linux/drivers/net/ethernet/chelsio/cxgb/sge.c
<<
>>
Prefs
   1/*****************************************************************************
   2 *                                                                           *
   3 * File: sge.c                                                               *
   4 * $Revision: 1.26 $                                                         *
   5 * $Date: 2005/06/21 18:29:48 $                                              *
   6 * Description:                                                              *
   7 *  DMA engine.                                                              *
   8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
   9 *                                                                           *
  10 * This program is free software; you can redistribute it and/or modify      *
  11 * it under the terms of the GNU General Public License, version 2, as       *
  12 * published by the Free Software Foundation.                                *
  13 *                                                                           *
  14 * You should have received a copy of the GNU General Public License along   *
  15 * with this program; if not, see <http://www.gnu.org/licenses/>.            *
  16 *                                                                           *
  17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
  18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
  19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
  20 *                                                                           *
  21 * http://www.chelsio.com                                                    *
  22 *                                                                           *
  23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
  24 * All rights reserved.                                                      *
  25 *                                                                           *
  26 * Maintainers: maintainers@chelsio.com                                      *
  27 *                                                                           *
  28 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
  29 *          Tina Yang               <tainay@chelsio.com>                     *
  30 *          Felix Marti             <felix@chelsio.com>                      *
  31 *          Scott Bardone           <sbardone@chelsio.com>                   *
  32 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
  33 *          Frank DiMambro          <frank@chelsio.com>                      *
  34 *                                                                           *
  35 * History:                                                                  *
  36 *                                                                           *
  37 ****************************************************************************/
  38
  39#include "common.h"
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/pci.h>
  44#include <linux/ktime.h>
  45#include <linux/netdevice.h>
  46#include <linux/etherdevice.h>
  47#include <linux/if_vlan.h>
  48#include <linux/skbuff.h>
  49#include <linux/mm.h>
  50#include <linux/tcp.h>
  51#include <linux/ip.h>
  52#include <linux/in.h>
  53#include <linux/if_arp.h>
  54#include <linux/slab.h>
  55#include <linux/prefetch.h>
  56
  57#include "cpl5_cmd.h"
  58#include "sge.h"
  59#include "regs.h"
  60#include "espi.h"
  61
  62/* This belongs in if_ether.h */
  63#define ETH_P_CPL5 0xf
  64
  65#define SGE_CMDQ_N              2
  66#define SGE_FREELQ_N            2
  67#define SGE_CMDQ0_E_N           1024
  68#define SGE_CMDQ1_E_N           128
  69#define SGE_FREEL_SIZE          4096
  70#define SGE_JUMBO_FREEL_SIZE    512
  71#define SGE_FREEL_REFILL_THRESH 16
  72#define SGE_RESPQ_E_N           1024
  73#define SGE_INTRTIMER_NRES      1000
  74#define SGE_RX_SM_BUF_SIZE      1536
  75#define SGE_TX_DESC_MAX_PLEN    16384
  76
  77#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  78
  79/*
  80 * Period of the TX buffer reclaim timer.  This timer does not need to run
  81 * frequently as TX buffers are usually reclaimed by new TX packets.
  82 */
  83#define TX_RECLAIM_PERIOD (HZ / 4)
  84
  85#define M_CMD_LEN       0x7fffffff
  86#define V_CMD_LEN(v)    (v)
  87#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
  88#define V_CMD_GEN1(v)   ((v) << 31)
  89#define V_CMD_GEN2(v)   (v)
  90#define F_CMD_DATAVALID (1 << 1)
  91#define F_CMD_SOP       (1 << 2)
  92#define V_CMD_EOP(v)    ((v) << 3)
  93
  94/*
  95 * Command queue, receive buffer list, and response queue descriptors.
  96 */
  97#if defined(__BIG_ENDIAN_BITFIELD)
  98struct cmdQ_e {
  99        u32 addr_lo;
 100        u32 len_gen;
 101        u32 flags;
 102        u32 addr_hi;
 103};
 104
 105struct freelQ_e {
 106        u32 addr_lo;
 107        u32 len_gen;
 108        u32 gen2;
 109        u32 addr_hi;
 110};
 111
 112struct respQ_e {
 113        u32 Qsleeping           : 4;
 114        u32 Cmdq1CreditReturn   : 5;
 115        u32 Cmdq1DmaComplete    : 5;
 116        u32 Cmdq0CreditReturn   : 5;
 117        u32 Cmdq0DmaComplete    : 5;
 118        u32 FreelistQid         : 2;
 119        u32 CreditValid         : 1;
 120        u32 DataValid           : 1;
 121        u32 Offload             : 1;
 122        u32 Eop                 : 1;
 123        u32 Sop                 : 1;
 124        u32 GenerationBit       : 1;
 125        u32 BufferLength;
 126};
 127#elif defined(__LITTLE_ENDIAN_BITFIELD)
 128struct cmdQ_e {
 129        u32 len_gen;
 130        u32 addr_lo;
 131        u32 addr_hi;
 132        u32 flags;
 133};
 134
 135struct freelQ_e {
 136        u32 len_gen;
 137        u32 addr_lo;
 138        u32 addr_hi;
 139        u32 gen2;
 140};
 141
 142struct respQ_e {
 143        u32 BufferLength;
 144        u32 GenerationBit       : 1;
 145        u32 Sop                 : 1;
 146        u32 Eop                 : 1;
 147        u32 Offload             : 1;
 148        u32 DataValid           : 1;
 149        u32 CreditValid         : 1;
 150        u32 FreelistQid         : 2;
 151        u32 Cmdq0DmaComplete    : 5;
 152        u32 Cmdq0CreditReturn   : 5;
 153        u32 Cmdq1DmaComplete    : 5;
 154        u32 Cmdq1CreditReturn   : 5;
 155        u32 Qsleeping           : 4;
 156} ;
 157#endif
 158
 159/*
 160 * SW Context Command and Freelist Queue Descriptors
 161 */
 162struct cmdQ_ce {
 163        struct sk_buff *skb;
 164        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 165        DEFINE_DMA_UNMAP_LEN(dma_len);
 166};
 167
 168struct freelQ_ce {
 169        struct sk_buff *skb;
 170        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 171        DEFINE_DMA_UNMAP_LEN(dma_len);
 172};
 173
 174/*
 175 * SW command, freelist and response rings
 176 */
 177struct cmdQ {
 178        unsigned long   status;         /* HW DMA fetch status */
 179        unsigned int    in_use;         /* # of in-use command descriptors */
 180        unsigned int    size;           /* # of descriptors */
 181        unsigned int    processed;      /* total # of descs HW has processed */
 182        unsigned int    cleaned;        /* total # of descs SW has reclaimed */
 183        unsigned int    stop_thres;     /* SW TX queue suspend threshold */
 184        u16             pidx;           /* producer index (SW) */
 185        u16             cidx;           /* consumer index (HW) */
 186        u8              genbit;         /* current generation (=valid) bit */
 187        u8              sop;            /* is next entry start of packet? */
 188        struct cmdQ_e  *entries;        /* HW command descriptor Q */
 189        struct cmdQ_ce *centries;       /* SW command context descriptor Q */
 190        dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
 191        spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
 192};
 193
 194struct freelQ {
 195        unsigned int    credits;        /* # of available RX buffers */
 196        unsigned int    size;           /* free list capacity */
 197        u16             pidx;           /* producer index (SW) */
 198        u16             cidx;           /* consumer index (HW) */
 199        u16             rx_buffer_size; /* Buffer size on this free list */
 200        u16             dma_offset;     /* DMA offset to align IP headers */
 201        u16             recycleq_idx;   /* skb recycle q to use */
 202        u8              genbit;         /* current generation (=valid) bit */
 203        struct freelQ_e *entries;       /* HW freelist descriptor Q */
 204        struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
 205        dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
 206};
 207
 208struct respQ {
 209        unsigned int    credits;        /* credits to be returned to SGE */
 210        unsigned int    size;           /* # of response Q descriptors */
 211        u16             cidx;           /* consumer index (SW) */
 212        u8              genbit;         /* current generation(=valid) bit */
 213        struct respQ_e *entries;        /* HW response descriptor Q */
 214        dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
 215};
 216
 217/* Bit flags for cmdQ.status */
 218enum {
 219        CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
 220        CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 221};
 222
 223/* T204 TX SW scheduler */
 224
 225/* Per T204 TX port */
 226struct sched_port {
 227        unsigned int    avail;          /* available bits - quota */
 228        unsigned int    drain_bits_per_1024ns; /* drain rate */
 229        unsigned int    speed;          /* drain rate, mbps */
 230        unsigned int    mtu;            /* mtu size */
 231        struct sk_buff_head skbq;       /* pending skbs */
 232};
 233
 234/* Per T204 device */
 235struct sched {
 236        ktime_t         last_updated;   /* last time quotas were computed */
 237        unsigned int    max_avail;      /* max bits to be sent to any port */
 238        unsigned int    port;           /* port index (round robin ports) */
 239        unsigned int    num;            /* num skbs in per port queues */
 240        struct sched_port p[MAX_NPORTS];
 241        struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
 242};
 243static void restart_sched(unsigned long);
 244
 245
 246/*
 247 * Main SGE data structure
 248 *
 249 * Interrupts are handled by a single CPU and it is likely that on a MP system
 250 * the application is migrated to another CPU. In that scenario, we try to
 251 * separate the RX(in irq context) and TX state in order to decrease memory
 252 * contention.
 253 */
 254struct sge {
 255        struct adapter *adapter;        /* adapter backpointer */
 256        struct net_device *netdev;      /* netdevice backpointer */
 257        struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
 258        struct respQ    respQ;          /* response Q */
 259        unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 260        unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
 261        unsigned int    jumbo_fl;       /* jumbo freelist Q index */
 262        unsigned int    intrtimer_nres; /* no-resource interrupt timer */
 263        unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
 264        struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
 265        struct timer_list espibug_timer;
 266        unsigned long   espibug_timeout;
 267        struct sk_buff  *espibug_skb[MAX_NPORTS];
 268        u32             sge_control;    /* shadow value of sge control reg */
 269        struct sge_intr_counts stats;
 270        struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
 271        struct sched    *tx_sched;
 272        struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 273};
 274
 275static const u8 ch_mac_addr[ETH_ALEN] = {
 276        0x0, 0x7, 0x43, 0x0, 0x0, 0x0
 277};
 278
 279/*
 280 * stop tasklet and free all pending skb's
 281 */
 282static void tx_sched_stop(struct sge *sge)
 283{
 284        struct sched *s = sge->tx_sched;
 285        int i;
 286
 287        tasklet_kill(&s->sched_tsk);
 288
 289        for (i = 0; i < MAX_NPORTS; i++)
 290                __skb_queue_purge(&s->p[s->port].skbq);
 291}
 292
 293/*
 294 * t1_sched_update_parms() is called when the MTU or link speed changes. It
 295 * re-computes scheduler parameters to scope with the change.
 296 */
 297unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
 298                                   unsigned int mtu, unsigned int speed)
 299{
 300        struct sched *s = sge->tx_sched;
 301        struct sched_port *p = &s->p[port];
 302        unsigned int max_avail_segs;
 303
 304        pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
 305        if (speed)
 306                p->speed = speed;
 307        if (mtu)
 308                p->mtu = mtu;
 309
 310        if (speed || mtu) {
 311                unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
 312                do_div(drain, (p->mtu + 50) * 1000);
 313                p->drain_bits_per_1024ns = (unsigned int) drain;
 314
 315                if (p->speed < 1000)
 316                        p->drain_bits_per_1024ns =
 317                                90 * p->drain_bits_per_1024ns / 100;
 318        }
 319
 320        if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
 321                p->drain_bits_per_1024ns -= 16;
 322                s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
 323                max_avail_segs = max(1U, 4096 / (p->mtu - 40));
 324        } else {
 325                s->max_avail = 16384;
 326                max_avail_segs = max(1U, 9000 / (p->mtu - 40));
 327        }
 328
 329        pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
 330                 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
 331                 p->speed, s->max_avail, max_avail_segs,
 332                 p->drain_bits_per_1024ns);
 333
 334        return max_avail_segs * (p->mtu - 40);
 335}
 336
 337#if 0
 338
 339/*
 340 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 341 * data that can be pushed per port.
 342 */
 343void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
 344{
 345        struct sched *s = sge->tx_sched;
 346        unsigned int i;
 347
 348        s->max_avail = val;
 349        for (i = 0; i < MAX_NPORTS; i++)
 350                t1_sched_update_parms(sge, i, 0, 0);
 351}
 352
 353/*
 354 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 355 * is draining.
 356 */
 357void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
 358                                         unsigned int val)
 359{
 360        struct sched *s = sge->tx_sched;
 361        struct sched_port *p = &s->p[port];
 362        p->drain_bits_per_1024ns = val * 1024 / 1000;
 363        t1_sched_update_parms(sge, port, 0, 0);
 364}
 365
 366#endif  /*  0  */
 367
 368/*
 369 * tx_sched_init() allocates resources and does basic initialization.
 370 */
 371static int tx_sched_init(struct sge *sge)
 372{
 373        struct sched *s;
 374        int i;
 375
 376        s = kzalloc(sizeof (struct sched), GFP_KERNEL);
 377        if (!s)
 378                return -ENOMEM;
 379
 380        pr_debug("tx_sched_init\n");
 381        tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
 382        sge->tx_sched = s;
 383
 384        for (i = 0; i < MAX_NPORTS; i++) {
 385                skb_queue_head_init(&s->p[i].skbq);
 386                t1_sched_update_parms(sge, i, 1500, 1000);
 387        }
 388
 389        return 0;
 390}
 391
 392/*
 393 * sched_update_avail() computes the delta since the last time it was called
 394 * and updates the per port quota (number of bits that can be sent to the any
 395 * port).
 396 */
 397static inline int sched_update_avail(struct sge *sge)
 398{
 399        struct sched *s = sge->tx_sched;
 400        ktime_t now = ktime_get();
 401        unsigned int i;
 402        long long delta_time_ns;
 403
 404        delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
 405
 406        pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
 407        if (delta_time_ns < 15000)
 408                return 0;
 409
 410        for (i = 0; i < MAX_NPORTS; i++) {
 411                struct sched_port *p = &s->p[i];
 412                unsigned int delta_avail;
 413
 414                delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
 415                p->avail = min(p->avail + delta_avail, s->max_avail);
 416        }
 417
 418        s->last_updated = now;
 419
 420        return 1;
 421}
 422
 423/*
 424 * sched_skb() is called from two different places. In the tx path, any
 425 * packet generating load on an output port will call sched_skb()
 426 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 427 * context (skb == NULL).
 428 * The scheduler only returns a skb (which will then be sent) if the
 429 * length of the skb is <= the current quota of the output port.
 430 */
 431static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
 432                                unsigned int credits)
 433{
 434        struct sched *s = sge->tx_sched;
 435        struct sk_buff_head *skbq;
 436        unsigned int i, len, update = 1;
 437
 438        pr_debug("sched_skb %p\n", skb);
 439        if (!skb) {
 440                if (!s->num)
 441                        return NULL;
 442        } else {
 443                skbq = &s->p[skb->dev->if_port].skbq;
 444                __skb_queue_tail(skbq, skb);
 445                s->num++;
 446                skb = NULL;
 447        }
 448
 449        if (credits < MAX_SKB_FRAGS + 1)
 450                goto out;
 451
 452again:
 453        for (i = 0; i < MAX_NPORTS; i++) {
 454                s->port = (s->port + 1) & (MAX_NPORTS - 1);
 455                skbq = &s->p[s->port].skbq;
 456
 457                skb = skb_peek(skbq);
 458
 459                if (!skb)
 460                        continue;
 461
 462                len = skb->len;
 463                if (len <= s->p[s->port].avail) {
 464                        s->p[s->port].avail -= len;
 465                        s->num--;
 466                        __skb_unlink(skb, skbq);
 467                        goto out;
 468                }
 469                skb = NULL;
 470        }
 471
 472        if (update-- && sched_update_avail(sge))
 473                goto again;
 474
 475out:
 476        /* If there are more pending skbs, we use the hardware to schedule us
 477         * again.
 478         */
 479        if (s->num && !skb) {
 480                struct cmdQ *q = &sge->cmdQ[0];
 481                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 482                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 483                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 484                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 485                }
 486        }
 487        pr_debug("sched_skb ret %p\n", skb);
 488
 489        return skb;
 490}
 491
 492/*
 493 * PIO to indicate that memory mapped Q contains valid descriptor(s).
 494 */
 495static inline void doorbell_pio(struct adapter *adapter, u32 val)
 496{
 497        wmb();
 498        writel(val, adapter->regs + A_SG_DOORBELL);
 499}
 500
 501/*
 502 * Frees all RX buffers on the freelist Q. The caller must make sure that
 503 * the SGE is turned off before calling this function.
 504 */
 505static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 506{
 507        unsigned int cidx = q->cidx;
 508
 509        while (q->credits--) {
 510                struct freelQ_ce *ce = &q->centries[cidx];
 511
 512                pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 513                                 dma_unmap_len(ce, dma_len),
 514                                 PCI_DMA_FROMDEVICE);
 515                dev_kfree_skb(ce->skb);
 516                ce->skb = NULL;
 517                if (++cidx == q->size)
 518                        cidx = 0;
 519        }
 520}
 521
 522/*
 523 * Free RX free list and response queue resources.
 524 */
 525static void free_rx_resources(struct sge *sge)
 526{
 527        struct pci_dev *pdev = sge->adapter->pdev;
 528        unsigned int size, i;
 529
 530        if (sge->respQ.entries) {
 531                size = sizeof(struct respQ_e) * sge->respQ.size;
 532                pci_free_consistent(pdev, size, sge->respQ.entries,
 533                                    sge->respQ.dma_addr);
 534        }
 535
 536        for (i = 0; i < SGE_FREELQ_N; i++) {
 537                struct freelQ *q = &sge->freelQ[i];
 538
 539                if (q->centries) {
 540                        free_freelQ_buffers(pdev, q);
 541                        kfree(q->centries);
 542                }
 543                if (q->entries) {
 544                        size = sizeof(struct freelQ_e) * q->size;
 545                        pci_free_consistent(pdev, size, q->entries,
 546                                            q->dma_addr);
 547                }
 548        }
 549}
 550
 551/*
 552 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 553 * response queue.
 554 */
 555static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 556{
 557        struct pci_dev *pdev = sge->adapter->pdev;
 558        unsigned int size, i;
 559
 560        for (i = 0; i < SGE_FREELQ_N; i++) {
 561                struct freelQ *q = &sge->freelQ[i];
 562
 563                q->genbit = 1;
 564                q->size = p->freelQ_size[i];
 565                q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
 566                size = sizeof(struct freelQ_e) * q->size;
 567                q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 568                if (!q->entries)
 569                        goto err_no_mem;
 570
 571                size = sizeof(struct freelQ_ce) * q->size;
 572                q->centries = kzalloc(size, GFP_KERNEL);
 573                if (!q->centries)
 574                        goto err_no_mem;
 575        }
 576
 577        /*
 578         * Calculate the buffer sizes for the two free lists.  FL0 accommodates
 579         * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
 580         * including all the sk_buff overhead.
 581         *
 582         * Note: For T2 FL0 and FL1 are reversed.
 583         */
 584        sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
 585                sizeof(struct cpl_rx_data) +
 586                sge->freelQ[!sge->jumbo_fl].dma_offset;
 587
 588        size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 589
 590        sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
 591
 592        /*
 593         * Setup which skb recycle Q should be used when recycling buffers from
 594         * each free list.
 595         */
 596        sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
 597        sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
 598
 599        sge->respQ.genbit = 1;
 600        sge->respQ.size = SGE_RESPQ_E_N;
 601        sge->respQ.credits = 0;
 602        size = sizeof(struct respQ_e) * sge->respQ.size;
 603        sge->respQ.entries =
 604                pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
 605        if (!sge->respQ.entries)
 606                goto err_no_mem;
 607        return 0;
 608
 609err_no_mem:
 610        free_rx_resources(sge);
 611        return -ENOMEM;
 612}
 613
 614/*
 615 * Reclaims n TX descriptors and frees the buffers associated with them.
 616 */
 617static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 618{
 619        struct cmdQ_ce *ce;
 620        struct pci_dev *pdev = sge->adapter->pdev;
 621        unsigned int cidx = q->cidx;
 622
 623        q->in_use -= n;
 624        ce = &q->centries[cidx];
 625        while (n--) {
 626                if (likely(dma_unmap_len(ce, dma_len))) {
 627                        pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 628                                         dma_unmap_len(ce, dma_len),
 629                                         PCI_DMA_TODEVICE);
 630                        if (q->sop)
 631                                q->sop = 0;
 632                }
 633                if (ce->skb) {
 634                        dev_kfree_skb_any(ce->skb);
 635                        q->sop = 1;
 636                }
 637                ce++;
 638                if (++cidx == q->size) {
 639                        cidx = 0;
 640                        ce = q->centries;
 641                }
 642        }
 643        q->cidx = cidx;
 644}
 645
 646/*
 647 * Free TX resources.
 648 *
 649 * Assumes that SGE is stopped and all interrupts are disabled.
 650 */
 651static void free_tx_resources(struct sge *sge)
 652{
 653        struct pci_dev *pdev = sge->adapter->pdev;
 654        unsigned int size, i;
 655
 656        for (i = 0; i < SGE_CMDQ_N; i++) {
 657                struct cmdQ *q = &sge->cmdQ[i];
 658
 659                if (q->centries) {
 660                        if (q->in_use)
 661                                free_cmdQ_buffers(sge, q, q->in_use);
 662                        kfree(q->centries);
 663                }
 664                if (q->entries) {
 665                        size = sizeof(struct cmdQ_e) * q->size;
 666                        pci_free_consistent(pdev, size, q->entries,
 667                                            q->dma_addr);
 668                }
 669        }
 670}
 671
 672/*
 673 * Allocates basic TX resources, consisting of memory mapped command Qs.
 674 */
 675static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
 676{
 677        struct pci_dev *pdev = sge->adapter->pdev;
 678        unsigned int size, i;
 679
 680        for (i = 0; i < SGE_CMDQ_N; i++) {
 681                struct cmdQ *q = &sge->cmdQ[i];
 682
 683                q->genbit = 1;
 684                q->sop = 1;
 685                q->size = p->cmdQ_size[i];
 686                q->in_use = 0;
 687                q->status = 0;
 688                q->processed = q->cleaned = 0;
 689                q->stop_thres = 0;
 690                spin_lock_init(&q->lock);
 691                size = sizeof(struct cmdQ_e) * q->size;
 692                q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 693                if (!q->entries)
 694                        goto err_no_mem;
 695
 696                size = sizeof(struct cmdQ_ce) * q->size;
 697                q->centries = kzalloc(size, GFP_KERNEL);
 698                if (!q->centries)
 699                        goto err_no_mem;
 700        }
 701
 702        /*
 703         * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
 704         * only.  For queue 0 set the stop threshold so we can handle one more
 705         * packet from each port, plus reserve an additional 24 entries for
 706         * Ethernet packets only.  Queue 1 never suspends nor do we reserve
 707         * space for Ethernet packets.
 708         */
 709        sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
 710                (MAX_SKB_FRAGS + 1);
 711        return 0;
 712
 713err_no_mem:
 714        free_tx_resources(sge);
 715        return -ENOMEM;
 716}
 717
 718static inline void setup_ring_params(struct adapter *adapter, u64 addr,
 719                                     u32 size, int base_reg_lo,
 720                                     int base_reg_hi, int size_reg)
 721{
 722        writel((u32)addr, adapter->regs + base_reg_lo);
 723        writel(addr >> 32, adapter->regs + base_reg_hi);
 724        writel(size, adapter->regs + size_reg);
 725}
 726
 727/*
 728 * Enable/disable VLAN acceleration.
 729 */
 730void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
 731{
 732        struct sge *sge = adapter->sge;
 733
 734        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 735                sge->sge_control |= F_VLAN_XTRACT;
 736        else
 737                sge->sge_control &= ~F_VLAN_XTRACT;
 738        if (adapter->open_device_map) {
 739                writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
 740                readl(adapter->regs + A_SG_CONTROL);   /* flush */
 741        }
 742}
 743
 744/*
 745 * Programs the various SGE registers. However, the engine is not yet enabled,
 746 * but sge->sge_control is setup and ready to go.
 747 */
 748static void configure_sge(struct sge *sge, struct sge_params *p)
 749{
 750        struct adapter *ap = sge->adapter;
 751
 752        writel(0, ap->regs + A_SG_CONTROL);
 753        setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 754                          A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
 755        setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 756                          A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 757        setup_ring_params(ap, sge->freelQ[0].dma_addr,
 758                          sge->freelQ[0].size, A_SG_FL0BASELWR,
 759                          A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 760        setup_ring_params(ap, sge->freelQ[1].dma_addr,
 761                          sge->freelQ[1].size, A_SG_FL1BASELWR,
 762                          A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 763
 764        /* The threshold comparison uses <. */
 765        writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 766
 767        setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
 768                          A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
 769        writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 770
 771        sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 772                F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 773                V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
 774                V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 775
 776#if defined(__BIG_ENDIAN_BITFIELD)
 777        sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 778#endif
 779
 780        /* Initialize no-resource timer */
 781        sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 782
 783        t1_sge_set_coalesce_params(sge, p);
 784}
 785
 786/*
 787 * Return the payload capacity of the jumbo free-list buffers.
 788 */
 789static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 790{
 791        return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
 792                sge->freelQ[sge->jumbo_fl].dma_offset -
 793                sizeof(struct cpl_rx_data);
 794}
 795
 796/*
 797 * Frees all SGE related resources and the sge structure itself
 798 */
 799void t1_sge_destroy(struct sge *sge)
 800{
 801        int i;
 802
 803        for_each_port(sge->adapter, i)
 804                free_percpu(sge->port_stats[i]);
 805
 806        kfree(sge->tx_sched);
 807        free_tx_resources(sge);
 808        free_rx_resources(sge);
 809        kfree(sge);
 810}
 811
 812/*
 813 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 814 * context Q) until the Q is full or alloc_skb fails.
 815 *
 816 * It is possible that the generation bits already match, indicating that the
 817 * buffer is already valid and nothing needs to be done. This happens when we
 818 * copied a received buffer into a new sk_buff during the interrupt processing.
 819 *
 820 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 821 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 822 * aligned.
 823 */
 824static void refill_free_list(struct sge *sge, struct freelQ *q)
 825{
 826        struct pci_dev *pdev = sge->adapter->pdev;
 827        struct freelQ_ce *ce = &q->centries[q->pidx];
 828        struct freelQ_e *e = &q->entries[q->pidx];
 829        unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
 830
 831        while (q->credits < q->size) {
 832                struct sk_buff *skb;
 833                dma_addr_t mapping;
 834
 835                skb = dev_alloc_skb(q->rx_buffer_size);
 836                if (!skb)
 837                        break;
 838
 839                skb_reserve(skb, q->dma_offset);
 840                mapping = pci_map_single(pdev, skb->data, dma_len,
 841                                         PCI_DMA_FROMDEVICE);
 842                skb_reserve(skb, sge->rx_pkt_pad);
 843
 844                ce->skb = skb;
 845                dma_unmap_addr_set(ce, dma_addr, mapping);
 846                dma_unmap_len_set(ce, dma_len, dma_len);
 847                e->addr_lo = (u32)mapping;
 848                e->addr_hi = (u64)mapping >> 32;
 849                e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
 850                wmb();
 851                e->gen2 = V_CMD_GEN2(q->genbit);
 852
 853                e++;
 854                ce++;
 855                if (++q->pidx == q->size) {
 856                        q->pidx = 0;
 857                        q->genbit ^= 1;
 858                        ce = q->centries;
 859                        e = q->entries;
 860                }
 861                q->credits++;
 862        }
 863}
 864
 865/*
 866 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 867 * of both rings, we go into 'few interrupt mode' in order to give the system
 868 * time to free up resources.
 869 */
 870static void freelQs_empty(struct sge *sge)
 871{
 872        struct adapter *adapter = sge->adapter;
 873        u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
 874        u32 irqholdoff_reg;
 875
 876        refill_free_list(sge, &sge->freelQ[0]);
 877        refill_free_list(sge, &sge->freelQ[1]);
 878
 879        if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
 880            sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
 881                irq_reg |= F_FL_EXHAUSTED;
 882                irqholdoff_reg = sge->fixed_intrtimer;
 883        } else {
 884                /* Clear the F_FL_EXHAUSTED interrupts for now */
 885                irq_reg &= ~F_FL_EXHAUSTED;
 886                irqholdoff_reg = sge->intrtimer_nres;
 887        }
 888        writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
 889        writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
 890
 891        /* We reenable the Qs to force a freelist GTS interrupt later */
 892        doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 893}
 894
 895#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
 896#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 897#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
 898                        F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 899
 900/*
 901 * Disable SGE Interrupts
 902 */
 903void t1_sge_intr_disable(struct sge *sge)
 904{
 905        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 906
 907        writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 908        writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
 909}
 910
 911/*
 912 * Enable SGE interrupts.
 913 */
 914void t1_sge_intr_enable(struct sge *sge)
 915{
 916        u32 en = SGE_INT_ENABLE;
 917        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 918
 919        if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
 920                en &= ~F_PACKET_TOO_BIG;
 921        writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
 922        writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 923}
 924
 925/*
 926 * Clear SGE interrupts.
 927 */
 928void t1_sge_intr_clear(struct sge *sge)
 929{
 930        writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
 931        writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
 932}
 933
 934/*
 935 * SGE 'Error' interrupt handler
 936 */
 937int t1_sge_intr_error_handler(struct sge *sge)
 938{
 939        struct adapter *adapter = sge->adapter;
 940        u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
 941
 942        if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
 943                cause &= ~F_PACKET_TOO_BIG;
 944        if (cause & F_RESPQ_EXHAUSTED)
 945                sge->stats.respQ_empty++;
 946        if (cause & F_RESPQ_OVERFLOW) {
 947                sge->stats.respQ_overflow++;
 948                pr_alert("%s: SGE response queue overflow\n",
 949                         adapter->name);
 950        }
 951        if (cause & F_FL_EXHAUSTED) {
 952                sge->stats.freelistQ_empty++;
 953                freelQs_empty(sge);
 954        }
 955        if (cause & F_PACKET_TOO_BIG) {
 956                sge->stats.pkt_too_big++;
 957                pr_alert("%s: SGE max packet size exceeded\n",
 958                         adapter->name);
 959        }
 960        if (cause & F_PACKET_MISMATCH) {
 961                sge->stats.pkt_mismatch++;
 962                pr_alert("%s: SGE packet mismatch\n", adapter->name);
 963        }
 964        if (cause & SGE_INT_FATAL)
 965                t1_fatal_err(adapter);
 966
 967        writel(cause, adapter->regs + A_SG_INT_CAUSE);
 968        return 0;
 969}
 970
 971const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
 972{
 973        return &sge->stats;
 974}
 975
 976void t1_sge_get_port_stats(const struct sge *sge, int port,
 977                           struct sge_port_stats *ss)
 978{
 979        int cpu;
 980
 981        memset(ss, 0, sizeof(*ss));
 982        for_each_possible_cpu(cpu) {
 983                struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
 984
 985                ss->rx_cso_good += st->rx_cso_good;
 986                ss->tx_cso += st->tx_cso;
 987                ss->tx_tso += st->tx_tso;
 988                ss->tx_need_hdrroom += st->tx_need_hdrroom;
 989                ss->vlan_xtract += st->vlan_xtract;
 990                ss->vlan_insert += st->vlan_insert;
 991        }
 992}
 993
 994/**
 995 *      recycle_fl_buf - recycle a free list buffer
 996 *      @fl: the free list
 997 *      @idx: index of buffer to recycle
 998 *
 999 *      Recycles the specified buffer on the given free list by adding it at
1000 *      the next available slot on the list.
1001 */
1002static void recycle_fl_buf(struct freelQ *fl, int idx)
1003{
1004        struct freelQ_e *from = &fl->entries[idx];
1005        struct freelQ_e *to = &fl->entries[fl->pidx];
1006
1007        fl->centries[fl->pidx] = fl->centries[idx];
1008        to->addr_lo = from->addr_lo;
1009        to->addr_hi = from->addr_hi;
1010        to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1011        wmb();
1012        to->gen2 = V_CMD_GEN2(fl->genbit);
1013        fl->credits++;
1014
1015        if (++fl->pidx == fl->size) {
1016                fl->pidx = 0;
1017                fl->genbit ^= 1;
1018        }
1019}
1020
1021static int copybreak __read_mostly = 256;
1022module_param(copybreak, int, 0);
1023MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1024
1025/**
1026 *      get_packet - return the next ingress packet buffer
1027 *      @adapter: the adapter that received the packet
1028 *      @fl: the SGE free list holding the packet
1029 *      @len: the actual packet length, excluding any SGE padding
1030 *
1031 *      Get the next packet from a free list and complete setup of the
1032 *      sk_buff.  If the packet is small we make a copy and recycle the
1033 *      original buffer, otherwise we use the original buffer itself.  If a
1034 *      positive drop threshold is supplied packets are dropped and their
1035 *      buffers recycled if (a) the number of remaining buffers is under the
1036 *      threshold and the packet is too big to copy, or (b) the packet should
1037 *      be copied but there is no memory for the copy.
1038 */
1039static inline struct sk_buff *get_packet(struct adapter *adapter,
1040                                         struct freelQ *fl, unsigned int len)
1041{
1042        const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1043        struct pci_dev *pdev = adapter->pdev;
1044        struct sk_buff *skb;
1045
1046        if (len < copybreak) {
1047                skb = napi_alloc_skb(&adapter->napi, len);
1048                if (!skb)
1049                        goto use_orig_buf;
1050
1051                skb_put(skb, len);
1052                pci_dma_sync_single_for_cpu(pdev,
1053                                            dma_unmap_addr(ce, dma_addr),
1054                                            dma_unmap_len(ce, dma_len),
1055                                            PCI_DMA_FROMDEVICE);
1056                skb_copy_from_linear_data(ce->skb, skb->data, len);
1057                pci_dma_sync_single_for_device(pdev,
1058                                               dma_unmap_addr(ce, dma_addr),
1059                                               dma_unmap_len(ce, dma_len),
1060                                               PCI_DMA_FROMDEVICE);
1061                recycle_fl_buf(fl, fl->cidx);
1062                return skb;
1063        }
1064
1065use_orig_buf:
1066        if (fl->credits < 2) {
1067                recycle_fl_buf(fl, fl->cidx);
1068                return NULL;
1069        }
1070
1071        pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1072                         dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1073        skb = ce->skb;
1074        prefetch(skb->data);
1075
1076        skb_put(skb, len);
1077        return skb;
1078}
1079
1080/**
1081 *      unexpected_offload - handle an unexpected offload packet
1082 *      @adapter: the adapter
1083 *      @fl: the free list that received the packet
1084 *
1085 *      Called when we receive an unexpected offload packet (e.g., the TOE
1086 *      function is disabled or the card is a NIC).  Prints a message and
1087 *      recycles the buffer.
1088 */
1089static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1090{
1091        struct freelQ_ce *ce = &fl->centries[fl->cidx];
1092        struct sk_buff *skb = ce->skb;
1093
1094        pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1095                            dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1096        pr_err("%s: unexpected offload packet, cmd %u\n",
1097               adapter->name, *skb->data);
1098        recycle_fl_buf(fl, fl->cidx);
1099}
1100
1101/*
1102 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1103 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1104 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1105 * Note that the *_large_page_tx_descs stuff will be optimized out when
1106 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1107 *
1108 * compute_large_page_descs() computes how many additional descriptors are
1109 * required to break down the stack's request.
1110 */
1111static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1112{
1113        unsigned int count = 0;
1114
1115        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1116                unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1117                unsigned int i, len = skb_headlen(skb);
1118                while (len > SGE_TX_DESC_MAX_PLEN) {
1119                        count++;
1120                        len -= SGE_TX_DESC_MAX_PLEN;
1121                }
1122                for (i = 0; nfrags--; i++) {
1123                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1124                        len = skb_frag_size(frag);
1125                        while (len > SGE_TX_DESC_MAX_PLEN) {
1126                                count++;
1127                                len -= SGE_TX_DESC_MAX_PLEN;
1128                        }
1129                }
1130        }
1131        return count;
1132}
1133
1134/*
1135 * Write a cmdQ entry.
1136 *
1137 * Since this function writes the 'flags' field, it must not be used to
1138 * write the first cmdQ entry.
1139 */
1140static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1141                                 unsigned int len, unsigned int gen,
1142                                 unsigned int eop)
1143{
1144        BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1145
1146        e->addr_lo = (u32)mapping;
1147        e->addr_hi = (u64)mapping >> 32;
1148        e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1149        e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1150}
1151
1152/*
1153 * See comment for previous function.
1154 *
1155 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1156 * *desc_len exceeds HW's capability.
1157 */
1158static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1159                                                     struct cmdQ_e **e,
1160                                                     struct cmdQ_ce **ce,
1161                                                     unsigned int *gen,
1162                                                     dma_addr_t *desc_mapping,
1163                                                     unsigned int *desc_len,
1164                                                     unsigned int nfrags,
1165                                                     struct cmdQ *q)
1166{
1167        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1168                struct cmdQ_e *e1 = *e;
1169                struct cmdQ_ce *ce1 = *ce;
1170
1171                while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1172                        *desc_len -= SGE_TX_DESC_MAX_PLEN;
1173                        write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1174                                      *gen, nfrags == 0 && *desc_len == 0);
1175                        ce1->skb = NULL;
1176                        dma_unmap_len_set(ce1, dma_len, 0);
1177                        *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1178                        if (*desc_len) {
1179                                ce1++;
1180                                e1++;
1181                                if (++pidx == q->size) {
1182                                        pidx = 0;
1183                                        *gen ^= 1;
1184                                        ce1 = q->centries;
1185                                        e1 = q->entries;
1186                                }
1187                        }
1188                }
1189                *e = e1;
1190                *ce = ce1;
1191        }
1192        return pidx;
1193}
1194
1195/*
1196 * Write the command descriptors to transmit the given skb starting at
1197 * descriptor pidx with the given generation.
1198 */
1199static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1200                                  unsigned int pidx, unsigned int gen,
1201                                  struct cmdQ *q)
1202{
1203        dma_addr_t mapping, desc_mapping;
1204        struct cmdQ_e *e, *e1;
1205        struct cmdQ_ce *ce;
1206        unsigned int i, flags, first_desc_len, desc_len,
1207            nfrags = skb_shinfo(skb)->nr_frags;
1208
1209        e = e1 = &q->entries[pidx];
1210        ce = &q->centries[pidx];
1211
1212        mapping = pci_map_single(adapter->pdev, skb->data,
1213                                 skb_headlen(skb), PCI_DMA_TODEVICE);
1214
1215        desc_mapping = mapping;
1216        desc_len = skb_headlen(skb);
1217
1218        flags = F_CMD_DATAVALID | F_CMD_SOP |
1219            V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1220            V_CMD_GEN2(gen);
1221        first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1222            desc_len : SGE_TX_DESC_MAX_PLEN;
1223        e->addr_lo = (u32)desc_mapping;
1224        e->addr_hi = (u64)desc_mapping >> 32;
1225        e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1226        ce->skb = NULL;
1227        dma_unmap_len_set(ce, dma_len, 0);
1228
1229        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1230            desc_len > SGE_TX_DESC_MAX_PLEN) {
1231                desc_mapping += first_desc_len;
1232                desc_len -= first_desc_len;
1233                e1++;
1234                ce++;
1235                if (++pidx == q->size) {
1236                        pidx = 0;
1237                        gen ^= 1;
1238                        e1 = q->entries;
1239                        ce = q->centries;
1240                }
1241                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1242                                                 &desc_mapping, &desc_len,
1243                                                 nfrags, q);
1244
1245                if (likely(desc_len))
1246                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1247                                      nfrags == 0);
1248        }
1249
1250        ce->skb = NULL;
1251        dma_unmap_addr_set(ce, dma_addr, mapping);
1252        dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1253
1254        for (i = 0; nfrags--; i++) {
1255                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1256                e1++;
1257                ce++;
1258                if (++pidx == q->size) {
1259                        pidx = 0;
1260                        gen ^= 1;
1261                        e1 = q->entries;
1262                        ce = q->centries;
1263                }
1264
1265                mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1266                                           skb_frag_size(frag), DMA_TO_DEVICE);
1267                desc_mapping = mapping;
1268                desc_len = skb_frag_size(frag);
1269
1270                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1271                                                 &desc_mapping, &desc_len,
1272                                                 nfrags, q);
1273                if (likely(desc_len))
1274                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1275                                      nfrags == 0);
1276                ce->skb = NULL;
1277                dma_unmap_addr_set(ce, dma_addr, mapping);
1278                dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1279        }
1280        ce->skb = skb;
1281        wmb();
1282        e->flags = flags;
1283}
1284
1285/*
1286 * Clean up completed Tx buffers.
1287 */
1288static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1289{
1290        unsigned int reclaim = q->processed - q->cleaned;
1291
1292        if (reclaim) {
1293                pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1294                         q->processed, q->cleaned);
1295                free_cmdQ_buffers(sge, q, reclaim);
1296                q->cleaned += reclaim;
1297        }
1298}
1299
1300/*
1301 * Called from tasklet. Checks the scheduler for any
1302 * pending skbs that can be sent.
1303 */
1304static void restart_sched(unsigned long arg)
1305{
1306        struct sge *sge = (struct sge *) arg;
1307        struct adapter *adapter = sge->adapter;
1308        struct cmdQ *q = &sge->cmdQ[0];
1309        struct sk_buff *skb;
1310        unsigned int credits, queued_skb = 0;
1311
1312        spin_lock(&q->lock);
1313        reclaim_completed_tx(sge, q);
1314
1315        credits = q->size - q->in_use;
1316        pr_debug("restart_sched credits=%d\n", credits);
1317        while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1318                unsigned int genbit, pidx, count;
1319                count = 1 + skb_shinfo(skb)->nr_frags;
1320                count += compute_large_page_tx_descs(skb);
1321                q->in_use += count;
1322                genbit = q->genbit;
1323                pidx = q->pidx;
1324                q->pidx += count;
1325                if (q->pidx >= q->size) {
1326                        q->pidx -= q->size;
1327                        q->genbit ^= 1;
1328                }
1329                write_tx_descs(adapter, skb, pidx, genbit, q);
1330                credits = q->size - q->in_use;
1331                queued_skb = 1;
1332        }
1333
1334        if (queued_skb) {
1335                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1336                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1337                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1339                }
1340        }
1341        spin_unlock(&q->lock);
1342}
1343
1344/**
1345 *      sge_rx - process an ingress ethernet packet
1346 *      @sge: the sge structure
1347 *      @fl: the free list that contains the packet buffer
1348 *      @len: the packet length
1349 *
1350 *      Process an ingress ethernet pakcet and deliver it to the stack.
1351 */
1352static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1353{
1354        struct sk_buff *skb;
1355        const struct cpl_rx_pkt *p;
1356        struct adapter *adapter = sge->adapter;
1357        struct sge_port_stats *st;
1358        struct net_device *dev;
1359
1360        skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1361        if (unlikely(!skb)) {
1362                sge->stats.rx_drops++;
1363                return;
1364        }
1365
1366        p = (const struct cpl_rx_pkt *) skb->data;
1367        if (p->iff >= adapter->params.nports) {
1368                kfree_skb(skb);
1369                return;
1370        }
1371        __skb_pull(skb, sizeof(*p));
1372
1373        st = this_cpu_ptr(sge->port_stats[p->iff]);
1374        dev = adapter->port[p->iff].dev;
1375
1376        skb->protocol = eth_type_trans(skb, dev);
1377        if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1378            skb->protocol == htons(ETH_P_IP) &&
1379            (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1380                ++st->rx_cso_good;
1381                skb->ip_summed = CHECKSUM_UNNECESSARY;
1382        } else
1383                skb_checksum_none_assert(skb);
1384
1385        if (p->vlan_valid) {
1386                st->vlan_xtract++;
1387                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1388        }
1389        netif_receive_skb(skb);
1390}
1391
1392/*
1393 * Returns true if a command queue has enough available descriptors that
1394 * we can resume Tx operation after temporarily disabling its packet queue.
1395 */
1396static inline int enough_free_Tx_descs(const struct cmdQ *q)
1397{
1398        unsigned int r = q->processed - q->cleaned;
1399
1400        return q->in_use - r < (q->size >> 1);
1401}
1402
1403/*
1404 * Called when sufficient space has become available in the SGE command queues
1405 * after the Tx packet schedulers have been suspended to restart the Tx path.
1406 */
1407static void restart_tx_queues(struct sge *sge)
1408{
1409        struct adapter *adap = sge->adapter;
1410        int i;
1411
1412        if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1413                return;
1414
1415        for_each_port(adap, i) {
1416                struct net_device *nd = adap->port[i].dev;
1417
1418                if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1419                    netif_running(nd)) {
1420                        sge->stats.cmdQ_restarted[2]++;
1421                        netif_wake_queue(nd);
1422                }
1423        }
1424}
1425
1426/*
1427 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1428 * information.
1429 */
1430static unsigned int update_tx_info(struct adapter *adapter,
1431                                          unsigned int flags,
1432                                          unsigned int pr0)
1433{
1434        struct sge *sge = adapter->sge;
1435        struct cmdQ *cmdq = &sge->cmdQ[0];
1436
1437        cmdq->processed += pr0;
1438        if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1439                freelQs_empty(sge);
1440                flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1441        }
1442        if (flags & F_CMDQ0_ENABLE) {
1443                clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1444
1445                if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1446                    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1447                        set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1448                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1449                }
1450                if (sge->tx_sched)
1451                        tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1452
1453                flags &= ~F_CMDQ0_ENABLE;
1454        }
1455
1456        if (unlikely(sge->stopped_tx_queues != 0))
1457                restart_tx_queues(sge);
1458
1459        return flags;
1460}
1461
1462/*
1463 * Process SGE responses, up to the supplied budget.  Returns the number of
1464 * responses processed.  A negative budget is effectively unlimited.
1465 */
1466static int process_responses(struct adapter *adapter, int budget)
1467{
1468        struct sge *sge = adapter->sge;
1469        struct respQ *q = &sge->respQ;
1470        struct respQ_e *e = &q->entries[q->cidx];
1471        int done = 0;
1472        unsigned int flags = 0;
1473        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1474
1475        while (done < budget && e->GenerationBit == q->genbit) {
1476                flags |= e->Qsleeping;
1477
1478                cmdq_processed[0] += e->Cmdq0CreditReturn;
1479                cmdq_processed[1] += e->Cmdq1CreditReturn;
1480
1481                /* We batch updates to the TX side to avoid cacheline
1482                 * ping-pong of TX state information on MP where the sender
1483                 * might run on a different CPU than this function...
1484                 */
1485                if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1486                        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1487                        cmdq_processed[0] = 0;
1488                }
1489
1490                if (unlikely(cmdq_processed[1] > 16)) {
1491                        sge->cmdQ[1].processed += cmdq_processed[1];
1492                        cmdq_processed[1] = 0;
1493                }
1494
1495                if (likely(e->DataValid)) {
1496                        struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1497
1498                        BUG_ON(!e->Sop || !e->Eop);
1499                        if (unlikely(e->Offload))
1500                                unexpected_offload(adapter, fl);
1501                        else
1502                                sge_rx(sge, fl, e->BufferLength);
1503
1504                        ++done;
1505
1506                        /*
1507                         * Note: this depends on each packet consuming a
1508                         * single free-list buffer; cf. the BUG above.
1509                         */
1510                        if (++fl->cidx == fl->size)
1511                                fl->cidx = 0;
1512                        prefetch(fl->centries[fl->cidx].skb);
1513
1514                        if (unlikely(--fl->credits <
1515                                     fl->size - SGE_FREEL_REFILL_THRESH))
1516                                refill_free_list(sge, fl);
1517                } else
1518                        sge->stats.pure_rsps++;
1519
1520                e++;
1521                if (unlikely(++q->cidx == q->size)) {
1522                        q->cidx = 0;
1523                        q->genbit ^= 1;
1524                        e = q->entries;
1525                }
1526                prefetch(e);
1527
1528                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1529                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1530                        q->credits = 0;
1531                }
1532        }
1533
1534        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1535        sge->cmdQ[1].processed += cmdq_processed[1];
1536
1537        return done;
1538}
1539
1540static inline int responses_pending(const struct adapter *adapter)
1541{
1542        const struct respQ *Q = &adapter->sge->respQ;
1543        const struct respQ_e *e = &Q->entries[Q->cidx];
1544
1545        return e->GenerationBit == Q->genbit;
1546}
1547
1548/*
1549 * A simpler version of process_responses() that handles only pure (i.e.,
1550 * non data-carrying) responses.  Such respones are too light-weight to justify
1551 * calling a softirq when using NAPI, so we handle them specially in hard
1552 * interrupt context.  The function is called with a pointer to a response,
1553 * which the caller must ensure is a valid pure response.  Returns 1 if it
1554 * encounters a valid data-carrying response, 0 otherwise.
1555 */
1556static int process_pure_responses(struct adapter *adapter)
1557{
1558        struct sge *sge = adapter->sge;
1559        struct respQ *q = &sge->respQ;
1560        struct respQ_e *e = &q->entries[q->cidx];
1561        const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1562        unsigned int flags = 0;
1563        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1564
1565        prefetch(fl->centries[fl->cidx].skb);
1566        if (e->DataValid)
1567                return 1;
1568
1569        do {
1570                flags |= e->Qsleeping;
1571
1572                cmdq_processed[0] += e->Cmdq0CreditReturn;
1573                cmdq_processed[1] += e->Cmdq1CreditReturn;
1574
1575                e++;
1576                if (unlikely(++q->cidx == q->size)) {
1577                        q->cidx = 0;
1578                        q->genbit ^= 1;
1579                        e = q->entries;
1580                }
1581                prefetch(e);
1582
1583                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1584                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1585                        q->credits = 0;
1586                }
1587                sge->stats.pure_rsps++;
1588        } while (e->GenerationBit == q->genbit && !e->DataValid);
1589
1590        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1591        sge->cmdQ[1].processed += cmdq_processed[1];
1592
1593        return e->GenerationBit == q->genbit;
1594}
1595
1596/*
1597 * Handler for new data events when using NAPI.  This does not need any locking
1598 * or protection from interrupts as data interrupts are off at this point and
1599 * other adapter interrupts do not interfere.
1600 */
1601int t1_poll(struct napi_struct *napi, int budget)
1602{
1603        struct adapter *adapter = container_of(napi, struct adapter, napi);
1604        int work_done = process_responses(adapter, budget);
1605
1606        if (likely(work_done < budget)) {
1607                napi_complete_done(napi, work_done);
1608                writel(adapter->sge->respQ.cidx,
1609                       adapter->regs + A_SG_SLEEPING);
1610        }
1611        return work_done;
1612}
1613
1614irqreturn_t t1_interrupt(int irq, void *data)
1615{
1616        struct adapter *adapter = data;
1617        struct sge *sge = adapter->sge;
1618        int handled;
1619
1620        if (likely(responses_pending(adapter))) {
1621                writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1622
1623                if (napi_schedule_prep(&adapter->napi)) {
1624                        if (process_pure_responses(adapter))
1625                                __napi_schedule(&adapter->napi);
1626                        else {
1627                                /* no data, no NAPI needed */
1628                                writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1629                                /* undo schedule_prep */
1630                                napi_enable(&adapter->napi);
1631                        }
1632                }
1633                return IRQ_HANDLED;
1634        }
1635
1636        spin_lock(&adapter->async_lock);
1637        handled = t1_slow_intr_handler(adapter);
1638        spin_unlock(&adapter->async_lock);
1639
1640        if (!handled)
1641                sge->stats.unhandled_irqs++;
1642
1643        return IRQ_RETVAL(handled != 0);
1644}
1645
1646/*
1647 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1648 *
1649 * The code figures out how many entries the sk_buff will require in the
1650 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1651 * has complete. Then, it doesn't access the global structure anymore, but
1652 * uses the corresponding fields on the stack. In conjunction with a spinlock
1653 * around that code, we can make the function reentrant without holding the
1654 * lock when we actually enqueue (which might be expensive, especially on
1655 * architectures with IO MMUs).
1656 *
1657 * This runs with softirqs disabled.
1658 */
1659static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1660                     unsigned int qid, struct net_device *dev)
1661{
1662        struct sge *sge = adapter->sge;
1663        struct cmdQ *q = &sge->cmdQ[qid];
1664        unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1665
1666        spin_lock(&q->lock);
1667
1668        reclaim_completed_tx(sge, q);
1669
1670        pidx = q->pidx;
1671        credits = q->size - q->in_use;
1672        count = 1 + skb_shinfo(skb)->nr_frags;
1673        count += compute_large_page_tx_descs(skb);
1674
1675        /* Ethernet packet */
1676        if (unlikely(credits < count)) {
1677                if (!netif_queue_stopped(dev)) {
1678                        netif_stop_queue(dev);
1679                        set_bit(dev->if_port, &sge->stopped_tx_queues);
1680                        sge->stats.cmdQ_full[2]++;
1681                        pr_err("%s: Tx ring full while queue awake!\n",
1682                               adapter->name);
1683                }
1684                spin_unlock(&q->lock);
1685                return NETDEV_TX_BUSY;
1686        }
1687
1688        if (unlikely(credits - count < q->stop_thres)) {
1689                netif_stop_queue(dev);
1690                set_bit(dev->if_port, &sge->stopped_tx_queues);
1691                sge->stats.cmdQ_full[2]++;
1692        }
1693
1694        /* T204 cmdQ0 skbs that are destined for a certain port have to go
1695         * through the scheduler.
1696         */
1697        if (sge->tx_sched && !qid && skb->dev) {
1698use_sched:
1699                use_sched_skb = 1;
1700                /* Note that the scheduler might return a different skb than
1701                 * the one passed in.
1702                 */
1703                skb = sched_skb(sge, skb, credits);
1704                if (!skb) {
1705                        spin_unlock(&q->lock);
1706                        return NETDEV_TX_OK;
1707                }
1708                pidx = q->pidx;
1709                count = 1 + skb_shinfo(skb)->nr_frags;
1710                count += compute_large_page_tx_descs(skb);
1711        }
1712
1713        q->in_use += count;
1714        genbit = q->genbit;
1715        pidx = q->pidx;
1716        q->pidx += count;
1717        if (q->pidx >= q->size) {
1718                q->pidx -= q->size;
1719                q->genbit ^= 1;
1720        }
1721        spin_unlock(&q->lock);
1722
1723        write_tx_descs(adapter, skb, pidx, genbit, q);
1724
1725        /*
1726         * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1727         * the doorbell if the Q is asleep. There is a natural race, where
1728         * the hardware is going to sleep just after we checked, however,
1729         * then the interrupt handler will detect the outstanding TX packet
1730         * and ring the doorbell for us.
1731         */
1732        if (qid)
1733                doorbell_pio(adapter, F_CMDQ1_ENABLE);
1734        else {
1735                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1736                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1737                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1738                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1739                }
1740        }
1741
1742        if (use_sched_skb) {
1743                if (spin_trylock(&q->lock)) {
1744                        credits = q->size - q->in_use;
1745                        skb = NULL;
1746                        goto use_sched;
1747                }
1748        }
1749        return NETDEV_TX_OK;
1750}
1751
1752#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1753
1754/*
1755 *      eth_hdr_len - return the length of an Ethernet header
1756 *      @data: pointer to the start of the Ethernet header
1757 *
1758 *      Returns the length of an Ethernet header, including optional VLAN tag.
1759 */
1760static inline int eth_hdr_len(const void *data)
1761{
1762        const struct ethhdr *e = data;
1763
1764        return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1765}
1766
1767/*
1768 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1769 */
1770netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1771{
1772        struct adapter *adapter = dev->ml_priv;
1773        struct sge *sge = adapter->sge;
1774        struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1775        struct cpl_tx_pkt *cpl;
1776        struct sk_buff *orig_skb = skb;
1777        int ret;
1778
1779        if (skb->protocol == htons(ETH_P_CPL5))
1780                goto send;
1781
1782        /*
1783         * We are using a non-standard hard_header_len.
1784         * Allocate more header room in the rare cases it is not big enough.
1785         */
1786        if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1787                skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1788                ++st->tx_need_hdrroom;
1789                dev_kfree_skb_any(orig_skb);
1790                if (!skb)
1791                        return NETDEV_TX_OK;
1792        }
1793
1794        if (skb_shinfo(skb)->gso_size) {
1795                int eth_type;
1796                struct cpl_tx_pkt_lso *hdr;
1797
1798                ++st->tx_tso;
1799
1800                eth_type = skb_network_offset(skb) == ETH_HLEN ?
1801                        CPL_ETH_II : CPL_ETH_II_VLAN;
1802
1803                hdr = skb_push(skb, sizeof(*hdr));
1804                hdr->opcode = CPL_TX_PKT_LSO;
1805                hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1806                hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1807                hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1808                hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1809                                                          skb_shinfo(skb)->gso_size));
1810                hdr->len = htonl(skb->len - sizeof(*hdr));
1811                cpl = (struct cpl_tx_pkt *)hdr;
1812        } else {
1813                /*
1814                 * Packets shorter than ETH_HLEN can break the MAC, drop them
1815                 * early.  Also, we may get oversized packets because some
1816                 * parts of the kernel don't handle our unusual hard_header_len
1817                 * right, drop those too.
1818                 */
1819                if (unlikely(skb->len < ETH_HLEN ||
1820                             skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1821                        netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1822                                   skb->len, eth_hdr_len(skb->data), dev->mtu);
1823                        dev_kfree_skb_any(skb);
1824                        return NETDEV_TX_OK;
1825                }
1826
1827                if (skb->ip_summed == CHECKSUM_PARTIAL &&
1828                    ip_hdr(skb)->protocol == IPPROTO_UDP) {
1829                        if (unlikely(skb_checksum_help(skb))) {
1830                                netdev_dbg(dev, "unable to do udp checksum\n");
1831                                dev_kfree_skb_any(skb);
1832                                return NETDEV_TX_OK;
1833                        }
1834                }
1835
1836                /* Hmmm, assuming to catch the gratious arp... and we'll use
1837                 * it to flush out stuck espi packets...
1838                 */
1839                if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1840                        if (skb->protocol == htons(ETH_P_ARP) &&
1841                            arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1842                                adapter->sge->espibug_skb[dev->if_port] = skb;
1843                                /* We want to re-use this skb later. We
1844                                 * simply bump the reference count and it
1845                                 * will not be freed...
1846                                 */
1847                                skb = skb_get(skb);
1848                        }
1849                }
1850
1851                cpl = __skb_push(skb, sizeof(*cpl));
1852                cpl->opcode = CPL_TX_PKT;
1853                cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1854                cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1855                /* the length field isn't used so don't bother setting it */
1856
1857                st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1858        }
1859        cpl->iff = dev->if_port;
1860
1861        if (skb_vlan_tag_present(skb)) {
1862                cpl->vlan_valid = 1;
1863                cpl->vlan = htons(skb_vlan_tag_get(skb));
1864                st->vlan_insert++;
1865        } else
1866                cpl->vlan_valid = 0;
1867
1868send:
1869        ret = t1_sge_tx(skb, adapter, 0, dev);
1870
1871        /* If transmit busy, and we reallocated skb's due to headroom limit,
1872         * then silently discard to avoid leak.
1873         */
1874        if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1875                dev_kfree_skb_any(skb);
1876                ret = NETDEV_TX_OK;
1877        }
1878        return ret;
1879}
1880
1881/*
1882 * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1883 */
1884static void sge_tx_reclaim_cb(struct timer_list *t)
1885{
1886        int i;
1887        struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1888
1889        for (i = 0; i < SGE_CMDQ_N; ++i) {
1890                struct cmdQ *q = &sge->cmdQ[i];
1891
1892                if (!spin_trylock(&q->lock))
1893                        continue;
1894
1895                reclaim_completed_tx(sge, q);
1896                if (i == 0 && q->in_use) {    /* flush pending credits */
1897                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1898                }
1899                spin_unlock(&q->lock);
1900        }
1901        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1902}
1903
1904/*
1905 * Propagate changes of the SGE coalescing parameters to the HW.
1906 */
1907int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1908{
1909        sge->fixed_intrtimer = p->rx_coalesce_usecs *
1910                core_ticks_per_usec(sge->adapter);
1911        writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1912        return 0;
1913}
1914
1915/*
1916 * Allocates both RX and TX resources and configures the SGE. However,
1917 * the hardware is not enabled yet.
1918 */
1919int t1_sge_configure(struct sge *sge, struct sge_params *p)
1920{
1921        if (alloc_rx_resources(sge, p))
1922                return -ENOMEM;
1923        if (alloc_tx_resources(sge, p)) {
1924                free_rx_resources(sge);
1925                return -ENOMEM;
1926        }
1927        configure_sge(sge, p);
1928
1929        /*
1930         * Now that we have sized the free lists calculate the payload
1931         * capacity of the large buffers.  Other parts of the driver use
1932         * this to set the max offload coalescing size so that RX packets
1933         * do not overflow our large buffers.
1934         */
1935        p->large_buf_capacity = jumbo_payload_capacity(sge);
1936        return 0;
1937}
1938
1939/*
1940 * Disables the DMA engine.
1941 */
1942void t1_sge_stop(struct sge *sge)
1943{
1944        int i;
1945        writel(0, sge->adapter->regs + A_SG_CONTROL);
1946        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1947
1948        if (is_T2(sge->adapter))
1949                del_timer_sync(&sge->espibug_timer);
1950
1951        del_timer_sync(&sge->tx_reclaim_timer);
1952        if (sge->tx_sched)
1953                tx_sched_stop(sge);
1954
1955        for (i = 0; i < MAX_NPORTS; i++)
1956                kfree_skb(sge->espibug_skb[i]);
1957}
1958
1959/*
1960 * Enables the DMA engine.
1961 */
1962void t1_sge_start(struct sge *sge)
1963{
1964        refill_free_list(sge, &sge->freelQ[0]);
1965        refill_free_list(sge, &sge->freelQ[1]);
1966
1967        writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1968        doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1969        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1970
1971        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1972
1973        if (is_T2(sge->adapter))
1974                mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1975}
1976
1977/*
1978 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1979 */
1980static void espibug_workaround_t204(struct timer_list *t)
1981{
1982        struct sge *sge = from_timer(sge, t, espibug_timer);
1983        struct adapter *adapter = sge->adapter;
1984        unsigned int nports = adapter->params.nports;
1985        u32 seop[MAX_NPORTS];
1986
1987        if (adapter->open_device_map & PORT_MASK) {
1988                int i;
1989
1990                if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1991                        return;
1992
1993                for (i = 0; i < nports; i++) {
1994                        struct sk_buff *skb = sge->espibug_skb[i];
1995
1996                        if (!netif_running(adapter->port[i].dev) ||
1997                            netif_queue_stopped(adapter->port[i].dev) ||
1998                            !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
1999                                continue;
2000
2001                        if (!skb->cb[0]) {
2002                                skb_copy_to_linear_data_offset(skb,
2003                                                    sizeof(struct cpl_tx_pkt),
2004                                                               ch_mac_addr,
2005                                                               ETH_ALEN);
2006                                skb_copy_to_linear_data_offset(skb,
2007                                                               skb->len - 10,
2008                                                               ch_mac_addr,
2009                                                               ETH_ALEN);
2010                                skb->cb[0] = 0xff;
2011                        }
2012
2013                        /* bump the reference count to avoid freeing of
2014                         * the skb once the DMA has completed.
2015                         */
2016                        skb = skb_get(skb);
2017                        t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2018                }
2019        }
2020        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2021}
2022
2023static void espibug_workaround(struct timer_list *t)
2024{
2025        struct sge *sge = from_timer(sge, t, espibug_timer);
2026        struct adapter *adapter = sge->adapter;
2027
2028        if (netif_running(adapter->port[0].dev)) {
2029                struct sk_buff *skb = sge->espibug_skb[0];
2030                u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2031
2032                if ((seop & 0xfff0fff) == 0xfff && skb) {
2033                        if (!skb->cb[0]) {
2034                                skb_copy_to_linear_data_offset(skb,
2035                                                     sizeof(struct cpl_tx_pkt),
2036                                                               ch_mac_addr,
2037                                                               ETH_ALEN);
2038                                skb_copy_to_linear_data_offset(skb,
2039                                                               skb->len - 10,
2040                                                               ch_mac_addr,
2041                                                               ETH_ALEN);
2042                                skb->cb[0] = 0xff;
2043                        }
2044
2045                        /* bump the reference count to avoid freeing of the
2046                         * skb once the DMA has completed.
2047                         */
2048                        skb = skb_get(skb);
2049                        t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2050                }
2051        }
2052        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2053}
2054
2055/*
2056 * Creates a t1_sge structure and returns suggested resource parameters.
2057 */
2058struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2059{
2060        struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2061        int i;
2062
2063        if (!sge)
2064                return NULL;
2065
2066        sge->adapter = adapter;
2067        sge->netdev = adapter->port[0].dev;
2068        sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2069        sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2070
2071        for_each_port(adapter, i) {
2072                sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2073                if (!sge->port_stats[i])
2074                        goto nomem_port;
2075        }
2076
2077        timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2078
2079        if (is_T2(sge->adapter)) {
2080                timer_setup(&sge->espibug_timer,
2081                            adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2082                            0);
2083
2084                if (adapter->params.nports > 1)
2085                        tx_sched_init(sge);
2086
2087                sge->espibug_timeout = 1;
2088                /* for T204, every 10ms */
2089                if (adapter->params.nports > 1)
2090                        sge->espibug_timeout = HZ/100;
2091        }
2092
2093
2094        p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2095        p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2096        p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2097        p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2098        if (sge->tx_sched) {
2099                if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2100                        p->rx_coalesce_usecs = 15;
2101                else
2102                        p->rx_coalesce_usecs = 50;
2103        } else
2104                p->rx_coalesce_usecs = 50;
2105
2106        p->coalesce_enable = 0;
2107        p->sample_interval_usecs = 0;
2108
2109        return sge;
2110nomem_port:
2111        while (i >= 0) {
2112                free_percpu(sge->port_stats[i]);
2113                --i;
2114        }
2115        kfree(sge);
2116        return NULL;
2117
2118}
2119