 983        return err < 0 ? err : -EIO;
 984
 985out_cancel:
 986        ubi->wl_scheduled = 0;
 987        spin_unlock(&ubi->wl_lock);
 988        mutex_unlock(&ubi->move_mutex);
 989        up_read(&ubi->fm_eba_sem);
 990        ubi_free_vid_buf(vidb);
 991        return 0;
 992}
 993
 994/**
 995 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 996 * @ubi: UBI device description object
 997 * @nested: set to non-zero if this function is called from UBI worker
 998 *
 999 * This function checks if it is time to start wear-leveling and schedules it
1000 * if yes. This function returns zero in case of success and a negative error
1001 * code in case of failure.
1002 */
1003static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1004{
1005        int err = 0;
1006        struct ubi_wl_entry *e1;
1007        struct ubi_wl_entry *e2;
1008        struct ubi_work *wrk;
1009
1010        spin_lock(&ubi->wl_lock);
1011        if (ubi->wl_scheduled)
1012                /* Wear-leveling is already in the work queue */
1013                goto out_unlock;
1014
1015        /*
1016         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1017         * the WL worker has to be scheduled anyway.
1018         */
1019        if (!ubi->scrub.rb_node) {
1020                if (!ubi->used.rb_node || !ubi->free.rb_node)
1021                        /* No physical eraseblocks - no deal */
1022                        goto out_unlock;
1023
1024                /*
1025                 * We schedule wear-leveling only if the difference between the
1026                 * lowest erase counter of used physical eraseblocks and a high
1027                 * erase counter of free physical eraseblocks is greater than
1028                 * %UBI_WL_THRESHOLD.
1029                 */
1030                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1031                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1032
1033                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1034                        goto out_unlock;
1035                dbg_wl("schedule wear-leveling");
1036        } else
1037                dbg_wl("schedule scrubbing");
1038
1039        ubi->wl_scheduled = 1;
1040        spin_unlock(&ubi->wl_lock);
1041
1042        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1043        if (!wrk) {
1044                err = -ENOMEM;
1045                goto out_cancel;
1046        }
1047
1048        wrk->anchor = 0;
1049        wrk->func = &wear_leveling_worker;
1050        if (nested)
1051                __schedule_ubi_work(ubi, wrk);
1052        else
1053                schedule_ubi_work(ubi, wrk);
1054        return err;
1055
1056out_cancel:
1057        spin_lock(&ubi->wl_lock);
1058        ubi->wl_scheduled = 0;
1059out_unlock:
1060        spin_unlock(&ubi->wl_lock);
1061        return err;
1062}
1063
1064/**
1065 * __erase_worker - physical eraseblock erase worker function.
1066 * @ubi: UBI device description object
1067 * @wl_wrk: the work object
1068 * @shutdown: non-zero if the worker has to free memory and exit
1069 * because the WL sub-system is shutting down
1070 *
1071 * This function erases a physical eraseblock and perform torture testing if
1072 * needed. It also takes care about marking the physical eraseblock bad if
1073 * needed. Returns zero in case of success and a negative error code in case of
1074 * failure.
1075 */
1076static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1077{
1078        struct ubi_wl_entry *e = wl_wrk->e;
1079        int pnum = e->pnum;
1080        int vol_id = wl_wrk->vol_id;
1081        int lnum = wl_wrk->lnum;
1082        int err, available_consumed = 0;
1083
1084        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1085               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1086
1087        err = sync_erase(ubi, e, wl_wrk->torture);
1088        if (!err) {
1089                spin_lock(&ubi->wl_lock);
1090                wl_tree_add(e, &ubi->free);
1091                ubi->free_count++;
1092                spin_unlock(&ubi->wl_lock);
1093
1094                /*
1095                 * One more erase operation has happened, take care about
1096                 * protected physical eraseblocks.
1097                 */
1098                serve_prot_queue(ubi);
1099
1100                /* And take care about wear-leveling */
1101                err = ensure_wear_leveling(ubi, 1);
1102                return err;
1103        }
1104
1105        ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1106
1107        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1108            err == -EBUSY) {
1109                int err1;
1110
1111                /* Re-schedule the LEB for erasure */
1112                err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1113                if (err1) {
1114                        wl_entry_destroy(ubi, e);
1115                        err = err1;
1116                        goto out_ro;
1117                }
1118                return err;
1119        }
1120
1121        wl_entry_destroy(ubi, e);
1122        if (err != -EIO)
1123                /*
1124                 * If this is not %-EIO, we have no idea what to do. Scheduling
1125                 * this physical eraseblock for erasure again would cause
1126                 * errors again and again. Well, lets switch to R/O mode.
1127                 */
1128                goto out_ro;
1129
1130        /* It is %-EIO, the PEB went bad */
1131
1132        if (!ubi->bad_allowed) {
1133                ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1134                goto out_ro;
1135        }
1136
1137        spin_lock(&ubi->volumes_lock);
1138        if (ubi->beb_rsvd_pebs == 0) {
1139                if (ubi->avail_pebs == 0) {
1140                        spin_unlock(&ubi->volumes_lock);
1141                        ubi_err(ubi, "no reserved/available physical eraseblocks");
1142                        goto out_ro;
1143                }
1144                ubi->avail_pebs -= 1;
1145                available_consumed = 1;
1146        }
1147        spin_unlock(&ubi->volumes_lock);
1148
1149        ubi_msg(ubi, "mark PEB %d as bad", pnum);
1150        err = ubi_io_mark_bad(ubi, pnum);
1151        if (err)
1152                goto out_ro;
1153
1154        spin_lock(&ubi->volumes_lock);
1155        if (ubi->beb_rsvd_pebs > 0) {
1156                if (available_consumed) {
1157                        /*
1158                         * The amount of reserved PEBs increased since we last
1159                         * checked.
1160                         */
1161                        ubi->avail_pebs += 1;
1162                        available_consumed = 0;
1163                }
1164                ubi->beb_rsvd_pebs -= 1;
1165        }
1166        ubi->bad_peb_count += 1;
1167        ubi->good_peb_count -= 1;
1168        ubi_calculate_reserved(ubi);
1169        if (available_consumed)
1170                ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1171        else if (ubi->beb_rsvd_pebs)
1172                ubi_msg(ubi, "%d PEBs left in the reserve",
1173                        ubi->beb_rsvd_pebs);
1174        else
1175                ubi_warn(ubi, "last PEB from the reserve was used");
1176        spin_unlock(&ubi->volumes_lock);
1177
1178        return err;
1179
1180out_ro:
1181        if (available_consumed) {
1182                spin_lock(&ubi->volumes_lock);
1183                ubi->avail_pebs += 1;
1184                spin_unlock(&ubi->volumes_lock);
1185        }
1186        ubi_ro_mode(ubi);
1187        return err;
1188}
1189
1190static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1191                          int shutdown)
1192{
1193        int ret;
1194
1195        if (shutdown) {
1196                struct ubi_wl_entry *e = wl_wrk->e;
1197
1198                dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1199                kfree(wl_wrk);
1200                wl_entry_destroy(ubi, e);
1201                return 0;
1202        }
1203
1204        ret = __erase_worker(ubi, wl_wrk);
1205        kfree(wl_wrk);
1206        return ret;
1207}
1208
1209/**
1210 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1211 * @ubi: UBI device description object
1212 * @vol_id: the volume ID that last used this PEB
1213 * @lnum: the last used logical eraseblock number for the PEB
1214 * @pnum: physical eraseblock to return
1215 * @torture: if this physical eraseblock has to be tortured
1216 *
1217 * This function is called to return physical eraseblock @pnum to the pool of
1218 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1219 * occurred to this @pnum and it has to be tested. This function returns zero
1220 * in case of success, and a negative error code in case of failure.
1221 */
1222int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1223                   int pnum, int torture)
1224{
1225        int err;
1226        struct ubi_wl_entry *e;
1227
1228        dbg_wl("PEB %d", pnum);
1229        ubi_assert(pnum >= 0);
1230        ubi_assert(pnum < ubi->peb_count);
1231
1232        down_read(&ubi->fm_protect);
1233
1234retry:
1235        spin_lock(&ubi->wl_lock);
1236        e = ubi->lookuptbl[pnum];
1237        if (e == ubi->move_from) {
1238                /*
1239                 * User is putting the physical eraseblock which was selected to
1240                 * be moved. It will be scheduled for erasure in the
1241                 * wear-leveling worker.
1242                 */
1243                dbg_wl("PEB %d is being moved, wait", pnum);
1244                spin_unlock(&ubi->wl_lock);
1245
1246                /* Wait for the WL worker by taking the @ubi->move_mutex */
1247                mutex_lock(&ubi->move_mutex);
1248                mutex_unlock(&ubi->move_mutex);
1249                goto retry;
1250        } else if (e == ubi->move_to) {
1251                /*
1252                 * User is putting the physical eraseblock which was selected
1253                 * as the target the data is moved to. It may happen if the EBA
1254                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1255                 * but the WL sub-system has not put the PEB to the "used" tree
1256                 * yet, but it is about to do this. So we just set a flag which
1257                 * will tell the WL worker that the PEB is not needed anymore
1258                 * and should be scheduled for erasure.
1259                 */
1260                dbg_wl("PEB %d is the target of data moving", pnum);
1261                ubi_assert(!ubi->move_to_put);
1262                ubi->move_to_put = 1;
1263                spin_unlock(&ubi->wl_lock);
1264                up_read(&ubi->fm_protect);
1265                return 0;
1266        } else {
1267                if (in_wl_tree(e, &ubi->used)) {
1268                        self_check_in_wl_tree(ubi, e, &ubi->used);
1269                        rb_erase(&e->u.rb, &ubi->used);
1270                } else if (in_wl_tree(e, &ubi->scrub)) {
1271                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1272                        rb_erase(&e->u.rb, &ubi->scrub);
1273                } else if (in_wl_tree(e, &ubi->erroneous)) {
1274                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1275                        rb_erase(&e->u.rb, &ubi->erroneous);
1276                        ubi->erroneous_peb_count -= 1;
1277                        ubi_assert(ubi->erroneous_peb_count >= 0);
1278                        /* Erroneous PEBs should be tortured */
1279                        torture = 1;
1280                } else {
1281                        err = prot_queue_del(ubi, e->pnum);
1282                        if (err) {
1283                                ubi_err(ubi, "PEB %d not found", pnum);
1284                                ubi_ro_mode(ubi);
1285                                spin_unlock(&ubi->wl_lock);
1286                                up_read(&ubi->fm_protect);
1287                                return err;
1288                        }
1289                }
1290        }
1291        spin_unlock(&ubi->wl_lock);
1292
1293        err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1294        if (err) {
1295                spin_lock(&ubi->wl_lock);
1296                wl_tree_add(e, &ubi->used);
1297                spin_unlock(&ubi->wl_lock);
1298        }
1299
1300        up_read(&ubi->fm_protect);
1301        return err;
1302}
1303
1304/**
1305 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1306 * @ubi: UBI device description object
1307 * @pnum: the physical eraseblock to schedule
1308 *
1309 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1310 * needs scrubbing. This function schedules a physical eraseblock for
1311 * scrubbing which is done in background. This function returns zero in case of
1312 * success and a negative error code in case of failure.
1313 */
1314int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1315{
1316        struct ubi_wl_entry *e;
1317
1318        ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1319
1320retry:
1321        spin_lock(&ubi->wl_lock);
1322        e = ubi->lookuptbl[pnum];
1323        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1324                                   in_wl_tree(e, &ubi->erroneous)) {
1325                spin_unlock(&ubi->wl_lock);
1326                return 0;
1327        }
1328
1329        if (e == ubi->move_to) {
1330                /*
1331                 * This physical eraseblock was used to move data to. The data
1332                 * was moved but the PEB was not yet inserted to the proper
1333                 * tree. We should just wait a little and let the WL worker
1334                 * proceed.
1335                 */
1336                spin_unlock(&ubi->wl_lock);
1337                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1338                yield();
1339                goto retry;
1340        }
1341
1342        if (in_wl_tree(e, &ubi->used)) {
1343                self_check_in_wl_tree(ubi, e, &ubi->used);
1344                rb_erase(&e->u.rb, &ubi->used);
1345        } else {
1346                int err;
1347
1348                err = prot_queue_del(ubi, e->pnum);
1349                if (err) {
1350                        ubi_err(ubi, "PEB %d not found", pnum);
1351                        ubi_ro_mode(ubi);
1352                        spin_unlock(&ubi->wl_lock);
1353                        return err;
1354                }
1355        }
1356
1357        wl_tree_add(e, &ubi->scrub);
1358        spin_unlock(&ubi->wl_lock);
1359
1360        /*
1361         * Technically scrubbing is the same as wear-leveling, so it is done
1362         * by the WL worker.
1363         */
1364        return ensure_wear_leveling(ubi, 0);
1365}
1366
1367/**
1368 * ubi_wl_flush - flush all pending works.
1369 * @ubi: UBI device description object
1370 * @vol_id: the volume id to flush for
1371 * @lnum: the logical eraseblock number to flush for
1372 *
1373 * This function executes all pending works for a particular volume id /
1374 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1375 * acts as a wildcard for all of the corresponding volume numbers or logical
1376 * eraseblock numbers. It returns zero in case of success and a negative error
1377 * code in case of failure.
1378 */
1379int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1380{
1381        int err = 0;
1382        int found = 1;
1383
1384        /*
1385         * Erase while the pending works queue is not empty, but not more than
1386         * the number of currently pending works.
1387         */
1388        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1389               vol_id, lnum, ubi->works_count);
1390
1391        while (found) {
1392                struct ubi_work *wrk, *tmp;
1393                found = 0;
1394
1395                down_read(&ubi->work_sem);
1396                spin_lock(&ubi->wl_lock);
1397                list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1398                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1399                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1400                                list_del(&wrk->list);
1401                                ubi->works_count -= 1;
1402                                ubi_assert(ubi->works_count >= 0);
1403                                spin_unlock(&ubi->wl_lock);
1404
1405                                err = wrk->func(ubi, wrk, 0);
1406                                if (err) {
1407                                        up_read(&ubi->work_sem);
1408                                        return err;
1409                                }
1410
1411                                spin_lock(&ubi->wl_lock);
1412                                found = 1;
1413                                break;
1414                        }
1415                }
1416                spin_unlock(&ubi->wl_lock);
1417                up_read(&ubi->work_sem);
1418        }
1419
1420        /*
1421         * Make sure all the works which have been done in parallel are
1422         * finished.
1423         */
1424        down_write(&ubi->work_sem);
1425        up_write(&ubi->work_sem);
1426
1427        return err;
1428}
1429
1430static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1431{
1432        if (in_wl_tree(e, &ubi->scrub))
1433                return false;
1434        else if (in_wl_tree(e, &ubi->erroneous))
1435                return false;
1436        else if (ubi->move_from == e)
1437                return false;
1438        else if (ubi->move_to == e)
1439                return false;
1440
1441        return true;
1442}
1443
1444/**
1445 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1446 * @ubi: UBI device description object
1447 * @pnum: the physical eraseblock to schedule
1448 * @force: dont't read the block, assume bitflips happened and take action.
1449 *
1450 * This function reads the given eraseblock and checks if bitflips occured.
1451 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1452 * If scrubbing is forced with @force, the eraseblock is not read,
1453 * but scheduled for scrubbing right away.
1454 *
1455 * Returns:
1456 * %EINVAL, PEB is out of range
1457 * %ENOENT, PEB is no longer used by UBI
1458 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1459 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1460 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1461 * %0, no bit flips detected
1462 */
1463int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1464{
1465        int err = 0;
1466        struct ubi_wl_entry *e;
1467
1468        if (pnum < 0 || pnum >= ubi->peb_count) {
1469                err = -EINVAL;
1470                goto out;
1471        }
1472
1473        /*
1474         * Pause all parallel work, otherwise it can happen that the
1475         * erase worker frees a wl entry under us.
1476         */
1477        down_write(&ubi->work_sem);
1478
1479        /*
1480         * Make sure that the wl entry does not change state while
1481         * inspecting it.
1482         */
1483        spin_lock(&ubi->wl_lock);
1484        e = ubi->lookuptbl[pnum];
1485        if (!e) {
1486                spin_unlock(&ubi->wl_lock);
1487                err = -ENOENT;
1488                goto out_resume;
1489        }
1490
1491        /*
1492         * Does it make sense to check this PEB?
1493         */
1494        if (!scrub_possible(ubi, e)) {
1495                spin_unlock(&ubi->wl_lock);
1496                err = -EBUSY;
1497                goto out_resume;
1498        }
1499        spin_unlock(&ubi->wl_lock);
1500
1501        if (!force) {
1502                mutex_lock(&ubi->buf_mutex);
1503                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1504                mutex_unlock(&ubi->buf_mutex);
1505        }
1506
1507        if (force || err == UBI_IO_BITFLIPS) {
1508                /*
1509                 * Okay, bit flip happened, let's figure out what we can do.
1510                 */
1511                spin_lock(&ubi->wl_lock);
1512
1513                /*
1514                 * Recheck. We released wl_lock, UBI might have killed the
1515                 * wl entry under us.
1516                 */
1517                e = ubi->lookuptbl[pnum];
1518                if (!e) {
1519                        spin_unlock(&ubi->wl_lock);
1520                        err = -ENOENT;
1521                        goto out_resume;
1522                }
1523
1524                /*
1525                 * Need to re-check state
1526                 */
1527                if (!scrub_possible(ubi, e)) {
1528                        spin_unlock(&ubi->wl_lock);
1529                        err = -EBUSY;
1530                        goto out_resume;
1531                }
1532
1533                if (in_pq(ubi, e)) {
1534                        prot_queue_del(ubi, e->pnum);
1535                        wl_tree_add(e, &ubi->scrub);
1536                        spin_unlock(&ubi->wl_lock);
1537
1538                        err = ensure_wear_leveling(ubi, 1);
1539                } else if (in_wl_tree(e, &ubi->used)) {
1540                        rb_erase(&e->u.rb, &ubi->used);
1541                        wl_tree_add(e, &ubi->scrub);
1542                        spin_unlock(&ubi->wl_lock);
1543
1544                        err = ensure_wear_leveling(ubi, 1);
1545                } else if (in_wl_tree(e, &ubi->free)) {
1546                        rb_erase(&e->u.rb, &ubi->free);
1547                        ubi->free_count--;
1548                        spin_unlock(&ubi->wl_lock);
1549
1550                        /*
1551                         * This PEB is empty we can schedule it for
1552                         * erasure right away. No wear leveling needed.
1553                         */
1554                        err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1555                                             force ? 0 : 1, true);
1556                } else {
1557                        spin_unlock(&ubi->wl_lock);
1558                        err = -EAGAIN;
1559                }
1560
1561                if (!err && !force)
1562                        err = -EUCLEAN;
1563        } else {
1564                err = 0;
1565        }
1566
1567out_resume:
1568        up_write(&ubi->work_sem);
1569out:
1570
1571        return err;
1572}
1573
1574/**
1575 * tree_destroy - destroy an RB-tree.
1576 * @ubi: UBI device description object
1577 * @root: the root of the tree to destroy
1578 */
1579static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1580{
1581        struct rb_node *rb;
1582        struct ubi_wl_entry *e;
1583
1584        rb = root->rb_node;
1585        while (rb) {
1586                if (rb->rb_left)
1587                        rb = rb->rb_left;
1588                else if (rb->rb_right)
1589                        rb = rb->rb_right;
1590                else {
1591                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1592
1593                        rb = rb_parent(rb);
1594                        if (rb) {
1595                                if (rb->rb_left == &e->u.rb)
1596                                        rb->rb_left = NULL;
1597                                else
1598                                        rb->rb_right = NULL;
1599                        }
1600
1601                        wl_entry_destroy(ubi, e);
1602                }
1603        }
1604}
1605
1606/**
1607 * ubi_thread - UBI background thread.
1608 * @u: the UBI device description object pointer
1609 */
1610int ubi_thread(void *u)
1611{
1612        int failures = 0;
1613        struct ubi_device *ubi = u;
1614
1615        ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1616                ubi->bgt_name, task_pid_nr(current));
1617
1618        set_freezable();
1619        for (;;) {
1620                int err;
1621
1622                if (kthread_should_stop())
1623                        break;
1624
1625                if (try_to_freeze())
1626                        continue;
1627
1628                spin_lock(&ubi->wl_lock);
1629                if (list_empty(&ubi->works) || ubi->ro_mode ||
1630                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1631                        set_current_state(TASK_INTERRUPTIBLE);
1632                        spin_unlock(&ubi->wl_lock);
1633                        schedule();
1634                        continue;
1635                }
1636                spin_unlock(&ubi->wl_lock);
1637
1638                err = do_work(ubi);
1639                if (err) {
1640                        ubi_err(ubi, "%s: work failed with error code %d",
1641                                ubi->bgt_name, err);
1642                        if (failures++ > WL_MAX_FAILURES) {
1643                                /*
1644                                 * Too many failures, disable the thread and
1645                                 * switch to read-only mode.
1646                                 */
1647                                ubi_msg(ubi, "%s: %d consecutive failures",
1648                                        ubi->bgt_name, WL_MAX_FAILURES);
1649                                ubi_ro_mode(ubi);
1650                                ubi->thread_enabled = 0;
1651                                continue;
1652                        }
1653                } else
1654                        failures = 0;
1655
1656                cond_resched();
1657        }
1658
1659        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1660        ubi->thread_enabled = 0;
1661        return 0;
1662}
1663
1664/**
1665 * shutdown_work - shutdown all pending works.
1666 * @ubi: UBI device description object
1667 */
1668static void shutdown_work(struct ubi_device *ubi)
1669{
1670        while (!list_empty(&ubi->works)) {
1671                struct ubi_work *wrk;
1672
1673                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1674                list_del(&wrk->list);
1675                wrk->func(ubi, wrk, 1);
1676                ubi->works_count -= 1;
1677                ubi_assert(ubi->works_count >= 0);
1678        }
1679}
1680
1681/**
1682 * erase_aeb - erase a PEB given in UBI attach info PEB
1683 * @ubi: UBI device description object
1684 * @aeb: UBI attach info PEB
1685 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1686 */
1687static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1688{
1689        struct ubi_wl_entry *e;
1690        int err;
1691
1692        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1693        if (!e)
1694                return -ENOMEM;
1695
1696        e->pnum = aeb->pnum;
1697        e->ec = aeb->ec;
1698        ubi->lookuptbl[e->pnum] = e;
1699
1700        if (sync) {
1701                err = sync_erase(ubi, e, false);
1702                if (err)
1703                        goto out_free;
1704
1705                wl_tree_add(e, &ubi->free);
1706                ubi->free_count++;
1707        } else {
1708                err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1709                if (err)
1710                        goto out_free;
1711        }
1712
1713        return 0;
1714
1715out_free:
1716        wl_entry_destroy(ubi, e);
1717
1718        return err;
1719}
1720
1721/**
1722 * ubi_wl_init - initialize the WL sub-system using attaching information.
1723 * @ubi: UBI device description object
1724 * @ai: attaching information
1725 *
1726 * This function returns zero in case of success, and a negative error code in
1727 * case of failure.
1728 */
1729int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1730{
1731        int err, i, reserved_pebs, found_pebs = 0;
1732        struct rb_node *rb1, *rb2;
1733        struct ubi_ainf_volume *av;
1734        struct ubi_ainf_peb *aeb, *tmp;
1735        struct ubi_wl_entry *e;
1736
1737        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1738        spin_lock_init(&ubi->wl_lock);
1739        mutex_init(&ubi->move_mutex);
1740        init_rwsem(&ubi->work_sem);
1741        ubi->max_ec = ai->max_ec;
1742        INIT_LIST_HEAD(&ubi->works);
1743
1744        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1745
1746        err = -ENOMEM;
1747        ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1748        if (!ubi->lookuptbl)
1749                return err;
1750
1751        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1752                INIT_LIST_HEAD(&ubi->pq[i]);
1753        ubi->pq_head = 0;
1754
1755        ubi->free_count = 0;
1756        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1757                cond_resched();
1758
1759                err = erase_aeb(ubi, aeb, false);
1760                if (err)
1761                        goto out_free;
1762
1763                found_pebs++;
1764        }
1765
1766        list_for_each_entry(aeb, &ai->free, u.list) {
1767                cond_resched();
1768
1769                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1770                if (!e) {
1771                        err = -ENOMEM;
1772                        goto out_free;
1773                }
1774
1775                e->pnum = aeb->pnum;
1776                e->ec = aeb->ec;
1777                ubi_assert(e->ec >= 0);
1778
1779                wl_tree_add(e, &ubi->free);
1780                ubi->free_count++;
1781
1782                ubi->lookuptbl[e->pnum] = e;
1783
1784                found_pebs++;
1785        }
1786
1787        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1788                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1789                        cond_resched();
1790
1791                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1792                        if (!e) {
1793                                err = -ENOMEM;
1794                                goto out_free;
1795                        }
1796
1797                        e->pnum = aeb->pnum;
1798                        e->ec = aeb->ec;
1799                        ubi->lookuptbl[e->pnum] = e;
1800
1801                        if (!aeb->scrub) {
1802                                dbg_wl("add PEB %d EC %d to the used tree",
1803                                       e->pnum, e->ec);
1804                                wl_tree_add(e, &ubi->used);
1805                        } else {
1806                                dbg_wl("add PEB %d EC %d to the scrub tree",
1807                                       e->pnum, e->ec);
1808                                wl_tree_add(e, &ubi->scrub);
1809                        }
1810
1811                        found_pebs++;
1812                }
1813        }
1814
1815        list_for_each_entry(aeb, &ai->fastmap, u.list) {
1816                cond_resched();
1817
1818                e = ubi_find_fm_block(ubi, aeb->pnum);
1819
1820                if (e) {
1821                        ubi_assert(!ubi->lookuptbl[e->pnum]);
1822                        ubi->lookuptbl[e->pnum] = e;
1823                } else {
1824                        bool sync = false;
1825
1826                        /*
1827                         * Usually old Fastmap PEBs are scheduled for erasure
1828                         * and we don't have to care about them but if we face
1829                         * an power cut before scheduling them we need to
1830                         * take care of them here.
1831                         */
1832                        if (ubi->lookuptbl[aeb->pnum])
1833                                continue;
1834
1835                        /*
1836                         * The fastmap update code might not find a free PEB for
1837                         * writing the fastmap anchor to and then reuses the
1838                         * current fastmap anchor PEB. When this PEB gets erased
1839                         * and a power cut happens before it is written again we
1840                         * must make sure that the fastmap attach code doesn't
1841                         * find any outdated fastmap anchors, hence we erase the
1842                         * outdated fastmap anchor PEBs synchronously here.
1843                         */
1844                        if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1845                                sync = true;
1846
1847                        err = erase_aeb(ubi, aeb, sync);
1848                        if (err)
1849                                goto out_free;
1850                }
1851
1852                found_pebs++;
1853        }
1854
1855        dbg_wl("found %i PEBs", found_pebs);
1856
1857        ubi_assert(ubi->good_peb_count == found_pebs);
1858
1859        reserved_pebs = WL_RESERVED_PEBS;
1860        ubi_fastmap_init(ubi, &reserved_pebs);
1861
1862        if (ubi->avail_pebs < reserved_pebs) {
1863                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1864                        ubi->avail_pebs, reserved_pebs);
1865                if (ubi->corr_peb_count)
1866                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1867                                ubi->corr_peb_count);
1868                err = -ENOSPC;
1869                goto out_free;
1870        }
1871        ubi->avail_pebs -= reserved_pebs;
1872        ubi->rsvd_pebs += reserved_pebs;
1873
1874        /* Schedule wear-leveling if needed */
1875        err = ensure_wear_leveling(ubi, 0);
1876        if (err)
1877                goto out_free;
1878
1879        return 0;
1880
1881out_free:
1882        shutdown_work(ubi);
1883        tree_destroy(ubi, &ubi->used);
1884        tree_destroy(ubi, &ubi->free);
1885        tree_destroy(ubi, &ubi->scrub);
1886        kfree(ubi->lookuptbl);
1887        return err;
1888}
1889
1890/**
1891 * protection_queue_destroy - destroy the protection queue.
1892 * @ubi: UBI device description object
1893 */
1894static void protection_queue_destroy(struct ubi_device *ubi)
1895{
1896        int i;
1897        struct ubi_wl_entry *e, *tmp;
1898
1899        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1900                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1901                        list_del(&e->u.list);
1902                        wl_entry_destroy(ubi, e);
1903                }
1904        }
1905}
1906
1907/**
1908 * ubi_wl_close - close the wear-leveling sub-system.
1909 * @ubi: UBI device description object
1910 */
1911void ubi_wl_close(struct ubi_device *ubi)
1912{
1913        dbg_wl("close the WL sub-system");
1914        ubi_fastmap_close(ubi);
1915        shutdown_work(ubi);
1916        protection_queue_destroy(ubi);
1917        tree_destroy(ubi, &ubi->used);
1918        tree_destroy(ubi, &ubi->erroneous);
1919        tree_destroy(ubi, &ubi->free);
1920        tree_destroy(ubi, &ubi->scrub);
1921        kfree(ubi->lookuptbl);
1922}
1923
1924/**
1925 * self_check_ec - make sure that the erase counter of a PEB is correct.
1926 * @ubi: UBI device description object
1927 * @pnum: the physical eraseblock number to check
1928 * @ec: the erase counter to check
1929 *
1930 * This function returns zero if the erase counter of physical eraseblock @pnum
1931 * is equivalent to @ec, and a negative error code if not or if an error
1932 * occurred.
1933 */
1934static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1935{
1936        int err;
1937        long long read_ec;
1938        struct ubi_ec_hdr *ec_hdr;
1939
1940        if (!ubi_dbg_chk_gen(ubi))
1941                return 0;
1942
1943        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1944        if (!ec_hdr)
1945                return -ENOMEM;
1946
1947        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1948        if (err && err != UBI_IO_BITFLIPS) {
1949                /* The header does not have to exist */
1950                err = 0;
1951                goto out_free;
1952        }
1953
1954        read_ec = be64_to_cpu(ec_hdr->ec);
1955        if (ec != read_ec && read_ec - ec > 1) {
1956                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1957                ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1958                dump_stack();
1959                err = 1;
1960        } else
1961                err = 0;
1962
1963out_free:
1964        kfree(ec_hdr);
1965        return err;
1966}
1967
1968/**
1969 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1970 * @ubi: UBI device description object
1971 * @e: the wear-leveling entry to check
1972 * @root: the root of the tree
1973 *
1974 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1975 * is not.
1976 */
1977static int self_check_in_wl_tree(const struct ubi_device *ubi,
1978                                 struct ubi_wl_entry *e, struct rb_root *root)
1979{
1980        if (!ubi_dbg_chk_gen(ubi))
1981                return 0;
1982
1983        if (in_wl_tree(e, root))
1984                return 0;
1985
1986        ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1987                e->pnum, e->ec, root);
1988        dump_stack();
1989        return -EINVAL;
1990}
1991
1992/**
1993 * self_check_in_pq - check if wear-leveling entry is in the protection
1994 *                        queue.
1995 * @ubi: UBI device description object
1996 * @e: the wear-leveling entry to check
1997 *
1998 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1999 */
2000static int self_check_in_pq(const struct ubi_device *ubi,
2001                            struct ubi_wl_entry *e)
2002{
2003        if (!ubi_dbg_chk_gen(ubi))
2004                return 0;
2005
2006        if (in_pq(ubi, e))
2007                return 0;
2008
2009        ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2010                e->pnum, e->ec);
2011        dump_stack();
2012        return -EINVAL;
2013}
2014#ifndef CONFIG_MTD_UBI_FASTMAP
2015static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2016{
2017        struct ubi_wl_entry *e;
2018
2019        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2020        self_check_in_wl_tree(ubi, e, &ubi->free);
2021        ubi->free_count--;
2022        ubi_assert(ubi->free_count >= 0);
2023        rb_erase(&e->u.rb, &ubi->free);
2024
2025        return e;
2026}
2027
2028/**
2029 * produce_free_peb - produce a free physical eraseblock.
2030 * @ubi: UBI device description object
2031 *
2032 * This function tries to make a free PEB by means of synchronous execution of
2033 * pending works. This may be needed if, for example the background thread is
2034 * disabled. Returns zero in case of success and a negative error code in case
2035 * of failure.
2036 */
2037static int produce_free_peb(struct ubi_device *ubi)
2038{
2039        int err;
2040
2041        while (!ubi->free.rb_node && ubi->works_count) {
2042                spin_unlock(&ubi->wl_lock);
2043
2044                dbg_wl("do one work synchronously");
2045                err = do_work(ubi);
2046
2047                spin_lock(&ubi->wl_lock);
2048                if (err)
2049                        return err;
2050        }
2051
2052        return 0;
2053}
2054
2055/**
2056 * ubi_wl_get_peb - get a physical eraseblock.
2057 * @ubi: UBI device description object
2058 *
2059 * This function returns a physical eraseblock in case of success and a
2060 * negative error code in case of failure.
2061 * Returns with ubi->fm_eba_sem held in read mode!
2062 */
2063int ubi_wl_get_peb(struct ubi_device *ubi)
2064{
2065        int err;
2066        struct ubi_wl_entry *e;
2067
2068retry:
2069        down_read(&ubi->fm_eba_sem);
2070        spin_lock(&ubi->wl_lock);
2071        if (!ubi->free.rb_node) {
2072                if (ubi->works_count == 0) {
2073                        ubi_err(ubi, "no free eraseblocks");
2074                        ubi_assert(list_empty(&ubi->works));
2075                        spin_unlock(&ubi->wl_lock);
2076                        return -ENOSPC;
2077                }
2078
2079                err = produce_free_peb(ubi);
2080                if (err < 0) {
2081                        spin_unlock(&ubi->wl_lock);
2082                        return err;
2083                }
2084                spin_unlock(&ubi->wl_lock);
2085                up_read(&ubi->fm_eba_sem);
2086                goto retry;
2087
2088        }
2089        e = wl_get_wle(ubi);
2090        prot_queue_add(ubi, e);
2091        spin_unlock(&ubi->wl_lock);
2092
2093        err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2094                                    ubi->peb_size - ubi->vid_hdr_aloffset);
2095        if (err) {
2096                ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2097                return err;
2098        }
2099
2100        return e->pnum;
2101}
2102#else
2103#include "fastmap-wl.c"
2104#endif
2105