linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/etherdevice.h>
  35#ifdef CONFIG_IGB_DCA
  36#include <linux/dca.h>
  37#endif
  38#include <linux/i2c.h>
  39#include "igb.h"
  40
  41#define MAJ 5
  42#define MIN 6
  43#define BUILD 0
  44#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  45__stringify(BUILD) "-k"
  46
  47enum queue_mode {
  48        QUEUE_MODE_STRICT_PRIORITY,
  49        QUEUE_MODE_STREAM_RESERVATION,
  50};
  51
  52enum tx_queue_prio {
  53        TX_QUEUE_PRIO_HIGH,
  54        TX_QUEUE_PRIO_LOW,
  55};
  56
  57char igb_driver_name[] = "igb";
  58char igb_driver_version[] = DRV_VERSION;
  59static const char igb_driver_string[] =
  60                                "Intel(R) Gigabit Ethernet Network Driver";
  61static const char igb_copyright[] =
  62                                "Copyright (c) 2007-2014 Intel Corporation.";
  63
  64static const struct e1000_info *igb_info_tbl[] = {
  65        [board_82575] = &e1000_82575_info,
  66};
  67
  68static const struct pci_device_id igb_pci_tbl[] = {
  69        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  70        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  71        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  72        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  73        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  74        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  75        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  99        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 100        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 101        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 102        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 103        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 104        /* required last entry */
 105        {0, }
 106};
 107
 108MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 109
 110static int igb_setup_all_tx_resources(struct igb_adapter *);
 111static int igb_setup_all_rx_resources(struct igb_adapter *);
 112static void igb_free_all_tx_resources(struct igb_adapter *);
 113static void igb_free_all_rx_resources(struct igb_adapter *);
 114static void igb_setup_mrqc(struct igb_adapter *);
 115static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 116static void igb_remove(struct pci_dev *pdev);
 117static int igb_sw_init(struct igb_adapter *);
 118int igb_open(struct net_device *);
 119int igb_close(struct net_device *);
 120static void igb_configure(struct igb_adapter *);
 121static void igb_configure_tx(struct igb_adapter *);
 122static void igb_configure_rx(struct igb_adapter *);
 123static void igb_clean_all_tx_rings(struct igb_adapter *);
 124static void igb_clean_all_rx_rings(struct igb_adapter *);
 125static void igb_clean_tx_ring(struct igb_ring *);
 126static void igb_clean_rx_ring(struct igb_ring *);
 127static void igb_set_rx_mode(struct net_device *);
 128static void igb_update_phy_info(struct timer_list *);
 129static void igb_watchdog(struct timer_list *);
 130static void igb_watchdog_task(struct work_struct *);
 131static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 132static void igb_get_stats64(struct net_device *dev,
 133                            struct rtnl_link_stats64 *stats);
 134static int igb_change_mtu(struct net_device *, int);
 135static int igb_set_mac(struct net_device *, void *);
 136static void igb_set_uta(struct igb_adapter *adapter, bool set);
 137static irqreturn_t igb_intr(int irq, void *);
 138static irqreturn_t igb_intr_msi(int irq, void *);
 139static irqreturn_t igb_msix_other(int irq, void *);
 140static irqreturn_t igb_msix_ring(int irq, void *);
 141#ifdef CONFIG_IGB_DCA
 142static void igb_update_dca(struct igb_q_vector *);
 143static void igb_setup_dca(struct igb_adapter *);
 144#endif /* CONFIG_IGB_DCA */
 145static int igb_poll(struct napi_struct *, int);
 146static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 147static int igb_clean_rx_irq(struct igb_q_vector *, int);
 148static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 149static void igb_tx_timeout(struct net_device *);
 150static void igb_reset_task(struct work_struct *);
 151static void igb_vlan_mode(struct net_device *netdev,
 152                          netdev_features_t features);
 153static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 154static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 155static void igb_restore_vlan(struct igb_adapter *);
 156static void igb_rar_set_index(struct igb_adapter *, u32);
 157static void igb_ping_all_vfs(struct igb_adapter *);
 158static void igb_msg_task(struct igb_adapter *);
 159static void igb_vmm_control(struct igb_adapter *);
 160static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 161static void igb_flush_mac_table(struct igb_adapter *);
 162static int igb_available_rars(struct igb_adapter *, u8);
 163static void igb_set_default_mac_filter(struct igb_adapter *);
 164static int igb_uc_sync(struct net_device *, const unsigned char *);
 165static int igb_uc_unsync(struct net_device *, const unsigned char *);
 166static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 167static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 168static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 169                               int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 170static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 171static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 172                                   bool setting);
 173static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 174                                bool setting);
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176                                 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 178static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 179static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 180
 181#ifdef CONFIG_PCI_IOV
 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 183static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 184static int igb_disable_sriov(struct pci_dev *dev);
 185static int igb_pci_disable_sriov(struct pci_dev *dev);
 186#endif
 187
 188static int igb_suspend(struct device *);
 189static int igb_resume(struct device *);
 190static int igb_runtime_suspend(struct device *dev);
 191static int igb_runtime_resume(struct device *dev);
 192static int igb_runtime_idle(struct device *dev);
 193static const struct dev_pm_ops igb_pm_ops = {
 194        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 195        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 196                        igb_runtime_idle)
 197};
 198static void igb_shutdown(struct pci_dev *);
 199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 200#ifdef CONFIG_IGB_DCA
 201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 202static struct notifier_block dca_notifier = {
 203        .notifier_call  = igb_notify_dca,
 204        .next           = NULL,
 205        .priority       = 0
 206};
 207#endif
 208#ifdef CONFIG_PCI_IOV
 209static unsigned int max_vfs;
 210module_param(max_vfs, uint, 0);
 211MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 212#endif /* CONFIG_PCI_IOV */
 213
 214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 215                     pci_channel_state_t);
 216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 217static void igb_io_resume(struct pci_dev *);
 218
 219static const struct pci_error_handlers igb_err_handler = {
 220        .error_detected = igb_io_error_detected,
 221        .slot_reset = igb_io_slot_reset,
 222        .resume = igb_io_resume,
 223};
 224
 225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 226
 227static struct pci_driver igb_driver = {
 228        .name     = igb_driver_name,
 229        .id_table = igb_pci_tbl,
 230        .probe    = igb_probe,
 231        .remove   = igb_remove,
 232#ifdef CONFIG_PM
 233        .driver.pm = &igb_pm_ops,
 234#endif
 235        .shutdown = igb_shutdown,
 236        .sriov_configure = igb_pci_sriov_configure,
 237        .err_handler = &igb_err_handler
 238};
 239
 240MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 241MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 242MODULE_LICENSE("GPL v2");
 243MODULE_VERSION(DRV_VERSION);
 244
 245#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 246static int debug = -1;
 247module_param(debug, int, 0);
 248MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 249
 250struct igb_reg_info {
 251        u32 ofs;
 252        char *name;
 253};
 254
 255static const struct igb_reg_info igb_reg_info_tbl[] = {
 256
 257        /* General Registers */
 258        {E1000_CTRL, "CTRL"},
 259        {E1000_STATUS, "STATUS"},
 260        {E1000_CTRL_EXT, "CTRL_EXT"},
 261
 262        /* Interrupt Registers */
 263        {E1000_ICR, "ICR"},
 264
 265        /* RX Registers */
 266        {E1000_RCTL, "RCTL"},
 267        {E1000_RDLEN(0), "RDLEN"},
 268        {E1000_RDH(0), "RDH"},
 269        {E1000_RDT(0), "RDT"},
 270        {E1000_RXDCTL(0), "RXDCTL"},
 271        {E1000_RDBAL(0), "RDBAL"},
 272        {E1000_RDBAH(0), "RDBAH"},
 273
 274        /* TX Registers */
 275        {E1000_TCTL, "TCTL"},
 276        {E1000_TDBAL(0), "TDBAL"},
 277        {E1000_TDBAH(0), "TDBAH"},
 278        {E1000_TDLEN(0), "TDLEN"},
 279        {E1000_TDH(0), "TDH"},
 280        {E1000_TDT(0), "TDT"},
 281        {E1000_TXDCTL(0), "TXDCTL"},
 282        {E1000_TDFH, "TDFH"},
 283        {E1000_TDFT, "TDFT"},
 284        {E1000_TDFHS, "TDFHS"},
 285        {E1000_TDFPC, "TDFPC"},
 286
 287        /* List Terminator */
 288        {}
 289};
 290
 291/* igb_regdump - register printout routine */
 292static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 293{
 294        int n = 0;
 295        char rname[16];
 296        u32 regs[8];
 297
 298        switch (reginfo->ofs) {
 299        case E1000_RDLEN(0):
 300                for (n = 0; n < 4; n++)
 301                        regs[n] = rd32(E1000_RDLEN(n));
 302                break;
 303        case E1000_RDH(0):
 304                for (n = 0; n < 4; n++)
 305                        regs[n] = rd32(E1000_RDH(n));
 306                break;
 307        case E1000_RDT(0):
 308                for (n = 0; n < 4; n++)
 309                        regs[n] = rd32(E1000_RDT(n));
 310                break;
 311        case E1000_RXDCTL(0):
 312                for (n = 0; n < 4; n++)
 313                        regs[n] = rd32(E1000_RXDCTL(n));
 314                break;
 315        case E1000_RDBAL(0):
 316                for (n = 0; n < 4; n++)
 317                        regs[n] = rd32(E1000_RDBAL(n));
 318                break;
 319        case E1000_RDBAH(0):
 320                for (n = 0; n < 4; n++)
 321                        regs[n] = rd32(E1000_RDBAH(n));
 322                break;
 323        case E1000_TDBAL(0):
 324                for (n = 0; n < 4; n++)
 325                        regs[n] = rd32(E1000_RDBAL(n));
 326                break;
 327        case E1000_TDBAH(0):
 328                for (n = 0; n < 4; n++)
 329                        regs[n] = rd32(E1000_TDBAH(n));
 330                break;
 331        case E1000_TDLEN(0):
 332                for (n = 0; n < 4; n++)
 333                        regs[n] = rd32(E1000_TDLEN(n));
 334                break;
 335        case E1000_TDH(0):
 336                for (n = 0; n < 4; n++)
 337                        regs[n] = rd32(E1000_TDH(n));
 338                break;
 339        case E1000_TDT(0):
 340                for (n = 0; n < 4; n++)
 341                        regs[n] = rd32(E1000_TDT(n));
 342                break;
 343        case E1000_TXDCTL(0):
 344                for (n = 0; n < 4; n++)
 345                        regs[n] = rd32(E1000_TXDCTL(n));
 346                break;
 347        default:
 348                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 349                return;
 350        }
 351
 352        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 353        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 354                regs[2], regs[3]);
 355}
 356
 357/* igb_dump - Print registers, Tx-rings and Rx-rings */
 358static void igb_dump(struct igb_adapter *adapter)
 359{
 360        struct net_device *netdev = adapter->netdev;
 361        struct e1000_hw *hw = &adapter->hw;
 362        struct igb_reg_info *reginfo;
 363        struct igb_ring *tx_ring;
 364        union e1000_adv_tx_desc *tx_desc;
 365        struct my_u0 { u64 a; u64 b; } *u0;
 366        struct igb_ring *rx_ring;
 367        union e1000_adv_rx_desc *rx_desc;
 368        u32 staterr;
 369        u16 i, n;
 370
 371        if (!netif_msg_hw(adapter))
 372                return;
 373
 374        /* Print netdevice Info */
 375        if (netdev) {
 376                dev_info(&adapter->pdev->dev, "Net device Info\n");
 377                pr_info("Device Name     state            trans_start\n");
 378                pr_info("%-15s %016lX %016lX\n", netdev->name,
 379                        netdev->state, dev_trans_start(netdev));
 380        }
 381
 382        /* Print Registers */
 383        dev_info(&adapter->pdev->dev, "Register Dump\n");
 384        pr_info(" Register Name   Value\n");
 385        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 386             reginfo->name; reginfo++) {
 387                igb_regdump(hw, reginfo);
 388        }
 389
 390        /* Print TX Ring Summary */
 391        if (!netdev || !netif_running(netdev))
 392                goto exit;
 393
 394        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 395        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 396        for (n = 0; n < adapter->num_tx_queues; n++) {
 397                struct igb_tx_buffer *buffer_info;
 398                tx_ring = adapter->tx_ring[n];
 399                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 400                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 401                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 402                        (u64)dma_unmap_addr(buffer_info, dma),
 403                        dma_unmap_len(buffer_info, len),
 404                        buffer_info->next_to_watch,
 405                        (u64)buffer_info->time_stamp);
 406        }
 407
 408        /* Print TX Rings */
 409        if (!netif_msg_tx_done(adapter))
 410                goto rx_ring_summary;
 411
 412        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 413
 414        /* Transmit Descriptor Formats
 415         *
 416         * Advanced Transmit Descriptor
 417         *   +--------------------------------------------------------------+
 418         * 0 |         Buffer Address [63:0]                                |
 419         *   +--------------------------------------------------------------+
 420         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 421         *   +--------------------------------------------------------------+
 422         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 423         */
 424
 425        for (n = 0; n < adapter->num_tx_queues; n++) {
 426                tx_ring = adapter->tx_ring[n];
 427                pr_info("------------------------------------\n");
 428                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 429                pr_info("------------------------------------\n");
 430                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 431
 432                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 433                        const char *next_desc;
 434                        struct igb_tx_buffer *buffer_info;
 435                        tx_desc = IGB_TX_DESC(tx_ring, i);
 436                        buffer_info = &tx_ring->tx_buffer_info[i];
 437                        u0 = (struct my_u0 *)tx_desc;
 438                        if (i == tx_ring->next_to_use &&
 439                            i == tx_ring->next_to_clean)
 440                                next_desc = " NTC/U";
 441                        else if (i == tx_ring->next_to_use)
 442                                next_desc = " NTU";
 443                        else if (i == tx_ring->next_to_clean)
 444                                next_desc = " NTC";
 445                        else
 446                                next_desc = "";
 447
 448                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 449                                i, le64_to_cpu(u0->a),
 450                                le64_to_cpu(u0->b),
 451                                (u64)dma_unmap_addr(buffer_info, dma),
 452                                dma_unmap_len(buffer_info, len),
 453                                buffer_info->next_to_watch,
 454                                (u64)buffer_info->time_stamp,
 455                                buffer_info->skb, next_desc);
 456
 457                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 458                                print_hex_dump(KERN_INFO, "",
 459                                        DUMP_PREFIX_ADDRESS,
 460                                        16, 1, buffer_info->skb->data,
 461                                        dma_unmap_len(buffer_info, len),
 462                                        true);
 463                }
 464        }
 465
 466        /* Print RX Rings Summary */
 467rx_ring_summary:
 468        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 469        pr_info("Queue [NTU] [NTC]\n");
 470        for (n = 0; n < adapter->num_rx_queues; n++) {
 471                rx_ring = adapter->rx_ring[n];
 472                pr_info(" %5d %5X %5X\n",
 473                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 474        }
 475
 476        /* Print RX Rings */
 477        if (!netif_msg_rx_status(adapter))
 478                goto exit;
 479
 480        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 481
 482        /* Advanced Receive Descriptor (Read) Format
 483         *    63                                           1        0
 484         *    +-----------------------------------------------------+
 485         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 486         *    +----------------------------------------------+------+
 487         *  8 |       Header Buffer Address [63:1]           |  DD  |
 488         *    +-----------------------------------------------------+
 489         *
 490         *
 491         * Advanced Receive Descriptor (Write-Back) Format
 492         *
 493         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 494         *   +------------------------------------------------------+
 495         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 496         *   | Checksum   Ident  |   |           |    | Type | Type |
 497         *   +------------------------------------------------------+
 498         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 499         *   +------------------------------------------------------+
 500         *   63       48 47    32 31            20 19               0
 501         */
 502
 503        for (n = 0; n < adapter->num_rx_queues; n++) {
 504                rx_ring = adapter->rx_ring[n];
 505                pr_info("------------------------------------\n");
 506                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 507                pr_info("------------------------------------\n");
 508                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 509                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 510
 511                for (i = 0; i < rx_ring->count; i++) {
 512                        const char *next_desc;
 513                        struct igb_rx_buffer *buffer_info;
 514                        buffer_info = &rx_ring->rx_buffer_info[i];
 515                        rx_desc = IGB_RX_DESC(rx_ring, i);
 516                        u0 = (struct my_u0 *)rx_desc;
 517                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 518
 519                        if (i == rx_ring->next_to_use)
 520                                next_desc = " NTU";
 521                        else if (i == rx_ring->next_to_clean)
 522                                next_desc = " NTC";
 523                        else
 524                                next_desc = "";
 525
 526                        if (staterr & E1000_RXD_STAT_DD) {
 527                                /* Descriptor Done */
 528                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 529                                        "RWB", i,
 530                                        le64_to_cpu(u0->a),
 531                                        le64_to_cpu(u0->b),
 532                                        next_desc);
 533                        } else {
 534                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 535                                        "R  ", i,
 536                                        le64_to_cpu(u0->a),
 537                                        le64_to_cpu(u0->b),
 538                                        (u64)buffer_info->dma,
 539                                        next_desc);
 540
 541                                if (netif_msg_pktdata(adapter) &&
 542                                    buffer_info->dma && buffer_info->page) {
 543                                        print_hex_dump(KERN_INFO, "",
 544                                          DUMP_PREFIX_ADDRESS,
 545                                          16, 1,
 546                                          page_address(buffer_info->page) +
 547                                                      buffer_info->page_offset,
 548                                          igb_rx_bufsz(rx_ring), true);
 549                                }
 550                        }
 551                }
 552        }
 553
 554exit:
 555        return;
 556}
 557
 558/**
 559 *  igb_get_i2c_data - Reads the I2C SDA data bit
 560 *  @hw: pointer to hardware structure
 561 *  @i2cctl: Current value of I2CCTL register
 562 *
 563 *  Returns the I2C data bit value
 564 **/
 565static int igb_get_i2c_data(void *data)
 566{
 567        struct igb_adapter *adapter = (struct igb_adapter *)data;
 568        struct e1000_hw *hw = &adapter->hw;
 569        s32 i2cctl = rd32(E1000_I2CPARAMS);
 570
 571        return !!(i2cctl & E1000_I2C_DATA_IN);
 572}
 573
 574/**
 575 *  igb_set_i2c_data - Sets the I2C data bit
 576 *  @data: pointer to hardware structure
 577 *  @state: I2C data value (0 or 1) to set
 578 *
 579 *  Sets the I2C data bit
 580 **/
 581static void igb_set_i2c_data(void *data, int state)
 582{
 583        struct igb_adapter *adapter = (struct igb_adapter *)data;
 584        struct e1000_hw *hw = &adapter->hw;
 585        s32 i2cctl = rd32(E1000_I2CPARAMS);
 586
 587        if (state)
 588                i2cctl |= E1000_I2C_DATA_OUT;
 589        else
 590                i2cctl &= ~E1000_I2C_DATA_OUT;
 591
 592        i2cctl &= ~E1000_I2C_DATA_OE_N;
 593        i2cctl |= E1000_I2C_CLK_OE_N;
 594        wr32(E1000_I2CPARAMS, i2cctl);
 595        wrfl();
 596
 597}
 598
 599/**
 600 *  igb_set_i2c_clk - Sets the I2C SCL clock
 601 *  @data: pointer to hardware structure
 602 *  @state: state to set clock
 603 *
 604 *  Sets the I2C clock line to state
 605 **/
 606static void igb_set_i2c_clk(void *data, int state)
 607{
 608        struct igb_adapter *adapter = (struct igb_adapter *)data;
 609        struct e1000_hw *hw = &adapter->hw;
 610        s32 i2cctl = rd32(E1000_I2CPARAMS);
 611
 612        if (state) {
 613                i2cctl |= E1000_I2C_CLK_OUT;
 614                i2cctl &= ~E1000_I2C_CLK_OE_N;
 615        } else {
 616                i2cctl &= ~E1000_I2C_CLK_OUT;
 617                i2cctl &= ~E1000_I2C_CLK_OE_N;
 618        }
 619        wr32(E1000_I2CPARAMS, i2cctl);
 620        wrfl();
 621}
 622
 623/**
 624 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 625 *  @data: pointer to hardware structure
 626 *
 627 *  Gets the I2C clock state
 628 **/
 629static int igb_get_i2c_clk(void *data)
 630{
 631        struct igb_adapter *adapter = (struct igb_adapter *)data;
 632        struct e1000_hw *hw = &adapter->hw;
 633        s32 i2cctl = rd32(E1000_I2CPARAMS);
 634
 635        return !!(i2cctl & E1000_I2C_CLK_IN);
 636}
 637
 638static const struct i2c_algo_bit_data igb_i2c_algo = {
 639        .setsda         = igb_set_i2c_data,
 640        .setscl         = igb_set_i2c_clk,
 641        .getsda         = igb_get_i2c_data,
 642        .getscl         = igb_get_i2c_clk,
 643        .udelay         = 5,
 644        .timeout        = 20,
 645};
 646
 647/**
 648 *  igb_get_hw_dev - return device
 649 *  @hw: pointer to hardware structure
 650 *
 651 *  used by hardware layer to print debugging information
 652 **/
 653struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 654{
 655        struct igb_adapter *adapter = hw->back;
 656        return adapter->netdev;
 657}
 658
 659/**
 660 *  igb_init_module - Driver Registration Routine
 661 *
 662 *  igb_init_module is the first routine called when the driver is
 663 *  loaded. All it does is register with the PCI subsystem.
 664 **/
 665static int __init igb_init_module(void)
 666{
 667        int ret;
 668
 669        pr_info("%s - version %s\n",
 670               igb_driver_string, igb_driver_version);
 671        pr_info("%s\n", igb_copyright);
 672
 673#ifdef CONFIG_IGB_DCA
 674        dca_register_notify(&dca_notifier);
 675#endif
 676        ret = pci_register_driver(&igb_driver);
 677        return ret;
 678}
 679
 680module_init(igb_init_module);
 681
 682/**
 683 *  igb_exit_module - Driver Exit Cleanup Routine
 684 *
 685 *  igb_exit_module is called just before the driver is removed
 686 *  from memory.
 687 **/
 688static void __exit igb_exit_module(void)
 689{
 690#ifdef CONFIG_IGB_DCA
 691        dca_unregister_notify(&dca_notifier);
 692#endif
 693        pci_unregister_driver(&igb_driver);
 694}
 695
 696module_exit(igb_exit_module);
 697
 698#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 699/**
 700 *  igb_cache_ring_register - Descriptor ring to register mapping
 701 *  @adapter: board private structure to initialize
 702 *
 703 *  Once we know the feature-set enabled for the device, we'll cache
 704 *  the register offset the descriptor ring is assigned to.
 705 **/
 706static void igb_cache_ring_register(struct igb_adapter *adapter)
 707{
 708        int i = 0, j = 0;
 709        u32 rbase_offset = adapter->vfs_allocated_count;
 710
 711        switch (adapter->hw.mac.type) {
 712        case e1000_82576:
 713                /* The queues are allocated for virtualization such that VF 0
 714                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 715                 * In order to avoid collision we start at the first free queue
 716                 * and continue consuming queues in the same sequence
 717                 */
 718                if (adapter->vfs_allocated_count) {
 719                        for (; i < adapter->rss_queues; i++)
 720                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 721                                                               Q_IDX_82576(i);
 722                }
 723                /* Fall through */
 724        case e1000_82575:
 725        case e1000_82580:
 726        case e1000_i350:
 727        case e1000_i354:
 728        case e1000_i210:
 729        case e1000_i211:
 730                /* Fall through */
 731        default:
 732                for (; i < adapter->num_rx_queues; i++)
 733                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 734                for (; j < adapter->num_tx_queues; j++)
 735                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 736                break;
 737        }
 738}
 739
 740u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 741{
 742        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 743        u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 744        u32 value = 0;
 745
 746        if (E1000_REMOVED(hw_addr))
 747                return ~value;
 748
 749        value = readl(&hw_addr[reg]);
 750
 751        /* reads should not return all F's */
 752        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 753                struct net_device *netdev = igb->netdev;
 754                hw->hw_addr = NULL;
 755                netdev_err(netdev, "PCIe link lost\n");
 756        }
 757
 758        return value;
 759}
 760
 761/**
 762 *  igb_write_ivar - configure ivar for given MSI-X vector
 763 *  @hw: pointer to the HW structure
 764 *  @msix_vector: vector number we are allocating to a given ring
 765 *  @index: row index of IVAR register to write within IVAR table
 766 *  @offset: column offset of in IVAR, should be multiple of 8
 767 *
 768 *  This function is intended to handle the writing of the IVAR register
 769 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 770 *  each containing an cause allocation for an Rx and Tx ring, and a
 771 *  variable number of rows depending on the number of queues supported.
 772 **/
 773static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 774                           int index, int offset)
 775{
 776        u32 ivar = array_rd32(E1000_IVAR0, index);
 777
 778        /* clear any bits that are currently set */
 779        ivar &= ~((u32)0xFF << offset);
 780
 781        /* write vector and valid bit */
 782        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 783
 784        array_wr32(E1000_IVAR0, index, ivar);
 785}
 786
 787#define IGB_N0_QUEUE -1
 788static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 789{
 790        struct igb_adapter *adapter = q_vector->adapter;
 791        struct e1000_hw *hw = &adapter->hw;
 792        int rx_queue = IGB_N0_QUEUE;
 793        int tx_queue = IGB_N0_QUEUE;
 794        u32 msixbm = 0;
 795
 796        if (q_vector->rx.ring)
 797                rx_queue = q_vector->rx.ring->reg_idx;
 798        if (q_vector->tx.ring)
 799                tx_queue = q_vector->tx.ring->reg_idx;
 800
 801        switch (hw->mac.type) {
 802        case e1000_82575:
 803                /* The 82575 assigns vectors using a bitmask, which matches the
 804                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 805                 * or more queues to a vector, we write the appropriate bits
 806                 * into the MSIXBM register for that vector.
 807                 */
 808                if (rx_queue > IGB_N0_QUEUE)
 809                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 810                if (tx_queue > IGB_N0_QUEUE)
 811                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 812                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 813                        msixbm |= E1000_EIMS_OTHER;
 814                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 815                q_vector->eims_value = msixbm;
 816                break;
 817        case e1000_82576:
 818                /* 82576 uses a table that essentially consists of 2 columns
 819                 * with 8 rows.  The ordering is column-major so we use the
 820                 * lower 3 bits as the row index, and the 4th bit as the
 821                 * column offset.
 822                 */
 823                if (rx_queue > IGB_N0_QUEUE)
 824                        igb_write_ivar(hw, msix_vector,
 825                                       rx_queue & 0x7,
 826                                       (rx_queue & 0x8) << 1);
 827                if (tx_queue > IGB_N0_QUEUE)
 828                        igb_write_ivar(hw, msix_vector,
 829                                       tx_queue & 0x7,
 830                                       ((tx_queue & 0x8) << 1) + 8);
 831                q_vector->eims_value = BIT(msix_vector);
 832                break;
 833        case e1000_82580:
 834        case e1000_i350:
 835        case e1000_i354:
 836        case e1000_i210:
 837        case e1000_i211:
 838                /* On 82580 and newer adapters the scheme is similar to 82576
 839                 * however instead of ordering column-major we have things
 840                 * ordered row-major.  So we traverse the table by using
 841                 * bit 0 as the column offset, and the remaining bits as the
 842                 * row index.
 843                 */
 844                if (rx_queue > IGB_N0_QUEUE)
 845                        igb_write_ivar(hw, msix_vector,
 846                                       rx_queue >> 1,
 847                                       (rx_queue & 0x1) << 4);
 848                if (tx_queue > IGB_N0_QUEUE)
 849                        igb_write_ivar(hw, msix_vector,
 850                                       tx_queue >> 1,
 851                                       ((tx_queue & 0x1) << 4) + 8);
 852                q_vector->eims_value = BIT(msix_vector);
 853                break;
 854        default:
 855                BUG();
 856                break;
 857        }
 858
 859        /* add q_vector eims value to global eims_enable_mask */
 860        adapter->eims_enable_mask |= q_vector->eims_value;
 861
 862        /* configure q_vector to set itr on first interrupt */
 863        q_vector->set_itr = 1;
 864}
 865
 866/**
 867 *  igb_configure_msix - Configure MSI-X hardware
 868 *  @adapter: board private structure to initialize
 869 *
 870 *  igb_configure_msix sets up the hardware to properly
 871 *  generate MSI-X interrupts.
 872 **/
 873static void igb_configure_msix(struct igb_adapter *adapter)
 874{
 875        u32 tmp;
 876        int i, vector = 0;
 877        struct e1000_hw *hw = &adapter->hw;
 878
 879        adapter->eims_enable_mask = 0;
 880
 881        /* set vector for other causes, i.e. link changes */
 882        switch (hw->mac.type) {
 883        case e1000_82575:
 884                tmp = rd32(E1000_CTRL_EXT);
 885                /* enable MSI-X PBA support*/
 886                tmp |= E1000_CTRL_EXT_PBA_CLR;
 887
 888                /* Auto-Mask interrupts upon ICR read. */
 889                tmp |= E1000_CTRL_EXT_EIAME;
 890                tmp |= E1000_CTRL_EXT_IRCA;
 891
 892                wr32(E1000_CTRL_EXT, tmp);
 893
 894                /* enable msix_other interrupt */
 895                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 896                adapter->eims_other = E1000_EIMS_OTHER;
 897
 898                break;
 899
 900        case e1000_82576:
 901        case e1000_82580:
 902        case e1000_i350:
 903        case e1000_i354:
 904        case e1000_i210:
 905        case e1000_i211:
 906                /* Turn on MSI-X capability first, or our settings
 907                 * won't stick.  And it will take days to debug.
 908                 */
 909                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 910                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 911                     E1000_GPIE_NSICR);
 912
 913                /* enable msix_other interrupt */
 914                adapter->eims_other = BIT(vector);
 915                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 916
 917                wr32(E1000_IVAR_MISC, tmp);
 918                break;
 919        default:
 920                /* do nothing, since nothing else supports MSI-X */
 921                break;
 922        } /* switch (hw->mac.type) */
 923
 924        adapter->eims_enable_mask |= adapter->eims_other;
 925
 926        for (i = 0; i < adapter->num_q_vectors; i++)
 927                igb_assign_vector(adapter->q_vector[i], vector++);
 928
 929        wrfl();
 930}
 931
 932/**
 933 *  igb_request_msix - Initialize MSI-X interrupts
 934 *  @adapter: board private structure to initialize
 935 *
 936 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 937 *  kernel.
 938 **/
 939static int igb_request_msix(struct igb_adapter *adapter)
 940{
 941        struct net_device *netdev = adapter->netdev;
 942        int i, err = 0, vector = 0, free_vector = 0;
 943
 944        err = request_irq(adapter->msix_entries[vector].vector,
 945                          igb_msix_other, 0, netdev->name, adapter);
 946        if (err)
 947                goto err_out;
 948
 949        for (i = 0; i < adapter->num_q_vectors; i++) {
 950                struct igb_q_vector *q_vector = adapter->q_vector[i];
 951
 952                vector++;
 953
 954                q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 955
 956                if (q_vector->rx.ring && q_vector->tx.ring)
 957                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 958                                q_vector->rx.ring->queue_index);
 959                else if (q_vector->tx.ring)
 960                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 961                                q_vector->tx.ring->queue_index);
 962                else if (q_vector->rx.ring)
 963                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 964                                q_vector->rx.ring->queue_index);
 965                else
 966                        sprintf(q_vector->name, "%s-unused", netdev->name);
 967
 968                err = request_irq(adapter->msix_entries[vector].vector,
 969                                  igb_msix_ring, 0, q_vector->name,
 970                                  q_vector);
 971                if (err)
 972                        goto err_free;
 973        }
 974
 975        igb_configure_msix(adapter);
 976        return 0;
 977
 978err_free:
 979        /* free already assigned IRQs */
 980        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 981
 982        vector--;
 983        for (i = 0; i < vector; i++) {
 984                free_irq(adapter->msix_entries[free_vector++].vector,
 985                         adapter->q_vector[i]);
 986        }
 987err_out:
 988        return err;
 989}
 990
 991/**
 992 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 993 *  @adapter: board private structure to initialize
 994 *  @v_idx: Index of vector to be freed
 995 *
 996 *  This function frees the memory allocated to the q_vector.
 997 **/
 998static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
 999{
1000        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002        adapter->q_vector[v_idx] = NULL;
1003
1004        /* igb_get_stats64() might access the rings on this vector,
1005         * we must wait a grace period before freeing it.
1006         */
1007        if (q_vector)
1008                kfree_rcu(q_vector, rcu);
1009}
1010
1011/**
1012 *  igb_reset_q_vector - Reset config for interrupt vector
1013 *  @adapter: board private structure to initialize
1014 *  @v_idx: Index of vector to be reset
1015 *
1016 *  If NAPI is enabled it will delete any references to the
1017 *  NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
1019static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020{
1021        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024         * allocated. So, q_vector is NULL so we should stop here.
1025         */
1026        if (!q_vector)
1027                return;
1028
1029        if (q_vector->tx.ring)
1030                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032        if (q_vector->rx.ring)
1033                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035        netif_napi_del(&q_vector->napi);
1036
1037}
1038
1039static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040{
1041        int v_idx = adapter->num_q_vectors;
1042
1043        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044                pci_disable_msix(adapter->pdev);
1045        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046                pci_disable_msi(adapter->pdev);
1047
1048        while (v_idx--)
1049                igb_reset_q_vector(adapter, v_idx);
1050}
1051
1052/**
1053 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 *  @adapter: board private structure to initialize
1055 *
1056 *  This function frees the memory allocated to the q_vectors.  In addition if
1057 *  NAPI is enabled it will delete any references to the NAPI struct prior
1058 *  to freeing the q_vector.
1059 **/
1060static void igb_free_q_vectors(struct igb_adapter *adapter)
1061{
1062        int v_idx = adapter->num_q_vectors;
1063
1064        adapter->num_tx_queues = 0;
1065        adapter->num_rx_queues = 0;
1066        adapter->num_q_vectors = 0;
1067
1068        while (v_idx--) {
1069                igb_reset_q_vector(adapter, v_idx);
1070                igb_free_q_vector(adapter, v_idx);
1071        }
1072}
1073
1074/**
1075 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 *  @adapter: board private structure to initialize
1077 *
1078 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 *  MSI-X interrupts allocated.
1080 */
1081static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082{
1083        igb_free_q_vectors(adapter);
1084        igb_reset_interrupt_capability(adapter);
1085}
1086
1087/**
1088 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 *  @adapter: board private structure to initialize
1090 *  @msix: boolean value of MSIX capability
1091 *
1092 *  Attempt to configure interrupts using the best available
1093 *  capabilities of the hardware and kernel.
1094 **/
1095static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096{
1097        int err;
1098        int numvecs, i;
1099
1100        if (!msix)
1101                goto msi_only;
1102        adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104        /* Number of supported queues. */
1105        adapter->num_rx_queues = adapter->rss_queues;
1106        if (adapter->vfs_allocated_count)
1107                adapter->num_tx_queues = 1;
1108        else
1109                adapter->num_tx_queues = adapter->rss_queues;
1110
1111        /* start with one vector for every Rx queue */
1112        numvecs = adapter->num_rx_queues;
1113
1114        /* if Tx handler is separate add 1 for every Tx queue */
1115        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116                numvecs += adapter->num_tx_queues;
1117
1118        /* store the number of vectors reserved for queues */
1119        adapter->num_q_vectors = numvecs;
1120
1121        /* add 1 vector for link status interrupts */
1122        numvecs++;
1123        for (i = 0; i < numvecs; i++)
1124                adapter->msix_entries[i].entry = i;
1125
1126        err = pci_enable_msix_range(adapter->pdev,
1127                                    adapter->msix_entries,
1128                                    numvecs,
1129                                    numvecs);
1130        if (err > 0)
1131                return;
1132
1133        igb_reset_interrupt_capability(adapter);
1134
1135        /* If we can't do MSI-X, try MSI */
1136msi_only:
1137        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138#ifdef CONFIG_PCI_IOV
1139        /* disable SR-IOV for non MSI-X configurations */
1140        if (adapter->vf_data) {
1141                struct e1000_hw *hw = &adapter->hw;
1142                /* disable iov and allow time for transactions to clear */
1143                pci_disable_sriov(adapter->pdev);
1144                msleep(500);
1145
1146                kfree(adapter->vf_mac_list);
1147                adapter->vf_mac_list = NULL;
1148                kfree(adapter->vf_data);
1149                adapter->vf_data = NULL;
1150                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151                wrfl();
1152                msleep(100);
1153                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154        }
1155#endif
1156        adapter->vfs_allocated_count = 0;
1157        adapter->rss_queues = 1;
1158        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159        adapter->num_rx_queues = 1;
1160        adapter->num_tx_queues = 1;
1161        adapter->num_q_vectors = 1;
1162        if (!pci_enable_msi(adapter->pdev))
1163                adapter->flags |= IGB_FLAG_HAS_MSI;
1164}
1165
1166static void igb_add_ring(struct igb_ring *ring,
1167                         struct igb_ring_container *head)
1168{
1169        head->ring = ring;
1170        head->count++;
1171}
1172
1173/**
1174 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 *  @adapter: board private structure to initialize
1176 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 *  @v_idx: index of vector in adapter struct
1178 *  @txr_count: total number of Tx rings to allocate
1179 *  @txr_idx: index of first Tx ring to allocate
1180 *  @rxr_count: total number of Rx rings to allocate
1181 *  @rxr_idx: index of first Rx ring to allocate
1182 *
1183 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184 **/
1185static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186                              int v_count, int v_idx,
1187                              int txr_count, int txr_idx,
1188                              int rxr_count, int rxr_idx)
1189{
1190        struct igb_q_vector *q_vector;
1191        struct igb_ring *ring;
1192        int ring_count;
1193        size_t size;
1194
1195        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196        if (txr_count > 1 || rxr_count > 1)
1197                return -ENOMEM;
1198
1199        ring_count = txr_count + rxr_count;
1200        size = struct_size(q_vector, ring, ring_count);
1201
1202        /* allocate q_vector and rings */
1203        q_vector = adapter->q_vector[v_idx];
1204        if (!q_vector) {
1205                q_vector = kzalloc(size, GFP_KERNEL);
1206        } else if (size > ksize(q_vector)) {
1207                kfree_rcu(q_vector, rcu);
1208                q_vector = kzalloc(size, GFP_KERNEL);
1209        } else {
1210                memset(q_vector, 0, size);
1211        }
1212        if (!q_vector)
1213                return -ENOMEM;
1214
1215        /* initialize NAPI */
1216        netif_napi_add(adapter->netdev, &q_vector->napi,
1217                       igb_poll, 64);
1218
1219        /* tie q_vector and adapter together */
1220        adapter->q_vector[v_idx] = q_vector;
1221        q_vector->adapter = adapter;
1222
1223        /* initialize work limits */
1224        q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226        /* initialize ITR configuration */
1227        q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228        q_vector->itr_val = IGB_START_ITR;
1229
1230        /* initialize pointer to rings */
1231        ring = q_vector->ring;
1232
1233        /* intialize ITR */
1234        if (rxr_count) {
1235                /* rx or rx/tx vector */
1236                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                        q_vector->itr_val = adapter->rx_itr_setting;
1238        } else {
1239                /* tx only vector */
1240                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                        q_vector->itr_val = adapter->tx_itr_setting;
1242        }
1243
1244        if (txr_count) {
1245                /* assign generic ring traits */
1246                ring->dev = &adapter->pdev->dev;
1247                ring->netdev = adapter->netdev;
1248
1249                /* configure backlink on ring */
1250                ring->q_vector = q_vector;
1251
1252                /* update q_vector Tx values */
1253                igb_add_ring(ring, &q_vector->tx);
1254
1255                /* For 82575, context index must be unique per ring. */
1256                if (adapter->hw.mac.type == e1000_82575)
1257                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                /* apply Tx specific ring traits */
1260                ring->count = adapter->tx_ring_count;
1261                ring->queue_index = txr_idx;
1262
1263                ring->cbs_enable = false;
1264                ring->idleslope = 0;
1265                ring->sendslope = 0;
1266                ring->hicredit = 0;
1267                ring->locredit = 0;
1268
1269                u64_stats_init(&ring->tx_syncp);
1270                u64_stats_init(&ring->tx_syncp2);
1271
1272                /* assign ring to adapter */
1273                adapter->tx_ring[txr_idx] = ring;
1274
1275                /* push pointer to next ring */
1276                ring++;
1277        }
1278
1279        if (rxr_count) {
1280                /* assign generic ring traits */
1281                ring->dev = &adapter->pdev->dev;
1282                ring->netdev = adapter->netdev;
1283
1284                /* configure backlink on ring */
1285                ring->q_vector = q_vector;
1286
1287                /* update q_vector Rx values */
1288                igb_add_ring(ring, &q_vector->rx);
1289
1290                /* set flag indicating ring supports SCTP checksum offload */
1291                if (adapter->hw.mac.type >= e1000_82576)
1292                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                /* On i350, i354, i210, and i211, loopback VLAN packets
1295                 * have the tag byte-swapped.
1296                 */
1297                if (adapter->hw.mac.type >= e1000_i350)
1298                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                /* apply Rx specific ring traits */
1301                ring->count = adapter->rx_ring_count;
1302                ring->queue_index = rxr_idx;
1303
1304                u64_stats_init(&ring->rx_syncp);
1305
1306                /* assign ring to adapter */
1307                adapter->rx_ring[rxr_idx] = ring;
1308        }
1309
1310        return 0;
1311}
1312
1313
1314/**
1315 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 *  @adapter: board private structure to initialize
1317 *
1318 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319 *  return -ENOMEM.
1320 **/
1321static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322{
1323        int q_vectors = adapter->num_q_vectors;
1324        int rxr_remaining = adapter->num_rx_queues;
1325        int txr_remaining = adapter->num_tx_queues;
1326        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327        int err;
1328
1329        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                for (; rxr_remaining; v_idx++) {
1331                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                 0, 0, 1, rxr_idx);
1333
1334                        if (err)
1335                                goto err_out;
1336
1337                        /* update counts and index */
1338                        rxr_remaining--;
1339                        rxr_idx++;
1340                }
1341        }
1342
1343        for (; v_idx < q_vectors; v_idx++) {
1344                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                         tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                if (err)
1351                        goto err_out;
1352
1353                /* update counts and index */
1354                rxr_remaining -= rqpv;
1355                txr_remaining -= tqpv;
1356                rxr_idx++;
1357                txr_idx++;
1358        }
1359
1360        return 0;
1361
1362err_out:
1363        adapter->num_tx_queues = 0;
1364        adapter->num_rx_queues = 0;
1365        adapter->num_q_vectors = 0;
1366
1367        while (v_idx--)
1368                igb_free_q_vector(adapter, v_idx);
1369
1370        return -ENOMEM;
1371}
1372
1373/**
1374 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 *  @adapter: board private structure to initialize
1376 *  @msix: boolean value of MSIX capability
1377 *
1378 *  This function initializes the interrupts and allocates all of the queues.
1379 **/
1380static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381{
1382        struct pci_dev *pdev = adapter->pdev;
1383        int err;
1384
1385        igb_set_interrupt_capability(adapter, msix);
1386
1387        err = igb_alloc_q_vectors(adapter);
1388        if (err) {
1389                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                goto err_alloc_q_vectors;
1391        }
1392
1393        igb_cache_ring_register(adapter);
1394
1395        return 0;
1396
1397err_alloc_q_vectors:
1398        igb_reset_interrupt_capability(adapter);
1399        return err;
1400}
1401
1402/**
1403 *  igb_request_irq - initialize interrupts
1404 *  @adapter: board private structure to initialize
1405 *
1406 *  Attempts to configure interrupts using the best available
1407 *  capabilities of the hardware and kernel.
1408 **/
1409static int igb_request_irq(struct igb_adapter *adapter)
1410{
1411        struct net_device *netdev = adapter->netdev;
1412        struct pci_dev *pdev = adapter->pdev;
1413        int err = 0;
1414
1415        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                err = igb_request_msix(adapter);
1417                if (!err)
1418                        goto request_done;
1419                /* fall back to MSI */
1420                igb_free_all_tx_resources(adapter);
1421                igb_free_all_rx_resources(adapter);
1422
1423                igb_clear_interrupt_scheme(adapter);
1424                err = igb_init_interrupt_scheme(adapter, false);
1425                if (err)
1426                        goto request_done;
1427
1428                igb_setup_all_tx_resources(adapter);
1429                igb_setup_all_rx_resources(adapter);
1430                igb_configure(adapter);
1431        }
1432
1433        igb_assign_vector(adapter->q_vector[0], 0);
1434
1435        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                  netdev->name, adapter);
1438                if (!err)
1439                        goto request_done;
1440
1441                /* fall back to legacy interrupts */
1442                igb_reset_interrupt_capability(adapter);
1443                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444        }
1445
1446        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                          netdev->name, adapter);
1448
1449        if (err)
1450                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                        err);
1452
1453request_done:
1454        return err;
1455}
1456
1457static void igb_free_irq(struct igb_adapter *adapter)
1458{
1459        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                int vector = 0, i;
1461
1462                free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                for (i = 0; i < adapter->num_q_vectors; i++)
1465                        free_irq(adapter->msix_entries[vector++].vector,
1466                                 adapter->q_vector[i]);
1467        } else {
1468                free_irq(adapter->pdev->irq, adapter);
1469        }
1470}
1471
1472/**
1473 *  igb_irq_disable - Mask off interrupt generation on the NIC
1474 *  @adapter: board private structure
1475 **/
1476static void igb_irq_disable(struct igb_adapter *adapter)
1477{
1478        struct e1000_hw *hw = &adapter->hw;
1479
1480        /* we need to be careful when disabling interrupts.  The VFs are also
1481         * mapped into these registers and so clearing the bits can cause
1482         * issues on the VF drivers so we only need to clear what we set
1483         */
1484        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                u32 regval = rd32(E1000_EIAM);
1486
1487                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                regval = rd32(E1000_EIAC);
1490                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491        }
1492
1493        wr32(E1000_IAM, 0);
1494        wr32(E1000_IMC, ~0);
1495        wrfl();
1496        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                int i;
1498
1499                for (i = 0; i < adapter->num_q_vectors; i++)
1500                        synchronize_irq(adapter->msix_entries[i].vector);
1501        } else {
1502                synchronize_irq(adapter->pdev->irq);
1503        }
1504}
1505
1506/**
1507 *  igb_irq_enable - Enable default interrupt generation settings
1508 *  @adapter: board private structure
1509 **/
1510static void igb_irq_enable(struct igb_adapter *adapter)
1511{
1512        struct e1000_hw *hw = &adapter->hw;
1513
1514        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                u32 regval = rd32(E1000_EIAC);
1517
1518                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                regval = rd32(E1000_EIAM);
1520                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                if (adapter->vfs_allocated_count) {
1523                        wr32(E1000_MBVFIMR, 0xFF);
1524                        ims |= E1000_IMS_VMMB;
1525                }
1526                wr32(E1000_IMS, ims);
1527        } else {
1528                wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                E1000_IMS_DRSTA);
1530                wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                E1000_IMS_DRSTA);
1532        }
1533}
1534
1535static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536{
1537        struct e1000_hw *hw = &adapter->hw;
1538        u16 pf_id = adapter->vfs_allocated_count;
1539        u16 vid = adapter->hw.mng_cookie.vlan_id;
1540        u16 old_vid = adapter->mng_vlan_id;
1541
1542        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                /* add VID to filter table */
1544                igb_vfta_set(hw, vid, pf_id, true, true);
1545                adapter->mng_vlan_id = vid;
1546        } else {
1547                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548        }
1549
1550        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551            (vid != old_vid) &&
1552            !test_bit(old_vid, adapter->active_vlans)) {
1553                /* remove VID from filter table */
1554                igb_vfta_set(hw, vid, pf_id, false, true);
1555        }
1556}
1557
1558/**
1559 *  igb_release_hw_control - release control of the h/w to f/w
1560 *  @adapter: address of board private structure
1561 *
1562 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 *  For ASF and Pass Through versions of f/w this means that the
1564 *  driver is no longer loaded.
1565 **/
1566static void igb_release_hw_control(struct igb_adapter *adapter)
1567{
1568        struct e1000_hw *hw = &adapter->hw;
1569        u32 ctrl_ext;
1570
1571        /* Let firmware take over control of h/w */
1572        ctrl_ext = rd32(E1000_CTRL_EXT);
1573        wr32(E1000_CTRL_EXT,
1574                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575}
1576
1577/**
1578 *  igb_get_hw_control - get control of the h/w from f/w
1579 *  @adapter: address of board private structure
1580 *
1581 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 *  For ASF and Pass Through versions of f/w this means that
1583 *  the driver is loaded.
1584 **/
1585static void igb_get_hw_control(struct igb_adapter *adapter)
1586{
1587        struct e1000_hw *hw = &adapter->hw;
1588        u32 ctrl_ext;
1589
1590        /* Let firmware know the driver has taken over */
1591        ctrl_ext = rd32(E1000_CTRL_EXT);
1592        wr32(E1000_CTRL_EXT,
1593                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594}
1595
1596static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597{
1598        struct net_device *netdev = adapter->netdev;
1599        struct e1000_hw *hw = &adapter->hw;
1600
1601        WARN_ON(hw->mac.type != e1000_i210);
1602
1603        if (enable)
1604                adapter->flags |= IGB_FLAG_FQTSS;
1605        else
1606                adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608        if (netif_running(netdev))
1609                schedule_work(&adapter->reset_task);
1610}
1611
1612static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613{
1614        return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615}
1616
1617static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618                                   enum tx_queue_prio prio)
1619{
1620        u32 val;
1621
1622        WARN_ON(hw->mac.type != e1000_i210);
1623        WARN_ON(queue < 0 || queue > 4);
1624
1625        val = rd32(E1000_I210_TXDCTL(queue));
1626
1627        if (prio == TX_QUEUE_PRIO_HIGH)
1628                val |= E1000_TXDCTL_PRIORITY;
1629        else
1630                val &= ~E1000_TXDCTL_PRIORITY;
1631
1632        wr32(E1000_I210_TXDCTL(queue), val);
1633}
1634
1635static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636{
1637        u32 val;
1638
1639        WARN_ON(hw->mac.type != e1000_i210);
1640        WARN_ON(queue < 0 || queue > 1);
1641
1642        val = rd32(E1000_I210_TQAVCC(queue));
1643
1644        if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645                val |= E1000_TQAVCC_QUEUEMODE;
1646        else
1647                val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649        wr32(E1000_I210_TQAVCC(queue), val);
1650}
1651
1652static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653{
1654        int i;
1655
1656        for (i = 0; i < adapter->num_tx_queues; i++) {
1657                if (adapter->tx_ring[i]->cbs_enable)
1658                        return true;
1659        }
1660
1661        return false;
1662}
1663
1664static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665{
1666        int i;
1667
1668        for (i = 0; i < adapter->num_tx_queues; i++) {
1669                if (adapter->tx_ring[i]->launchtime_enable)
1670                        return true;
1671        }
1672
1673        return false;
1674}
1675
1676/**
1677 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 *  @adapter: pointer to adapter struct
1679 *  @queue: queue number
1680 *
1681 *  Configure CBS and Launchtime for a given hardware queue.
1682 *  Parameters are retrieved from the correct Tx ring, so
1683 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 *  for setting those correctly prior to this function being called.
1685 **/
1686static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687{
1688        struct igb_ring *ring = adapter->tx_ring[queue];
1689        struct net_device *netdev = adapter->netdev;
1690        struct e1000_hw *hw = &adapter->hw;
1691        u32 tqavcc, tqavctrl;
1692        u16 value;
1693
1694        WARN_ON(hw->mac.type != e1000_i210);
1695        WARN_ON(queue < 0 || queue > 1);
1696
1697        /* If any of the Qav features is enabled, configure queues as SR and
1698         * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699         * as SP.
1700         */
1701        if (ring->cbs_enable || ring->launchtime_enable) {
1702                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703                set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704        } else {
1705                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706                set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707        }
1708
1709        /* If CBS is enabled, set DataTranARB and config its parameters. */
1710        if (ring->cbs_enable || queue == 0) {
1711                /* i210 does not allow the queue 0 to be in the Strict
1712                 * Priority mode while the Qav mode is enabled, so,
1713                 * instead of disabling strict priority mode, we give
1714                 * queue 0 the maximum of credits possible.
1715                 *
1716                 * See section 8.12.19 of the i210 datasheet, "Note:
1717                 * Queue0 QueueMode must be set to 1b when
1718                 * TransmitMode is set to Qav."
1719                 */
1720                if (queue == 0 && !ring->cbs_enable) {
1721                        /* max "linkspeed" idleslope in kbps */
1722                        ring->idleslope = 1000000;
1723                        ring->hicredit = ETH_FRAME_LEN;
1724                }
1725
1726                /* Always set data transfer arbitration to credit-based
1727                 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728                 * the queues.
1729                 */
1730                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731                tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734                /* According to i210 datasheet section 7.2.7.7, we should set
1735                 * the 'idleSlope' field from TQAVCC register following the
1736                 * equation:
1737                 *
1738                 * For 100 Mbps link speed:
1739                 *
1740                 *     value = BW * 0x7735 * 0.2                          (E1)
1741                 *
1742                 * For 1000Mbps link speed:
1743                 *
1744                 *     value = BW * 0x7735 * 2                            (E2)
1745                 *
1746                 * E1 and E2 can be merged into one equation as shown below.
1747                 * Note that 'link-speed' is in Mbps.
1748                 *
1749                 *     value = BW * 0x7735 * 2 * link-speed
1750                 *                           --------------               (E3)
1751                 *                                1000
1752                 *
1753                 * 'BW' is the percentage bandwidth out of full link speed
1754                 * which can be found with the following equation. Note that
1755                 * idleSlope here is the parameter from this function which
1756                 * is in kbps.
1757                 *
1758                 *     BW =     idleSlope
1759                 *          -----------------                             (E4)
1760                 *          link-speed * 1000
1761                 *
1762                 * That said, we can come up with a generic equation to
1763                 * calculate the value we should set it TQAVCC register by
1764                 * replacing 'BW' in E3 by E4. The resulting equation is:
1765                 *
1766                 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767                 *         -----------------            --------------    (E5)
1768                 *         link-speed * 1000                 1000
1769                 *
1770                 * 'link-speed' is present in both sides of the fraction so
1771                 * it is canceled out. The final equation is the following:
1772                 *
1773                 *     value = idleSlope * 61034
1774                 *             -----------------                          (E6)
1775                 *                  1000000
1776                 *
1777                 * NOTE: For i210, given the above, we can see that idleslope
1778                 *       is represented in 16.38431 kbps units by the value at
1779                 *       the TQAVCC register (1Gbps / 61034), which reduces
1780                 *       the granularity for idleslope increments.
1781                 *       For instance, if you want to configure a 2576kbps
1782                 *       idleslope, the value to be written on the register
1783                 *       would have to be 157.23. If rounded down, you end
1784                 *       up with less bandwidth available than originally
1785                 *       required (~2572 kbps). If rounded up, you end up
1786                 *       with a higher bandwidth (~2589 kbps). Below the
1787                 *       approach we take is to always round up the
1788                 *       calculated value, so the resulting bandwidth might
1789                 *       be slightly higher for some configurations.
1790                 */
1791                value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795                tqavcc |= value;
1796                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798                wr32(E1000_I210_TQAVHC(queue),
1799                     0x80000000 + ring->hicredit * 0x7735);
1800        } else {
1801
1802                /* Set idleSlope to zero. */
1803                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807                /* Set hiCredit to zero. */
1808                wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810                /* If CBS is not enabled for any queues anymore, then return to
1811                 * the default state of Data Transmission Arbitration on
1812                 * TQAVCTRL.
1813                 */
1814                if (!is_any_cbs_enabled(adapter)) {
1815                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818                }
1819        }
1820
1821        /* If LaunchTime is enabled, set DataTranTIM. */
1822        if (ring->launchtime_enable) {
1823                /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824                 * for any of the SR queues, and configure fetchtime delta.
1825                 * XXX NOTE:
1826                 *     - LaunchTime will be enabled for all SR queues.
1827                 *     - A fixed offset can be added relative to the launch
1828                 *       time of all packets if configured at reg LAUNCH_OS0.
1829                 *       We are keeping it as 0 for now (default value).
1830                 */
1831                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832                tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833                       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835        } else {
1836                /* If Launchtime is not enabled for any SR queues anymore,
1837                 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838                 * effectively disabling Launchtime.
1839                 */
1840                if (!is_any_txtime_enabled(adapter)) {
1841                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843                        tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845                }
1846        }
1847
1848        /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849         * CBS are not configurable by software so we don't do any 'controller
1850         * configuration' in respect to these parameters.
1851         */
1852
1853        netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854                   ring->cbs_enable ? "enabled" : "disabled",
1855                   ring->launchtime_enable ? "enabled" : "disabled",
1856                   queue,
1857                   ring->idleslope, ring->sendslope,
1858                   ring->hicredit, ring->locredit);
1859}
1860
1861static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862                                  bool enable)
1863{
1864        struct igb_ring *ring;
1865
1866        if (queue < 0 || queue > adapter->num_tx_queues)
1867                return -EINVAL;
1868
1869        ring = adapter->tx_ring[queue];
1870        ring->launchtime_enable = enable;
1871
1872        return 0;
1873}
1874
1875static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876                               bool enable, int idleslope, int sendslope,
1877                               int hicredit, int locredit)
1878{
1879        struct igb_ring *ring;
1880
1881        if (queue < 0 || queue > adapter->num_tx_queues)
1882                return -EINVAL;
1883
1884        ring = adapter->tx_ring[queue];
1885
1886        ring->cbs_enable = enable;
1887        ring->idleslope = idleslope;
1888        ring->sendslope = sendslope;
1889        ring->hicredit = hicredit;
1890        ring->locredit = locredit;
1891
1892        return 0;
1893}
1894
1895/**
1896 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897 *  @adapter: pointer to adapter struct
1898 *
1899 *  Configure TQAVCTRL register switching the controller's Tx mode
1900 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901 *  a call to igb_config_tx_modes() per queue so any previously saved
1902 *  Tx parameters are applied.
1903 **/
1904static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905{
1906        struct net_device *netdev = adapter->netdev;
1907        struct e1000_hw *hw = &adapter->hw;
1908        u32 val;
1909
1910        /* Only i210 controller supports changing the transmission mode. */
1911        if (hw->mac.type != e1000_i210)
1912                return;
1913
1914        if (is_fqtss_enabled(adapter)) {
1915                int i, max_queue;
1916
1917                /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918                 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919                 * so SP queues wait for SR ones.
1920                 */
1921                val = rd32(E1000_I210_TQAVCTRL);
1922                val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923                val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924                wr32(E1000_I210_TQAVCTRL, val);
1925
1926                /* Configure Tx and Rx packet buffers sizes as described in
1927                 * i210 datasheet section 7.2.7.7.
1928                 */
1929                val = rd32(E1000_TXPBS);
1930                val &= ~I210_TXPBSIZE_MASK;
1931                val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932                        I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933                wr32(E1000_TXPBS, val);
1934
1935                val = rd32(E1000_RXPBS);
1936                val &= ~I210_RXPBSIZE_MASK;
1937                val |= I210_RXPBSIZE_PB_30KB;
1938                wr32(E1000_RXPBS, val);
1939
1940                /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941                 * register should not exceed the buffer size programmed in
1942                 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943                 * so according to the datasheet we should set MAX_TPKT_SIZE to
1944                 * 4kB / 64.
1945                 *
1946                 * However, when we do so, no frame from queue 2 and 3 are
1947                 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948                 * or _equal_ to the buffer size programmed in TXPBS. For this
1949                 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950                 */
1951                val = (4096 - 1) / 64;
1952                wr32(E1000_I210_DTXMXPKTSZ, val);
1953
1954                /* Since FQTSS mode is enabled, apply any CBS configuration
1955                 * previously set. If no previous CBS configuration has been
1956                 * done, then the initial configuration is applied, which means
1957                 * CBS is disabled.
1958                 */
1959                max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960                            adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961
1962                for (i = 0; i < max_queue; i++) {
1963                        igb_config_tx_modes(adapter, i);
1964                }
1965        } else {
1966                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968                wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969
1970                val = rd32(E1000_I210_TQAVCTRL);
1971                /* According to Section 8.12.21, the other flags we've set when
1972                 * enabling FQTSS are not relevant when disabling FQTSS so we
1973                 * don't set they here.
1974                 */
1975                val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976                wr32(E1000_I210_TQAVCTRL, val);
1977        }
1978
1979        netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980                   "enabled" : "disabled");
1981}
1982
1983/**
1984 *  igb_configure - configure the hardware for RX and TX
1985 *  @adapter: private board structure
1986 **/
1987static void igb_configure(struct igb_adapter *adapter)
1988{
1989        struct net_device *netdev = adapter->netdev;
1990        int i;
1991
1992        igb_get_hw_control(adapter);
1993        igb_set_rx_mode(netdev);
1994        igb_setup_tx_mode(adapter);
1995
1996        igb_restore_vlan(adapter);
1997
1998        igb_setup_tctl(adapter);
1999        igb_setup_mrqc(adapter);
2000        igb_setup_rctl(adapter);
2001
2002        igb_nfc_filter_restore(adapter);
2003        igb_configure_tx(adapter);
2004        igb_configure_rx(adapter);
2005
2006        igb_rx_fifo_flush_82575(&adapter->hw);
2007
2008        /* call igb_desc_unused which always leaves
2009         * at least 1 descriptor unused to make sure
2010         * next_to_use != next_to_clean
2011         */
2012        for (i = 0; i < adapter->num_rx_queues; i++) {
2013                struct igb_ring *ring = adapter->rx_ring[i];
2014                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015        }
2016}
2017
2018/**
2019 *  igb_power_up_link - Power up the phy/serdes link
2020 *  @adapter: address of board private structure
2021 **/
2022void igb_power_up_link(struct igb_adapter *adapter)
2023{
2024        igb_reset_phy(&adapter->hw);
2025
2026        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027                igb_power_up_phy_copper(&adapter->hw);
2028        else
2029                igb_power_up_serdes_link_82575(&adapter->hw);
2030
2031        igb_setup_link(&adapter->hw);
2032}
2033
2034/**
2035 *  igb_power_down_link - Power down the phy/serdes link
2036 *  @adapter: address of board private structure
2037 */
2038static void igb_power_down_link(struct igb_adapter *adapter)
2039{
2040        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041                igb_power_down_phy_copper_82575(&adapter->hw);
2042        else
2043                igb_shutdown_serdes_link_82575(&adapter->hw);
2044}
2045
2046/**
2047 * Detect and switch function for Media Auto Sense
2048 * @adapter: address of the board private structure
2049 **/
2050static void igb_check_swap_media(struct igb_adapter *adapter)
2051{
2052        struct e1000_hw *hw = &adapter->hw;
2053        u32 ctrl_ext, connsw;
2054        bool swap_now = false;
2055
2056        ctrl_ext = rd32(E1000_CTRL_EXT);
2057        connsw = rd32(E1000_CONNSW);
2058
2059        /* need to live swap if current media is copper and we have fiber/serdes
2060         * to go to.
2061         */
2062
2063        if ((hw->phy.media_type == e1000_media_type_copper) &&
2064            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065                swap_now = true;
2066        } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067                /* copper signal takes time to appear */
2068                if (adapter->copper_tries < 4) {
2069                        adapter->copper_tries++;
2070                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071                        wr32(E1000_CONNSW, connsw);
2072                        return;
2073                } else {
2074                        adapter->copper_tries = 0;
2075                        if ((connsw & E1000_CONNSW_PHYSD) &&
2076                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077                                swap_now = true;
2078                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079                                wr32(E1000_CONNSW, connsw);
2080                        }
2081                }
2082        }
2083
2084        if (!swap_now)
2085                return;
2086
2087        switch (hw->phy.media_type) {
2088        case e1000_media_type_copper:
2089                netdev_info(adapter->netdev,
2090                        "MAS: changing media to fiber/serdes\n");
2091                ctrl_ext |=
2092                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094                adapter->copper_tries = 0;
2095                break;
2096        case e1000_media_type_internal_serdes:
2097        case e1000_media_type_fiber:
2098                netdev_info(adapter->netdev,
2099                        "MAS: changing media to copper\n");
2100                ctrl_ext &=
2101                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103                break;
2104        default:
2105                /* shouldn't get here during regular operation */
2106                netdev_err(adapter->netdev,
2107                        "AMS: Invalid media type found, returning\n");
2108                break;
2109        }
2110        wr32(E1000_CTRL_EXT, ctrl_ext);
2111}
2112
2113/**
2114 *  igb_up - Open the interface and prepare it to handle traffic
2115 *  @adapter: board private structure
2116 **/
2117int igb_up(struct igb_adapter *adapter)
2118{
2119        struct e1000_hw *hw = &adapter->hw;
2120        int i;
2121
2122        /* hardware has been reset, we need to reload some things */
2123        igb_configure(adapter);
2124
2125        clear_bit(__IGB_DOWN, &adapter->state);
2126
2127        for (i = 0; i < adapter->num_q_vectors; i++)
2128                napi_enable(&(adapter->q_vector[i]->napi));
2129
2130        if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131                igb_configure_msix(adapter);
2132        else
2133                igb_assign_vector(adapter->q_vector[0], 0);
2134
2135        /* Clear any pending interrupts. */
2136        rd32(E1000_TSICR);
2137        rd32(E1000_ICR);
2138        igb_irq_enable(adapter);
2139
2140        /* notify VFs that reset has been completed */
2141        if (adapter->vfs_allocated_count) {
2142                u32 reg_data = rd32(E1000_CTRL_EXT);
2143
2144                reg_data |= E1000_CTRL_EXT_PFRSTD;
2145                wr32(E1000_CTRL_EXT, reg_data);
2146        }
2147
2148        netif_tx_start_all_queues(adapter->netdev);
2149
2150        /* start the watchdog. */
2151        hw->mac.get_link_status = 1;
2152        schedule_work(&adapter->watchdog_task);
2153
2154        if ((adapter->flags & IGB_FLAG_EEE) &&
2155            (!hw->dev_spec._82575.eee_disable))
2156                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157
2158        return 0;
2159}
2160
2161void igb_down(struct igb_adapter *adapter)
2162{
2163        struct net_device *netdev = adapter->netdev;
2164        struct e1000_hw *hw = &adapter->hw;
2165        u32 tctl, rctl;
2166        int i;
2167
2168        /* signal that we're down so the interrupt handler does not
2169         * reschedule our watchdog timer
2170         */
2171        set_bit(__IGB_DOWN, &adapter->state);
2172
2173        /* disable receives in the hardware */
2174        rctl = rd32(E1000_RCTL);
2175        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176        /* flush and sleep below */
2177
2178        igb_nfc_filter_exit(adapter);
2179
2180        netif_carrier_off(netdev);
2181        netif_tx_stop_all_queues(netdev);
2182
2183        /* disable transmits in the hardware */
2184        tctl = rd32(E1000_TCTL);
2185        tctl &= ~E1000_TCTL_EN;
2186        wr32(E1000_TCTL, tctl);
2187        /* flush both disables and wait for them to finish */
2188        wrfl();
2189        usleep_range(10000, 11000);
2190
2191        igb_irq_disable(adapter);
2192
2193        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194
2195        for (i = 0; i < adapter->num_q_vectors; i++) {
2196                if (adapter->q_vector[i]) {
2197                        napi_synchronize(&adapter->q_vector[i]->napi);
2198                        napi_disable(&adapter->q_vector[i]->napi);
2199                }
2200        }
2201
2202        del_timer_sync(&adapter->watchdog_timer);
2203        del_timer_sync(&adapter->phy_info_timer);
2204
2205        /* record the stats before reset*/
2206        spin_lock(&adapter->stats64_lock);
2207        igb_update_stats(adapter);
2208        spin_unlock(&adapter->stats64_lock);
2209
2210        adapter->link_speed = 0;
2211        adapter->link_duplex = 0;
2212
2213        if (!pci_channel_offline(adapter->pdev))
2214                igb_reset(adapter);
2215
2216        /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218
2219        igb_clean_all_tx_rings(adapter);
2220        igb_clean_all_rx_rings(adapter);
2221#ifdef CONFIG_IGB_DCA
2222
2223        /* since we reset the hardware DCA settings were cleared */
2224        igb_setup_dca(adapter);
2225#endif
2226}
2227
2228void igb_reinit_locked(struct igb_adapter *adapter)
2229{
2230        WARN_ON(in_interrupt());
2231        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232                usleep_range(1000, 2000);
2233        igb_down(adapter);
2234        igb_up(adapter);
2235        clear_bit(__IGB_RESETTING, &adapter->state);
2236}
2237
2238/** igb_enable_mas - Media Autosense re-enable after swap
2239 *
2240 * @adapter: adapter struct
2241 **/
2242static void igb_enable_mas(struct igb_adapter *adapter)
2243{
2244        struct e1000_hw *hw = &adapter->hw;
2245        u32 connsw = rd32(E1000_CONNSW);
2246
2247        /* configure for SerDes media detect */
2248        if ((hw->phy.media_type == e1000_media_type_copper) &&
2249            (!(connsw & E1000_CONNSW_SERDESD))) {
2250                connsw |= E1000_CONNSW_ENRGSRC;
2251                connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252                wr32(E1000_CONNSW, connsw);
2253                wrfl();
2254        }
2255}
2256
2257void igb_reset(struct igb_adapter *adapter)
2258{
2259        struct pci_dev *pdev = adapter->pdev;
2260        struct e1000_hw *hw = &adapter->hw;
2261        struct e1000_mac_info *mac = &hw->mac;
2262        struct e1000_fc_info *fc = &hw->fc;
2263        u32 pba, hwm;
2264
2265        /* Repartition Pba for greater than 9k mtu
2266         * To take effect CTRL.RST is required.
2267         */
2268        switch (mac->type) {
2269        case e1000_i350:
2270        case e1000_i354:
2271        case e1000_82580:
2272                pba = rd32(E1000_RXPBS);
2273                pba = igb_rxpbs_adjust_82580(pba);
2274                break;
2275        case e1000_82576:
2276                pba = rd32(E1000_RXPBS);
2277                pba &= E1000_RXPBS_SIZE_MASK_82576;
2278                break;
2279        case e1000_82575:
2280        case e1000_i210:
2281        case e1000_i211:
2282        default:
2283                pba = E1000_PBA_34K;
2284                break;
2285        }
2286
2287        if (mac->type == e1000_82575) {
2288                u32 min_rx_space, min_tx_space, needed_tx_space;
2289
2290                /* write Rx PBA so that hardware can report correct Tx PBA */
2291                wr32(E1000_PBA, pba);
2292
2293                /* To maintain wire speed transmits, the Tx FIFO should be
2294                 * large enough to accommodate two full transmit packets,
2295                 * rounded up to the next 1KB and expressed in KB.  Likewise,
2296                 * the Rx FIFO should be large enough to accommodate at least
2297                 * one full receive packet and is similarly rounded up and
2298                 * expressed in KB.
2299                 */
2300                min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2301
2302                /* The Tx FIFO also stores 16 bytes of information about the Tx
2303                 * but don't include Ethernet FCS because hardware appends it.
2304                 * We only need to round down to the nearest 512 byte block
2305                 * count since the value we care about is 2 frames, not 1.
2306                 */
2307                min_tx_space = adapter->max_frame_size;
2308                min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309                min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2310
2311                /* upper 16 bits has Tx packet buffer allocation size in KB */
2312                needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2313
2314                /* If current Tx allocation is less than the min Tx FIFO size,
2315                 * and the min Tx FIFO size is less than the current Rx FIFO
2316                 * allocation, take space away from current Rx allocation.
2317                 */
2318                if (needed_tx_space < pba) {
2319                        pba -= needed_tx_space;
2320
2321                        /* if short on Rx space, Rx wins and must trump Tx
2322                         * adjustment
2323                         */
2324                        if (pba < min_rx_space)
2325                                pba = min_rx_space;
2326                }
2327
2328                /* adjust PBA for jumbo frames */
2329                wr32(E1000_PBA, pba);
2330        }
2331
2332        /* flow control settings
2333         * The high water mark must be low enough to fit one full frame
2334         * after transmitting the pause frame.  As such we must have enough
2335         * space to allow for us to complete our current transmit and then
2336         * receive the frame that is in progress from the link partner.
2337         * Set it to:
2338         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2339         */
2340        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2341
2342        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2343        fc->low_water = fc->high_water - 16;
2344        fc->pause_time = 0xFFFF;
2345        fc->send_xon = 1;
2346        fc->current_mode = fc->requested_mode;
2347
2348        /* disable receive for all VFs and wait one second */
2349        if (adapter->vfs_allocated_count) {
2350                int i;
2351
2352                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2354
2355                /* ping all the active vfs to let them know we are going down */
2356                igb_ping_all_vfs(adapter);
2357
2358                /* disable transmits and receives */
2359                wr32(E1000_VFRE, 0);
2360                wr32(E1000_VFTE, 0);
2361        }
2362
2363        /* Allow time for pending master requests to run */
2364        hw->mac.ops.reset_hw(hw);
2365        wr32(E1000_WUC, 0);
2366
2367        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368                /* need to resetup here after media swap */
2369                adapter->ei.get_invariants(hw);
2370                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2371        }
2372        if ((mac->type == e1000_82575) &&
2373            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374                igb_enable_mas(adapter);
2375        }
2376        if (hw->mac.ops.init_hw(hw))
2377                dev_err(&pdev->dev, "Hardware Error\n");
2378
2379        /* RAR registers were cleared during init_hw, clear mac table */
2380        igb_flush_mac_table(adapter);
2381        __dev_uc_unsync(adapter->netdev, NULL);
2382
2383        /* Recover default RAR entry */
2384        igb_set_default_mac_filter(adapter);
2385
2386        /* Flow control settings reset on hardware reset, so guarantee flow
2387         * control is off when forcing speed.
2388         */
2389        if (!hw->mac.autoneg)
2390                igb_force_mac_fc(hw);
2391
2392        igb_init_dmac(adapter, pba);
2393#ifdef CONFIG_IGB_HWMON
2394        /* Re-initialize the thermal sensor on i350 devices. */
2395        if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396                if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397                        /* If present, re-initialize the external thermal sensor
2398                         * interface.
2399                         */
2400                        if (adapter->ets)
2401                                mac->ops.init_thermal_sensor_thresh(hw);
2402                }
2403        }
2404#endif
2405        /* Re-establish EEE setting */
2406        if (hw->phy.media_type == e1000_media_type_copper) {
2407                switch (mac->type) {
2408                case e1000_i350:
2409                case e1000_i210:
2410                case e1000_i211:
2411                        igb_set_eee_i350(hw, true, true);
2412                        break;
2413                case e1000_i354:
2414                        igb_set_eee_i354(hw, true, true);
2415                        break;
2416                default:
2417                        break;
2418                }
2419        }
2420        if (!netif_running(adapter->netdev))
2421                igb_power_down_link(adapter);
2422
2423        igb_update_mng_vlan(adapter);
2424
2425        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427
2428        /* Re-enable PTP, where applicable. */
2429        if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430                igb_ptp_reset(adapter);
2431
2432        igb_get_phy_info(hw);
2433}
2434
2435static netdev_features_t igb_fix_features(struct net_device *netdev,
2436        netdev_features_t features)
2437{
2438        /* Since there is no support for separate Rx/Tx vlan accel
2439         * enable/disable make sure Tx flag is always in same state as Rx.
2440         */
2441        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442                features |= NETIF_F_HW_VLAN_CTAG_TX;
2443        else
2444                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445
2446        return features;
2447}
2448
2449static int igb_set_features(struct net_device *netdev,
2450        netdev_features_t features)
2451{
2452        netdev_features_t changed = netdev->features ^ features;
2453        struct igb_adapter *adapter = netdev_priv(netdev);
2454
2455        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456                igb_vlan_mode(netdev, features);
2457
2458        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459                return 0;
2460
2461        if (!(features & NETIF_F_NTUPLE)) {
2462                struct hlist_node *node2;
2463                struct igb_nfc_filter *rule;
2464
2465                spin_lock(&adapter->nfc_lock);
2466                hlist_for_each_entry_safe(rule, node2,
2467                                          &adapter->nfc_filter_list, nfc_node) {
2468                        igb_erase_filter(adapter, rule);
2469                        hlist_del(&rule->nfc_node);
2470                        kfree(rule);
2471                }
2472                spin_unlock(&adapter->nfc_lock);
2473                adapter->nfc_filter_count = 0;
2474        }
2475
2476        netdev->features = features;
2477
2478        if (netif_running(netdev))
2479                igb_reinit_locked(adapter);
2480        else
2481                igb_reset(adapter);
2482
2483        return 1;
2484}
2485
2486static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487                           struct net_device *dev,
2488                           const unsigned char *addr, u16 vid,
2489                           u16 flags,
2490                           struct netlink_ext_ack *extack)
2491{
2492        /* guarantee we can provide a unique filter for the unicast address */
2493        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494                struct igb_adapter *adapter = netdev_priv(dev);
2495                int vfn = adapter->vfs_allocated_count;
2496
2497                if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498                        return -ENOMEM;
2499        }
2500
2501        return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502}
2503
2504#define IGB_MAX_MAC_HDR_LEN     127
2505#define IGB_MAX_NETWORK_HDR_LEN 511
2506
2507static netdev_features_t
2508igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509                   netdev_features_t features)
2510{
2511        unsigned int network_hdr_len, mac_hdr_len;
2512
2513        /* Make certain the headers can be described by a context descriptor */
2514        mac_hdr_len = skb_network_header(skb) - skb->data;
2515        if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516                return features & ~(NETIF_F_HW_CSUM |
2517                                    NETIF_F_SCTP_CRC |
2518                                    NETIF_F_HW_VLAN_CTAG_TX |
2519                                    NETIF_F_TSO |
2520                                    NETIF_F_TSO6);
2521
2522        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523        if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524                return features & ~(NETIF_F_HW_CSUM |
2525                                    NETIF_F_SCTP_CRC |
2526                                    NETIF_F_TSO |
2527                                    NETIF_F_TSO6);
2528
2529        /* We can only support IPV4 TSO in tunnels if we can mangle the
2530         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2531         */
2532        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533                features &= ~NETIF_F_TSO;
2534
2535        return features;
2536}
2537
2538static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2539{
2540        if (!is_fqtss_enabled(adapter)) {
2541                enable_fqtss(adapter, true);
2542                return;
2543        }
2544
2545        igb_config_tx_modes(adapter, queue);
2546
2547        if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548                enable_fqtss(adapter, false);
2549}
2550
2551static int igb_offload_cbs(struct igb_adapter *adapter,
2552                           struct tc_cbs_qopt_offload *qopt)
2553{
2554        struct e1000_hw *hw = &adapter->hw;
2555        int err;
2556
2557        /* CBS offloading is only supported by i210 controller. */
2558        if (hw->mac.type != e1000_i210)
2559                return -EOPNOTSUPP;
2560
2561        /* CBS offloading is only supported by queue 0 and queue 1. */
2562        if (qopt->queue < 0 || qopt->queue > 1)
2563                return -EINVAL;
2564
2565        err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566                                  qopt->idleslope, qopt->sendslope,
2567                                  qopt->hicredit, qopt->locredit);
2568        if (err)
2569                return err;
2570
2571        igb_offload_apply(adapter, qopt->queue);
2572
2573        return 0;
2574}
2575
2576#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577#define VLAN_PRIO_FULL_MASK (0x07)
2578
2579static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580                                struct tc_cls_flower_offload *f,
2581                                int traffic_class,
2582                                struct igb_nfc_filter *input)
2583{
2584        struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f);
2585        struct flow_dissector *dissector = rule->match.dissector;
2586        struct netlink_ext_ack *extack = f->common.extack;
2587
2588        if (dissector->used_keys &
2589            ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2590              BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2591              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2592              BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2593                NL_SET_ERR_MSG_MOD(extack,
2594                                   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2595                return -EOPNOTSUPP;
2596        }
2597
2598        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2599                struct flow_match_eth_addrs match;
2600
2601                flow_rule_match_eth_addrs(rule, &match);
2602                if (!is_zero_ether_addr(match.mask->dst)) {
2603                        if (!is_broadcast_ether_addr(match.mask->dst)) {
2604                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2605                                return -EINVAL;
2606                        }
2607
2608                        input->filter.match_flags |=
2609                                IGB_FILTER_FLAG_DST_MAC_ADDR;
2610                        ether_addr_copy(input->filter.dst_addr, match.key->dst);
2611                }
2612
2613                if (!is_zero_ether_addr(match.mask->src)) {
2614                        if (!is_broadcast_ether_addr(match.mask->src)) {
2615                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2616                                return -EINVAL;
2617                        }
2618
2619                        input->filter.match_flags |=
2620                                IGB_FILTER_FLAG_SRC_MAC_ADDR;
2621                        ether_addr_copy(input->filter.src_addr, match.key->src);
2622                }
2623        }
2624
2625        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2626                struct flow_match_basic match;
2627
2628                flow_rule_match_basic(rule, &match);
2629                if (match.mask->n_proto) {
2630                        if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2631                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2632                                return -EINVAL;
2633                        }
2634
2635                        input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2636                        input->filter.etype = match.key->n_proto;
2637                }
2638        }
2639
2640        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2641                struct flow_match_vlan match;
2642
2643                flow_rule_match_vlan(rule, &match);
2644                if (match.mask->vlan_priority) {
2645                        if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2646                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2647                                return -EINVAL;
2648                        }
2649
2650                        input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2651                        input->filter.vlan_tci = match.key->vlan_priority;
2652                }
2653        }
2654
2655        input->action = traffic_class;
2656        input->cookie = f->cookie;
2657
2658        return 0;
2659}
2660
2661static int igb_configure_clsflower(struct igb_adapter *adapter,
2662                                   struct tc_cls_flower_offload *cls_flower)
2663{
2664        struct netlink_ext_ack *extack = cls_flower->common.extack;
2665        struct igb_nfc_filter *filter, *f;
2666        int err, tc;
2667
2668        tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2669        if (tc < 0) {
2670                NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2671                return -EINVAL;
2672        }
2673
2674        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2675        if (!filter)
2676                return -ENOMEM;
2677
2678        err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2679        if (err < 0)
2680                goto err_parse;
2681
2682        spin_lock(&adapter->nfc_lock);
2683
2684        hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2685                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2686                        err = -EEXIST;
2687                        NL_SET_ERR_MSG_MOD(extack,
2688                                           "This filter is already set in ethtool");
2689                        goto err_locked;
2690                }
2691        }
2692
2693        hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2694                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2695                        err = -EEXIST;
2696                        NL_SET_ERR_MSG_MOD(extack,
2697                                           "This filter is already set in cls_flower");
2698                        goto err_locked;
2699                }
2700        }
2701
2702        err = igb_add_filter(adapter, filter);
2703        if (err < 0) {
2704                NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2705                goto err_locked;
2706        }
2707
2708        hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2709
2710        spin_unlock(&adapter->nfc_lock);
2711
2712        return 0;
2713
2714err_locked:
2715        spin_unlock(&adapter->nfc_lock);
2716
2717err_parse:
2718        kfree(filter);
2719
2720        return err;
2721}
2722
2723static int igb_delete_clsflower(struct igb_adapter *adapter,
2724                                struct tc_cls_flower_offload *cls_flower)
2725{
2726        struct igb_nfc_filter *filter;
2727        int err;
2728
2729        spin_lock(&adapter->nfc_lock);
2730
2731        hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2732                if (filter->cookie == cls_flower->cookie)
2733                        break;
2734
2735        if (!filter) {
2736                err = -ENOENT;
2737                goto out;
2738        }
2739
2740        err = igb_erase_filter(adapter, filter);
2741        if (err < 0)
2742                goto out;
2743
2744        hlist_del(&filter->nfc_node);
2745        kfree(filter);
2746
2747out:
2748        spin_unlock(&adapter->nfc_lock);
2749
2750        return err;
2751}
2752
2753static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2754                                   struct tc_cls_flower_offload *cls_flower)
2755{
2756        switch (cls_flower->command) {
2757        case TC_CLSFLOWER_REPLACE:
2758                return igb_configure_clsflower(adapter, cls_flower);
2759        case TC_CLSFLOWER_DESTROY:
2760                return igb_delete_clsflower(adapter, cls_flower);
2761        case TC_CLSFLOWER_STATS:
2762                return -EOPNOTSUPP;
2763        default:
2764                return -EOPNOTSUPP;
2765        }
2766}
2767
2768static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2769                                 void *cb_priv)
2770{
2771        struct igb_adapter *adapter = cb_priv;
2772
2773        if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2774                return -EOPNOTSUPP;
2775
2776        switch (type) {
2777        case TC_SETUP_CLSFLOWER:
2778                return igb_setup_tc_cls_flower(adapter, type_data);
2779
2780        default:
2781                return -EOPNOTSUPP;
2782        }
2783}
2784
2785static int igb_setup_tc_block(struct igb_adapter *adapter,
2786                              struct tc_block_offload *f)
2787{
2788        if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2789                return -EOPNOTSUPP;
2790
2791        switch (f->command) {
2792        case TC_BLOCK_BIND:
2793                return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2794                                             adapter, adapter, f->extack);
2795        case TC_BLOCK_UNBIND:
2796                tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2797                                        adapter);
2798                return 0;
2799        default:
2800                return -EOPNOTSUPP;
2801        }
2802}
2803
2804static int igb_offload_txtime(struct igb_adapter *adapter,
2805                              struct tc_etf_qopt_offload *qopt)
2806{
2807        struct e1000_hw *hw = &adapter->hw;
2808        int err;
2809
2810        /* Launchtime offloading is only supported by i210 controller. */
2811        if (hw->mac.type != e1000_i210)
2812                return -EOPNOTSUPP;
2813
2814        /* Launchtime offloading is only supported by queues 0 and 1. */
2815        if (qopt->queue < 0 || qopt->queue > 1)
2816                return -EINVAL;
2817
2818        err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2819        if (err)
2820                return err;
2821
2822        igb_offload_apply(adapter, qopt->queue);
2823
2824        return 0;
2825}
2826
2827static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2828                        void *type_data)
2829{
2830        struct igb_adapter *adapter = netdev_priv(dev);
2831
2832        switch (type) {
2833        case TC_SETUP_QDISC_CBS:
2834                return igb_offload_cbs(adapter, type_data);
2835        case TC_SETUP_BLOCK:
2836                return igb_setup_tc_block(adapter, type_data);
2837        case TC_SETUP_QDISC_ETF:
2838                return igb_offload_txtime(adapter, type_data);
2839
2840        default:
2841                return -EOPNOTSUPP;
2842        }
2843}
2844
2845static const struct net_device_ops igb_netdev_ops = {
2846        .ndo_open               = igb_open,
2847        .ndo_stop               = igb_close,
2848        .ndo_start_xmit         = igb_xmit_frame,
2849        .ndo_get_stats64        = igb_get_stats64,
2850        .ndo_set_rx_mode        = igb_set_rx_mode,
2851        .ndo_set_mac_address    = igb_set_mac,
2852        .ndo_change_mtu         = igb_change_mtu,
2853        .ndo_do_ioctl           = igb_ioctl,
2854        .ndo_tx_timeout         = igb_tx_timeout,
2855        .ndo_validate_addr      = eth_validate_addr,
2856        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2857        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2858        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2859        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2860        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2861        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2862        .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2863        .ndo_get_vf_config      = igb_ndo_get_vf_config,
2864        .ndo_fix_features       = igb_fix_features,
2865        .ndo_set_features       = igb_set_features,
2866        .ndo_fdb_add            = igb_ndo_fdb_add,
2867        .ndo_features_check     = igb_features_check,
2868        .ndo_setup_tc           = igb_setup_tc,
2869};
2870
2871/**
2872 * igb_set_fw_version - Configure version string for ethtool
2873 * @adapter: adapter struct
2874 **/
2875void igb_set_fw_version(struct igb_adapter *adapter)
2876{
2877        struct e1000_hw *hw = &adapter->hw;
2878        struct e1000_fw_version fw;
2879
2880        igb_get_fw_version(hw, &fw);
2881
2882        switch (hw->mac.type) {
2883        case e1000_i210:
2884        case e1000_i211:
2885                if (!(igb_get_flash_presence_i210(hw))) {
2886                        snprintf(adapter->fw_version,
2887                                 sizeof(adapter->fw_version),
2888                                 "%2d.%2d-%d",
2889                                 fw.invm_major, fw.invm_minor,
2890                                 fw.invm_img_type);
2891                        break;
2892                }
2893                /* fall through */
2894        default:
2895                /* if option is rom valid, display its version too */
2896                if (fw.or_valid) {
2897                        snprintf(adapter->fw_version,
2898                                 sizeof(adapter->fw_version),
2899                                 "%d.%d, 0x%08x, %d.%d.%d",
2900                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
2901                                 fw.or_major, fw.or_build, fw.or_patch);
2902                /* no option rom */
2903                } else if (fw.etrack_id != 0X0000) {
2904                        snprintf(adapter->fw_version,
2905                            sizeof(adapter->fw_version),
2906                            "%d.%d, 0x%08x",
2907                            fw.eep_major, fw.eep_minor, fw.etrack_id);
2908                } else {
2909                snprintf(adapter->fw_version,
2910                    sizeof(adapter->fw_version),
2911                    "%d.%d.%d",
2912                    fw.eep_major, fw.eep_minor, fw.eep_build);
2913                }
2914                break;
2915        }
2916}
2917
2918/**
2919 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2920 *
2921 * @adapter: adapter struct
2922 **/
2923static void igb_init_mas(struct igb_adapter *adapter)
2924{
2925        struct e1000_hw *hw = &adapter->hw;
2926        u16 eeprom_data;
2927
2928        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2929        switch (hw->bus.func) {
2930        case E1000_FUNC_0:
2931                if (eeprom_data & IGB_MAS_ENABLE_0) {
2932                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2933                        netdev_info(adapter->netdev,
2934                                "MAS: Enabling Media Autosense for port %d\n",
2935                                hw->bus.func);
2936                }
2937                break;
2938        case E1000_FUNC_1:
2939                if (eeprom_data & IGB_MAS_ENABLE_1) {
2940                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2941                        netdev_info(adapter->netdev,
2942                                "MAS: Enabling Media Autosense for port %d\n",
2943                                hw->bus.func);
2944                }
2945                break;
2946        case E1000_FUNC_2:
2947                if (eeprom_data & IGB_MAS_ENABLE_2) {
2948                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949                        netdev_info(adapter->netdev,
2950                                "MAS: Enabling Media Autosense for port %d\n",
2951                                hw->bus.func);
2952                }
2953                break;
2954        case E1000_FUNC_3:
2955                if (eeprom_data & IGB_MAS_ENABLE_3) {
2956                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2957                        netdev_info(adapter->netdev,
2958                                "MAS: Enabling Media Autosense for port %d\n",
2959                                hw->bus.func);
2960                }
2961                break;
2962        default:
2963                /* Shouldn't get here */
2964                netdev_err(adapter->netdev,
2965                        "MAS: Invalid port configuration, returning\n");
2966                break;
2967        }
2968}
2969
2970/**
2971 *  igb_init_i2c - Init I2C interface
2972 *  @adapter: pointer to adapter structure
2973 **/
2974static s32 igb_init_i2c(struct igb_adapter *adapter)
2975{
2976        s32 status = 0;
2977
2978        /* I2C interface supported on i350 devices */
2979        if (adapter->hw.mac.type != e1000_i350)
2980                return 0;
2981
2982        /* Initialize the i2c bus which is controlled by the registers.
2983         * This bus will use the i2c_algo_bit structue that implements
2984         * the protocol through toggling of the 4 bits in the register.
2985         */
2986        adapter->i2c_adap.owner = THIS_MODULE;
2987        adapter->i2c_algo = igb_i2c_algo;
2988        adapter->i2c_algo.data = adapter;
2989        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2990        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2991        strlcpy(adapter->i2c_adap.name, "igb BB",
2992                sizeof(adapter->i2c_adap.name));
2993        status = i2c_bit_add_bus(&adapter->i2c_adap);
2994        return status;
2995}
2996
2997/**
2998 *  igb_probe - Device Initialization Routine
2999 *  @pdev: PCI device information struct
3000 *  @ent: entry in igb_pci_tbl
3001 *
3002 *  Returns 0 on success, negative on failure
3003 *
3004 *  igb_probe initializes an adapter identified by a pci_dev structure.
3005 *  The OS initialization, configuring of the adapter private structure,
3006 *  and a hardware reset occur.
3007 **/
3008static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3009{
3010        struct net_device *netdev;
3011        struct igb_adapter *adapter;
3012        struct e1000_hw *hw;
3013        u16 eeprom_data = 0;
3014        s32 ret_val;
3015        static int global_quad_port_a; /* global quad port a indication */
3016        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3017        int err, pci_using_dac;
3018        u8 part_str[E1000_PBANUM_LENGTH];
3019
3020        /* Catch broken hardware that put the wrong VF device ID in
3021         * the PCIe SR-IOV capability.
3022         */
3023        if (pdev->is_virtfn) {
3024                WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3025                        pci_name(pdev), pdev->vendor, pdev->device);
3026                return -EINVAL;
3027        }
3028
3029        err = pci_enable_device_mem(pdev);
3030        if (err)
3031                return err;
3032
3033        pci_using_dac = 0;
3034        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3035        if (!err) {
3036                pci_using_dac = 1;
3037        } else {
3038                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3039                if (err) {
3040                        dev_err(&pdev->dev,
3041                                "No usable DMA configuration, aborting\n");
3042                        goto err_dma;
3043                }
3044        }
3045
3046        err = pci_request_mem_regions(pdev, igb_driver_name);
3047        if (err)
3048                goto err_pci_reg;
3049
3050        pci_enable_pcie_error_reporting(pdev);
3051
3052        pci_set_master(pdev);
3053        pci_save_state(pdev);
3054
3055        err = -ENOMEM;
3056        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3057                                   IGB_MAX_TX_QUEUES);
3058        if (!netdev)
3059                goto err_alloc_etherdev;
3060
3061        SET_NETDEV_DEV(netdev, &pdev->dev);
3062
3063        pci_set_drvdata(pdev, netdev);
3064        adapter = netdev_priv(netdev);
3065        adapter->netdev = netdev;
3066        adapter->pdev = pdev;
3067        hw = &adapter->hw;
3068        hw->back = adapter;
3069        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3070
3071        err = -EIO;
3072        adapter->io_addr = pci_iomap(pdev, 0, 0);
3073        if (!adapter->io_addr)
3074                goto err_ioremap;
3075        /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3076        hw->hw_addr = adapter->io_addr;
3077
3078        netdev->netdev_ops = &igb_netdev_ops;
3079        igb_set_ethtool_ops(netdev);
3080        netdev->watchdog_timeo = 5 * HZ;
3081
3082        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3083
3084        netdev->mem_start = pci_resource_start(pdev, 0);
3085        netdev->mem_end = pci_resource_end(pdev, 0);
3086
3087        /* PCI config space info */
3088        hw->vendor_id = pdev->vendor;
3089        hw->device_id = pdev->device;
3090        hw->revision_id = pdev->revision;
3091        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3092        hw->subsystem_device_id = pdev->subsystem_device;
3093
3094        /* Copy the default MAC, PHY and NVM function pointers */
3095        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3096        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3097        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3098        /* Initialize skew-specific constants */
3099        err = ei->get_invariants(hw);
3100        if (err)
3101                goto err_sw_init;
3102
3103        /* setup the private structure */
3104        err = igb_sw_init(adapter);
3105        if (err)
3106                goto err_sw_init;
3107
3108        igb_get_bus_info_pcie(hw);
3109
3110        hw->phy.autoneg_wait_to_complete = false;
3111
3112        /* Copper options */
3113        if (hw->phy.media_type == e1000_media_type_copper) {
3114                hw->phy.mdix = AUTO_ALL_MODES;
3115                hw->phy.disable_polarity_correction = false;
3116                hw->phy.ms_type = e1000_ms_hw_default;
3117        }
3118
3119        if (igb_check_reset_block(hw))
3120                dev_info(&pdev->dev,
3121                        "PHY reset is blocked due to SOL/IDER session.\n");
3122
3123        /* features is initialized to 0 in allocation, it might have bits
3124         * set by igb_sw_init so we should use an or instead of an
3125         * assignment.
3126         */
3127        netdev->features |= NETIF_F_SG |
3128                            NETIF_F_TSO |
3129                            NETIF_F_TSO6 |
3130                            NETIF_F_RXHASH |
3131                            NETIF_F_RXCSUM |
3132                            NETIF_F_HW_CSUM;
3133
3134        if (hw->mac.type >= e1000_82576)
3135                netdev->features |= NETIF_F_SCTP_CRC;
3136
3137        if (hw->mac.type >= e1000_i350)
3138                netdev->features |= NETIF_F_HW_TC;
3139
3140#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3141                                  NETIF_F_GSO_GRE_CSUM | \
3142                                  NETIF_F_GSO_IPXIP4 | \
3143                                  NETIF_F_GSO_IPXIP6 | \
3144                                  NETIF_F_GSO_UDP_TUNNEL | \
3145                                  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3146
3147        netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3148        netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3149
3150        /* copy netdev features into list of user selectable features */
3151        netdev->hw_features |= netdev->features |
3152                               NETIF_F_HW_VLAN_CTAG_RX |
3153                               NETIF_F_HW_VLAN_CTAG_TX |
3154                               NETIF_F_RXALL;
3155
3156        if (hw->mac.type >= e1000_i350)
3157                netdev->hw_features |= NETIF_F_NTUPLE;
3158
3159        if (pci_using_dac)
3160                netdev->features |= NETIF_F_HIGHDMA;
3161
3162        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3163        netdev->mpls_features |= NETIF_F_HW_CSUM;
3164        netdev->hw_enc_features |= netdev->vlan_features;
3165
3166        /* set this bit last since it cannot be part of vlan_features */
3167        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3168                            NETIF_F_HW_VLAN_CTAG_RX |
3169                            NETIF_F_HW_VLAN_CTAG_TX;
3170
3171        netdev->priv_flags |= IFF_SUPP_NOFCS;
3172
3173        netdev->priv_flags |= IFF_UNICAST_FLT;
3174
3175        /* MTU range: 68 - 9216 */
3176        netdev->min_mtu = ETH_MIN_MTU;
3177        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3178
3179        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3180
3181        /* before reading the NVM, reset the controller to put the device in a
3182         * known good starting state
3183         */
3184        hw->mac.ops.reset_hw(hw);
3185
3186        /* make sure the NVM is good , i211/i210 parts can have special NVM
3187         * that doesn't contain a checksum
3188         */
3189        switch (hw->mac.type) {
3190        case e1000_i210:
3191        case e1000_i211:
3192                if (igb_get_flash_presence_i210(hw)) {
3193                        if (hw->nvm.ops.validate(hw) < 0) {
3194                                dev_err(&pdev->dev,
3195                                        "The NVM Checksum Is Not Valid\n");
3196                                err = -EIO;
3197                                goto err_eeprom;
3198                        }
3199                }
3200                break;
3201        default:
3202                if (hw->nvm.ops.validate(hw) < 0) {
3203                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3204                        err = -EIO;
3205                        goto err_eeprom;
3206                }
3207                break;
3208        }
3209
3210        if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3211                /* copy the MAC address out of the NVM */
3212                if (hw->mac.ops.read_mac_addr(hw))
3213                        dev_err(&pdev->dev, "NVM Read Error\n");
3214        }
3215
3216        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3217
3218        if (!is_valid_ether_addr(netdev->dev_addr)) {
3219                dev_err(&pdev->dev, "Invalid MAC Address\n");
3220                err = -EIO;
3221                goto err_eeprom;
3222        }
3223
3224        igb_set_default_mac_filter(adapter);
3225
3226        /* get firmware version for ethtool -i */
3227        igb_set_fw_version(adapter);
3228
3229        /* configure RXPBSIZE and TXPBSIZE */
3230        if (hw->mac.type == e1000_i210) {
3231                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3232                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3233        }
3234
3235        timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3236        timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3237
3238        INIT_WORK(&adapter->reset_task, igb_reset_task);
3239        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3240
3241        /* Initialize link properties that are user-changeable */
3242        adapter->fc_autoneg = true;
3243        hw->mac.autoneg = true;
3244        hw->phy.autoneg_advertised = 0x2f;
3245
3246        hw->fc.requested_mode = e1000_fc_default;
3247        hw->fc.current_mode = e1000_fc_default;
3248
3249        igb_validate_mdi_setting(hw);
3250
3251        /* By default, support wake on port A */
3252        if (hw->bus.func == 0)
3253                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3254
3255        /* Check the NVM for wake support on non-port A ports */
3256        if (hw->mac.type >= e1000_82580)
3257                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3258                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3259                                 &eeprom_data);
3260        else if (hw->bus.func == 1)
3261                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3262
3263        if (eeprom_data & IGB_EEPROM_APME)
3264                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3265
3266        /* now that we have the eeprom settings, apply the special cases where
3267         * the eeprom may be wrong or the board simply won't support wake on
3268         * lan on a particular port
3269         */
3270        switch (pdev->device) {
3271        case E1000_DEV_ID_82575GB_QUAD_COPPER:
3272                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3273                break;
3274        case E1000_DEV_ID_82575EB_FIBER_SERDES:
3275        case E1000_DEV_ID_82576_FIBER:
3276        case E1000_DEV_ID_82576_SERDES:
3277                /* Wake events only supported on port A for dual fiber
3278                 * regardless of eeprom setting
3279                 */
3280                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3281                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3282                break;
3283        case E1000_DEV_ID_82576_QUAD_COPPER:
3284        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3285                /* if quad port adapter, disable WoL on all but port A */
3286                if (global_quad_port_a != 0)
3287                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288                else
3289                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3290                /* Reset for multiple quad port adapters */
3291                if (++global_quad_port_a == 4)
3292                        global_quad_port_a = 0;
3293                break;
3294        default:
3295                /* If the device can't wake, don't set software support */
3296                if (!device_can_wakeup(&adapter->pdev->dev))
3297                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3298        }
3299
3300        /* initialize the wol settings based on the eeprom settings */
3301        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3302                adapter->wol |= E1000_WUFC_MAG;
3303
3304        /* Some vendors want WoL disabled by default, but still supported */
3305        if ((hw->mac.type == e1000_i350) &&
3306            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3307                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308                adapter->wol = 0;
3309        }
3310
3311        /* Some vendors want the ability to Use the EEPROM setting as
3312         * enable/disable only, and not for capability
3313         */
3314        if (((hw->mac.type == e1000_i350) ||
3315             (hw->mac.type == e1000_i354)) &&
3316            (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3317                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3318                adapter->wol = 0;
3319        }
3320        if (hw->mac.type == e1000_i350) {
3321                if (((pdev->subsystem_device == 0x5001) ||
3322                     (pdev->subsystem_device == 0x5002)) &&
3323                                (hw->bus.func == 0)) {
3324                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3325                        adapter->wol = 0;
3326                }
3327                if (pdev->subsystem_device == 0x1F52)
3328                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3329        }
3330
3331        device_set_wakeup_enable(&adapter->pdev->dev,
3332                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3333
3334        /* reset the hardware with the new settings */
3335        igb_reset(adapter);
3336
3337        /* Init the I2C interface */
3338        err = igb_init_i2c(adapter);
3339        if (err) {
3340                dev_err(&pdev->dev, "failed to init i2c interface\n");
3341                goto err_eeprom;
3342        }
3343
3344        /* let the f/w know that the h/w is now under the control of the
3345         * driver.
3346         */
3347        igb_get_hw_control(adapter);
3348
3349        strcpy(netdev->name, "eth%d");
3350        err = register_netdev(netdev);
3351        if (err)
3352                goto err_register;
3353
3354        /* carrier off reporting is important to ethtool even BEFORE open */
3355        netif_carrier_off(netdev);
3356
3357#ifdef CONFIG_IGB_DCA
3358        if (dca_add_requester(&pdev->dev) == 0) {
3359                adapter->flags |= IGB_FLAG_DCA_ENABLED;
3360                dev_info(&pdev->dev, "DCA enabled\n");
3361                igb_setup_dca(adapter);
3362        }
3363
3364#endif
3365#ifdef CONFIG_IGB_HWMON
3366        /* Initialize the thermal sensor on i350 devices. */
3367        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3368                u16 ets_word;
3369
3370                /* Read the NVM to determine if this i350 device supports an
3371                 * external thermal sensor.
3372                 */
3373                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3374                if (ets_word != 0x0000 && ets_word != 0xFFFF)
3375                        adapter->ets = true;
3376                else
3377                        adapter->ets = false;
3378                if (igb_sysfs_init(adapter))
3379                        dev_err(&pdev->dev,
3380                                "failed to allocate sysfs resources\n");
3381        } else {
3382                adapter->ets = false;
3383        }
3384#endif
3385        /* Check if Media Autosense is enabled */
3386        adapter->ei = *ei;
3387        if (hw->dev_spec._82575.mas_capable)
3388                igb_init_mas(adapter);
3389
3390        /* do hw tstamp init after resetting */
3391        igb_ptp_init(adapter);
3392
3393        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3394        /* print bus type/speed/width info, not applicable to i354 */
3395        if (hw->mac.type != e1000_i354) {
3396                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3397                         netdev->name,
3398                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3399                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3400                           "unknown"),
3401                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3402                          "Width x4" :
3403                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
3404                          "Width x2" :
3405                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
3406                          "Width x1" : "unknown"), netdev->dev_addr);
3407        }
3408
3409        if ((hw->mac.type >= e1000_i210 ||
3410             igb_get_flash_presence_i210(hw))) {
3411                ret_val = igb_read_part_string(hw, part_str,
3412                                               E1000_PBANUM_LENGTH);
3413        } else {
3414                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3415        }
3416
3417        if (ret_val)
3418                strcpy(part_str, "Unknown");
3419        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3420        dev_info(&pdev->dev,
3421                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3422                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3423                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3424                adapter->num_rx_queues, adapter->num_tx_queues);
3425        if (hw->phy.media_type == e1000_media_type_copper) {
3426                switch (hw->mac.type) {
3427                case e1000_i350:
3428                case e1000_i210:
3429                case e1000_i211:
3430                        /* Enable EEE for internal copper PHY devices */
3431                        err = igb_set_eee_i350(hw, true, true);
3432                        if ((!err) &&
3433                            (!hw->dev_spec._82575.eee_disable)) {
3434                                adapter->eee_advert =
3435                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
3436                                adapter->flags |= IGB_FLAG_EEE;
3437                        }
3438                        break;
3439                case e1000_i354:
3440                        if ((rd32(E1000_CTRL_EXT) &
3441                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3442                                err = igb_set_eee_i354(hw, true, true);
3443                                if ((!err) &&
3444                                        (!hw->dev_spec._82575.eee_disable)) {
3445                                        adapter->eee_advert =
3446                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
3447                                        adapter->flags |= IGB_FLAG_EEE;
3448                                }
3449                        }
3450                        break;
3451                default:
3452                        break;
3453                }
3454        }
3455
3456        dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3457
3458        pm_runtime_put_noidle(&pdev->dev);
3459        return 0;
3460
3461err_register:
3462        igb_release_hw_control(adapter);
3463        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3464err_eeprom:
3465        if (!igb_check_reset_block(hw))
3466                igb_reset_phy(hw);
3467
3468        if (hw->flash_address)
3469                iounmap(hw->flash_address);
3470err_sw_init:
3471        kfree(adapter->mac_table);
3472        kfree(adapter->shadow_vfta);
3473        igb_clear_interrupt_scheme(adapter);
3474#ifdef CONFIG_PCI_IOV
3475        igb_disable_sriov(pdev);
3476#endif
3477        pci_iounmap(pdev, adapter->io_addr);
3478err_ioremap:
3479        free_netdev(netdev);
3480err_alloc_etherdev:
3481        pci_release_mem_regions(pdev);
3482err_pci_reg:
3483err_dma:
3484        pci_disable_device(pdev);
3485        return err;
3486}
3487
3488#ifdef CONFIG_PCI_IOV
3489static int igb_disable_sriov(struct pci_dev *pdev)
3490{
3491        struct net_device *netdev = pci_get_drvdata(pdev);
3492        struct igb_adapter *adapter = netdev_priv(netdev);
3493        struct e1000_hw *hw = &adapter->hw;
3494
3495        /* reclaim resources allocated to VFs */
3496        if (adapter->vf_data) {
3497                /* disable iov and allow time for transactions to clear */
3498                if (pci_vfs_assigned(pdev)) {
3499                        dev_warn(&pdev->dev,
3500                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3501                        return -EPERM;
3502                } else {
3503                        pci_disable_sriov(pdev);
3504                        msleep(500);
3505                }
3506
3507                kfree(adapter->vf_mac_list);
3508                adapter->vf_mac_list = NULL;
3509                kfree(adapter->vf_data);
3510                adapter->vf_data = NULL;
3511                adapter->vfs_allocated_count = 0;
3512                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3513                wrfl();
3514                msleep(100);
3515                dev_info(&pdev->dev, "IOV Disabled\n");
3516
3517                /* Re-enable DMA Coalescing flag since IOV is turned off */
3518                adapter->flags |= IGB_FLAG_DMAC;
3519        }
3520
3521        return 0;
3522}
3523
3524static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3525{
3526        struct net_device *netdev = pci_get_drvdata(pdev);
3527        struct igb_adapter *adapter = netdev_priv(netdev);
3528        int old_vfs = pci_num_vf(pdev);
3529        struct vf_mac_filter *mac_list;
3530        int err = 0;
3531        int num_vf_mac_filters, i;
3532
3533        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3534                err = -EPERM;
3535                goto out;
3536        }
3537        if (!num_vfs)
3538                goto out;
3539
3540        if (old_vfs) {
3541                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3542                         old_vfs, max_vfs);
3543                adapter->vfs_allocated_count = old_vfs;
3544        } else
3545                adapter->vfs_allocated_count = num_vfs;
3546
3547        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3548                                sizeof(struct vf_data_storage), GFP_KERNEL);
3549
3550        /* if allocation failed then we do not support SR-IOV */
3551        if (!adapter->vf_data) {
3552                adapter->vfs_allocated_count = 0;
3553                err = -ENOMEM;
3554                goto out;
3555        }
3556
3557        /* Due to the limited number of RAR entries calculate potential
3558         * number of MAC filters available for the VFs. Reserve entries
3559         * for PF default MAC, PF MAC filters and at least one RAR entry
3560         * for each VF for VF MAC.
3561         */
3562        num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3563                             (1 + IGB_PF_MAC_FILTERS_RESERVED +
3564                              adapter->vfs_allocated_count);
3565
3566        adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3567                                       sizeof(struct vf_mac_filter),
3568                                       GFP_KERNEL);
3569
3570        mac_list = adapter->vf_mac_list;
3571        INIT_LIST_HEAD(&adapter->vf_macs.l);
3572
3573        if (adapter->vf_mac_list) {
3574                /* Initialize list of VF MAC filters */
3575                for (i = 0; i < num_vf_mac_filters; i++) {
3576                        mac_list->vf = -1;
3577                        mac_list->free = true;
3578                        list_add(&mac_list->l, &adapter->vf_macs.l);
3579                        mac_list++;
3580                }
3581        } else {
3582                /* If we could not allocate memory for the VF MAC filters
3583                 * we can continue without this feature but warn user.
3584                 */
3585                dev_err(&pdev->dev,
3586                        "Unable to allocate memory for VF MAC filter list\n");
3587        }
3588
3589        /* only call pci_enable_sriov() if no VFs are allocated already */
3590        if (!old_vfs) {
3591                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3592                if (err)
3593                        goto err_out;
3594        }
3595        dev_info(&pdev->dev, "%d VFs allocated\n",
3596                 adapter->vfs_allocated_count);
3597        for (i = 0; i < adapter->vfs_allocated_count; i++)
3598                igb_vf_configure(adapter, i);
3599
3600        /* DMA Coalescing is not supported in IOV mode. */
3601        adapter->flags &= ~IGB_FLAG_DMAC;
3602        goto out;
3603
3604err_out:
3605        kfree(adapter->vf_mac_list);
3606        adapter->vf_mac_list = NULL;
3607        kfree(adapter->vf_data);
3608        adapter->vf_data = NULL;
3609        adapter->vfs_allocated_count = 0;
3610out:
3611        return err;
3612}
3613
3614#endif
3615/**
3616 *  igb_remove_i2c - Cleanup  I2C interface
3617 *  @adapter: pointer to adapter structure
3618 **/
3619static void igb_remove_i2c(struct igb_adapter *adapter)
3620{
3621        /* free the adapter bus structure */
3622        i2c_del_adapter(&adapter->i2c_adap);
3623}
3624
3625/**
3626 *  igb_remove - Device Removal Routine
3627 *  @pdev: PCI device information struct
3628 *
3629 *  igb_remove is called by the PCI subsystem to alert the driver
3630 *  that it should release a PCI device.  The could be caused by a
3631 *  Hot-Plug event, or because the driver is going to be removed from
3632 *  memory.
3633 **/
3634static void igb_remove(struct pci_dev *pdev)
3635{
3636        struct net_device *netdev = pci_get_drvdata(pdev);
3637        struct igb_adapter *adapter = netdev_priv(netdev);
3638        struct e1000_hw *hw = &adapter->hw;
3639
3640        pm_runtime_get_noresume(&pdev->dev);
3641#ifdef CONFIG_IGB_HWMON
3642        igb_sysfs_exit(adapter);
3643#endif
3644        igb_remove_i2c(adapter);
3645        igb_ptp_stop(adapter);
3646        /* The watchdog timer may be rescheduled, so explicitly
3647         * disable watchdog from being rescheduled.
3648         */
3649        set_bit(__IGB_DOWN, &adapter->state);
3650        del_timer_sync(&adapter->watchdog_timer);
3651        del_timer_sync(&adapter->phy_info_timer);
3652
3653        cancel_work_sync(&adapter->reset_task);
3654        cancel_work_sync(&adapter->watchdog_task);
3655
3656#ifdef CONFIG_IGB_DCA
3657        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3658                dev_info(&pdev->dev, "DCA disabled\n");
3659                dca_remove_requester(&pdev->dev);
3660                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3661                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3662        }
3663#endif
3664
3665        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3666         * would have already happened in close and is redundant.
3667         */
3668        igb_release_hw_control(adapter);
3669
3670#ifdef CONFIG_PCI_IOV
3671        igb_disable_sriov(pdev);
3672#endif
3673
3674        unregister_netdev(netdev);
3675
3676        igb_clear_interrupt_scheme(adapter);
3677
3678        pci_iounmap(pdev, adapter->io_addr);
3679        if (hw->flash_address)
3680                iounmap(hw->flash_address);
3681        pci_release_mem_regions(pdev);
3682
3683        kfree(adapter->mac_table);
3684        kfree(adapter->shadow_vfta);
3685        free_netdev(netdev);
3686
3687        pci_disable_pcie_error_reporting(pdev);
3688
3689        pci_disable_device(pdev);
3690}
3691
3692/**
3693 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3694 *  @adapter: board private structure to initialize
3695 *
3696 *  This function initializes the vf specific data storage and then attempts to
3697 *  allocate the VFs.  The reason for ordering it this way is because it is much
3698 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3699 *  the memory for the VFs.
3700 **/
3701static void igb_probe_vfs(struct igb_adapter *adapter)
3702{
3703#ifdef CONFIG_PCI_IOV
3704        struct pci_dev *pdev = adapter->pdev;
3705        struct e1000_hw *hw = &adapter->hw;
3706
3707        /* Virtualization features not supported on i210 family. */
3708        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3709                return;
3710
3711        /* Of the below we really only want the effect of getting
3712         * IGB_FLAG_HAS_MSIX set (if available), without which
3713         * igb_enable_sriov() has no effect.
3714         */
3715        igb_set_interrupt_capability(adapter, true);
3716        igb_reset_interrupt_capability(adapter);
3717
3718        pci_sriov_set_totalvfs(pdev, 7);
3719        igb_enable_sriov(pdev, max_vfs);
3720
3721#endif /* CONFIG_PCI_IOV */
3722}
3723
3724unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3725{
3726        struct e1000_hw *hw = &adapter->hw;
3727        unsigned int max_rss_queues;
3728
3729        /* Determine the maximum number of RSS queues supported. */
3730        switch (hw->mac.type) {
3731        case e1000_i211:
3732                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3733                break;
3734        case e1000_82575:
3735        case e1000_i210:
3736                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3737                break;
3738        case e1000_i350:
3739                /* I350 cannot do RSS and SR-IOV at the same time */
3740                if (!!adapter->vfs_allocated_count) {
3741                        max_rss_queues = 1;
3742                        break;
3743                }
3744                /* fall through */
3745        case e1000_82576:
3746                if (!!adapter->vfs_allocated_count) {
3747                        max_rss_queues = 2;
3748                        break;
3749                }
3750                /* fall through */
3751        case e1000_82580:
3752        case e1000_i354:
3753        default:
3754                max_rss_queues = IGB_MAX_RX_QUEUES;
3755                break;
3756        }
3757
3758        return max_rss_queues;
3759}
3760
3761static void igb_init_queue_configuration(struct igb_adapter *adapter)
3762{
3763        u32 max_rss_queues;
3764
3765        max_rss_queues = igb_get_max_rss_queues(adapter);
3766        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3767
3768        igb_set_flag_queue_pairs(adapter, max_rss_queues);
3769}
3770
3771void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3772                              const u32 max_rss_queues)
3773{
3774        struct e1000_hw *hw = &adapter->hw;
3775
3776        /* Determine if we need to pair queues. */
3777        switch (hw->mac.type) {
3778        case e1000_82575:
3779        case e1000_i211:
3780                /* Device supports enough interrupts without queue pairing. */
3781                break;
3782        case e1000_82576:
3783        case e1000_82580:
3784        case e1000_i350:
3785        case e1000_i354:
3786        case e1000_i210:
3787        default:
3788                /* If rss_queues > half of max_rss_queues, pair the queues in
3789                 * order to conserve interrupts due to limited supply.
3790                 */
3791                if (adapter->rss_queues > (max_rss_queues / 2))
3792                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3793                else
3794                        adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3795                break;
3796        }
3797}
3798
3799/**
3800 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3801 *  @adapter: board private structure to initialize
3802 *
3803 *  igb_sw_init initializes the Adapter private data structure.
3804 *  Fields are initialized based on PCI device information and
3805 *  OS network device settings (MTU size).
3806 **/
3807static int igb_sw_init(struct igb_adapter *adapter)
3808{
3809        struct e1000_hw *hw = &adapter->hw;
3810        struct net_device *netdev = adapter->netdev;
3811        struct pci_dev *pdev = adapter->pdev;
3812
3813        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3814
3815        /* set default ring sizes */
3816        adapter->tx_ring_count = IGB_DEFAULT_TXD;
3817        adapter->rx_ring_count = IGB_DEFAULT_RXD;
3818
3819        /* set default ITR values */
3820        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3821        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3822
3823        /* set default work limits */
3824        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3825
3826        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3827                                  VLAN_HLEN;
3828        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3829
3830        spin_lock_init(&adapter->nfc_lock);
3831        spin_lock_init(&adapter->stats64_lock);
3832#ifdef CONFIG_PCI_IOV
3833        switch (hw->mac.type) {
3834        case e1000_82576:
3835        case e1000_i350:
3836                if (max_vfs > 7) {
3837                        dev_warn(&pdev->dev,
3838                                 "Maximum of 7 VFs per PF, using max\n");
3839                        max_vfs = adapter->vfs_allocated_count = 7;
3840                } else
3841                        adapter->vfs_allocated_count = max_vfs;
3842                if (adapter->vfs_allocated_count)
3843                        dev_warn(&pdev->dev,
3844                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3845                break;
3846        default:
3847                break;
3848        }
3849#endif /* CONFIG_PCI_IOV */
3850
3851        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3852        adapter->flags |= IGB_FLAG_HAS_MSIX;
3853
3854        adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3855                                     sizeof(struct igb_mac_addr),
3856                                     GFP_KERNEL);
3857        if (!adapter->mac_table)
3858                return -ENOMEM;
3859
3860        igb_probe_vfs(adapter);
3861
3862        igb_init_queue_configuration(adapter);
3863
3864        /* Setup and initialize a copy of the hw vlan table array */
3865        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3866                                       GFP_KERNEL);
3867        if (!adapter->shadow_vfta)
3868                return -ENOMEM;
3869
3870        /* This call may decrease the number of queues */
3871        if (igb_init_interrupt_scheme(adapter, true)) {
3872                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3873                return -ENOMEM;
3874        }
3875
3876        /* Explicitly disable IRQ since the NIC can be in any state. */
3877        igb_irq_disable(adapter);
3878
3879        if (hw->mac.type >= e1000_i350)
3880                adapter->flags &= ~IGB_FLAG_DMAC;
3881
3882        set_bit(__IGB_DOWN, &adapter->state);
3883        return 0;
3884}
3885
3886/**
3887 *  igb_open - Called when a network interface is made active
3888 *  @netdev: network interface device structure
3889 *
3890 *  Returns 0 on success, negative value on failure
3891 *
3892 *  The open entry point is called when a network interface is made
3893 *  active by the system (IFF_UP).  At this point all resources needed
3894 *  for transmit and receive operations are allocated, the interrupt
3895 *  handler is registered with the OS, the watchdog timer is started,
3896 *  and the stack is notified that the interface is ready.
3897 **/
3898static int __igb_open(struct net_device *netdev, bool resuming)
3899{
3900        struct igb_adapter *adapter = netdev_priv(netdev);
3901        struct e1000_hw *hw = &adapter->hw;
3902        struct pci_dev *pdev = adapter->pdev;
3903        int err;
3904        int i;
3905
3906        /* disallow open during test */
3907        if (test_bit(__IGB_TESTING, &adapter->state)) {
3908                WARN_ON(resuming);
3909                return -EBUSY;
3910        }
3911
3912        if (!resuming)
3913                pm_runtime_get_sync(&pdev->dev);
3914
3915        netif_carrier_off(netdev);
3916
3917        /* allocate transmit descriptors */
3918        err = igb_setup_all_tx_resources(adapter);
3919        if (err)
3920                goto err_setup_tx;
3921
3922        /* allocate receive descriptors */
3923        err = igb_setup_all_rx_resources(adapter);
3924        if (err)
3925                goto err_setup_rx;
3926
3927        igb_power_up_link(adapter);
3928
3929        /* before we allocate an interrupt, we must be ready to handle it.
3930         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3931         * as soon as we call pci_request_irq, so we have to setup our
3932         * clean_rx handler before we do so.
3933         */
3934        igb_configure(adapter);
3935
3936        err = igb_request_irq(adapter);
3937        if (err)
3938                goto err_req_irq;
3939
3940        /* Notify the stack of the actual queue counts. */
3941        err = netif_set_real_num_tx_queues(adapter->netdev,
3942                                           adapter->num_tx_queues);
3943        if (err)
3944                goto err_set_queues;
3945
3946        err = netif_set_real_num_rx_queues(adapter->netdev,
3947                                           adapter->num_rx_queues);
3948        if (err)
3949                goto err_set_queues;
3950
3951        /* From here on the code is the same as igb_up() */
3952        clear_bit(__IGB_DOWN, &adapter->state);
3953
3954        for (i = 0; i < adapter->num_q_vectors; i++)
3955                napi_enable(&(adapter->q_vector[i]->napi));
3956
3957        /* Clear any pending interrupts. */
3958        rd32(E1000_TSICR);
3959        rd32(E1000_ICR);
3960
3961        igb_irq_enable(adapter);
3962
3963        /* notify VFs that reset has been completed */
3964        if (adapter->vfs_allocated_count) {
3965                u32 reg_data = rd32(E1000_CTRL_EXT);
3966
3967                reg_data |= E1000_CTRL_EXT_PFRSTD;
3968                wr32(E1000_CTRL_EXT, reg_data);
3969        }
3970
3971        netif_tx_start_all_queues(netdev);
3972
3973        if (!resuming)
3974                pm_runtime_put(&pdev->dev);
3975
3976        /* start the watchdog. */
3977        hw->mac.get_link_status = 1;
3978        schedule_work(&adapter->watchdog_task);
3979
3980        return 0;
3981
3982err_set_queues:
3983        igb_free_irq(adapter);
3984err_req_irq:
3985        igb_release_hw_control(adapter);
3986        igb_power_down_link(adapter);
3987        igb_free_all_rx_resources(adapter);
3988err_setup_rx:
3989        igb_free_all_tx_resources(adapter);
3990err_setup_tx:
3991        igb_reset(adapter);
3992        if (!resuming)
3993                pm_runtime_put(&pdev->dev);
3994
3995        return err;
3996}
3997
3998int igb_open(struct net_device *netdev)
3999{
4000        return __igb_open(netdev, false);
4001}
4002
4003/**
4004 *  igb_close - Disables a network interface
4005 *  @netdev: network interface device structure
4006 *
4007 *  Returns 0, this is not allowed to fail
4008 *
4009 *  The close entry point is called when an interface is de-activated
4010 *  by the OS.  The hardware is still under the driver's control, but
4011 *  needs to be disabled.  A global MAC reset is issued to stop the
4012 *  hardware, and all transmit and receive resources are freed.
4013 **/
4014static int __igb_close(struct net_device *netdev, bool suspending)
4015{
4016        struct igb_adapter *adapter = netdev_priv(netdev);
4017        struct pci_dev *pdev = adapter->pdev;
4018
4019        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4020
4021        if (!suspending)
4022                pm_runtime_get_sync(&pdev->dev);
4023
4024        igb_down(adapter);
4025        igb_free_irq(adapter);
4026
4027        igb_free_all_tx_resources(adapter);
4028        igb_free_all_rx_resources(adapter);
4029
4030        if (!suspending)
4031                pm_runtime_put_sync(&pdev->dev);
4032        return 0;
4033}
4034
4035int igb_close(struct net_device *netdev)
4036{
4037        if (netif_device_present(netdev) || netdev->dismantle)
4038                return __igb_close(netdev, false);
4039        return 0;
4040}
4041
4042/**
4043 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4044 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4045 *
4046 *  Return 0 on success, negative on failure
4047 **/
4048int igb_setup_tx_resources(struct igb_ring *tx_ring)
4049{
4050        struct device *dev = tx_ring->dev;
4051        int size;
4052
4053        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4054
4055        tx_ring->tx_buffer_info = vmalloc(size);
4056        if (!tx_ring->tx_buffer_info)
4057                goto err;
4058
4059        /* round up to nearest 4K */
4060        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4061        tx_ring->size = ALIGN(tx_ring->size, 4096);
4062
4063        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4064                                           &tx_ring->dma, GFP_KERNEL);
4065        if (!tx_ring->desc)
4066                goto err;
4067
4068        tx_ring->next_to_use = 0;
4069        tx_ring->next_to_clean = 0;
4070
4071        return 0;
4072
4073err:
4074        vfree(tx_ring->tx_buffer_info);
4075        tx_ring->tx_buffer_info = NULL;
4076        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4077        return -ENOMEM;
4078}
4079
4080/**
4081 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4082 *                               (Descriptors) for all queues
4083 *  @adapter: board private structure
4084 *
4085 *  Return 0 on success, negative on failure
4086 **/
4087static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4088{
4089        struct pci_dev *pdev = adapter->pdev;
4090        int i, err = 0;
4091
4092        for (i = 0; i < adapter->num_tx_queues; i++) {
4093                err = igb_setup_tx_resources(adapter->tx_ring[i]);
4094                if (err) {
4095                        dev_err(&pdev->dev,
4096                                "Allocation for Tx Queue %u failed\n", i);
4097                        for (i--; i >= 0; i--)
4098                                igb_free_tx_resources(adapter->tx_ring[i]);
4099                        break;
4100                }
4101        }
4102
4103        return err;
4104}
4105
4106/**
4107 *  igb_setup_tctl - configure the transmit control registers
4108 *  @adapter: Board private structure
4109 **/
4110void igb_setup_tctl(struct igb_adapter *adapter)
4111{
4112        struct e1000_hw *hw = &adapter->hw;
4113        u32 tctl;
4114
4115        /* disable queue 0 which is enabled by default on 82575 and 82576 */
4116        wr32(E1000_TXDCTL(0), 0);
4117
4118        /* Program the Transmit Control Register */
4119        tctl = rd32(E1000_TCTL);
4120        tctl &= ~E1000_TCTL_CT;
4121        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4122                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4123
4124        igb_config_collision_dist(hw);
4125
4126        /* Enable transmits */
4127        tctl |= E1000_TCTL_EN;
4128
4129        wr32(E1000_TCTL, tctl);
4130}
4131
4132/**
4133 *  igb_configure_tx_ring - Configure transmit ring after Reset
4134 *  @adapter: board private structure
4135 *  @ring: tx ring to configure
4136 *
4137 *  Configure a transmit ring after a reset.
4138 **/
4139void igb_configure_tx_ring(struct igb_adapter *adapter,
4140                           struct igb_ring *ring)
4141{
4142        struct e1000_hw *hw = &adapter->hw;
4143        u32 txdctl = 0;
4144        u64 tdba = ring->dma;
4145        int reg_idx = ring->reg_idx;
4146
4147        wr32(E1000_TDLEN(reg_idx),
4148             ring->count * sizeof(union e1000_adv_tx_desc));
4149        wr32(E1000_TDBAL(reg_idx),
4150             tdba & 0x00000000ffffffffULL);
4151        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4152
4153        ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4154        wr32(E1000_TDH(reg_idx), 0);
4155        writel(0, ring->tail);
4156
4157        txdctl |= IGB_TX_PTHRESH;
4158        txdctl |= IGB_TX_HTHRESH << 8;
4159        txdctl |= IGB_TX_WTHRESH << 16;
4160
4161        /* reinitialize tx_buffer_info */
4162        memset(ring->tx_buffer_info, 0,
4163               sizeof(struct igb_tx_buffer) * ring->count);
4164
4165        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4166        wr32(E1000_TXDCTL(reg_idx), txdctl);
4167}
4168
4169/**
4170 *  igb_configure_tx - Configure transmit Unit after Reset
4171 *  @adapter: board private structure
4172 *
4173 *  Configure the Tx unit of the MAC after a reset.
4174 **/
4175static void igb_configure_tx(struct igb_adapter *adapter)
4176{
4177        struct e1000_hw *hw = &adapter->hw;
4178        int i;
4179
4180        /* disable the queues */
4181        for (i = 0; i < adapter->num_tx_queues; i++)
4182                wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4183
4184        wrfl();
4185        usleep_range(10000, 20000);
4186
4187        for (i = 0; i < adapter->num_tx_queues; i++)
4188                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4189}
4190
4191/**
4192 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4193 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4194 *
4195 *  Returns 0 on success, negative on failure
4196 **/
4197int igb_setup_rx_resources(struct igb_ring *rx_ring)
4198{
4199        struct device *dev = rx_ring->dev;
4200        int size;
4201
4202        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4203
4204        rx_ring->rx_buffer_info = vmalloc(size);
4205        if (!rx_ring->rx_buffer_info)
4206                goto err;
4207
4208        /* Round up to nearest 4K */
4209        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4210        rx_ring->size = ALIGN(rx_ring->size, 4096);
4211
4212        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4213                                           &rx_ring->dma, GFP_KERNEL);
4214        if (!rx_ring->desc)
4215                goto err;
4216
4217        rx_ring->next_to_alloc = 0;
4218        rx_ring->next_to_clean = 0;
4219        rx_ring->next_to_use = 0;
4220
4221        return 0;
4222
4223err:
4224        vfree(rx_ring->rx_buffer_info);
4225        rx_ring->rx_buffer_info = NULL;
4226        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4227        return -ENOMEM;
4228}
4229
4230/**
4231 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4232 *                               (Descriptors) for all queues
4233 *  @adapter: board private structure
4234 *
4235 *  Return 0 on success, negative on failure
4236 **/
4237static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4238{
4239        struct pci_dev *pdev = adapter->pdev;
4240        int i, err = 0;
4241
4242        for (i = 0; i < adapter->num_rx_queues; i++) {
4243                err = igb_setup_rx_resources(adapter->rx_ring[i]);
4244                if (err) {
4245                        dev_err(&pdev->dev,
4246                                "Allocation for Rx Queue %u failed\n", i);
4247                        for (i--; i >= 0; i--)
4248                                igb_free_rx_resources(adapter->rx_ring[i]);
4249                        break;
4250                }
4251        }
4252
4253        return err;
4254}
4255
4256/**
4257 *  igb_setup_mrqc - configure the multiple receive queue control registers
4258 *  @adapter: Board private structure
4259 **/
4260static void igb_setup_mrqc(struct igb_adapter *adapter)
4261{
4262        struct e1000_hw *hw = &adapter->hw;
4263        u32 mrqc, rxcsum;
4264        u32 j, num_rx_queues;
4265        u32 rss_key[10];
4266
4267        netdev_rss_key_fill(rss_key, sizeof(rss_key));
4268        for (j = 0; j < 10; j++)
4269                wr32(E1000_RSSRK(j), rss_key[j]);
4270
4271        num_rx_queues = adapter->rss_queues;
4272
4273        switch (hw->mac.type) {
4274        case e1000_82576:
4275                /* 82576 supports 2 RSS queues for SR-IOV */
4276                if (adapter->vfs_allocated_count)
4277                        num_rx_queues = 2;
4278                break;
4279        default:
4280                break;
4281        }
4282
4283        if (adapter->rss_indir_tbl_init != num_rx_queues) {
4284                for (j = 0; j < IGB_RETA_SIZE; j++)
4285                        adapter->rss_indir_tbl[j] =
4286                        (j * num_rx_queues) / IGB_RETA_SIZE;
4287                adapter->rss_indir_tbl_init = num_rx_queues;
4288        }
4289        igb_write_rss_indir_tbl(adapter);
4290
4291        /* Disable raw packet checksumming so that RSS hash is placed in
4292         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4293         * offloads as they are enabled by default
4294         */
4295        rxcsum = rd32(E1000_RXCSUM);
4296        rxcsum |= E1000_RXCSUM_PCSD;
4297
4298        if (adapter->hw.mac.type >= e1000_82576)
4299                /* Enable Receive Checksum Offload for SCTP */
4300                rxcsum |= E1000_RXCSUM_CRCOFL;
4301
4302        /* Don't need to set TUOFL or IPOFL, they default to 1 */
4303        wr32(E1000_RXCSUM, rxcsum);
4304
4305        /* Generate RSS hash based on packet types, TCP/UDP
4306         * port numbers and/or IPv4/v6 src and dst addresses
4307         */
4308        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4309               E1000_MRQC_RSS_FIELD_IPV4_TCP |
4310               E1000_MRQC_RSS_FIELD_IPV6 |
4311               E1000_MRQC_RSS_FIELD_IPV6_TCP |
4312               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4313
4314        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4315                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4316        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4317                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4318
4319        /* If VMDq is enabled then we set the appropriate mode for that, else
4320         * we default to RSS so that an RSS hash is calculated per packet even
4321         * if we are only using one queue
4322         */
4323        if (adapter->vfs_allocated_count) {
4324                if (hw->mac.type > e1000_82575) {
4325                        /* Set the default pool for the PF's first queue */
4326                        u32 vtctl = rd32(E1000_VT_CTL);
4327
4328                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4329                                   E1000_VT_CTL_DISABLE_DEF_POOL);
4330                        vtctl |= adapter->vfs_allocated_count <<
4331                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4332                        wr32(E1000_VT_CTL, vtctl);
4333                }
4334                if (adapter->rss_queues > 1)
4335                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4336                else
4337                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
4338        } else {
4339                if (hw->mac.type != e1000_i211)
4340                        mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4341        }
4342        igb_vmm_control(adapter);
4343
4344        wr32(E1000_MRQC, mrqc);
4345}
4346
4347/**
4348 *  igb_setup_rctl - configure the receive control registers
4349 *  @adapter: Board private structure
4350 **/
4351void igb_setup_rctl(struct igb_adapter *adapter)
4352{
4353        struct e1000_hw *hw = &adapter->hw;
4354        u32 rctl;
4355
4356        rctl = rd32(E1000_RCTL);
4357
4358        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4359        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4360
4361        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4362                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4363
4364        /* enable stripping of CRC. It's unlikely this will break BMC
4365         * redirection as it did with e1000. Newer features require
4366         * that the HW strips the CRC.
4367         */
4368        rctl |= E1000_RCTL_SECRC;
4369
4370        /* disable store bad packets and clear size bits. */
4371        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4372
4373        /* enable LPE to allow for reception of jumbo frames */
4374        rctl |= E1000_RCTL_LPE;
4375
4376        /* disable queue 0 to prevent tail write w/o re-config */
4377        wr32(E1000_RXDCTL(0), 0);
4378
4379        /* Attention!!!  For SR-IOV PF driver operations you must enable
4380         * queue drop for all VF and PF queues to prevent head of line blocking
4381         * if an un-trusted VF does not provide descriptors to hardware.
4382         */
4383        if (adapter->vfs_allocated_count) {
4384                /* set all queue drop enable bits */
4385                wr32(E1000_QDE, ALL_QUEUES);
4386        }
4387
4388        /* This is useful for sniffing bad packets. */
4389        if (adapter->netdev->features & NETIF_F_RXALL) {
4390                /* UPE and MPE will be handled by normal PROMISC logic
4391                 * in e1000e_set_rx_mode
4392                 */
4393                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4394                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
4395                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4396
4397                rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4398                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4399                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4400                 * and that breaks VLANs.
4401                 */
4402        }
4403
4404        wr32(E1000_RCTL, rctl);
4405}
4406
4407static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4408                                   int vfn)
4409{
4410        struct e1000_hw *hw = &adapter->hw;
4411        u32 vmolr;
4412
4413        if (size > MAX_JUMBO_FRAME_SIZE)
4414                size = MAX_JUMBO_FRAME_SIZE;
4415
4416        vmolr = rd32(E1000_VMOLR(vfn));
4417        vmolr &= ~E1000_VMOLR_RLPML_MASK;
4418        vmolr |= size | E1000_VMOLR_LPE;
4419        wr32(E1000_VMOLR(vfn), vmolr);
4420
4421        return 0;
4422}
4423
4424static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4425                                         int vfn, bool enable)
4426{
4427        struct e1000_hw *hw = &adapter->hw;
4428        u32 val, reg;
4429
4430        if (hw->mac.type < e1000_82576)
4431                return;
4432
4433        if (hw->mac.type == e1000_i350)
4434                reg = E1000_DVMOLR(vfn);
4435        else
4436                reg = E1000_VMOLR(vfn);
4437
4438        val = rd32(reg);
4439        if (enable)
4440                val |= E1000_VMOLR_STRVLAN;
4441        else
4442                val &= ~(E1000_VMOLR_STRVLAN);
4443        wr32(reg, val);
4444}
4445
4446static inline void igb_set_vmolr(struct igb_adapter *adapter,
4447                                 int vfn, bool aupe)
4448{
4449        struct e1000_hw *hw = &adapter->hw;
4450        u32 vmolr;
4451
4452        /* This register exists only on 82576 and newer so if we are older then
4453         * we should exit and do nothing
4454         */
4455        if (hw->mac.type < e1000_82576)
4456                return;
4457
4458        vmolr = rd32(E1000_VMOLR(vfn));
4459        if (aupe)
4460                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4461        else
4462                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4463
4464        /* clear all bits that might not be set */
4465        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4466
4467        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4468                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4469        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4470         * multicast packets
4471         */
4472        if (vfn <= adapter->vfs_allocated_count)
4473                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4474
4475        wr32(E1000_VMOLR(vfn), vmolr);
4476}
4477
4478/**
4479 *  igb_configure_rx_ring - Configure a receive ring after Reset
4480 *  @adapter: board private structure
4481 *  @ring: receive ring to be configured
4482 *
4483 *  Configure the Rx unit of the MAC after a reset.
4484 **/
4485void igb_configure_rx_ring(struct igb_adapter *adapter,
4486                           struct igb_ring *ring)
4487{
4488        struct e1000_hw *hw = &adapter->hw;
4489        union e1000_adv_rx_desc *rx_desc;
4490        u64 rdba = ring->dma;
4491        int reg_idx = ring->reg_idx;
4492        u32 srrctl = 0, rxdctl = 0;
4493
4494        /* disable the queue */
4495        wr32(E1000_RXDCTL(reg_idx), 0);
4496
4497        /* Set DMA base address registers */
4498        wr32(E1000_RDBAL(reg_idx),
4499             rdba & 0x00000000ffffffffULL);
4500        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4501        wr32(E1000_RDLEN(reg_idx),
4502             ring->count * sizeof(union e1000_adv_rx_desc));
4503
4504        /* initialize head and tail */
4505        ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4506        wr32(E1000_RDH(reg_idx), 0);
4507        writel(0, ring->tail);
4508
4509        /* set descriptor configuration */
4510        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4511        if (ring_uses_large_buffer(ring))
4512                srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4513        else
4514                srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4515        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4516        if (hw->mac.type >= e1000_82580)
4517                srrctl |= E1000_SRRCTL_TIMESTAMP;
4518        /* Only set Drop Enable if we are supporting multiple queues */
4519        if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4520                srrctl |= E1000_SRRCTL_DROP_EN;
4521
4522        wr32(E1000_SRRCTL(reg_idx), srrctl);
4523
4524        /* set filtering for VMDQ pools */
4525        igb_set_vmolr(adapter, reg_idx & 0x7, true);
4526
4527        rxdctl |= IGB_RX_PTHRESH;
4528        rxdctl |= IGB_RX_HTHRESH << 8;
4529        rxdctl |= IGB_RX_WTHRESH << 16;
4530
4531        /* initialize rx_buffer_info */
4532        memset(ring->rx_buffer_info, 0,
4533               sizeof(struct igb_rx_buffer) * ring->count);
4534
4535        /* initialize Rx descriptor 0 */
4536        rx_desc = IGB_RX_DESC(ring, 0);
4537        rx_desc->wb.upper.length = 0;
4538
4539        /* enable receive descriptor fetching */
4540        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4541        wr32(E1000_RXDCTL(reg_idx), rxdctl);
4542}
4543
4544static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4545                                  struct igb_ring *rx_ring)
4546{
4547        /* set build_skb and buffer size flags */
4548        clear_ring_build_skb_enabled(rx_ring);
4549        clear_ring_uses_large_buffer(rx_ring);
4550
4551        if (adapter->flags & IGB_FLAG_RX_LEGACY)
4552                return;
4553
4554        set_ring_build_skb_enabled(rx_ring);
4555
4556#if (PAGE_SIZE < 8192)
4557        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4558                return;
4559
4560        set_ring_uses_large_buffer(rx_ring);
4561#endif
4562}
4563
4564/**
4565 *  igb_configure_rx - Configure receive Unit after Reset
4566 *  @adapter: board private structure
4567 *
4568 *  Configure the Rx unit of the MAC after a reset.
4569 **/
4570static void igb_configure_rx(struct igb_adapter *adapter)
4571{
4572        int i;
4573
4574        /* set the correct pool for the PF default MAC address in entry 0 */
4575        igb_set_default_mac_filter(adapter);
4576
4577        /* Setup the HW Rx Head and Tail Descriptor Pointers and
4578         * the Base and Length of the Rx Descriptor Ring
4579         */
4580        for (i = 0; i < adapter->num_rx_queues; i++) {
4581                struct igb_ring *rx_ring = adapter->rx_ring[i];
4582
4583                igb_set_rx_buffer_len(adapter, rx_ring);
4584                igb_configure_rx_ring(adapter, rx_ring);
4585        }
4586}
4587
4588/**
4589 *  igb_free_tx_resources - Free Tx Resources per Queue
4590 *  @tx_ring: Tx descriptor ring for a specific queue
4591 *
4592 *  Free all transmit software resources
4593 **/
4594void igb_free_tx_resources(struct igb_ring *tx_ring)
4595{
4596        igb_clean_tx_ring(tx_ring);
4597
4598        vfree(tx_ring->tx_buffer_info);
4599        tx_ring->tx_buffer_info = NULL;
4600
4601        /* if not set, then don't free */
4602        if (!tx_ring->desc)
4603                return;
4604
4605        dma_free_coherent(tx_ring->dev, tx_ring->size,
4606                          tx_ring->desc, tx_ring->dma);
4607
4608        tx_ring->desc = NULL;
4609}
4610
4611/**
4612 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4613 *  @adapter: board private structure
4614 *
4615 *  Free all transmit software resources
4616 **/
4617static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4618{
4619        int i;
4620
4621        for (i = 0; i < adapter->num_tx_queues; i++)
4622                if (adapter->tx_ring[i])
4623                        igb_free_tx_resources(adapter->tx_ring[i]);
4624}
4625
4626/**
4627 *  igb_clean_tx_ring - Free Tx Buffers
4628 *  @tx_ring: ring to be cleaned
4629 **/
4630static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4631{
4632        u16 i = tx_ring->next_to_clean;
4633        struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4634
4635        while (i != tx_ring->next_to_use) {
4636                union e1000_adv_tx_desc *eop_desc, *tx_desc;
4637
4638                /* Free all the Tx ring sk_buffs */
4639                dev_kfree_skb_any(tx_buffer->skb);
4640
4641                /* unmap skb header data */
4642                dma_unmap_single(tx_ring->dev,
4643                                 dma_unmap_addr(tx_buffer, dma),
4644                                 dma_unmap_len(tx_buffer, len),
4645                                 DMA_TO_DEVICE);
4646
4647                /* check for eop_desc to determine the end of the packet */
4648                eop_desc = tx_buffer->next_to_watch;
4649                tx_desc = IGB_TX_DESC(tx_ring, i);
4650
4651                /* unmap remaining buffers */
4652                while (tx_desc != eop_desc) {
4653                        tx_buffer++;
4654                        tx_desc++;
4655                        i++;
4656                        if (unlikely(i == tx_ring->count)) {
4657                                i = 0;
4658                                tx_buffer = tx_ring->tx_buffer_info;
4659                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4660                        }
4661
4662                        /* unmap any remaining paged data */
4663                        if (dma_unmap_len(tx_buffer, len))
4664                                dma_unmap_page(tx_ring->dev,
4665                                               dma_unmap_addr(tx_buffer, dma),
4666                                               dma_unmap_len(tx_buffer, len),
4667                                               DMA_TO_DEVICE);
4668                }
4669
4670                /* move us one more past the eop_desc for start of next pkt */
4671                tx_buffer++;
4672                i++;
4673                if (unlikely(i == tx_ring->count)) {
4674                        i = 0;
4675                        tx_buffer = tx_ring->tx_buffer_info;
4676                }
4677        }
4678
4679        /* reset BQL for queue */
4680        netdev_tx_reset_queue(txring_txq(tx_ring));
4681
4682        /* reset next_to_use and next_to_clean */
4683        tx_ring->next_to_use = 0;
4684        tx_ring->next_to_clean = 0;
4685}
4686
4687/**
4688 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4689 *  @adapter: board private structure
4690 **/
4691static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4692{
4693        int i;
4694
4695        for (i = 0; i < adapter->num_tx_queues; i++)
4696                if (adapter->tx_ring[i])
4697                        igb_clean_tx_ring(adapter->tx_ring[i]);
4698}
4699
4700/**
4701 *  igb_free_rx_resources - Free Rx Resources
4702 *  @rx_ring: ring to clean the resources from
4703 *
4704 *  Free all receive software resources
4705 **/
4706void igb_free_rx_resources(struct igb_ring *rx_ring)
4707{
4708        igb_clean_rx_ring(rx_ring);
4709
4710        vfree(rx_ring->rx_buffer_info);
4711        rx_ring->rx_buffer_info = NULL;
4712
4713        /* if not set, then don't free */
4714        if (!rx_ring->desc)
4715                return;
4716
4717        dma_free_coherent(rx_ring->dev, rx_ring->size,
4718                          rx_ring->desc, rx_ring->dma);
4719
4720        rx_ring->desc = NULL;
4721}
4722
4723/**
4724 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4725 *  @adapter: board private structure
4726 *
4727 *  Free all receive software resources
4728 **/
4729static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4730{
4731        int i;
4732
4733        for (i = 0; i < adapter->num_rx_queues; i++)
4734                if (adapter->rx_ring[i])
4735                        igb_free_rx_resources(adapter->rx_ring[i]);
4736}
4737
4738/**
4739 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4740 *  @rx_ring: ring to free buffers from
4741 **/
4742static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4743{
4744        u16 i = rx_ring->next_to_clean;
4745
4746        if (rx_ring->skb)
4747                dev_kfree_skb(rx_ring->skb);
4748        rx_ring->skb = NULL;
4749
4750        /* Free all the Rx ring sk_buffs */
4751        while (i != rx_ring->next_to_alloc) {
4752                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4753
4754                /* Invalidate cache lines that may have been written to by
4755                 * device so that we avoid corrupting memory.
4756                 */
4757                dma_sync_single_range_for_cpu(rx_ring->dev,
4758                                              buffer_info->dma,
4759                                              buffer_info->page_offset,
4760                                              igb_rx_bufsz(rx_ring),
4761                                              DMA_FROM_DEVICE);
4762
4763                /* free resources associated with mapping */
4764                dma_unmap_page_attrs(rx_ring->dev,
4765                                     buffer_info->dma,
4766                                     igb_rx_pg_size(rx_ring),
4767                                     DMA_FROM_DEVICE,
4768                                     IGB_RX_DMA_ATTR);
4769                __page_frag_cache_drain(buffer_info->page,
4770                                        buffer_info->pagecnt_bias);
4771
4772                i++;
4773                if (i == rx_ring->count)
4774                        i = 0;
4775        }
4776
4777        rx_ring->next_to_alloc = 0;
4778        rx_ring->next_to_clean = 0;
4779        rx_ring->next_to_use = 0;
4780}
4781
4782/**
4783 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4784 *  @adapter: board private structure
4785 **/
4786static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787{
4788        int i;
4789
4790        for (i = 0; i < adapter->num_rx_queues; i++)
4791                if (adapter->rx_ring[i])
4792                        igb_clean_rx_ring(adapter->rx_ring[i]);
4793}
4794
4795/**
4796 *  igb_set_mac - Change the Ethernet Address of the NIC
4797 *  @netdev: network interface device structure
4798 *  @p: pointer to an address structure
4799 *
4800 *  Returns 0 on success, negative on failure
4801 **/
4802static int igb_set_mac(struct net_device *netdev, void *p)
4803{
4804        struct igb_adapter *adapter = netdev_priv(netdev);
4805        struct e1000_hw *hw = &adapter->hw;
4806        struct sockaddr *addr = p;
4807
4808        if (!is_valid_ether_addr(addr->sa_data))
4809                return -EADDRNOTAVAIL;
4810
4811        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4812        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4813
4814        /* set the correct pool for the new PF MAC address in entry 0 */
4815        igb_set_default_mac_filter(adapter);
4816
4817        return 0;
4818}
4819
4820/**
4821 *  igb_write_mc_addr_list - write multicast addresses to MTA
4822 *  @netdev: network interface device structure
4823 *
4824 *  Writes multicast address list to the MTA hash table.
4825 *  Returns: -ENOMEM on failure
4826 *           0 on no addresses written
4827 *           X on writing X addresses to MTA
4828 **/
4829static int igb_write_mc_addr_list(struct net_device *netdev)
4830{
4831        struct igb_adapter *adapter = netdev_priv(netdev);
4832        struct e1000_hw *hw = &adapter->hw;
4833        struct netdev_hw_addr *ha;
4834        u8  *mta_list;
4835        int i;
4836
4837        if (netdev_mc_empty(netdev)) {
4838                /* nothing to program, so clear mc list */
4839                igb_update_mc_addr_list(hw, NULL, 0);
4840                igb_restore_vf_multicasts(adapter);
4841                return 0;
4842        }
4843
4844        mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845        if (!mta_list)
4846                return -ENOMEM;
4847
4848        /* The shared function expects a packed array of only addresses. */
4849        i = 0;
4850        netdev_for_each_mc_addr(ha, netdev)
4851                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4852
4853        igb_update_mc_addr_list(hw, mta_list, i);
4854        kfree(mta_list);
4855
4856        return netdev_mc_count(netdev);
4857}
4858
4859static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4860{
4861        struct e1000_hw *hw = &adapter->hw;
4862        u32 i, pf_id;
4863
4864        switch (hw->mac.type) {
4865        case e1000_i210:
4866        case e1000_i211:
4867        case e1000_i350:
4868                /* VLAN filtering needed for VLAN prio filter */
4869                if (adapter->netdev->features & NETIF_F_NTUPLE)
4870                        break;
4871                /* fall through */
4872        case e1000_82576:
4873        case e1000_82580:
4874        case e1000_i354:
4875                /* VLAN filtering needed for pool filtering */
4876                if (adapter->vfs_allocated_count)
4877                        break;
4878                /* fall through */
4879        default:
4880                return 1;
4881        }
4882
4883        /* We are already in VLAN promisc, nothing to do */
4884        if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4885                return 0;
4886
4887        if (!adapter->vfs_allocated_count)
4888                goto set_vfta;
4889
4890        /* Add PF to all active pools */
4891        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4892
4893        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4894                u32 vlvf = rd32(E1000_VLVF(i));
4895
4896                vlvf |= BIT(pf_id);
4897                wr32(E1000_VLVF(i), vlvf);
4898        }
4899
4900set_vfta:
4901        /* Set all bits in the VLAN filter table array */
4902        for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4903                hw->mac.ops.write_vfta(hw, i, ~0U);
4904
4905        /* Set flag so we don't redo unnecessary work */
4906        adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4907
4908        return 0;
4909}
4910
4911#define VFTA_BLOCK_SIZE 8
4912static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4913{
4914        struct e1000_hw *hw = &adapter->hw;
4915        u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4916        u32 vid_start = vfta_offset * 32;
4917        u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4918        u32 i, vid, word, bits, pf_id;
4919
4920        /* guarantee that we don't scrub out management VLAN */
4921        vid = adapter->mng_vlan_id;
4922        if (vid >= vid_start && vid < vid_end)
4923                vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4924
4925        if (!adapter->vfs_allocated_count)
4926                goto set_vfta;
4927
4928        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4929
4930        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4931                u32 vlvf = rd32(E1000_VLVF(i));
4932
4933                /* pull VLAN ID from VLVF */
4934                vid = vlvf & VLAN_VID_MASK;
4935
4936                /* only concern ourselves with a certain range */
4937                if (vid < vid_start || vid >= vid_end)
4938                        continue;
4939
4940                if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4941                        /* record VLAN ID in VFTA */
4942                        vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4943
4944                        /* if PF is part of this then continue */
4945                        if (test_bit(vid, adapter->active_vlans))
4946                                continue;
4947                }
4948
4949                /* remove PF from the pool */
4950                bits = ~BIT(pf_id);
4951                bits &= rd32(E1000_VLVF(i));
4952                wr32(E1000_VLVF(i), bits);
4953        }
4954
4955set_vfta:
4956        /* extract values from active_vlans and write back to VFTA */
4957        for (i = VFTA_BLOCK_SIZE; i--;) {
4958                vid = (vfta_offset + i) * 32;
4959                word = vid / BITS_PER_LONG;
4960                bits = vid % BITS_PER_LONG;
4961
4962                vfta[i] |= adapter->active_vlans[word] >> bits;
4963
4964                hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965        }
4966}
4967
4968static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969{
4970        u32 i;
4971
4972        /* We are not in VLAN promisc, nothing to do */
4973        if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4974                return;
4975
4976        /* Set flag so we don't redo unnecessary work */
4977        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4978
4979        for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4980                igb_scrub_vfta(adapter, i);
4981}
4982
4983/**
4984 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4985 *  @netdev: network interface device structure
4986 *
4987 *  The set_rx_mode entry point is called whenever the unicast or multicast
4988 *  address lists or the network interface flags are updated.  This routine is
4989 *  responsible for configuring the hardware for proper unicast, multicast,
4990 *  promiscuous mode, and all-multi behavior.
4991 **/
4992static void igb_set_rx_mode(struct net_device *netdev)
4993{
4994        struct igb_adapter *adapter = netdev_priv(netdev);
4995        struct e1000_hw *hw = &adapter->hw;
4996        unsigned int vfn = adapter->vfs_allocated_count;
4997        u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4998        int count;
4999
5000        /* Check for Promiscuous and All Multicast modes */
5001        if (netdev->flags & IFF_PROMISC) {
5002                rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5003                vmolr |= E1000_VMOLR_MPME;
5004
5005                /* enable use of UTA filter to force packets to default pool */
5006                if (hw->mac.type == e1000_82576)
5007                        vmolr |= E1000_VMOLR_ROPE;
5008        } else {
5009                if (netdev->flags & IFF_ALLMULTI) {
5010                        rctl |= E1000_RCTL_MPE;
5011                        vmolr |= E1000_VMOLR_MPME;
5012                } else {
5013                        /* Write addresses to the MTA, if the attempt fails
5014                         * then we should just turn on promiscuous mode so
5015                         * that we can at least receive multicast traffic
5016                         */
5017                        count = igb_write_mc_addr_list(netdev);
5018                        if (count < 0) {
5019                                rctl |= E1000_RCTL_MPE;
5020                                vmolr |= E1000_VMOLR_MPME;
5021                        } else if (count) {
5022                                vmolr |= E1000_VMOLR_ROMPE;
5023                        }
5024                }
5025        }
5026
5027        /* Write addresses to available RAR registers, if there is not
5028         * sufficient space to store all the addresses then enable
5029         * unicast promiscuous mode
5030         */
5031        if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5032                rctl |= E1000_RCTL_UPE;
5033                vmolr |= E1000_VMOLR_ROPE;
5034        }
5035
5036        /* enable VLAN filtering by default */
5037        rctl |= E1000_RCTL_VFE;
5038
5039        /* disable VLAN filtering for modes that require it */
5040        if ((netdev->flags & IFF_PROMISC) ||
5041            (netdev->features & NETIF_F_RXALL)) {
5042                /* if we fail to set all rules then just clear VFE */
5043                if (igb_vlan_promisc_enable(adapter))
5044                        rctl &= ~E1000_RCTL_VFE;
5045        } else {
5046                igb_vlan_promisc_disable(adapter);
5047        }
5048
5049        /* update state of unicast, multicast, and VLAN filtering modes */
5050        rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5051                                     E1000_RCTL_VFE);
5052        wr32(E1000_RCTL, rctl);
5053
5054#if (PAGE_SIZE < 8192)
5055        if (!adapter->vfs_allocated_count) {
5056                if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5057                        rlpml = IGB_MAX_FRAME_BUILD_SKB;
5058        }
5059#endif
5060        wr32(E1000_RLPML, rlpml);
5061
5062        /* In order to support SR-IOV and eventually VMDq it is necessary to set
5063         * the VMOLR to enable the appropriate modes.  Without this workaround
5064         * we will have issues with VLAN tag stripping not being done for frames
5065         * that are only arriving because we are the default pool
5066         */
5067        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5068                return;
5069
5070        /* set UTA to appropriate mode */
5071        igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5072
5073        vmolr |= rd32(E1000_VMOLR(vfn)) &
5074                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5075
5076        /* enable Rx jumbo frames, restrict as needed to support build_skb */
5077        vmolr &= ~E1000_VMOLR_RLPML_MASK;
5078#if (PAGE_SIZE < 8192)
5079        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5080                vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5081        else
5082#endif
5083                vmolr |= MAX_JUMBO_FRAME_SIZE;
5084        vmolr |= E1000_VMOLR_LPE;
5085
5086        wr32(E1000_VMOLR(vfn), vmolr);
5087
5088        igb_restore_vf_multicasts(adapter);
5089}
5090
5091static void igb_check_wvbr(struct igb_adapter *adapter)
5092{
5093        struct e1000_hw *hw = &adapter->hw;
5094        u32 wvbr = 0;
5095
5096        switch (hw->mac.type) {
5097        case e1000_82576:
5098        case e1000_i350:
5099                wvbr = rd32(E1000_WVBR);
5100                if (!wvbr)
5101                        return;
5102                break;
5103        default:
5104                break;
5105        }
5106
5107        adapter->wvbr |= wvbr;
5108}
5109
5110#define IGB_STAGGERED_QUEUE_OFFSET 8
5111
5112static void igb_spoof_check(struct igb_adapter *adapter)
5113{
5114        int j;
5115
5116        if (!adapter->wvbr)
5117                return;
5118
5119        for (j = 0; j < adapter->vfs_allocated_count; j++) {
5120                if (adapter->wvbr & BIT(j) ||
5121                    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5122                        dev_warn(&adapter->pdev->dev,
5123                                "Spoof event(s) detected on VF %d\n", j);
5124                        adapter->wvbr &=
5125                                ~(BIT(j) |
5126                                  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5127                }
5128        }
5129}
5130
5131/* Need to wait a few seconds after link up to get diagnostic information from
5132 * the phy
5133 */
5134static void igb_update_phy_info(struct timer_list *t)
5135{
5136        struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5137        igb_get_phy_info(&adapter->hw);
5138}
5139
5140/**
5141 *  igb_has_link - check shared code for link and determine up/down
5142 *  @adapter: pointer to driver private info
5143 **/
5144bool igb_has_link(struct igb_adapter *adapter)
5145{
5146        struct e1000_hw *hw = &adapter->hw;
5147        bool link_active = false;
5148
5149        /* get_link_status is set on LSC (link status) interrupt or
5150         * rx sequence error interrupt.  get_link_status will stay
5151         * false until the e1000_check_for_link establishes link
5152         * for copper adapters ONLY
5153         */
5154        switch (hw->phy.media_type) {
5155        case e1000_media_type_copper:
5156                if (!hw->mac.get_link_status)
5157                        return true;
5158                /* fall through */
5159        case e1000_media_type_internal_serdes:
5160                hw->mac.ops.check_for_link(hw);
5161                link_active = !hw->mac.get_link_status;
5162                break;
5163        default:
5164        case e1000_media_type_unknown:
5165                break;
5166        }
5167
5168        if (((hw->mac.type == e1000_i210) ||
5169             (hw->mac.type == e1000_i211)) &&
5170             (hw->phy.id == I210_I_PHY_ID)) {
5171                if (!netif_carrier_ok(adapter->netdev)) {
5172                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5173                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5174                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5175                        adapter->link_check_timeout = jiffies;
5176                }
5177        }
5178
5179        return link_active;
5180}
5181
5182static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5183{
5184        bool ret = false;
5185        u32 ctrl_ext, thstat;
5186
5187        /* check for thermal sensor event on i350 copper only */
5188        if (hw->mac.type == e1000_i350) {
5189                thstat = rd32(E1000_THSTAT);
5190                ctrl_ext = rd32(E1000_CTRL_EXT);
5191
5192                if ((hw->phy.media_type == e1000_media_type_copper) &&
5193                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5194                        ret = !!(thstat & event);
5195        }
5196
5197        return ret;
5198}
5199
5200/**
5201 *  igb_check_lvmmc - check for malformed packets received
5202 *  and indicated in LVMMC register
5203 *  @adapter: pointer to adapter
5204 **/
5205static void igb_check_lvmmc(struct igb_adapter *adapter)
5206{
5207        struct e1000_hw *hw = &adapter->hw;
5208        u32 lvmmc;
5209
5210        lvmmc = rd32(E1000_LVMMC);
5211        if (lvmmc) {
5212                if (unlikely(net_ratelimit())) {
5213                        netdev_warn(adapter->netdev,
5214                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5215                                    lvmmc);
5216                }
5217        }
5218}
5219
5220/**
5221 *  igb_watchdog - Timer Call-back
5222 *  @data: pointer to adapter cast into an unsigned long
5223 **/
5224static void igb_watchdog(struct timer_list *t)
5225{
5226        struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5227        /* Do the rest outside of interrupt context */
5228        schedule_work(&adapter->watchdog_task);
5229}
5230
5231static void igb_watchdog_task(struct work_struct *work)
5232{
5233        struct igb_adapter *adapter = container_of(work,
5234                                                   struct igb_adapter,
5235                                                   watchdog_task);
5236        struct e1000_hw *hw = &adapter->hw;
5237        struct e1000_phy_info *phy = &hw->phy;
5238        struct net_device *netdev = adapter->netdev;
5239        u32 link;
5240        int i;
5241        u32 connsw;
5242        u16 phy_data, retry_count = 20;
5243
5244        link = igb_has_link(adapter);
5245
5246        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5247                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5248                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5249                else
5250                        link = false;
5251        }
5252
5253        /* Force link down if we have fiber to swap to */
5254        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5255                if (hw->phy.media_type == e1000_media_type_copper) {
5256                        connsw = rd32(E1000_CONNSW);
5257                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5258                                link = 0;
5259                }
5260        }
5261        if (link) {
5262                /* Perform a reset if the media type changed. */
5263                if (hw->dev_spec._82575.media_changed) {
5264                        hw->dev_spec._82575.media_changed = false;
5265                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
5266                        igb_reset(adapter);
5267                }
5268                /* Cancel scheduled suspend requests. */
5269                pm_runtime_resume(netdev->dev.parent);
5270
5271                if (!netif_carrier_ok(netdev)) {
5272                        u32 ctrl;
5273
5274                        hw->mac.ops.get_speed_and_duplex(hw,
5275                                                         &adapter->link_speed,
5276                                                         &adapter->link_duplex);
5277
5278                        ctrl = rd32(E1000_CTRL);
5279                        /* Links status message must follow this format */
5280                        netdev_info(netdev,
5281                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5282                               netdev->name,
5283                               adapter->link_speed,
5284                               adapter->link_duplex == FULL_DUPLEX ?
5285                               "Full" : "Half",
5286                               (ctrl & E1000_CTRL_TFCE) &&
5287                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5288                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5289                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5290
5291                        /* disable EEE if enabled */
5292                        if ((adapter->flags & IGB_FLAG_EEE) &&
5293                                (adapter->link_duplex == HALF_DUPLEX)) {
5294                                dev_info(&adapter->pdev->dev,
5295                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5296                                adapter->hw.dev_spec._82575.eee_disable = true;
5297                                adapter->flags &= ~IGB_FLAG_EEE;
5298                        }
5299
5300                        /* check if SmartSpeed worked */
5301                        igb_check_downshift(hw);
5302                        if (phy->speed_downgraded)
5303                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5304
5305                        /* check for thermal sensor event */
5306                        if (igb_thermal_sensor_event(hw,
5307                            E1000_THSTAT_LINK_THROTTLE))
5308                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5309
5310                        /* adjust timeout factor according to speed/duplex */
5311                        adapter->tx_timeout_factor = 1;
5312                        switch (adapter->link_speed) {
5313                        case SPEED_10:
5314                                adapter->tx_timeout_factor = 14;
5315                                break;
5316                        case SPEED_100:
5317                                /* maybe add some timeout factor ? */
5318                                break;
5319                        }
5320
5321                        if (adapter->link_speed != SPEED_1000)
5322                                goto no_wait;
5323
5324                        /* wait for Remote receiver status OK */
5325retry_read_status:
5326                        if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5327                                              &phy_data)) {
5328                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329                                    retry_count) {
5330                                        msleep(100);
5331                                        retry_count--;
5332                                        goto retry_read_status;
5333                                } else if (!retry_count) {
5334                                        dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5335                                }
5336                        } else {
5337                                dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5338                        }
5339no_wait:
5340                        netif_carrier_on(netdev);
5341
5342                        igb_ping_all_vfs(adapter);
5343                        igb_check_vf_rate_limit(adapter);
5344
5345                        /* link state has changed, schedule phy info update */
5346                        if (!test_bit(__IGB_DOWN, &adapter->state))
5347                                mod_timer(&adapter->phy_info_timer,
5348                                          round_jiffies(jiffies + 2 * HZ));
5349                }
5350        } else {
5351                if (netif_carrier_ok(netdev)) {
5352                        adapter->link_speed = 0;
5353                        adapter->link_duplex = 0;
5354
5355                        /* check for thermal sensor event */
5356                        if (igb_thermal_sensor_event(hw,
5357                            E1000_THSTAT_PWR_DOWN)) {
5358                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5359                        }
5360
5361                        /* Links status message must follow this format */
5362                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
5363                               netdev->name);
5364                        netif_carrier_off(netdev);
5365
5366                        igb_ping_all_vfs(adapter);
5367
5368                        /* link state has changed, schedule phy info update */
5369                        if (!test_bit(__IGB_DOWN, &adapter->state))
5370                                mod_timer(&adapter->phy_info_timer,
5371                                          round_jiffies(jiffies + 2 * HZ));
5372
5373                        /* link is down, time to check for alternate media */
5374                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5375                                igb_check_swap_media(adapter);
5376                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377                                        schedule_work(&adapter->reset_task);
5378                                        /* return immediately */
5379                                        return;
5380                                }
5381                        }
5382                        pm_schedule_suspend(netdev->dev.parent,
5383                                            MSEC_PER_SEC * 5);
5384
5385                /* also check for alternate media here */
5386                } else if (!netif_carrier_ok(netdev) &&
5387                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5388                        igb_check_swap_media(adapter);
5389                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390                                schedule_work(&adapter->reset_task);
5391                                /* return immediately */
5392                                return;
5393                        }
5394                }
5395        }
5396
5397        spin_lock(&adapter->stats64_lock);
5398        igb_update_stats(adapter);
5399        spin_unlock(&adapter->stats64_lock);
5400
5401        for (i = 0; i < adapter->num_tx_queues; i++) {
5402                struct igb_ring *tx_ring = adapter->tx_ring[i];
5403                if (!netif_carrier_ok(netdev)) {
5404                        /* We've lost link, so the controller stops DMA,
5405                         * but we've got queued Tx work that's never going
5406                         * to get done, so reset controller to flush Tx.
5407                         * (Do the reset outside of interrupt context).
5408                         */
5409                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5410                                adapter->tx_timeout_count++;
5411                                schedule_work(&adapter->reset_task);
5412                                /* return immediately since reset is imminent */
5413                                return;
5414                        }
5415                }
5416
5417                /* Force detection of hung controller every watchdog period */
5418                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5419        }
5420
5421        /* Cause software interrupt to ensure Rx ring is cleaned */
5422        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5423                u32 eics = 0;
5424
5425                for (i = 0; i < adapter->num_q_vectors; i++)
5426                        eics |= adapter->q_vector[i]->eims_value;
5427                wr32(E1000_EICS, eics);
5428        } else {
5429                wr32(E1000_ICS, E1000_ICS_RXDMT0);
5430        }
5431
5432        igb_spoof_check(adapter);
5433        igb_ptp_rx_hang(adapter);
5434        igb_ptp_tx_hang(adapter);
5435
5436        /* Check LVMMC register on i350/i354 only */
5437        if ((adapter->hw.mac.type == e1000_i350) ||
5438            (adapter->hw.mac.type == e1000_i354))
5439                igb_check_lvmmc(adapter);
5440
5441        /* Reset the timer */
5442        if (!test_bit(__IGB_DOWN, &adapter->state)) {
5443                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5444                        mod_timer(&adapter->watchdog_timer,
5445                                  round_jiffies(jiffies +  HZ));
5446                else
5447                        mod_timer(&adapter->watchdog_timer,
5448                                  round_jiffies(jiffies + 2 * HZ));
5449        }
5450}
5451
5452enum latency_range {
5453        lowest_latency = 0,
5454        low_latency = 1,
5455        bulk_latency = 2,
5456        latency_invalid = 255
5457};
5458
5459/**
5460 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5461 *  @q_vector: pointer to q_vector
5462 *
5463 *  Stores a new ITR value based on strictly on packet size.  This
5464 *  algorithm is less sophisticated than that used in igb_update_itr,
5465 *  due to the difficulty of synchronizing statistics across multiple
5466 *  receive rings.  The divisors and thresholds used by this function
5467 *  were determined based on theoretical maximum wire speed and testing
5468 *  data, in order to minimize response time while increasing bulk
5469 *  throughput.
5470 *  This functionality is controlled by ethtool's coalescing settings.
5471 *  NOTE:  This function is called only when operating in a multiqueue
5472 *         receive environment.
5473 **/
5474static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5475{
5476        int new_val = q_vector->itr_val;
5477        int avg_wire_size = 0;
5478        struct igb_adapter *adapter = q_vector->adapter;
5479        unsigned int packets;
5480
5481        /* For non-gigabit speeds, just fix the interrupt rate at 4000
5482         * ints/sec - ITR timer value of 120 ticks.
5483         */
5484        if (adapter->link_speed != SPEED_1000) {
5485                new_val = IGB_4K_ITR;
5486                goto set_itr_val;
5487        }
5488
5489        packets = q_vector->rx.total_packets;
5490        if (packets)
5491                avg_wire_size = q_vector->rx.total_bytes / packets;
5492
5493        packets = q_vector->tx.total_packets;
5494        if (packets)
5495                avg_wire_size = max_t(u32, avg_wire_size,
5496                                      q_vector->tx.total_bytes / packets);
5497
5498        /* if avg_wire_size isn't set no work was done */
5499        if (!avg_wire_size)
5500                goto clear_counts;
5501
5502        /* Add 24 bytes to size to account for CRC, preamble, and gap */
5503        avg_wire_size += 24;
5504
5505        /* Don't starve jumbo frames */
5506        avg_wire_size = min(avg_wire_size, 3000);
5507
5508        /* Give a little boost to mid-size frames */
5509        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5510                new_val = avg_wire_size / 3;
5511        else
5512                new_val = avg_wire_size / 2;
5513
5514        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5515        if (new_val < IGB_20K_ITR &&
5516            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5517             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5518                new_val = IGB_20K_ITR;
5519
5520set_itr_val:
5521        if (new_val != q_vector->itr_val) {
5522                q_vector->itr_val = new_val;
5523                q_vector->set_itr = 1;
5524        }
5525clear_counts:
5526        q_vector->rx.total_bytes = 0;
5527        q_vector->rx.total_packets = 0;
5528        q_vector->tx.total_bytes = 0;
5529        q_vector->tx.total_packets = 0;
5530}
5531
5532/**
5533 *  igb_update_itr - update the dynamic ITR value based on statistics
5534 *  @q_vector: pointer to q_vector
5535 *  @ring_container: ring info to update the itr for
5536 *
5537 *  Stores a new ITR value based on packets and byte
5538 *  counts during the last interrupt.  The advantage of per interrupt
5539 *  computation is faster updates and more accurate ITR for the current
5540 *  traffic pattern.  Constants in this function were computed
5541 *  based on theoretical maximum wire speed and thresholds were set based
5542 *  on testing data as well as attempting to minimize response time
5543 *  while increasing bulk throughput.
5544 *  This functionality is controlled by ethtool's coalescing settings.
5545 *  NOTE:  These calculations are only valid when operating in a single-
5546 *         queue environment.
5547 **/
5548static void igb_update_itr(struct igb_q_vector *q_vector,
5549                           struct igb_ring_container *ring_container)
5550{
5551        unsigned int packets = ring_container->total_packets;
5552        unsigned int bytes = ring_container->total_bytes;
5553        u8 itrval = ring_container->itr;
5554
5555        /* no packets, exit with status unchanged */
5556        if (packets == 0)
5557                return;
5558
5559        switch (itrval) {
5560        case lowest_latency:
5561                /* handle TSO and jumbo frames */
5562                if (bytes/packets > 8000)
5563                        itrval = bulk_latency;
5564                else if ((packets < 5) && (bytes > 512))
5565                        itrval = low_latency;
5566                break;
5567        case low_latency:  /* 50 usec aka 20000 ints/s */
5568                if (bytes > 10000) {
5569                        /* this if handles the TSO accounting */
5570                        if (bytes/packets > 8000)
5571                                itrval = bulk_latency;
5572                        else if ((packets < 10) || ((bytes/packets) > 1200))
5573                                itrval = bulk_latency;
5574                        else if ((packets > 35))
5575                                itrval = lowest_latency;
5576                } else if (bytes/packets > 2000) {
5577                        itrval = bulk_latency;
5578                } else if (packets <= 2 && bytes < 512) {
5579                        itrval = lowest_latency;
5580                }
5581                break;
5582        case bulk_latency: /* 250 usec aka 4000 ints/s */
5583                if (bytes > 25000) {
5584                        if (packets > 35)
5585                                itrval = low_latency;
5586                } else if (bytes < 1500) {
5587                        itrval = low_latency;
5588                }
5589                break;
5590        }
5591
5592        /* clear work counters since we have the values we need */
5593        ring_container->total_bytes = 0;
5594        ring_container->total_packets = 0;
5595
5596        /* write updated itr to ring container */
5597        ring_container->itr = itrval;
5598}
5599
5600static void igb_set_itr(struct igb_q_vector *q_vector)
5601{
5602        struct igb_adapter *adapter = q_vector->adapter;
5603        u32 new_itr = q_vector->itr_val;
5604        u8 current_itr = 0;
5605
5606        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5607        if (adapter->link_speed != SPEED_1000) {
5608                current_itr = 0;
5609                new_itr = IGB_4K_ITR;
5610                goto set_itr_now;
5611        }
5612
5613        igb_update_itr(q_vector, &q_vector->tx);
5614        igb_update_itr(q_vector, &q_vector->rx);
5615
5616        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5617
5618        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5619        if (current_itr == lowest_latency &&
5620            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5621             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5622                current_itr = low_latency;
5623
5624        switch (current_itr) {
5625        /* counts and packets in update_itr are dependent on these numbers */
5626        case lowest_latency:
5627                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5628                break;
5629        case low_latency:
5630                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5631                break;
5632        case bulk_latency:
5633                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5634                break;
5635        default:
5636                break;
5637        }
5638
5639set_itr_now:
5640        if (new_itr != q_vector->itr_val) {
5641                /* this attempts to bias the interrupt rate towards Bulk
5642                 * by adding intermediate steps when interrupt rate is
5643                 * increasing
5644                 */
5645                new_itr = new_itr > q_vector->itr_val ?
5646                          max((new_itr * q_vector->itr_val) /
5647                          (new_itr + (q_vector->itr_val >> 2)),
5648                          new_itr) : new_itr;
5649                /* Don't write the value here; it resets the adapter's
5650                 * internal timer, and causes us to delay far longer than
5651                 * we should between interrupts.  Instead, we write the ITR
5652                 * value at the beginning of the next interrupt so the timing
5653                 * ends up being correct.
5654                 */
5655                q_vector->itr_val = new_itr;
5656                q_vector->set_itr = 1;
5657        }
5658}
5659
5660static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5661                            struct igb_tx_buffer *first,
5662                            u32 vlan_macip_lens, u32 type_tucmd,
5663                            u32 mss_l4len_idx)
5664{
5665        struct e1000_adv_tx_context_desc *context_desc;
5666        u16 i = tx_ring->next_to_use;
5667        struct timespec64 ts;
5668
5669        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5670
5671        i++;
5672        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5673
5674        /* set bits to identify this as an advanced context descriptor */
5675        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5676
5677        /* For 82575, context index must be unique per ring. */
5678        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5679                mss_l4len_idx |= tx_ring->reg_idx << 4;
5680
5681        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5682        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5683        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5684
5685        /* We assume there is always a valid tx time available. Invalid times
5686         * should have been handled by the upper layers.
5687         */
5688        if (tx_ring->launchtime_enable) {
5689                ts = ns_to_timespec64(first->skb->tstamp);
5690                context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5691        } else {
5692                context_desc->seqnum_seed = 0;
5693        }
5694}
5695
5696static int igb_tso(struct igb_ring *tx_ring,
5697                   struct igb_tx_buffer *first,
5698                   u8 *hdr_len)
5699{
5700        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5701        struct sk_buff *skb = first->skb;
5702        union {
5703                struct iphdr *v4;
5704                struct ipv6hdr *v6;
5705                unsigned char *hdr;
5706        } ip;
5707        union {
5708                struct tcphdr *tcp;
5709                unsigned char *hdr;
5710        } l4;
5711        u32 paylen, l4_offset;
5712        int err;
5713
5714        if (skb->ip_summed != CHECKSUM_PARTIAL)
5715                return 0;
5716
5717        if (!skb_is_gso(skb))
5718                return 0;
5719
5720        err = skb_cow_head(skb, 0);
5721        if (err < 0)
5722                return err;
5723
5724        ip.hdr = skb_network_header(skb);
5725        l4.hdr = skb_checksum_start(skb);
5726
5727        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5728        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5729
5730        /* initialize outer IP header fields */
5731        if (ip.v4->version == 4) {
5732                unsigned char *csum_start = skb_checksum_start(skb);
5733                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5734
5735                /* IP header will have to cancel out any data that
5736                 * is not a part of the outer IP header
5737                 */
5738                ip.v4->check = csum_fold(csum_partial(trans_start,
5739                                                      csum_start - trans_start,
5740                                                      0));
5741                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5742
5743                ip.v4->tot_len = 0;
5744                first->tx_flags |= IGB_TX_FLAGS_TSO |
5745                                   IGB_TX_FLAGS_CSUM |
5746                                   IGB_TX_FLAGS_IPV4;
5747        } else {
5748                ip.v6->payload_len = 0;
5749                first->tx_flags |= IGB_TX_FLAGS_TSO |
5750                                   IGB_TX_FLAGS_CSUM;
5751        }
5752
5753        /* determine offset of inner transport header */
5754        l4_offset = l4.hdr - skb->data;
5755
5756        /* compute length of segmentation header */
5757        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5758
5759        /* remove payload length from inner checksum */
5760        paylen = skb->len - l4_offset;
5761        csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5762
5763        /* update gso size and bytecount with header size */
5764        first->gso_segs = skb_shinfo(skb)->gso_segs;
5765        first->bytecount += (first->gso_segs - 1) * *hdr_len;
5766
5767        /* MSS L4LEN IDX */
5768        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5769        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5770
5771        /* VLAN MACLEN IPLEN */
5772        vlan_macip_lens = l4.hdr - ip.hdr;
5773        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5774        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5775
5776        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5777                        type_tucmd, mss_l4len_idx);
5778
5779        return 1;
5780}
5781
5782static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5783{
5784        unsigned int offset = 0;
5785
5786        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5787
5788        return offset == skb_checksum_start_offset(skb);
5789}
5790
5791static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5792{
5793        struct sk_buff *skb = first->skb;
5794        u32 vlan_macip_lens = 0;
5795        u32 type_tucmd = 0;
5796
5797        if (skb->ip_summed != CHECKSUM_PARTIAL) {
5798csum_failed:
5799                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5800                    !tx_ring->launchtime_enable)
5801                        return;
5802                goto no_csum;
5803        }
5804
5805        switch (skb->csum_offset) {
5806        case offsetof(struct tcphdr, check):
5807                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5808                /* fall through */
5809        case offsetof(struct udphdr, check):
5810                break;
5811        case offsetof(struct sctphdr, checksum):
5812                /* validate that this is actually an SCTP request */
5813                if (((first->protocol == htons(ETH_P_IP)) &&
5814                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5815                    ((first->protocol == htons(ETH_P_IPV6)) &&
5816                     igb_ipv6_csum_is_sctp(skb))) {
5817                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5818                        break;
5819                }
5820                /* fall through */
5821        default:
5822                skb_checksum_help(skb);
5823                goto csum_failed;
5824        }
5825
5826        /* update TX checksum flag */
5827        first->tx_flags |= IGB_TX_FLAGS_CSUM;
5828        vlan_macip_lens = skb_checksum_start_offset(skb) -
5829                          skb_network_offset(skb);
5830no_csum:
5831        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5832        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5833
5834        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5835}
5836
5837#define IGB_SET_FLAG(_input, _flag, _result) \
5838        ((_flag <= _result) ? \
5839         ((u32)(_input & _flag) * (_result / _flag)) : \
5840         ((u32)(_input & _flag) / (_flag / _result)))
5841
5842static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5843{
5844        /* set type for advanced descriptor with frame checksum insertion */
5845        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5846                       E1000_ADVTXD_DCMD_DEXT |
5847                       E1000_ADVTXD_DCMD_IFCS;
5848
5849        /* set HW vlan bit if vlan is present */
5850        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5851                                 (E1000_ADVTXD_DCMD_VLE));
5852
5853        /* set segmentation bits for TSO */
5854        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5855                                 (E1000_ADVTXD_DCMD_TSE));
5856
5857        /* set timestamp bit if present */
5858        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5859                                 (E1000_ADVTXD_MAC_TSTAMP));
5860
5861        /* insert frame checksum */
5862        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5863
5864        return cmd_type;
5865}
5866
5867static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5868                                 union e1000_adv_tx_desc *tx_desc,
5869                                 u32 tx_flags, unsigned int paylen)
5870{
5871        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5872
5873        /* 82575 requires a unique index per ring */
5874        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5875                olinfo_status |= tx_ring->reg_idx << 4;
5876
5877        /* insert L4 checksum */
5878        olinfo_status |= IGB_SET_FLAG(tx_flags,
5879                                      IGB_TX_FLAGS_CSUM,
5880                                      (E1000_TXD_POPTS_TXSM << 8));
5881
5882        /* insert IPv4 checksum */
5883        olinfo_status |= IGB_SET_FLAG(tx_flags,
5884                                      IGB_TX_FLAGS_IPV4,
5885                                      (E1000_TXD_POPTS_IXSM << 8));
5886
5887        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5888}
5889
5890static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5891{
5892        struct net_device *netdev = tx_ring->netdev;
5893
5894        netif_stop_subqueue(netdev, tx_ring->queue_index);
5895
5896        /* Herbert's original patch had:
5897         *  smp_mb__after_netif_stop_queue();
5898         * but since that doesn't exist yet, just open code it.
5899         */
5900        smp_mb();
5901
5902        /* We need to check again in a case another CPU has just
5903         * made room available.
5904         */
5905        if (igb_desc_unused(tx_ring) < size)
5906                return -EBUSY;
5907
5908        /* A reprieve! */
5909        netif_wake_subqueue(netdev, tx_ring->queue_index);
5910
5911        u64_stats_update_begin(&tx_ring->tx_syncp2);
5912        tx_ring->tx_stats.restart_queue2++;
5913        u64_stats_update_end(&tx_ring->tx_syncp2);
5914
5915        return 0;
5916}
5917
5918static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5919{
5920        if (igb_desc_unused(tx_ring) >= size)
5921                return 0;
5922        return __igb_maybe_stop_tx(tx_ring, size);
5923}
5924
5925static int igb_tx_map(struct igb_ring *tx_ring,
5926                      struct igb_tx_buffer *first,
5927                      const u8 hdr_len)
5928{
5929        struct sk_buff *skb = first->skb;
5930        struct igb_tx_buffer *tx_buffer;
5931        union e1000_adv_tx_desc *tx_desc;
5932        struct skb_frag_struct *frag;
5933        dma_addr_t dma;
5934        unsigned int data_len, size;
5935        u32 tx_flags = first->tx_flags;
5936        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5937        u16 i = tx_ring->next_to_use;
5938
5939        tx_desc = IGB_TX_DESC(tx_ring, i);
5940
5941        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5942
5943        size = skb_headlen(skb);
5944        data_len = skb->data_len;
5945
5946        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5947
5948        tx_buffer = first;
5949
5950        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5951                if (dma_mapping_error(tx_ring->dev, dma))
5952                        goto dma_error;
5953
5954                /* record length, and DMA address */
5955                dma_unmap_len_set(tx_buffer, len, size);
5956                dma_unmap_addr_set(tx_buffer, dma, dma);
5957
5958                tx_desc->read.buffer_addr = cpu_to_le64(dma);
5959
5960                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5961                        tx_desc->read.cmd_type_len =
5962                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5963
5964                        i++;
5965                        tx_desc++;
5966                        if (i == tx_ring->count) {
5967                                tx_desc = IGB_TX_DESC(tx_ring, 0);
5968                                i = 0;
5969                        }
5970                        tx_desc->read.olinfo_status = 0;
5971
5972                        dma += IGB_MAX_DATA_PER_TXD;
5973                        size -= IGB_MAX_DATA_PER_TXD;
5974
5975                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
5976                }
5977
5978                if (likely(!data_len))
5979                        break;
5980
5981                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5982
5983                i++;
5984                tx_desc++;
5985                if (i == tx_ring->count) {
5986                        tx_desc = IGB_TX_DESC(tx_ring, 0);
5987                        i = 0;
5988                }
5989                tx_desc->read.olinfo_status = 0;
5990
5991                size = skb_frag_size(frag);
5992                data_len -= size;
5993
5994                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5995                                       size, DMA_TO_DEVICE);
5996
5997                tx_buffer = &tx_ring->tx_buffer_info[i];
5998        }
5999
6000        /* write last descriptor with RS and EOP bits */
6001        cmd_type |= size | IGB_TXD_DCMD;
6002        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6003
6004        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6005
6006        /* set the timestamp */
6007        first->time_stamp = jiffies;
6008
6009        skb_tx_timestamp(skb);
6010
6011        /* Force memory writes to complete before letting h/w know there
6012         * are new descriptors to fetch.  (Only applicable for weak-ordered
6013         * memory model archs, such as IA-64).
6014         *
6015         * We also need this memory barrier to make certain all of the
6016         * status bits have been updated before next_to_watch is written.
6017         */
6018        dma_wmb();
6019
6020        /* set next_to_watch value indicating a packet is present */
6021        first->next_to_watch = tx_desc;
6022
6023        i++;
6024        if (i == tx_ring->count)
6025                i = 0;
6026
6027        tx_ring->next_to_use = i;
6028
6029        /* Make sure there is space in the ring for the next send. */
6030        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6031
6032        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6033                writel(i, tx_ring->tail);
6034        }
6035        return 0;
6036
6037dma_error:
6038        dev_err(tx_ring->dev, "TX DMA map failed\n");
6039        tx_buffer = &tx_ring->tx_buffer_info[i];
6040
6041        /* clear dma mappings for failed tx_buffer_info map */
6042        while (tx_buffer != first) {
6043                if (dma_unmap_len(tx_buffer, len))
6044                        dma_unmap_page(tx_ring->dev,
6045                                       dma_unmap_addr(tx_buffer, dma),
6046                                       dma_unmap_len(tx_buffer, len),
6047                                       DMA_TO_DEVICE);
6048                dma_unmap_len_set(tx_buffer, len, 0);
6049
6050                if (i-- == 0)
6051                        i += tx_ring->count;
6052                tx_buffer = &tx_ring->tx_buffer_info[i];
6053        }
6054
6055        if (dma_unmap_len(tx_buffer, len))
6056                dma_unmap_single(tx_ring->dev,
6057                                 dma_unmap_addr(tx_buffer, dma),
6058                                 dma_unmap_len(tx_buffer, len),
6059                                 DMA_TO_DEVICE);
6060        dma_unmap_len_set(tx_buffer, len, 0);
6061
6062        dev_kfree_skb_any(tx_buffer->skb);
6063        tx_buffer->skb = NULL;
6064
6065        tx_ring->next_to_use = i;
6066
6067        return -1;
6068}
6069
6070netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6071                                struct igb_ring *tx_ring)
6072{
6073        struct igb_tx_buffer *first;
6074        int tso;
6075        u32 tx_flags = 0;
6076        unsigned short f;
6077        u16 count = TXD_USE_COUNT(skb_headlen(skb));
6078        __be16 protocol = vlan_get_protocol(skb);
6079        u8 hdr_len = 0;
6080
6081        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6082         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6083         *       + 2 desc gap to keep tail from touching head,
6084         *       + 1 desc for context descriptor,
6085         * otherwise try next time
6086         */
6087        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6088                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6089
6090        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6091                /* this is a hard error */
6092                return NETDEV_TX_BUSY;
6093        }
6094
6095        /* record the location of the first descriptor for this packet */
6096        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6097        first->skb = skb;
6098        first->bytecount = skb->len;
6099        first->gso_segs = 1;
6100
6101        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6102                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6103
6104                if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6105                    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6106                                           &adapter->state)) {
6107                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6108                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
6109
6110                        adapter->ptp_tx_skb = skb_get(skb);
6111                        adapter->ptp_tx_start = jiffies;
6112                        if (adapter->hw.mac.type == e1000_82576)
6113                                schedule_work(&adapter->ptp_tx_work);
6114                } else {
6115                        adapter->tx_hwtstamp_skipped++;
6116                }
6117        }
6118
6119        if (skb_vlan_tag_present(skb)) {
6120                tx_flags |= IGB_TX_FLAGS_VLAN;
6121                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6122        }
6123
6124        /* record initial flags and protocol */
6125        first->tx_flags = tx_flags;
6126        first->protocol = protocol;
6127
6128        tso = igb_tso(tx_ring, first, &hdr_len);
6129        if (tso < 0)
6130                goto out_drop;
6131        else if (!tso)
6132                igb_tx_csum(tx_ring, first);
6133
6134        if (igb_tx_map(tx_ring, first, hdr_len))
6135                goto cleanup_tx_tstamp;
6136
6137        return NETDEV_TX_OK;
6138
6139out_drop:
6140        dev_kfree_skb_any(first->skb);
6141        first->skb = NULL;
6142cleanup_tx_tstamp:
6143        if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6144                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6145
6146                dev_kfree_skb_any(adapter->ptp_tx_skb);
6147                adapter->ptp_tx_skb = NULL;
6148                if (adapter->hw.mac.type == e1000_82576)
6149                        cancel_work_sync(&adapter->ptp_tx_work);
6150                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6151        }
6152
6153        return NETDEV_TX_OK;
6154}
6155
6156static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6157                                                    struct sk_buff *skb)
6158{
6159        unsigned int r_idx = skb->queue_mapping;
6160
6161        if (r_idx >= adapter->num_tx_queues)
6162                r_idx = r_idx % adapter->num_tx_queues;
6163
6164        return adapter->tx_ring[r_idx];
6165}
6166
6167static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6168                                  struct net_device *netdev)
6169{
6170        struct igb_adapter *adapter = netdev_priv(netdev);
6171
6172        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6173         * in order to meet this minimum size requirement.
6174         */
6175        if (skb_put_padto(skb, 17))
6176                return NETDEV_TX_OK;
6177
6178        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6179}
6180
6181/**
6182 *  igb_tx_timeout - Respond to a Tx Hang
6183 *  @netdev: network interface device structure
6184 **/
6185static void igb_tx_timeout(struct net_device *netdev)
6186{
6187        struct igb_adapter *adapter = netdev_priv(netdev);
6188        struct e1000_hw *hw = &adapter->hw;
6189
6190        /* Do the reset outside of interrupt context */
6191        adapter->tx_timeout_count++;
6192
6193        if (hw->mac.type >= e1000_82580)
6194                hw->dev_spec._82575.global_device_reset = true;
6195
6196        schedule_work(&adapter->reset_task);
6197        wr32(E1000_EICS,
6198             (adapter->eims_enable_mask & ~adapter->eims_other));
6199}
6200
6201static void igb_reset_task(struct work_struct *work)
6202{
6203        struct igb_adapter *adapter;
6204        adapter = container_of(work, struct igb_adapter, reset_task);
6205
6206        igb_dump(adapter);
6207        netdev_err(adapter->netdev, "Reset adapter\n");
6208        igb_reinit_locked(adapter);
6209}
6210
6211/**
6212 *  igb_get_stats64 - Get System Network Statistics
6213 *  @netdev: network interface device structure
6214 *  @stats: rtnl_link_stats64 pointer
6215 **/
6216static void igb_get_stats64(struct net_device *netdev,
6217                            struct rtnl_link_stats64 *stats)
6218{
6219        struct igb_adapter *adapter = netdev_priv(netdev);
6220
6221        spin_lock(&adapter->stats64_lock);
6222        igb_update_stats(adapter);
6223        memcpy(stats, &adapter->stats64, sizeof(*stats));
6224        spin_unlock(&adapter->stats64_lock);
6225}
6226
6227/**
6228 *  igb_change_mtu - Change the Maximum Transfer Unit
6229 *  @netdev: network interface device structure
6230 *  @new_mtu: new value for maximum frame size
6231 *
6232 *  Returns 0 on success, negative on failure
6233 **/
6234static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6235{
6236        struct igb_adapter *adapter = netdev_priv(netdev);
6237        struct pci_dev *pdev = adapter->pdev;
6238        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6239
6240        /* adjust max frame to be at least the size of a standard frame */
6241        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6242                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6243
6244        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6245                usleep_range(1000, 2000);
6246
6247        /* igb_down has a dependency on max_frame_size */
6248        adapter->max_frame_size = max_frame;
6249
6250        if (netif_running(netdev))
6251                igb_down(adapter);
6252
6253        dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6254                 netdev->mtu, new_mtu);
6255        netdev->mtu = new_mtu;
6256
6257        if (netif_running(netdev))
6258                igb_up(adapter);
6259        else
6260                igb_reset(adapter);
6261
6262        clear_bit(__IGB_RESETTING, &adapter->state);
6263
6264        return 0;
6265}
6266
6267/**
6268 *  igb_update_stats - Update the board statistics counters
6269 *  @adapter: board private structure
6270 **/
6271void igb_update_stats(struct igb_adapter *adapter)
6272{
6273        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6274        struct e1000_hw *hw = &adapter->hw;
6275        struct pci_dev *pdev = adapter->pdev;
6276        u32 reg, mpc;
6277        int i;
6278        u64 bytes, packets;
6279        unsigned int start;
6280        u64 _bytes, _packets;
6281
6282        /* Prevent stats update while adapter is being reset, or if the pci
6283         * connection is down.
6284         */
6285        if (adapter->link_speed == 0)
6286                return;
6287        if (pci_channel_offline(pdev))
6288                return;
6289
6290        bytes = 0;
6291        packets = 0;
6292
6293        rcu_read_lock();
6294        for (i = 0; i < adapter->num_rx_queues; i++) {
6295                struct igb_ring *ring = adapter->rx_ring[i];
6296                u32 rqdpc = rd32(E1000_RQDPC(i));
6297                if (hw->mac.type >= e1000_i210)
6298                        wr32(E1000_RQDPC(i), 0);
6299
6300                if (rqdpc) {
6301                        ring->rx_stats.drops += rqdpc;
6302                        net_stats->rx_fifo_errors += rqdpc;
6303                }
6304
6305                do {
6306                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6307                        _bytes = ring->rx_stats.bytes;
6308                        _packets = ring->rx_stats.packets;
6309                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6310                bytes += _bytes;
6311                packets += _packets;
6312        }
6313
6314        net_stats->rx_bytes = bytes;
6315        net_stats->rx_packets = packets;
6316
6317        bytes = 0;
6318        packets = 0;
6319        for (i = 0; i < adapter->num_tx_queues; i++) {
6320                struct igb_ring *ring = adapter->tx_ring[i];
6321                do {
6322                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6323                        _bytes = ring->tx_stats.bytes;
6324                        _packets = ring->tx_stats.packets;
6325                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6326                bytes += _bytes;
6327                packets += _packets;
6328        }
6329        net_stats->tx_bytes = bytes;
6330        net_stats->tx_packets = packets;
6331        rcu_read_unlock();
6332
6333        /* read stats registers */
6334        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6335        adapter->stats.gprc += rd32(E1000_GPRC);
6336        adapter->stats.gorc += rd32(E1000_GORCL);
6337        rd32(E1000_GORCH); /* clear GORCL */
6338        adapter->stats.bprc += rd32(E1000_BPRC);
6339        adapter->stats.mprc += rd32(E1000_MPRC);
6340        adapter->stats.roc += rd32(E1000_ROC);
6341
6342        adapter->stats.prc64 += rd32(E1000_PRC64);
6343        adapter->stats.prc127 += rd32(E1000_PRC127);
6344        adapter->stats.prc255 += rd32(E1000_PRC255);
6345        adapter->stats.prc511 += rd32(E1000_PRC511);
6346        adapter->stats.prc1023 += rd32(E1000_PRC1023);
6347        adapter->stats.prc1522 += rd32(E1000_PRC1522);
6348        adapter->stats.symerrs += rd32(E1000_SYMERRS);
6349        adapter->stats.sec += rd32(E1000_SEC);
6350
6351        mpc = rd32(E1000_MPC);
6352        adapter->stats.mpc += mpc;
6353        net_stats->rx_fifo_errors += mpc;
6354        adapter->stats.scc += rd32(E1000_SCC);
6355        adapter->stats.ecol += rd32(E1000_ECOL);
6356        adapter->stats.mcc += rd32(E1000_MCC);
6357        adapter->stats.latecol += rd32(E1000_LATECOL);
6358        adapter->stats.dc += rd32(E1000_DC);
6359        adapter->stats.rlec += rd32(E1000_RLEC);
6360        adapter->stats.xonrxc += rd32(E1000_XONRXC);
6361        adapter->stats.xontxc += rd32(E1000_XONTXC);
6362        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6363        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6364        adapter->stats.fcruc += rd32(E1000_FCRUC);
6365        adapter->stats.gptc += rd32(E1000_GPTC);
6366        adapter->stats.gotc += rd32(E1000_GOTCL);
6367        rd32(E1000_GOTCH); /* clear GOTCL */
6368        adapter->stats.rnbc += rd32(E1000_RNBC);
6369        adapter->stats.ruc += rd32(E1000_RUC);
6370        adapter->stats.rfc += rd32(E1000_RFC);
6371        adapter->stats.rjc += rd32(E1000_RJC);
6372        adapter->stats.tor += rd32(E1000_TORH);
6373        adapter->stats.tot += rd32(E1000_TOTH);
6374        adapter->stats.tpr += rd32(E1000_TPR);
6375
6376        adapter->stats.ptc64 += rd32(E1000_PTC64);
6377        adapter->stats.ptc127 += rd32(E1000_PTC127);
6378        adapter->stats.ptc255 += rd32(E1000_PTC255);
6379        adapter->stats.ptc511 += rd32(E1000_PTC511);
6380        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6381        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6382
6383        adapter->stats.mptc += rd32(E1000_MPTC);
6384        adapter->stats.bptc += rd32(E1000_BPTC);
6385
6386        adapter->stats.tpt += rd32(E1000_TPT);
6387        adapter->stats.colc += rd32(E1000_COLC);
6388
6389        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6390        /* read internal phy specific stats */
6391        reg = rd32(E1000_CTRL_EXT);
6392        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6393                adapter->stats.rxerrc += rd32(E1000_RXERRC);
6394
6395                /* this stat has invalid values on i210/i211 */
6396                if ((hw->mac.type != e1000_i210) &&
6397                    (hw->mac.type != e1000_i211))
6398                        adapter->stats.tncrs += rd32(E1000_TNCRS);
6399        }
6400
6401        adapter->stats.tsctc += rd32(E1000_TSCTC);
6402        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6403
6404        adapter->stats.iac += rd32(E1000_IAC);
6405        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6406        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6407        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6408        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6409        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6410        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6411        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6412        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6413
6414        /* Fill out the OS statistics structure */
6415        net_stats->multicast = adapter->stats.mprc;
6416        net_stats->collisions = adapter->stats.colc;
6417
6418        /* Rx Errors */
6419
6420        /* RLEC on some newer hardware can be incorrect so build
6421         * our own version based on RUC and ROC
6422         */
6423        net_stats->rx_errors = adapter->stats.rxerrc +
6424                adapter->stats.crcerrs + adapter->stats.algnerrc +
6425                adapter->stats.ruc + adapter->stats.roc +
6426                adapter->stats.cexterr;
6427        net_stats->rx_length_errors = adapter->stats.ruc +
6428                                      adapter->stats.roc;
6429        net_stats->rx_crc_errors = adapter->stats.crcerrs;
6430        net_stats->rx_frame_errors = adapter->stats.algnerrc;
6431        net_stats->rx_missed_errors = adapter->stats.mpc;
6432
6433        /* Tx Errors */
6434        net_stats->tx_errors = adapter->stats.ecol +
6435                               adapter->stats.latecol;
6436        net_stats->tx_aborted_errors = adapter->stats.ecol;
6437        net_stats->tx_window_errors = adapter->stats.latecol;
6438        net_stats->tx_carrier_errors = adapter->stats.tncrs;
6439
6440        /* Tx Dropped needs to be maintained elsewhere */
6441
6442        /* Management Stats */
6443        adapter->stats.mgptc += rd32(E1000_MGTPTC);
6444        adapter->stats.mgprc += rd32(E1000_MGTPRC);
6445        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6446
6447        /* OS2BMC Stats */
6448        reg = rd32(E1000_MANC);
6449        if (reg & E1000_MANC_EN_BMC2OS) {
6450                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6451                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6452                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6453                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6454        }
6455}
6456
6457static void igb_tsync_interrupt(struct igb_adapter *adapter)
6458{
6459        struct e1000_hw *hw = &adapter->hw;
6460        struct ptp_clock_event event;
6461        struct timespec64 ts;
6462        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6463
6464        if (tsicr & TSINTR_SYS_WRAP) {
6465                event.type = PTP_CLOCK_PPS;
6466                if (adapter->ptp_caps.pps)
6467                        ptp_clock_event(adapter->ptp_clock, &event);
6468                ack |= TSINTR_SYS_WRAP;
6469        }
6470
6471        if (tsicr & E1000_TSICR_TXTS) {
6472                /* retrieve hardware timestamp */
6473                schedule_work(&adapter->ptp_tx_work);
6474                ack |= E1000_TSICR_TXTS;
6475        }
6476
6477        if (tsicr & TSINTR_TT0) {
6478                spin_lock(&adapter->tmreg_lock);
6479                ts = timespec64_add(adapter->perout[0].start,
6480                                    adapter->perout[0].period);
6481                /* u32 conversion of tv_sec is safe until y2106 */
6482                wr32(E1000_TRGTTIML0, ts.tv_nsec);
6483                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6484                tsauxc = rd32(E1000_TSAUXC);
6485                tsauxc |= TSAUXC_EN_TT0;
6486                wr32(E1000_TSAUXC, tsauxc);
6487                adapter->perout[0].start = ts;
6488                spin_unlock(&adapter->tmreg_lock);
6489                ack |= TSINTR_TT0;
6490        }
6491
6492        if (tsicr & TSINTR_TT1) {
6493                spin_lock(&adapter->tmreg_lock);
6494                ts = timespec64_add(adapter->perout[1].start,
6495                                    adapter->perout[1].period);
6496                wr32(E1000_TRGTTIML1, ts.tv_nsec);
6497                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6498                tsauxc = rd32(E1000_TSAUXC);
6499                tsauxc |= TSAUXC_EN_TT1;
6500                wr32(E1000_TSAUXC, tsauxc);
6501                adapter->perout[1].start = ts;
6502                spin_unlock(&adapter->tmreg_lock);
6503                ack |= TSINTR_TT1;
6504        }
6505
6506        if (tsicr & TSINTR_AUTT0) {
6507                nsec = rd32(E1000_AUXSTMPL0);
6508                sec  = rd32(E1000_AUXSTMPH0);
6509                event.type = PTP_CLOCK_EXTTS;
6510                event.index = 0;
6511                event.timestamp = sec * 1000000000ULL + nsec;
6512                ptp_clock_event(adapter->ptp_clock, &event);
6513                ack |= TSINTR_AUTT0;
6514        }
6515
6516        if (tsicr & TSINTR_AUTT1) {
6517                nsec = rd32(E1000_AUXSTMPL1);
6518                sec  = rd32(E1000_AUXSTMPH1);
6519                event.type = PTP_CLOCK_EXTTS;
6520                event.index = 1;
6521                event.timestamp = sec * 1000000000ULL + nsec;
6522                ptp_clock_event(adapter->ptp_clock, &event);
6523                ack |= TSINTR_AUTT1;
6524        }
6525
6526        /* acknowledge the interrupts */
6527        wr32(E1000_TSICR, ack);
6528}
6529
6530static irqreturn_t igb_msix_other(int irq, void *data)
6531{
6532        struct igb_adapter *adapter = data;
6533        struct e1000_hw *hw = &adapter->hw;
6534        u32 icr = rd32(E1000_ICR);
6535        /* reading ICR causes bit 31 of EICR to be cleared */
6536
6537        if (icr & E1000_ICR_DRSTA)
6538                schedule_work(&adapter->reset_task);
6539
6540        if (icr & E1000_ICR_DOUTSYNC) {
6541                /* HW is reporting DMA is out of sync */
6542                adapter->stats.doosync++;
6543                /* The DMA Out of Sync is also indication of a spoof event
6544                 * in IOV mode. Check the Wrong VM Behavior register to
6545                 * see if it is really a spoof event.
6546                 */
6547                igb_check_wvbr(adapter);
6548        }
6549
6550        /* Check for a mailbox event */
6551        if (icr & E1000_ICR_VMMB)
6552                igb_msg_task(adapter);
6553
6554        if (icr & E1000_ICR_LSC) {
6555                hw->mac.get_link_status = 1;
6556                /* guard against interrupt when we're going down */
6557                if (!test_bit(__IGB_DOWN, &adapter->state))
6558                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6559        }
6560
6561        if (icr & E1000_ICR_TS)
6562                igb_tsync_interrupt(adapter);
6563
6564        wr32(E1000_EIMS, adapter->eims_other);
6565
6566        return IRQ_HANDLED;
6567}
6568
6569static void igb_write_itr(struct igb_q_vector *q_vector)
6570{
6571        struct igb_adapter *adapter = q_vector->adapter;
6572        u32 itr_val = q_vector->itr_val & 0x7FFC;
6573
6574        if (!q_vector->set_itr)
6575                return;
6576
6577        if (!itr_val)
6578                itr_val = 0x4;
6579
6580        if (adapter->hw.mac.type == e1000_82575)
6581                itr_val |= itr_val << 16;
6582        else
6583                itr_val |= E1000_EITR_CNT_IGNR;
6584
6585        writel(itr_val, q_vector->itr_register);
6586        q_vector->set_itr = 0;
6587}
6588
6589static irqreturn_t igb_msix_ring(int irq, void *data)
6590{
6591        struct igb_q_vector *q_vector = data;
6592
6593        /* Write the ITR value calculated from the previous interrupt. */
6594        igb_write_itr(q_vector);
6595
6596        napi_schedule(&q_vector->napi);
6597
6598        return IRQ_HANDLED;
6599}
6600
6601#ifdef CONFIG_IGB_DCA
6602static void igb_update_tx_dca(struct igb_adapter *adapter,
6603                              struct igb_ring *tx_ring,
6604                              int cpu)
6605{
6606        struct e1000_hw *hw = &adapter->hw;
6607        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6608
6609        if (hw->mac.type != e1000_82575)
6610                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6611
6612        /* We can enable relaxed ordering for reads, but not writes when
6613         * DCA is enabled.  This is due to a known issue in some chipsets
6614         * which will cause the DCA tag to be cleared.
6615         */
6616        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6617                  E1000_DCA_TXCTRL_DATA_RRO_EN |
6618                  E1000_DCA_TXCTRL_DESC_DCA_EN;
6619
6620        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6621}
6622
6623static void igb_update_rx_dca(struct igb_adapter *adapter,
6624                              struct igb_ring *rx_ring,
6625                              int cpu)
6626{
6627        struct e1000_hw *hw = &adapter->hw;
6628        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6629
6630        if (hw->mac.type != e1000_82575)
6631                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6632
6633        /* We can enable relaxed ordering for reads, but not writes when
6634         * DCA is enabled.  This is due to a known issue in some chipsets
6635         * which will cause the DCA tag to be cleared.
6636         */
6637        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6638                  E1000_DCA_RXCTRL_DESC_DCA_EN;
6639
6640        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6641}
6642
6643static void igb_update_dca(struct igb_q_vector *q_vector)
6644{
6645        struct igb_adapter *adapter = q_vector->adapter;
6646        int cpu = get_cpu();
6647
6648        if (q_vector->cpu == cpu)
6649                goto out_no_update;
6650
6651        if (q_vector->tx.ring)
6652                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6653
6654        if (q_vector->rx.ring)
6655                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6656
6657        q_vector->cpu = cpu;
6658out_no_update:
6659        put_cpu();
6660}
6661
6662static void igb_setup_dca(struct igb_adapter *adapter)
6663{
6664        struct e1000_hw *hw = &adapter->hw;
6665        int i;
6666
6667        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6668                return;
6669
6670        /* Always use CB2 mode, difference is masked in the CB driver. */
6671        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6672
6673        for (i = 0; i < adapter->num_q_vectors; i++) {
6674                adapter->q_vector[i]->cpu = -1;
6675                igb_update_dca(adapter->q_vector[i]);
6676        }
6677}
6678
6679static int __igb_notify_dca(struct device *dev, void *data)
6680{
6681        struct net_device *netdev = dev_get_drvdata(dev);
6682        struct igb_adapter *adapter = netdev_priv(netdev);
6683        struct pci_dev *pdev = adapter->pdev;
6684        struct e1000_hw *hw = &adapter->hw;
6685        unsigned long event = *(unsigned long *)data;
6686
6687        switch (event) {
6688        case DCA_PROVIDER_ADD:
6689                /* if already enabled, don't do it again */
6690                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6691                        break;
6692                if (dca_add_requester(dev) == 0) {
6693                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
6694                        dev_info(&pdev->dev, "DCA enabled\n");
6695                        igb_setup_dca(adapter);
6696                        break;
6697                }
6698                /* Fall Through since DCA is disabled. */
6699        case DCA_PROVIDER_REMOVE:
6700                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6701                        /* without this a class_device is left
6702                         * hanging around in the sysfs model
6703                         */
6704                        dca_remove_requester(dev);
6705                        dev_info(&pdev->dev, "DCA disabled\n");
6706                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6707                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6708                }
6709                break;
6710        }
6711
6712        return 0;
6713}
6714
6715static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6716                          void *p)
6717{
6718        int ret_val;
6719
6720        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6721                                         __igb_notify_dca);
6722
6723        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6724}
6725#endif /* CONFIG_IGB_DCA */
6726
6727#ifdef CONFIG_PCI_IOV
6728static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6729{
6730        unsigned char mac_addr[ETH_ALEN];
6731
6732        eth_zero_addr(mac_addr);
6733        igb_set_vf_mac(adapter, vf, mac_addr);
6734
6735        /* By default spoof check is enabled for all VFs */
6736        adapter->vf_data[vf].spoofchk_enabled = true;
6737
6738        /* By default VFs are not trusted */
6739        adapter->vf_data[vf].trusted = false;
6740
6741        return 0;
6742}
6743
6744#endif
6745static void igb_ping_all_vfs(struct igb_adapter *adapter)
6746{
6747        struct e1000_hw *hw = &adapter->hw;
6748        u32 ping;
6749        int i;
6750
6751        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6752                ping = E1000_PF_CONTROL_MSG;
6753                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6754                        ping |= E1000_VT_MSGTYPE_CTS;
6755                igb_write_mbx(hw, &ping, 1, i);
6756        }
6757}
6758
6759static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6760{
6761        struct e1000_hw *hw = &adapter->hw;
6762        u32 vmolr = rd32(E1000_VMOLR(vf));
6763        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6764
6765        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6766                            IGB_VF_FLAG_MULTI_PROMISC);
6767        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6768
6769        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6770                vmolr |= E1000_VMOLR_MPME;
6771                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6772                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6773        } else {
6774                /* if we have hashes and we are clearing a multicast promisc
6775                 * flag we need to write the hashes to the MTA as this step
6776                 * was previously skipped
6777                 */
6778                if (vf_data->num_vf_mc_hashes > 30) {
6779                        vmolr |= E1000_VMOLR_MPME;
6780                } else if (vf_data->num_vf_mc_hashes) {
6781                        int j;
6782
6783                        vmolr |= E1000_VMOLR_ROMPE;
6784                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6785                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6786                }
6787        }
6788
6789        wr32(E1000_VMOLR(vf), vmolr);
6790
6791        /* there are flags left unprocessed, likely not supported */
6792        if (*msgbuf & E1000_VT_MSGINFO_MASK)
6793                return -EINVAL;
6794
6795        return 0;
6796}
6797
6798static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6799                                  u32 *msgbuf, u32 vf)
6800{
6801        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6802        u16 *hash_list = (u16 *)&msgbuf[1];
6803        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6804        int i;
6805
6806        /* salt away the number of multicast addresses assigned
6807         * to this VF for later use to restore when the PF multi cast
6808         * list changes
6809         */
6810        vf_data->num_vf_mc_hashes = n;
6811
6812        /* only up to 30 hash values supported */
6813        if (n > 30)
6814                n = 30;
6815
6816        /* store the hashes for later use */
6817        for (i = 0; i < n; i++)
6818                vf_data->vf_mc_hashes[i] = hash_list[i];
6819
6820        /* Flush and reset the mta with the new values */
6821        igb_set_rx_mode(adapter->netdev);
6822
6823        return 0;
6824}
6825
6826static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6827{
6828        struct e1000_hw *hw = &adapter->hw;
6829        struct vf_data_storage *vf_data;
6830        int i, j;
6831
6832        for (i = 0; i < adapter->vfs_allocated_count; i++) {
6833                u32 vmolr = rd32(E1000_VMOLR(i));
6834
6835                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6836
6837                vf_data = &adapter->vf_data[i];
6838
6839                if ((vf_data->num_vf_mc_hashes > 30) ||
6840                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6841                        vmolr |= E1000_VMOLR_MPME;
6842                } else if (vf_data->num_vf_mc_hashes) {
6843                        vmolr |= E1000_VMOLR_ROMPE;
6844                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6845                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6846                }
6847                wr32(E1000_VMOLR(i), vmolr);
6848        }
6849}
6850
6851static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6852{
6853        struct e1000_hw *hw = &adapter->hw;
6854        u32 pool_mask, vlvf_mask, i;
6855
6856        /* create mask for VF and other pools */
6857        pool_mask = E1000_VLVF_POOLSEL_MASK;
6858        vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6859
6860        /* drop PF from pool bits */
6861        pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6862                             adapter->vfs_allocated_count);
6863
6864        /* Find the vlan filter for this id */
6865        for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6866                u32 vlvf = rd32(E1000_VLVF(i));
6867                u32 vfta_mask, vid, vfta;
6868
6869                /* remove the vf from the pool */
6870                if (!(vlvf & vlvf_mask))
6871                        continue;
6872
6873                /* clear out bit from VLVF */
6874                vlvf ^= vlvf_mask;
6875
6876                /* if other pools are present, just remove ourselves */
6877                if (vlvf & pool_mask)
6878                        goto update_vlvfb;
6879
6880                /* if PF is present, leave VFTA */
6881                if (vlvf & E1000_VLVF_POOLSEL_MASK)
6882                        goto update_vlvf;
6883
6884                vid = vlvf & E1000_VLVF_VLANID_MASK;
6885                vfta_mask = BIT(vid % 32);
6886
6887                /* clear bit from VFTA */
6888                vfta = adapter->shadow_vfta[vid / 32];
6889                if (vfta & vfta_mask)
6890                        hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6891update_vlvf:
6892                /* clear pool selection enable */
6893                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6894                        vlvf &= E1000_VLVF_POOLSEL_MASK;
6895                else
6896                        vlvf = 0;
6897update_vlvfb:
6898                /* clear pool bits */
6899                wr32(E1000_VLVF(i), vlvf);
6900        }
6901}
6902
6903static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6904{
6905        u32 vlvf;
6906        int idx;
6907
6908        /* short cut the special case */
6909        if (vlan == 0)
6910                return 0;
6911
6912        /* Search for the VLAN id in the VLVF entries */
6913        for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6914                vlvf = rd32(E1000_VLVF(idx));
6915                if ((vlvf & VLAN_VID_MASK) == vlan)
6916                        break;
6917        }
6918
6919        return idx;
6920}
6921
6922static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6923{
6924        struct e1000_hw *hw = &adapter->hw;
6925        u32 bits, pf_id;
6926        int idx;
6927
6928        idx = igb_find_vlvf_entry(hw, vid);
6929        if (!idx)
6930                return;
6931
6932        /* See if any other pools are set for this VLAN filter
6933         * entry other than the PF.
6934         */
6935        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6936        bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6937        bits &= rd32(E1000_VLVF(idx));
6938
6939        /* Disable the filter so this falls into the default pool. */
6940        if (!bits) {
6941                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6942                        wr32(E1000_VLVF(idx), BIT(pf_id));
6943                else
6944                        wr32(E1000_VLVF(idx), 0);
6945        }
6946}
6947
6948static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6949                           bool add, u32 vf)
6950{
6951        int pf_id = adapter->vfs_allocated_count;
6952        struct e1000_hw *hw = &adapter->hw;
6953        int err;
6954
6955        /* If VLAN overlaps with one the PF is currently monitoring make
6956         * sure that we are able to allocate a VLVF entry.  This may be
6957         * redundant but it guarantees PF will maintain visibility to
6958         * the VLAN.
6959         */
6960        if (add && test_bit(vid, adapter->active_vlans)) {
6961                err = igb_vfta_set(hw, vid, pf_id, true, false);
6962                if (err)
6963                        return err;
6964        }
6965
6966        err = igb_vfta_set(hw, vid, vf, add, false);
6967
6968        if (add && !err)
6969                return err;
6970
6971        /* If we failed to add the VF VLAN or we are removing the VF VLAN
6972         * we may need to drop the PF pool bit in order to allow us to free
6973         * up the VLVF resources.
6974         */
6975        if (test_bit(vid, adapter->active_vlans) ||
6976            (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6977                igb_update_pf_vlvf(adapter, vid);
6978
6979        return err;
6980}
6981
6982static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6983{
6984        struct e1000_hw *hw = &adapter->hw;
6985
6986        if (vid)
6987                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6988        else
6989                wr32(E1000_VMVIR(vf), 0);
6990}
6991
6992static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6993                                u16 vlan, u8 qos)
6994{
6995        int err;
6996
6997        err = igb_set_vf_vlan(adapter, vlan, true, vf);
6998        if (err)
6999                return err;
7000
7001        igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7002        igb_set_vmolr(adapter, vf, !vlan);
7003
7004        /* revoke access to previous VLAN */
7005        if (vlan != adapter->vf_data[vf].pf_vlan)
7006                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7007                                false, vf);
7008
7009        adapter->vf_data[vf].pf_vlan = vlan;
7010        adapter->vf_data[vf].pf_qos = qos;
7011        igb_set_vf_vlan_strip(adapter, vf, true);
7012        dev_info(&adapter->pdev->dev,
7013                 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7014        if (test_bit(__IGB_DOWN, &adapter->state)) {
7015                dev_warn(&adapter->pdev->dev,
7016                         "The VF VLAN has been set, but the PF device is not up.\n");
7017                dev_warn(&adapter->pdev->dev,
7018                         "Bring the PF device up before attempting to use the VF device.\n");
7019        }
7020
7021        return err;
7022}
7023
7024static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7025{
7026        /* Restore tagless access via VLAN 0 */
7027        igb_set_vf_vlan(adapter, 0, true, vf);
7028
7029        igb_set_vmvir(adapter, 0, vf);
7030        igb_set_vmolr(adapter, vf, true);
7031
7032        /* Remove any PF assigned VLAN */
7033        if (adapter->vf_data[vf].pf_vlan)
7034                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7035                                false, vf);
7036
7037        adapter->vf_data[vf].pf_vlan = 0;
7038        adapter->vf_data[vf].pf_qos = 0;
7039        igb_set_vf_vlan_strip(adapter, vf, false);
7040
7041        return 0;
7042}
7043
7044static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7045                               u16 vlan, u8 qos, __be16 vlan_proto)
7046{
7047        struct igb_adapter *adapter = netdev_priv(netdev);
7048
7049        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7050                return -EINVAL;
7051
7052        if (vlan_proto != htons(ETH_P_8021Q))
7053                return -EPROTONOSUPPORT;
7054
7055        return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7056                               igb_disable_port_vlan(adapter, vf);
7057}
7058
7059static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7060{
7061        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7062        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7063        int ret;
7064
7065        if (adapter->vf_data[vf].pf_vlan)
7066                return -1;
7067
7068        /* VLAN 0 is a special case, don't allow it to be removed */
7069        if (!vid && !add)
7070                return 0;
7071
7072        ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7073        if (!ret)
7074                igb_set_vf_vlan_strip(adapter, vf, !!vid);
7075        return ret;
7076}
7077
7078static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7079{
7080        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7081
7082        /* clear flags - except flag that indicates PF has set the MAC */
7083        vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7084        vf_data->last_nack = jiffies;
7085
7086        /* reset vlans for device */
7087        igb_clear_vf_vfta(adapter, vf);
7088        igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7089        igb_set_vmvir(adapter, vf_data->pf_vlan |
7090                               (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7091        igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7092        igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7093
7094        /* reset multicast table array for vf */
7095        adapter->vf_data[vf].num_vf_mc_hashes = 0;
7096
7097        /* Flush and reset the mta with the new values */
7098        igb_set_rx_mode(adapter->netdev);
7099}
7100
7101static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7102{
7103        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7104
7105        /* clear mac address as we were hotplug removed/added */
7106        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7107                eth_zero_addr(vf_mac);
7108
7109        /* process remaining reset events */
7110        igb_vf_reset(adapter, vf);
7111}
7112
7113static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7114{
7115        struct e1000_hw *hw = &adapter->hw;
7116        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7117        u32 reg, msgbuf[3];
7118        u8 *addr = (u8 *)(&msgbuf[1]);
7119
7120        /* process all the same items cleared in a function level reset */
7121        igb_vf_reset(adapter, vf);
7122
7123        /* set vf mac address */
7124        igb_set_vf_mac(adapter, vf, vf_mac);
7125
7126        /* enable transmit and receive for vf */
7127        reg = rd32(E1000_VFTE);
7128        wr32(E1000_VFTE, reg | BIT(vf));
7129        reg = rd32(E1000_VFRE);
7130        wr32(E1000_VFRE, reg | BIT(vf));
7131
7132        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7133
7134        /* reply to reset with ack and vf mac address */
7135        if (!is_zero_ether_addr(vf_mac)) {
7136                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7137                memcpy(addr, vf_mac, ETH_ALEN);
7138        } else {
7139                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7140        }
7141        igb_write_mbx(hw, msgbuf, 3, vf);
7142}
7143
7144static void igb_flush_mac_table(struct igb_adapter *adapter)
7145{
7146        struct e1000_hw *hw = &adapter->hw;
7147        int i;
7148
7149        for (i = 0; i < hw->mac.rar_entry_count; i++) {
7150                adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7151                memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7152                adapter->mac_table[i].queue = 0;
7153                igb_rar_set_index(adapter, i);
7154        }
7155}
7156
7157static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7158{
7159        struct e1000_hw *hw = &adapter->hw;
7160        /* do not count rar entries reserved for VFs MAC addresses */
7161        int rar_entries = hw->mac.rar_entry_count -
7162                          adapter->vfs_allocated_count;
7163        int i, count = 0;
7164
7165        for (i = 0; i < rar_entries; i++) {
7166                /* do not count default entries */
7167                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7168                        continue;
7169
7170                /* do not count "in use" entries for different queues */
7171                if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7172                    (adapter->mac_table[i].queue != queue))
7173                        continue;
7174
7175                count++;
7176        }
7177
7178        return count;
7179}
7180
7181/* Set default MAC address for the PF in the first RAR entry */
7182static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7183{
7184        struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7185
7186        ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7187        mac_table->queue = adapter->vfs_allocated_count;
7188        mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7189
7190        igb_rar_set_index(adapter, 0);
7191}
7192
7193/* If the filter to be added and an already existing filter express
7194 * the same address and address type, it should be possible to only
7195 * override the other configurations, for example the queue to steer
7196 * traffic.
7197 */
7198static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7199                                      const u8 *addr, const u8 flags)
7200{
7201        if (!(entry->state & IGB_MAC_STATE_IN_USE))
7202                return true;
7203
7204        if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7205            (flags & IGB_MAC_STATE_SRC_ADDR))
7206                return false;
7207
7208        if (!ether_addr_equal(addr, entry->addr))
7209                return false;
7210
7211        return true;
7212}
7213
7214/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7215 * 'flags' is used to indicate what kind of match is made, match is by
7216 * default for the destination address, if matching by source address
7217 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7218 */
7219static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7220                                    const u8 *addr, const u8 queue,
7221                                    const u8 flags)
7222{
7223        struct e1000_hw *hw = &adapter->hw;
7224        int rar_entries = hw->mac.rar_entry_count -
7225                          adapter->vfs_allocated_count;
7226        int i;
7227
7228        if (is_zero_ether_addr(addr))
7229                return -EINVAL;
7230
7231        /* Search for the first empty entry in the MAC table.
7232         * Do not touch entries at the end of the table reserved for the VF MAC
7233         * addresses.
7234         */
7235        for (i = 0; i < rar_entries; i++) {
7236                if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7237                                               addr, flags))
7238                        continue;
7239
7240                ether_addr_copy(adapter->mac_table[i].addr, addr);
7241                adapter->mac_table[i].queue = queue;
7242                adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7243
7244                igb_rar_set_index(adapter, i);
7245                return i;
7246        }
7247
7248        return -ENOSPC;
7249}
7250
7251static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7252                              const u8 queue)
7253{
7254        return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7255}
7256
7257/* Remove a MAC filter for 'addr' directing matching traffic to
7258 * 'queue', 'flags' is used to indicate what kind of match need to be
7259 * removed, match is by default for the destination address, if
7260 * matching by source address is to be removed the flag
7261 * IGB_MAC_STATE_SRC_ADDR can be used.
7262 */
7263static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7264                                    const u8 *addr, const u8 queue,
7265                                    const u8 flags)
7266{
7267        struct e1000_hw *hw = &adapter->hw;
7268        int rar_entries = hw->mac.rar_entry_count -
7269                          adapter->vfs_allocated_count;
7270        int i;
7271
7272        if (is_zero_ether_addr(addr))
7273                return -EINVAL;
7274
7275        /* Search for matching entry in the MAC table based on given address
7276         * and queue. Do not touch entries at the end of the table reserved
7277         * for the VF MAC addresses.
7278         */
7279        for (i = 0; i < rar_entries; i++) {
7280                if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7281                        continue;
7282                if ((adapter->mac_table[i].state & flags) != flags)
7283                        continue;
7284                if (adapter->mac_table[i].queue != queue)
7285                        continue;
7286                if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7287                        continue;
7288
7289                /* When a filter for the default address is "deleted",
7290                 * we return it to its initial configuration
7291                 */
7292                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7293                        adapter->mac_table[i].state =
7294                                IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7295                        adapter->mac_table[i].queue =
7296                                adapter->vfs_allocated_count;
7297                } else {
7298                        adapter->mac_table[i].state = 0;
7299                        adapter->mac_table[i].queue = 0;
7300                        memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7301                }
7302
7303                igb_rar_set_index(adapter, i);
7304                return 0;
7305        }
7306
7307        return -ENOENT;
7308}
7309
7310static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7311                              const u8 queue)
7312{
7313        return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7314}
7315
7316int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7317                                const u8 *addr, u8 queue, u8 flags)
7318{
7319        struct e1000_hw *hw = &adapter->hw;
7320
7321        /* In theory, this should be supported on 82575 as well, but
7322         * that part wasn't easily accessible during development.
7323         */
7324        if (hw->mac.type != e1000_i210)
7325                return -EOPNOTSUPP;
7326
7327        return igb_add_mac_filter_flags(adapter, addr, queue,
7328                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7329}
7330
7331int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7332                                const u8 *addr, u8 queue, u8 flags)
7333{
7334        return igb_del_mac_filter_flags(adapter, addr, queue,
7335                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7336}
7337
7338static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7339{
7340        struct igb_adapter *adapter = netdev_priv(netdev);
7341        int ret;
7342
7343        ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344
7345        return min_t(int, ret, 0);
7346}
7347
7348static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7349{
7350        struct igb_adapter *adapter = netdev_priv(netdev);
7351
7352        igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7353
7354        return 0;
7355}
7356
7357static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7358                                 const u32 info, const u8 *addr)
7359{
7360        struct pci_dev *pdev = adapter->pdev;
7361        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7362        struct list_head *pos;
7363        struct vf_mac_filter *entry = NULL;
7364        int ret = 0;
7365
7366        switch (info) {
7367        case E1000_VF_MAC_FILTER_CLR:
7368                /* remove all unicast MAC filters related to the current VF */
7369                list_for_each(pos, &adapter->vf_macs.l) {
7370                        entry = list_entry(pos, struct vf_mac_filter, l);
7371                        if (entry->vf == vf) {
7372                                entry->vf = -1;
7373                                entry->free = true;
7374                                igb_del_mac_filter(adapter, entry->vf_mac, vf);
7375                        }
7376                }
7377                break;
7378        case E1000_VF_MAC_FILTER_ADD:
7379                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7380                    !vf_data->trusted) {
7381                        dev_warn(&pdev->dev,
7382                                 "VF %d requested MAC filter but is administratively denied\n",
7383                                 vf);
7384                        return -EINVAL;
7385                }
7386                if (!is_valid_ether_addr(addr)) {
7387                        dev_warn(&pdev->dev,
7388                                 "VF %d attempted to set invalid MAC filter\n",
7389                                 vf);
7390                        return -EINVAL;
7391                }
7392
7393                /* try to find empty slot in the list */
7394                list_for_each(pos, &adapter->vf_macs.l) {
7395                        entry = list_entry(pos, struct vf_mac_filter, l);
7396                        if (entry->free)
7397                                break;
7398                }
7399
7400                if (entry && entry->free) {
7401                        entry->free = false;
7402                        entry->vf = vf;
7403                        ether_addr_copy(entry->vf_mac, addr);
7404
7405                        ret = igb_add_mac_filter(adapter, addr, vf);
7406                        ret = min_t(int, ret, 0);
7407                } else {
7408                        ret = -ENOSPC;
7409                }
7410
7411                if (ret == -ENOSPC)
7412                        dev_warn(&pdev->dev,
7413                                 "VF %d has requested MAC filter but there is no space for it\n",
7414                                 vf);
7415                break;
7416        default:
7417                ret = -EINVAL;
7418                break;
7419        }
7420
7421        return ret;
7422}
7423
7424static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7425{
7426        struct pci_dev *pdev = adapter->pdev;
7427        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7428        u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7429
7430        /* The VF MAC Address is stored in a packed array of bytes
7431         * starting at the second 32 bit word of the msg array
7432         */
7433        unsigned char *addr = (unsigned char *)&msg[1];
7434        int ret = 0;
7435
7436        if (!info) {
7437                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7438                    !vf_data->trusted) {
7439                        dev_warn(&pdev->dev,
7440                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7441                                 vf);
7442                        return -EINVAL;
7443                }
7444
7445                if (!is_valid_ether_addr(addr)) {
7446                        dev_warn(&pdev->dev,
7447                                 "VF %d attempted to set invalid MAC\n",
7448                                 vf);
7449                        return -EINVAL;
7450                }
7451
7452                ret = igb_set_vf_mac(adapter, vf, addr);
7453        } else {
7454                ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7455        }
7456
7457        return ret;
7458}
7459
7460static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7461{
7462        struct e1000_hw *hw = &adapter->hw;
7463        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7464        u32 msg = E1000_VT_MSGTYPE_NACK;
7465
7466        /* if device isn't clear to send it shouldn't be reading either */
7467        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7468            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7469                igb_write_mbx(hw, &msg, 1, vf);
7470                vf_data->last_nack = jiffies;
7471        }
7472}
7473
7474static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7475{
7476        struct pci_dev *pdev = adapter->pdev;
7477        u32 msgbuf[E1000_VFMAILBOX_SIZE];
7478        struct e1000_hw *hw = &adapter->hw;
7479        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7480        s32 retval;
7481
7482        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7483
7484        if (retval) {
7485                /* if receive failed revoke VF CTS stats and restart init */
7486                dev_err(&pdev->dev, "Error receiving message from VF\n");
7487                vf_data->flags &= ~IGB_VF_FLAG_CTS;
7488                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7489                        goto unlock;
7490                goto out;
7491        }
7492
7493        /* this is a message we already processed, do nothing */
7494        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7495                goto unlock;
7496
7497        /* until the vf completes a reset it should not be
7498         * allowed to start any configuration.
7499         */
7500        if (msgbuf[0] == E1000_VF_RESET) {
7501                /* unlocks mailbox */
7502                igb_vf_reset_msg(adapter, vf);
7503                return;
7504        }
7505
7506        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7507                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7508                        goto unlock;
7509                retval = -1;
7510                goto out;
7511        }
7512
7513        switch ((msgbuf[0] & 0xFFFF)) {
7514        case E1000_VF_SET_MAC_ADDR:
7515                retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7516                break;
7517        case E1000_VF_SET_PROMISC:
7518                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7519                break;
7520        case E1000_VF_SET_MULTICAST:
7521                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7522                break;
7523        case E1000_VF_SET_LPE:
7524                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7525                break;
7526        case E1000_VF_SET_VLAN:
7527                retval = -1;
7528                if (vf_data->pf_vlan)
7529                        dev_warn(&pdev->dev,
7530                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7531                                 vf);
7532                else
7533                        retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7534                break;
7535        default:
7536                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7537                retval = -1;
7538                break;
7539        }
7540
7541        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7542out:
7543        /* notify the VF of the results of what it sent us */
7544        if (retval)
7545                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7546        else
7547                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7548
7549        /* unlocks mailbox */
7550        igb_write_mbx(hw, msgbuf, 1, vf);
7551        return;
7552
7553unlock:
7554        igb_unlock_mbx(hw, vf);
7555}
7556
7557static void igb_msg_task(struct igb_adapter *adapter)
7558{
7559        struct e1000_hw *hw = &adapter->hw;
7560        u32 vf;
7561
7562        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7563                /* process any reset requests */
7564                if (!igb_check_for_rst(hw, vf))
7565                        igb_vf_reset_event(adapter, vf);
7566
7567                /* process any messages pending */
7568                if (!igb_check_for_msg(hw, vf))
7569                        igb_rcv_msg_from_vf(adapter, vf);
7570
7571                /* process any acks */
7572                if (!igb_check_for_ack(hw, vf))
7573                        igb_rcv_ack_from_vf(adapter, vf);
7574        }
7575}
7576
7577/**
7578 *  igb_set_uta - Set unicast filter table address
7579 *  @adapter: board private structure
7580 *  @set: boolean indicating if we are setting or clearing bits
7581 *
7582 *  The unicast table address is a register array of 32-bit registers.
7583 *  The table is meant to be used in a way similar to how the MTA is used
7584 *  however due to certain limitations in the hardware it is necessary to
7585 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7586 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7587 **/
7588static void igb_set_uta(struct igb_adapter *adapter, bool set)
7589{
7590        struct e1000_hw *hw = &adapter->hw;
7591        u32 uta = set ? ~0 : 0;
7592        int i;
7593
7594        /* we only need to do this if VMDq is enabled */
7595        if (!adapter->vfs_allocated_count)
7596                return;
7597
7598        for (i = hw->mac.uta_reg_count; i--;)
7599                array_wr32(E1000_UTA, i, uta);
7600}
7601
7602/**
7603 *  igb_intr_msi - Interrupt Handler
7604 *  @irq: interrupt number
7605 *  @data: pointer to a network interface device structure
7606 **/
7607static irqreturn_t igb_intr_msi(int irq, void *data)
7608{
7609        struct igb_adapter *adapter = data;
7610        struct igb_q_vector *q_vector = adapter->q_vector[0];
7611        struct e1000_hw *hw = &adapter->hw;
7612        /* read ICR disables interrupts using IAM */
7613        u32 icr = rd32(E1000_ICR);
7614
7615        igb_write_itr(q_vector);
7616
7617        if (icr & E1000_ICR_DRSTA)
7618                schedule_work(&adapter->reset_task);
7619
7620        if (icr & E1000_ICR_DOUTSYNC) {
7621                /* HW is reporting DMA is out of sync */
7622                adapter->stats.doosync++;
7623        }
7624
7625        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7626                hw->mac.get_link_status = 1;
7627                if (!test_bit(__IGB_DOWN, &adapter->state))
7628                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7629        }
7630
7631        if (icr & E1000_ICR_TS)
7632                igb_tsync_interrupt(adapter);
7633
7634        napi_schedule(&q_vector->napi);
7635
7636        return IRQ_HANDLED;
7637}
7638
7639/**
7640 *  igb_intr - Legacy Interrupt Handler
7641 *  @irq: interrupt number
7642 *  @data: pointer to a network interface device structure
7643 **/
7644static irqreturn_t igb_intr(int irq, void *data)
7645{
7646        struct igb_adapter *adapter = data;
7647        struct igb_q_vector *q_vector = adapter->q_vector[0];
7648        struct e1000_hw *hw = &adapter->hw;
7649        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7650         * need for the IMC write
7651         */
7652        u32 icr = rd32(E1000_ICR);
7653
7654        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7655         * not set, then the adapter didn't send an interrupt
7656         */
7657        if (!(icr & E1000_ICR_INT_ASSERTED))
7658                return IRQ_NONE;
7659
7660        igb_write_itr(q_vector);
7661
7662        if (icr & E1000_ICR_DRSTA)
7663                schedule_work(&adapter->reset_task);
7664
7665        if (icr & E1000_ICR_DOUTSYNC) {
7666                /* HW is reporting DMA is out of sync */
7667                adapter->stats.doosync++;
7668        }
7669
7670        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7671                hw->mac.get_link_status = 1;
7672                /* guard against interrupt when we're going down */
7673                if (!test_bit(__IGB_DOWN, &adapter->state))
7674                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7675        }
7676
7677        if (icr & E1000_ICR_TS)
7678                igb_tsync_interrupt(adapter);
7679
7680        napi_schedule(&q_vector->napi);
7681
7682        return IRQ_HANDLED;
7683}
7684
7685static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7686{
7687        struct igb_adapter *adapter = q_vector->adapter;
7688        struct e1000_hw *hw = &adapter->hw;
7689
7690        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7691            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7692                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7693                        igb_set_itr(q_vector);
7694                else
7695                        igb_update_ring_itr(q_vector);
7696        }
7697
7698        if (!test_bit(__IGB_DOWN, &adapter->state)) {
7699                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7700                        wr32(E1000_EIMS, q_vector->eims_value);
7701                else
7702                        igb_irq_enable(adapter);
7703        }
7704}
7705
7706/**
7707 *  igb_poll - NAPI Rx polling callback
7708 *  @napi: napi polling structure
7709 *  @budget: count of how many packets we should handle
7710 **/
7711static int igb_poll(struct napi_struct *napi, int budget)
7712{
7713        struct igb_q_vector *q_vector = container_of(napi,
7714                                                     struct igb_q_vector,
7715                                                     napi);
7716        bool clean_complete = true;
7717        int work_done = 0;
7718
7719#ifdef CONFIG_IGB_DCA
7720        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7721                igb_update_dca(q_vector);
7722#endif
7723        if (q_vector->tx.ring)
7724                clean_complete = igb_clean_tx_irq(q_vector, budget);
7725
7726        if (q_vector->rx.ring) {
7727                int cleaned = igb_clean_rx_irq(q_vector, budget);
7728
7729                work_done += cleaned;
7730                if (cleaned >= budget)
7731                        clean_complete = false;
7732        }
7733
7734        /* If all work not completed, return budget and keep polling */
7735        if (!clean_complete)
7736                return budget;
7737
7738        /* Exit the polling mode, but don't re-enable interrupts if stack might
7739         * poll us due to busy-polling
7740         */
7741        if (likely(napi_complete_done(napi, work_done)))
7742                igb_ring_irq_enable(q_vector);
7743
7744        return min(work_done, budget - 1);
7745}
7746
7747/**
7748 *  igb_clean_tx_irq - Reclaim resources after transmit completes
7749 *  @q_vector: pointer to q_vector containing needed info
7750 *  @napi_budget: Used to determine if we are in netpoll
7751 *
7752 *  returns true if ring is completely cleaned
7753 **/
7754static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7755{
7756        struct igb_adapter *adapter = q_vector->adapter;
7757        struct igb_ring *tx_ring = q_vector->tx.ring;
7758        struct igb_tx_buffer *tx_buffer;
7759        union e1000_adv_tx_desc *tx_desc;
7760        unsigned int total_bytes = 0, total_packets = 0;
7761        unsigned int budget = q_vector->tx.work_limit;
7762        unsigned int i = tx_ring->next_to_clean;
7763
7764        if (test_bit(__IGB_DOWN, &adapter->state))
7765                return true;
7766
7767        tx_buffer = &tx_ring->tx_buffer_info[i];
7768        tx_desc = IGB_TX_DESC(tx_ring, i);
7769        i -= tx_ring->count;
7770
7771        do {
7772                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7773
7774                /* if next_to_watch is not set then there is no work pending */
7775                if (!eop_desc)
7776                        break;
7777
7778                /* prevent any other reads prior to eop_desc */
7779                smp_rmb();
7780
7781                /* if DD is not set pending work has not been completed */
7782                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7783                        break;
7784
7785                /* clear next_to_watch to prevent false hangs */
7786                tx_buffer->next_to_watch = NULL;
7787
7788                /* update the statistics for this packet */
7789                total_bytes += tx_buffer->bytecount;
7790                total_packets += tx_buffer->gso_segs;
7791
7792                /* free the skb */
7793                napi_consume_skb(tx_buffer->skb, napi_budget);
7794
7795                /* unmap skb header data */
7796                dma_unmap_single(tx_ring->dev,
7797                                 dma_unmap_addr(tx_buffer, dma),
7798                                 dma_unmap_len(tx_buffer, len),
7799                                 DMA_TO_DEVICE);
7800
7801                /* clear tx_buffer data */
7802                dma_unmap_len_set(tx_buffer, len, 0);
7803
7804                /* clear last DMA location and unmap remaining buffers */
7805                while (tx_desc != eop_desc) {
7806                        tx_buffer++;
7807                        tx_desc++;
7808                        i++;
7809                        if (unlikely(!i)) {
7810                                i -= tx_ring->count;
7811                                tx_buffer = tx_ring->tx_buffer_info;
7812                                tx_desc = IGB_TX_DESC(tx_ring, 0);
7813                        }
7814
7815                        /* unmap any remaining paged data */
7816                        if (dma_unmap_len(tx_buffer, len)) {
7817                                dma_unmap_page(tx_ring->dev,
7818                                               dma_unmap_addr(tx_buffer, dma),
7819                                               dma_unmap_len(tx_buffer, len),
7820                                               DMA_TO_DEVICE);
7821                                dma_unmap_len_set(tx_buffer, len, 0);
7822                        }
7823                }
7824
7825                /* move us one more past the eop_desc for start of next pkt */
7826                tx_buffer++;
7827                tx_desc++;
7828                i++;
7829                if (unlikely(!i)) {
7830                        i -= tx_ring->count;
7831                        tx_buffer = tx_ring->tx_buffer_info;
7832                        tx_desc = IGB_TX_DESC(tx_ring, 0);
7833                }
7834
7835                /* issue prefetch for next Tx descriptor */
7836                prefetch(tx_desc);
7837
7838                /* update budget accounting */
7839                budget--;
7840        } while (likely(budget));
7841
7842        netdev_tx_completed_queue(txring_txq(tx_ring),
7843                                  total_packets, total_bytes);
7844        i += tx_ring->count;
7845        tx_ring->next_to_clean = i;
7846        u64_stats_update_begin(&tx_ring->tx_syncp);
7847        tx_ring->tx_stats.bytes += total_bytes;
7848        tx_ring->tx_stats.packets += total_packets;
7849        u64_stats_update_end(&tx_ring->tx_syncp);
7850        q_vector->tx.total_bytes += total_bytes;
7851        q_vector->tx.total_packets += total_packets;
7852
7853        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7854                struct e1000_hw *hw = &adapter->hw;
7855
7856                /* Detect a transmit hang in hardware, this serializes the
7857                 * check with the clearing of time_stamp and movement of i
7858                 */
7859                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7860                if (tx_buffer->next_to_watch &&
7861                    time_after(jiffies, tx_buffer->time_stamp +
7862                               (adapter->tx_timeout_factor * HZ)) &&
7863                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7864
7865                        /* detected Tx unit hang */
7866                        dev_err(tx_ring->dev,
7867                                "Detected Tx Unit Hang\n"
7868                                "  Tx Queue             <%d>\n"
7869                                "  TDH                  <%x>\n"
7870                                "  TDT                  <%x>\n"
7871                                "  next_to_use          <%x>\n"
7872                                "  next_to_clean        <%x>\n"
7873                                "buffer_info[next_to_clean]\n"
7874                                "  time_stamp           <%lx>\n"
7875                                "  next_to_watch        <%p>\n"
7876                                "  jiffies              <%lx>\n"
7877                                "  desc.status          <%x>\n",
7878                                tx_ring->queue_index,
7879                                rd32(E1000_TDH(tx_ring->reg_idx)),
7880                                readl(tx_ring->tail),
7881                                tx_ring->next_to_use,
7882                                tx_ring->next_to_clean,
7883                                tx_buffer->time_stamp,
7884                                tx_buffer->next_to_watch,
7885                                jiffies,
7886                                tx_buffer->next_to_watch->wb.status);
7887                        netif_stop_subqueue(tx_ring->netdev,
7888                                            tx_ring->queue_index);
7889
7890                        /* we are about to reset, no point in enabling stuff */
7891                        return true;
7892                }
7893        }
7894
7895#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7896        if (unlikely(total_packets &&
7897            netif_carrier_ok(tx_ring->netdev) &&
7898            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7899                /* Make sure that anybody stopping the queue after this
7900                 * sees the new next_to_clean.
7901                 */
7902                smp_mb();
7903                if (__netif_subqueue_stopped(tx_ring->netdev,
7904                                             tx_ring->queue_index) &&
7905                    !(test_bit(__IGB_DOWN, &adapter->state))) {
7906                        netif_wake_subqueue(tx_ring->netdev,
7907                                            tx_ring->queue_index);
7908
7909                        u64_stats_update_begin(&tx_ring->tx_syncp);
7910                        tx_ring->tx_stats.restart_queue++;
7911                        u64_stats_update_end(&tx_ring->tx_syncp);
7912                }
7913        }
7914
7915        return !!budget;
7916}
7917
7918/**
7919 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7920 *  @rx_ring: rx descriptor ring to store buffers on
7921 *  @old_buff: donor buffer to have page reused
7922 *
7923 *  Synchronizes page for reuse by the adapter
7924 **/
7925static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7926                              struct igb_rx_buffer *old_buff)
7927{
7928        struct igb_rx_buffer *new_buff;
7929        u16 nta = rx_ring->next_to_alloc;
7930
7931        new_buff = &rx_ring->rx_buffer_info[nta];
7932
7933        /* update, and store next to alloc */
7934        nta++;
7935        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7936
7937        /* Transfer page from old buffer to new buffer.
7938         * Move each member individually to avoid possible store
7939         * forwarding stalls.
7940         */
7941        new_buff->dma           = old_buff->dma;
7942        new_buff->page          = old_buff->page;
7943        new_buff->page_offset   = old_buff->page_offset;
7944        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7945}
7946
7947static inline bool igb_page_is_reserved(struct page *page)
7948{
7949        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7950}
7951
7952static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7953{
7954        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7955        struct page *page = rx_buffer->page;
7956
7957        /* avoid re-using remote pages */
7958        if (unlikely(igb_page_is_reserved(page)))
7959                return false;
7960
7961#if (PAGE_SIZE < 8192)
7962        /* if we are only owner of page we can reuse it */
7963        if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7964                return false;
7965#else
7966#define IGB_LAST_OFFSET \
7967        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7968
7969        if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7970                return false;
7971#endif
7972
7973        /* If we have drained the page fragment pool we need to update
7974         * the pagecnt_bias and page count so that we fully restock the
7975         * number of references the driver holds.
7976         */
7977        if (unlikely(!pagecnt_bias)) {
7978                page_ref_add(page, USHRT_MAX);
7979                rx_buffer->pagecnt_bias = USHRT_MAX;
7980        }
7981
7982        return true;
7983}
7984
7985/**
7986 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7987 *  @rx_ring: rx descriptor ring to transact packets on
7988 *  @rx_buffer: buffer containing page to add
7989 *  @skb: sk_buff to place the data into
7990 *  @size: size of buffer to be added
7991 *
7992 *  This function will add the data contained in rx_buffer->page to the skb.
7993 **/
7994static void igb_add_rx_frag(struct igb_ring *rx_ring,
7995                            struct igb_rx_buffer *rx_buffer,
7996                            struct sk_buff *skb,
7997                            unsigned int size)
7998{
7999#if (PAGE_SIZE < 8192)
8000        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8001#else
8002        unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8003                                SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8004                                SKB_DATA_ALIGN(size);
8005#endif
8006        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8007                        rx_buffer->page_offset, size, truesize);
8008#if (PAGE_SIZE < 8192)
8009        rx_buffer->page_offset ^= truesize;
8010#else
8011        rx_buffer->page_offset += truesize;
8012#endif
8013}
8014
8015static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8016                                         struct igb_rx_buffer *rx_buffer,
8017                                         union e1000_adv_rx_desc *rx_desc,
8018                                         unsigned int size)
8019{
8020        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8021#if (PAGE_SIZE < 8192)
8022        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8023#else
8024        unsigned int truesize = SKB_DATA_ALIGN(size);
8025#endif
8026        unsigned int headlen;
8027        struct sk_buff *skb;
8028
8029        /* prefetch first cache line of first page */
8030        prefetch(va);
8031#if L1_CACHE_BYTES < 128
8032        prefetch(va + L1_CACHE_BYTES);
8033#endif
8034
8035        /* allocate a skb to store the frags */
8036        skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8037        if (unlikely(!skb))
8038                return NULL;
8039
8040        if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8041                igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8042                va += IGB_TS_HDR_LEN;
8043                size -= IGB_TS_HDR_LEN;
8044        }
8045
8046        /* Determine available headroom for copy */
8047        headlen = size;
8048        if (headlen > IGB_RX_HDR_LEN)
8049                headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8050
8051        /* align pull length to size of long to optimize memcpy performance */
8052        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8053
8054        /* update all of the pointers */
8055        size -= headlen;
8056        if (size) {
8057                skb_add_rx_frag(skb, 0, rx_buffer->page,
8058                                (va + headlen) - page_address(rx_buffer->page),
8059                                size, truesize);
8060#if (PAGE_SIZE < 8192)
8061                rx_buffer->page_offset ^= truesize;
8062#else
8063                rx_buffer->page_offset += truesize;
8064#endif
8065        } else {
8066                rx_buffer->pagecnt_bias++;
8067        }
8068
8069        return skb;
8070}
8071
8072static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8073                                     struct igb_rx_buffer *rx_buffer,
8074                                     union e1000_adv_rx_desc *rx_desc,
8075                                     unsigned int size)
8076{
8077        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8078#if (PAGE_SIZE < 8192)
8079        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8080#else
8081        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8082                                SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8083#endif
8084        struct sk_buff *skb;
8085
8086        /* prefetch first cache line of first page */
8087        prefetch(va);
8088#if L1_CACHE_BYTES < 128
8089        prefetch(va + L1_CACHE_BYTES);
8090#endif
8091
8092        /* build an skb around the page buffer */
8093        skb = build_skb(va - IGB_SKB_PAD, truesize);
8094        if (unlikely(!skb))
8095                return NULL;
8096
8097        /* update pointers within the skb to store the data */
8098        skb_reserve(skb, IGB_SKB_PAD);
8099        __skb_put(skb, size);
8100
8101        /* pull timestamp out of packet data */
8102        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8103                igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8104                __skb_pull(skb, IGB_TS_HDR_LEN);
8105        }
8106
8107        /* update buffer offset */
8108#if (PAGE_SIZE < 8192)
8109        rx_buffer->page_offset ^= truesize;
8110#else
8111        rx_buffer->page_offset += truesize;
8112#endif
8113
8114        return skb;
8115}
8116
8117static inline void igb_rx_checksum(struct igb_ring *ring,
8118                                   union e1000_adv_rx_desc *rx_desc,
8119                                   struct sk_buff *skb)
8120{
8121        skb_checksum_none_assert(skb);
8122
8123        /* Ignore Checksum bit is set */
8124        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8125                return;
8126
8127        /* Rx checksum disabled via ethtool */
8128        if (!(ring->netdev->features & NETIF_F_RXCSUM))
8129                return;
8130
8131        /* TCP/UDP checksum error bit is set */
8132        if (igb_test_staterr(rx_desc,
8133                             E1000_RXDEXT_STATERR_TCPE |
8134                             E1000_RXDEXT_STATERR_IPE)) {
8135                /* work around errata with sctp packets where the TCPE aka
8136                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8137                 * packets, (aka let the stack check the crc32c)
8138                 */
8139                if (!((skb->len == 60) &&
8140                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8141                        u64_stats_update_begin(&ring->rx_syncp);
8142                        ring->rx_stats.csum_err++;
8143                        u64_stats_update_end(&ring->rx_syncp);
8144                }
8145                /* let the stack verify checksum errors */
8146                return;
8147        }
8148        /* It must be a TCP or UDP packet with a valid checksum */
8149        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8150                                      E1000_RXD_STAT_UDPCS))
8151                skb->ip_summed = CHECKSUM_UNNECESSARY;
8152
8153        dev_dbg(ring->dev, "cksum success: bits %08X\n",
8154                le32_to_cpu(rx_desc->wb.upper.status_error));
8155}
8156
8157static inline void igb_rx_hash(struct igb_ring *ring,
8158                               union e1000_adv_rx_desc *rx_desc,
8159                               struct sk_buff *skb)
8160{
8161        if (ring->netdev->features & NETIF_F_RXHASH)
8162                skb_set_hash(skb,
8163                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8164                             PKT_HASH_TYPE_L3);
8165}
8166
8167/**
8168 *  igb_is_non_eop - process handling of non-EOP buffers
8169 *  @rx_ring: Rx ring being processed
8170 *  @rx_desc: Rx descriptor for current buffer
8171 *  @skb: current socket buffer containing buffer in progress
8172 *
8173 *  This function updates next to clean.  If the buffer is an EOP buffer
8174 *  this function exits returning false, otherwise it will place the
8175 *  sk_buff in the next buffer to be chained and return true indicating
8176 *  that this is in fact a non-EOP buffer.
8177 **/
8178static bool igb_is_non_eop(struct igb_ring *rx_ring,
8179                           union e1000_adv_rx_desc *rx_desc)
8180{
8181        u32 ntc = rx_ring->next_to_clean + 1;
8182
8183        /* fetch, update, and store next to clean */
8184        ntc = (ntc < rx_ring->count) ? ntc : 0;
8185        rx_ring->next_to_clean = ntc;
8186
8187        prefetch(IGB_RX_DESC(rx_ring, ntc));
8188
8189        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8190                return false;
8191
8192        return true;
8193}
8194
8195/**
8196 *  igb_cleanup_headers - Correct corrupted or empty headers
8197 *  @rx_ring: rx descriptor ring packet is being transacted on
8198 *  @rx_desc: pointer to the EOP Rx descriptor
8199 *  @skb: pointer to current skb being fixed
8200 *
8201 *  Address the case where we are pulling data in on pages only
8202 *  and as such no data is present in the skb header.
8203 *
8204 *  In addition if skb is not at least 60 bytes we need to pad it so that
8205 *  it is large enough to qualify as a valid Ethernet frame.
8206 *
8207 *  Returns true if an error was encountered and skb was freed.
8208 **/
8209static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8210                                union e1000_adv_rx_desc *rx_desc,
8211                                struct sk_buff *skb)
8212{
8213        if (unlikely((igb_test_staterr(rx_desc,
8214                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8215                struct net_device *netdev = rx_ring->netdev;
8216                if (!(netdev->features & NETIF_F_RXALL)) {
8217                        dev_kfree_skb_any(skb);
8218                        return true;
8219                }
8220        }
8221
8222        /* if eth_skb_pad returns an error the skb was freed */
8223        if (eth_skb_pad(skb))
8224                return true;
8225
8226        return false;
8227}
8228
8229/**
8230 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8231 *  @rx_ring: rx descriptor ring packet is being transacted on
8232 *  @rx_desc: pointer to the EOP Rx descriptor
8233 *  @skb: pointer to current skb being populated
8234 *
8235 *  This function checks the ring, descriptor, and packet information in
8236 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8237 *  other fields within the skb.
8238 **/
8239static void igb_process_skb_fields(struct igb_ring *rx_ring,
8240                                   union e1000_adv_rx_desc *rx_desc,
8241                                   struct sk_buff *skb)
8242{
8243        struct net_device *dev = rx_ring->netdev;
8244
8245        igb_rx_hash(rx_ring, rx_desc, skb);
8246
8247        igb_rx_checksum(rx_ring, rx_desc, skb);
8248
8249        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8250            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8251                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8252
8253        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8254            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8255                u16 vid;
8256
8257                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8258                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8259                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8260                else
8261                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8262
8263                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8264        }
8265
8266        skb_record_rx_queue(skb, rx_ring->queue_index);
8267
8268        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8269}
8270
8271static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8272                                               const unsigned int size)
8273{
8274        struct igb_rx_buffer *rx_buffer;
8275
8276        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8277        prefetchw(rx_buffer->page);
8278
8279        /* we are reusing so sync this buffer for CPU use */
8280        dma_sync_single_range_for_cpu(rx_ring->dev,
8281                                      rx_buffer->dma,
8282                                      rx_buffer->page_offset,
8283                                      size,
8284                                      DMA_FROM_DEVICE);
8285
8286        rx_buffer->pagecnt_bias--;
8287
8288        return rx_buffer;
8289}
8290
8291static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8292                              struct igb_rx_buffer *rx_buffer)
8293{
8294        if (igb_can_reuse_rx_page(rx_buffer)) {
8295                /* hand second half of page back to the ring */
8296                igb_reuse_rx_page(rx_ring, rx_buffer);
8297        } else {
8298                /* We are not reusing the buffer so unmap it and free
8299                 * any references we are holding to it
8300                 */
8301                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8302                                     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8303                                     IGB_RX_DMA_ATTR);
8304                __page_frag_cache_drain(rx_buffer->page,
8305                                        rx_buffer->pagecnt_bias);
8306        }
8307
8308        /* clear contents of rx_buffer */
8309        rx_buffer->page = NULL;
8310}
8311
8312static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8313{
8314        struct igb_ring *rx_ring = q_vector->rx.ring;
8315        struct sk_buff *skb = rx_ring->skb;
8316        unsigned int total_bytes = 0, total_packets = 0;
8317        u16 cleaned_count = igb_desc_unused(rx_ring);
8318
8319        while (likely(total_packets < budget)) {
8320                union e1000_adv_rx_desc *rx_desc;
8321                struct igb_rx_buffer *rx_buffer;
8322                unsigned int size;
8323
8324                /* return some buffers to hardware, one at a time is too slow */
8325                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8326                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
8327                        cleaned_count = 0;
8328                }
8329
8330                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8331                size = le16_to_cpu(rx_desc->wb.upper.length);
8332                if (!size)
8333                        break;
8334
8335                /* This memory barrier is needed to keep us from reading
8336                 * any other fields out of the rx_desc until we know the
8337                 * descriptor has been written back
8338                 */
8339                dma_rmb();
8340
8341                rx_buffer = igb_get_rx_buffer(rx_ring, size);
8342
8343                /* retrieve a buffer from the ring */
8344                if (skb)
8345                        igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8346                else if (ring_uses_build_skb(rx_ring))
8347                        skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8348                else
8349                        skb = igb_construct_skb(rx_ring, rx_buffer,
8350                                                rx_desc, size);
8351
8352                /* exit if we failed to retrieve a buffer */
8353                if (!skb) {
8354                        rx_ring->rx_stats.alloc_failed++;
8355                        rx_buffer->pagecnt_bias++;
8356                        break;
8357                }
8358
8359                igb_put_rx_buffer(rx_ring, rx_buffer);
8360                cleaned_count++;
8361
8362                /* fetch next buffer in frame if non-eop */
8363                if (igb_is_non_eop(rx_ring, rx_desc))
8364                        continue;
8365
8366                /* verify the packet layout is correct */
8367                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8368                        skb = NULL;
8369                        continue;
8370                }
8371
8372                /* probably a little skewed due to removing CRC */
8373                total_bytes += skb->len;
8374
8375                /* populate checksum, timestamp, VLAN, and protocol */
8376                igb_process_skb_fields(rx_ring, rx_desc, skb);
8377
8378                napi_gro_receive(&q_vector->napi, skb);
8379
8380                /* reset skb pointer */
8381                skb = NULL;
8382
8383                /* update budget accounting */
8384                total_packets++;
8385        }
8386
8387        /* place incomplete frames back on ring for completion */
8388        rx_ring->skb = skb;
8389
8390        u64_stats_update_begin(&rx_ring->rx_syncp);
8391        rx_ring->rx_stats.packets += total_packets;
8392        rx_ring->rx_stats.bytes += total_bytes;
8393        u64_stats_update_end(&rx_ring->rx_syncp);
8394        q_vector->rx.total_packets += total_packets;
8395        q_vector->rx.total_bytes += total_bytes;
8396
8397        if (cleaned_count)
8398                igb_alloc_rx_buffers(rx_ring, cleaned_count);
8399
8400        return total_packets;
8401}
8402
8403static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8404{
8405        return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8406}
8407
8408static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8409                                  struct igb_rx_buffer *bi)
8410{
8411        struct page *page = bi->page;
8412        dma_addr_t dma;
8413
8414        /* since we are recycling buffers we should seldom need to alloc */
8415        if (likely(page))
8416                return true;
8417
8418        /* alloc new page for storage */
8419        page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8420        if (unlikely(!page)) {
8421                rx_ring->rx_stats.alloc_failed++;
8422                return false;
8423        }
8424
8425        /* map page for use */
8426        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8427                                 igb_rx_pg_size(rx_ring),
8428                                 DMA_FROM_DEVICE,
8429                                 IGB_RX_DMA_ATTR);
8430
8431        /* if mapping failed free memory back to system since
8432         * there isn't much point in holding memory we can't use
8433         */
8434        if (dma_mapping_error(rx_ring->dev, dma)) {
8435                __free_pages(page, igb_rx_pg_order(rx_ring));
8436
8437                rx_ring->rx_stats.alloc_failed++;
8438                return false;
8439        }
8440
8441        bi->dma = dma;
8442        bi->page = page;
8443        bi->page_offset = igb_rx_offset(rx_ring);
8444        bi->pagecnt_bias = 1;
8445
8446        return true;
8447}
8448
8449/**
8450 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8451 *  @adapter: address of board private structure
8452 **/
8453void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8454{
8455        union e1000_adv_rx_desc *rx_desc;
8456        struct igb_rx_buffer *bi;
8457        u16 i = rx_ring->next_to_use;
8458        u16 bufsz;
8459
8460        /* nothing to do */
8461        if (!cleaned_count)
8462                return;
8463
8464        rx_desc = IGB_RX_DESC(rx_ring, i);
8465        bi = &rx_ring->rx_buffer_info[i];
8466        i -= rx_ring->count;
8467
8468        bufsz = igb_rx_bufsz(rx_ring);
8469
8470        do {
8471                if (!igb_alloc_mapped_page(rx_ring, bi))
8472                        break;
8473
8474                /* sync the buffer for use by the device */
8475                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8476                                                 bi->page_offset, bufsz,
8477                                                 DMA_FROM_DEVICE);
8478
8479                /* Refresh the desc even if buffer_addrs didn't change
8480                 * because each write-back erases this info.
8481                 */
8482                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8483
8484                rx_desc++;
8485                bi++;
8486                i++;
8487                if (unlikely(!i)) {
8488                        rx_desc = IGB_RX_DESC(rx_ring, 0);
8489                        bi = rx_ring->rx_buffer_info;
8490                        i -= rx_ring->count;
8491                }
8492
8493                /* clear the length for the next_to_use descriptor */
8494                rx_desc->wb.upper.length = 0;
8495
8496                cleaned_count--;
8497        } while (cleaned_count);
8498
8499        i += rx_ring->count;
8500
8501        if (rx_ring->next_to_use != i) {
8502                /* record the next descriptor to use */
8503                rx_ring->next_to_use = i;
8504
8505                /* update next to alloc since we have filled the ring */
8506                rx_ring->next_to_alloc = i;
8507
8508                /* Force memory writes to complete before letting h/w
8509                 * know there are new descriptors to fetch.  (Only
8510                 * applicable for weak-ordered memory model archs,
8511                 * such as IA-64).
8512                 */
8513                dma_wmb();
8514                writel(i, rx_ring->tail);
8515        }
8516}
8517
8518/**
8519 * igb_mii_ioctl -
8520 * @netdev:
8521 * @ifreq:
8522 * @cmd:
8523 **/
8524static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8525{
8526        struct igb_adapter *adapter = netdev_priv(netdev);
8527        struct mii_ioctl_data *data = if_mii(ifr);
8528
8529        if (adapter->hw.phy.media_type != e1000_media_type_copper)
8530                return -EOPNOTSUPP;
8531
8532        switch (cmd) {
8533        case SIOCGMIIPHY:
8534                data->phy_id = adapter->hw.phy.addr;
8535                break;
8536        case SIOCGMIIREG:
8537                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8538                                     &data->val_out))
8539                        return -EIO;
8540                break;
8541        case SIOCSMIIREG:
8542        default:
8543                return -EOPNOTSUPP;
8544        }
8545        return 0;
8546}
8547
8548/**
8549 * igb_ioctl -
8550 * @netdev:
8551 * @ifreq:
8552 * @cmd:
8553 **/
8554static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8555{
8556        switch (cmd) {
8557        case SIOCGMIIPHY:
8558        case SIOCGMIIREG:
8559        case SIOCSMIIREG:
8560                return igb_mii_ioctl(netdev, ifr, cmd);
8561        case SIOCGHWTSTAMP:
8562                return igb_ptp_get_ts_config(netdev, ifr);
8563        case SIOCSHWTSTAMP:
8564                return igb_ptp_set_ts_config(netdev, ifr);
8565        default:
8566                return -EOPNOTSUPP;
8567        }
8568}
8569
8570void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8571{
8572        struct igb_adapter *adapter = hw->back;
8573
8574        pci_read_config_word(adapter->pdev, reg, value);
8575}
8576
8577void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8578{
8579        struct igb_adapter *adapter = hw->back;
8580
8581        pci_write_config_word(adapter->pdev, reg, *value);
8582}
8583
8584s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8585{
8586        struct igb_adapter *adapter = hw->back;
8587
8588        if (pcie_capability_read_word(adapter->pdev, reg, value))
8589                return -E1000_ERR_CONFIG;
8590
8591        return 0;
8592}
8593
8594s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8595{
8596        struct igb_adapter *adapter = hw->back;
8597
8598        if (pcie_capability_write_word(adapter->pdev, reg, *value))
8599                return -E1000_ERR_CONFIG;
8600
8601        return 0;
8602}
8603
8604static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8605{
8606        struct igb_adapter *adapter = netdev_priv(netdev);
8607        struct e1000_hw *hw = &adapter->hw;
8608        u32 ctrl, rctl;
8609        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8610
8611        if (enable) {
8612                /* enable VLAN tag insert/strip */
8613                ctrl = rd32(E1000_CTRL);
8614                ctrl |= E1000_CTRL_VME;
8615                wr32(E1000_CTRL, ctrl);
8616
8617                /* Disable CFI check */
8618                rctl = rd32(E1000_RCTL);
8619                rctl &= ~E1000_RCTL_CFIEN;
8620                wr32(E1000_RCTL, rctl);
8621        } else {
8622                /* disable VLAN tag insert/strip */
8623                ctrl = rd32(E1000_CTRL);
8624                ctrl &= ~E1000_CTRL_VME;
8625                wr32(E1000_CTRL, ctrl);
8626        }
8627
8628        igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8629}
8630
8631static int igb_vlan_rx_add_vid(struct net_device *netdev,
8632                               __be16 proto, u16 vid)
8633{
8634        struct igb_adapter *adapter = netdev_priv(netdev);
8635        struct e1000_hw *hw = &adapter->hw;
8636        int pf_id = adapter->vfs_allocated_count;
8637
8638        /* add the filter since PF can receive vlans w/o entry in vlvf */
8639        if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8640                igb_vfta_set(hw, vid, pf_id, true, !!vid);
8641
8642        set_bit(vid, adapter->active_vlans);
8643
8644        return 0;
8645}
8646
8647static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8648                                __be16 proto, u16 vid)
8649{
8650        struct igb_adapter *adapter = netdev_priv(netdev);
8651        int pf_id = adapter->vfs_allocated_count;
8652        struct e1000_hw *hw = &adapter->hw;
8653
8654        /* remove VID from filter table */
8655        if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8656                igb_vfta_set(hw, vid, pf_id, false, true);
8657
8658        clear_bit(vid, adapter->active_vlans);
8659
8660        return 0;
8661}
8662
8663static void igb_restore_vlan(struct igb_adapter *adapter)
8664{
8665        u16 vid = 1;
8666
8667        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8668        igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8669
8670        for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8671                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8672}
8673
8674int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8675{
8676        struct pci_dev *pdev = adapter->pdev;
8677        struct e1000_mac_info *mac = &adapter->hw.mac;
8678
8679        mac->autoneg = 0;
8680
8681        /* Make sure dplx is at most 1 bit and lsb of speed is not set
8682         * for the switch() below to work
8683         */
8684        if ((spd & 1) || (dplx & ~1))
8685                goto err_inval;
8686
8687        /* Fiber NIC's only allow 1000 gbps Full duplex
8688         * and 100Mbps Full duplex for 100baseFx sfp
8689         */
8690        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8691                switch (spd + dplx) {
8692                case SPEED_10 + DUPLEX_HALF:
8693                case SPEED_10 + DUPLEX_FULL:
8694                case SPEED_100 + DUPLEX_HALF:
8695                        goto err_inval;
8696                default:
8697                        break;
8698                }
8699        }
8700
8701        switch (spd + dplx) {
8702        case SPEED_10 + DUPLEX_HALF:
8703                mac->forced_speed_duplex = ADVERTISE_10_HALF;
8704                break;
8705        case SPEED_10 + DUPLEX_FULL:
8706                mac->forced_speed_duplex = ADVERTISE_10_FULL;
8707                break;
8708        case SPEED_100 + DUPLEX_HALF:
8709                mac->forced_speed_duplex = ADVERTISE_100_HALF;
8710                break;
8711        case SPEED_100 + DUPLEX_FULL:
8712                mac->forced_speed_duplex = ADVERTISE_100_FULL;
8713                break;
8714        case SPEED_1000 + DUPLEX_FULL:
8715                mac->autoneg = 1;
8716                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8717                break;
8718        case SPEED_1000 + DUPLEX_HALF: /* not supported */
8719        default:
8720                goto err_inval;
8721        }
8722
8723        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8724        adapter->hw.phy.mdix = AUTO_ALL_MODES;
8725
8726        return 0;
8727
8728err_inval:
8729        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8730        return -EINVAL;
8731}
8732
8733static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8734                          bool runtime)
8735{
8736        struct net_device *netdev = pci_get_drvdata(pdev);
8737        struct igb_adapter *adapter = netdev_priv(netdev);
8738        struct e1000_hw *hw = &adapter->hw;
8739        u32 ctrl, rctl, status;
8740        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8741        bool wake;
8742
8743        rtnl_lock();
8744        netif_device_detach(netdev);
8745
8746        if (netif_running(netdev))
8747                __igb_close(netdev, true);
8748
8749        igb_ptp_suspend(adapter);
8750
8751        igb_clear_interrupt_scheme(adapter);
8752        rtnl_unlock();
8753
8754        status = rd32(E1000_STATUS);
8755        if (status & E1000_STATUS_LU)
8756                wufc &= ~E1000_WUFC_LNKC;
8757
8758        if (wufc) {
8759                igb_setup_rctl(adapter);
8760                igb_set_rx_mode(netdev);
8761
8762                /* turn on all-multi mode if wake on multicast is enabled */
8763                if (wufc & E1000_WUFC_MC) {
8764                        rctl = rd32(E1000_RCTL);
8765                        rctl |= E1000_RCTL_MPE;
8766                        wr32(E1000_RCTL, rctl);
8767                }
8768
8769                ctrl = rd32(E1000_CTRL);
8770                ctrl |= E1000_CTRL_ADVD3WUC;
8771                wr32(E1000_CTRL, ctrl);
8772
8773                /* Allow time for pending master requests to run */
8774                igb_disable_pcie_master(hw);
8775
8776                wr32(E1000_WUC, E1000_WUC_PME_EN);
8777                wr32(E1000_WUFC, wufc);
8778        } else {
8779                wr32(E1000_WUC, 0);
8780                wr32(E1000_WUFC, 0);
8781        }
8782
8783        wake = wufc || adapter->en_mng_pt;
8784        if (!wake)
8785                igb_power_down_link(adapter);
8786        else
8787                igb_power_up_link(adapter);
8788
8789        if (enable_wake)
8790                *enable_wake = wake;
8791
8792        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8793         * would have already happened in close and is redundant.
8794         */
8795        igb_release_hw_control(adapter);
8796
8797        pci_disable_device(pdev);
8798
8799        return 0;
8800}
8801
8802static void igb_deliver_wake_packet(struct net_device *netdev)
8803{
8804        struct igb_adapter *adapter = netdev_priv(netdev);
8805        struct e1000_hw *hw = &adapter->hw;
8806        struct sk_buff *skb;
8807        u32 wupl;
8808
8809        wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8810
8811        /* WUPM stores only the first 128 bytes of the wake packet.
8812         * Read the packet only if we have the whole thing.
8813         */
8814        if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8815                return;
8816
8817        skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8818        if (!skb)
8819                return;
8820
8821        skb_put(skb, wupl);
8822
8823        /* Ensure reads are 32-bit aligned */
8824        wupl = roundup(wupl, 4);
8825
8826        memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8827
8828        skb->protocol = eth_type_trans(skb, netdev);
8829        netif_rx(skb);
8830}
8831
8832static int __maybe_unused igb_suspend(struct device *dev)
8833{
8834        return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8835}
8836
8837static int __maybe_unused igb_resume(struct device *dev)
8838{
8839        struct pci_dev *pdev = to_pci_dev(dev);
8840        struct net_device *netdev = pci_get_drvdata(pdev);
8841        struct igb_adapter *adapter = netdev_priv(netdev);
8842        struct e1000_hw *hw = &adapter->hw;
8843        u32 err, val;
8844
8845        pci_set_power_state(pdev, PCI_D0);
8846        pci_restore_state(pdev);
8847        pci_save_state(pdev);
8848
8849        if (!pci_device_is_present(pdev))
8850                return -ENODEV;
8851        err = pci_enable_device_mem(pdev);
8852        if (err) {
8853                dev_err(&pdev->dev,
8854                        "igb: Cannot enable PCI device from suspend\n");
8855                return err;
8856        }
8857        pci_set_master(pdev);
8858
8859        pci_enable_wake(pdev, PCI_D3hot, 0);
8860        pci_enable_wake(pdev, PCI_D3cold, 0);
8861
8862        if (igb_init_interrupt_scheme(adapter, true)) {
8863                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8864                return -ENOMEM;
8865        }
8866
8867        igb_reset(adapter);
8868
8869        /* let the f/w know that the h/w is now under the control of the
8870         * driver.
8871         */
8872        igb_get_hw_control(adapter);
8873
8874        val = rd32(E1000_WUS);
8875        if (val & WAKE_PKT_WUS)
8876                igb_deliver_wake_packet(netdev);
8877
8878        wr32(E1000_WUS, ~0);
8879
8880        rtnl_lock();
8881        if (!err && netif_running(netdev))
8882                err = __igb_open(netdev, true);
8883
8884        if (!err)
8885                netif_device_attach(netdev);
8886        rtnl_unlock();
8887
8888        return err;
8889}
8890
8891static int __maybe_unused igb_runtime_idle(struct device *dev)
8892{
8893        struct pci_dev *pdev = to_pci_dev(dev);
8894        struct net_device *netdev = pci_get_drvdata(pdev);
8895        struct igb_adapter *adapter = netdev_priv(netdev);
8896
8897        if (!igb_has_link(adapter))
8898                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8899
8900        return -EBUSY;
8901}
8902
8903static int __maybe_unused igb_runtime_suspend(struct device *dev)
8904{
8905        return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8906}
8907
8908static int __maybe_unused igb_runtime_resume(struct device *dev)
8909{
8910        return igb_resume(dev);
8911}
8912
8913static void igb_shutdown(struct pci_dev *pdev)
8914{
8915        bool wake;
8916
8917        __igb_shutdown(pdev, &wake, 0);
8918
8919        if (system_state == SYSTEM_POWER_OFF) {
8920                pci_wake_from_d3(pdev, wake);
8921                pci_set_power_state(pdev, PCI_D3hot);
8922        }
8923}
8924
8925#ifdef CONFIG_PCI_IOV
8926static int igb_sriov_reinit(struct pci_dev *dev)
8927{
8928        struct net_device *netdev = pci_get_drvdata(dev);
8929        struct igb_adapter *adapter = netdev_priv(netdev);
8930        struct pci_dev *pdev = adapter->pdev;
8931
8932        rtnl_lock();
8933
8934        if (netif_running(netdev))
8935                igb_close(netdev);
8936        else
8937                igb_reset(adapter);
8938
8939        igb_clear_interrupt_scheme(adapter);
8940
8941        igb_init_queue_configuration(adapter);
8942
8943        if (igb_init_interrupt_scheme(adapter, true)) {
8944                rtnl_unlock();
8945                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8946                return -ENOMEM;
8947        }
8948
8949        if (netif_running(netdev))
8950                igb_open(netdev);
8951
8952        rtnl_unlock();
8953
8954        return 0;
8955}
8956
8957static int igb_pci_disable_sriov(struct pci_dev *dev)
8958{
8959        int err = igb_disable_sriov(dev);
8960
8961        if (!err)
8962                err = igb_sriov_reinit(dev);
8963
8964        return err;
8965}
8966
8967static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8968{
8969        int err = igb_enable_sriov(dev, num_vfs);
8970
8971        if (err)
8972                goto out;
8973
8974        err = igb_sriov_reinit(dev);
8975        if (!err)
8976                return num_vfs;
8977
8978out:
8979        return err;
8980}
8981
8982#endif
8983static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8984{
8985#ifdef CONFIG_PCI_IOV
8986        if (num_vfs == 0)
8987                return igb_pci_disable_sriov(dev);
8988        else
8989                return igb_pci_enable_sriov(dev, num_vfs);
8990#endif
8991        return 0;
8992}
8993
8994/**
8995 *  igb_io_error_detected - called when PCI error is detected
8996 *  @pdev: Pointer to PCI device
8997 *  @state: The current pci connection state
8998 *
8999 *  This function is called after a PCI bus error affecting
9000 *  this device has been detected.
9001 **/
9002static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9003                                              pci_channel_state_t state)
9004{
9005        struct net_device *netdev = pci_get_drvdata(pdev);
9006        struct igb_adapter *adapter = netdev_priv(netdev);
9007
9008        netif_device_detach(netdev);
9009
9010        if (state == pci_channel_io_perm_failure)
9011                return PCI_ERS_RESULT_DISCONNECT;
9012
9013        if (netif_running(netdev))
9014                igb_down(adapter);
9015        pci_disable_device(pdev);
9016
9017        /* Request a slot slot reset. */
9018        return PCI_ERS_RESULT_NEED_RESET;
9019}
9020
9021/**
9022 *  igb_io_slot_reset - called after the pci bus has been reset.
9023 *  @pdev: Pointer to PCI device
9024 *
9025 *  Restart the card from scratch, as if from a cold-boot. Implementation
9026 *  resembles the first-half of the igb_resume routine.
9027 **/
9028static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9029{
9030        struct net_device *netdev = pci_get_drvdata(pdev);
9031        struct igb_adapter *adapter = netdev_priv(netdev);
9032        struct e1000_hw *hw = &adapter->hw;
9033        pci_ers_result_t result;
9034
9035        if (pci_enable_device_mem(pdev)) {
9036                dev_err(&pdev->dev,
9037                        "Cannot re-enable PCI device after reset.\n");
9038                result = PCI_ERS_RESULT_DISCONNECT;
9039        } else {
9040                pci_set_master(pdev);
9041                pci_restore_state(pdev);
9042                pci_save_state(pdev);
9043
9044                pci_enable_wake(pdev, PCI_D3hot, 0);
9045                pci_enable_wake(pdev, PCI_D3cold, 0);
9046
9047                /* In case of PCI error, adapter lose its HW address
9048                 * so we should re-assign it here.
9049                 */
9050                hw->hw_addr = adapter->io_addr;
9051
9052                igb_reset(adapter);
9053                wr32(E1000_WUS, ~0);
9054                result = PCI_ERS_RESULT_RECOVERED;
9055        }
9056
9057        return result;
9058}
9059
9060/**
9061 *  igb_io_resume - called when traffic can start flowing again.
9062 *  @pdev: Pointer to PCI device
9063 *
9064 *  This callback is called when the error recovery driver tells us that
9065 *  its OK to resume normal operation. Implementation resembles the
9066 *  second-half of the igb_resume routine.
9067 */
9068static void igb_io_resume(struct pci_dev *pdev)
9069{
9070        struct net_device *netdev = pci_get_drvdata(pdev);
9071        struct igb_adapter *adapter = netdev_priv(netdev);
9072
9073        if (netif_running(netdev)) {
9074                if (igb_up(adapter)) {
9075                        dev_err(&pdev->dev, "igb_up failed after reset\n");
9076                        return;
9077                }
9078        }
9079
9080        netif_device_attach(netdev);
9081
9082        /* let the f/w know that the h/w is now under the control of the
9083         * driver.
9084         */
9085        igb_get_hw_control(adapter);
9086}
9087
9088/**
9089 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9090 *  @adapter: Pointer to adapter structure
9091 *  @index: Index of the RAR entry which need to be synced with MAC table
9092 **/
9093static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9094{
9095        struct e1000_hw *hw = &adapter->hw;
9096        u32 rar_low, rar_high;
9097        u8 *addr = adapter->mac_table[index].addr;
9098
9099        /* HW expects these to be in network order when they are plugged
9100         * into the registers which are little endian.  In order to guarantee
9101         * that ordering we need to do an leXX_to_cpup here in order to be
9102         * ready for the byteswap that occurs with writel
9103         */
9104        rar_low = le32_to_cpup((__le32 *)(addr));
9105        rar_high = le16_to_cpup((__le16 *)(addr + 4));
9106
9107        /* Indicate to hardware the Address is Valid. */
9108        if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9109                if (is_valid_ether_addr(addr))
9110                        rar_high |= E1000_RAH_AV;
9111
9112                if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9113                        rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9114
9115                switch (hw->mac.type) {
9116                case e1000_82575:
9117                case e1000_i210:
9118                        if (adapter->mac_table[index].state &
9119                            IGB_MAC_STATE_QUEUE_STEERING)
9120                                rar_high |= E1000_RAH_QSEL_ENABLE;
9121
9122                        rar_high |= E1000_RAH_POOL_1 *
9123                                    adapter->mac_table[index].queue;
9124                        break;
9125                default:
9126                        rar_high |= E1000_RAH_POOL_1 <<
9127                                    adapter->mac_table[index].queue;
9128                        break;
9129                }
9130        }
9131
9132        wr32(E1000_RAL(index), rar_low);
9133        wrfl();
9134        wr32(E1000_RAH(index), rar_high);
9135        wrfl();
9136}
9137
9138static int igb_set_vf_mac(struct igb_adapter *adapter,
9139                          int vf, unsigned char *mac_addr)
9140{
9141        struct e1000_hw *hw = &adapter->hw;
9142        /* VF MAC addresses start at end of receive addresses and moves
9143         * towards the first, as a result a collision should not be possible
9144         */
9145        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9146        unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9147
9148        ether_addr_copy(vf_mac_addr, mac_addr);
9149        ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9150        adapter->mac_table[rar_entry].queue = vf;
9151        adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9152        igb_rar_set_index(adapter, rar_entry);
9153
9154        return 0;
9155}
9156
9157static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9158{
9159        struct igb_adapter *adapter = netdev_priv(netdev);
9160
9161        if (vf >= adapter->vfs_allocated_count)
9162                return -EINVAL;
9163
9164        /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9165         * flag and allows to overwrite the MAC via VF netdev.  This
9166         * is necessary to allow libvirt a way to restore the original
9167         * MAC after unbinding vfio-pci and reloading igbvf after shutting
9168         * down a VM.
9169         */
9170        if (is_zero_ether_addr(mac)) {
9171                adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9172                dev_info(&adapter->pdev->dev,
9173                         "remove administratively set MAC on VF %d\n",
9174                         vf);
9175        } else if (is_valid_ether_addr(mac)) {
9176                adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9177                dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9178                         mac, vf);
9179                dev_info(&adapter->pdev->dev,
9180                         "Reload the VF driver to make this change effective.");
9181                /* Generate additional warning if PF is down */
9182                if (test_bit(__IGB_DOWN, &adapter->state)) {
9183                        dev_warn(&adapter->pdev->dev,
9184                                 "The VF MAC address has been set, but the PF device is not up.\n");
9185                        dev_warn(&adapter->pdev->dev,
9186                                 "Bring the PF device up before attempting to use the VF device.\n");
9187                }
9188        } else {
9189                return -EINVAL;
9190        }
9191        return igb_set_vf_mac(adapter, vf, mac);
9192}
9193
9194static int igb_link_mbps(int internal_link_speed)
9195{
9196        switch (internal_link_speed) {
9197        case SPEED_100:
9198                return 100;
9199        case SPEED_1000:
9200                return 1000;
9201        default:
9202                return 0;
9203        }
9204}
9205
9206static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9207                                  int link_speed)
9208{
9209        int rf_dec, rf_int;
9210        u32 bcnrc_val;
9211
9212        if (tx_rate != 0) {
9213                /* Calculate the rate factor values to set */
9214                rf_int = link_speed / tx_rate;
9215                rf_dec = (link_speed - (rf_int * tx_rate));
9216                rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9217                         tx_rate;
9218
9219                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9220                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9221                              E1000_RTTBCNRC_RF_INT_MASK);
9222                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9223        } else {
9224                bcnrc_val = 0;
9225        }
9226
9227        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9228        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9229         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9230         */
9231        wr32(E1000_RTTBCNRM, 0x14);
9232        wr32(E1000_RTTBCNRC, bcnrc_val);
9233}
9234
9235static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9236{
9237        int actual_link_speed, i;
9238        bool reset_rate = false;
9239
9240        /* VF TX rate limit was not set or not supported */
9241        if ((adapter->vf_rate_link_speed == 0) ||
9242            (adapter->hw.mac.type != e1000_82576))
9243                return;
9244
9245        actual_link_speed = igb_link_mbps(adapter->link_speed);
9246        if (actual_link_speed != adapter->vf_rate_link_speed) {
9247                reset_rate = true;
9248                adapter->vf_rate_link_speed = 0;
9249                dev_info(&adapter->pdev->dev,
9250                         "Link speed has been changed. VF Transmit rate is disabled\n");
9251        }
9252
9253        for (i = 0; i < adapter->vfs_allocated_count; i++) {
9254                if (reset_rate)
9255                        adapter->vf_data[i].tx_rate = 0;
9256
9257                igb_set_vf_rate_limit(&adapter->hw, i,
9258                                      adapter->vf_data[i].tx_rate,
9259                                      actual_link_speed);
9260        }
9261}
9262
9263static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9264                             int min_tx_rate, int max_tx_rate)
9265{
9266        struct igb_adapter *adapter = netdev_priv(netdev);
9267        struct e1000_hw *hw = &adapter->hw;
9268        int actual_link_speed;
9269
9270        if (hw->mac.type != e1000_82576)
9271                return -EOPNOTSUPP;
9272
9273        if (min_tx_rate)
9274                return -EINVAL;
9275
9276        actual_link_speed = igb_link_mbps(adapter->link_speed);
9277        if ((vf >= adapter->vfs_allocated_count) ||
9278            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9279            (max_tx_rate < 0) ||
9280            (max_tx_rate > actual_link_speed))
9281                return -EINVAL;
9282
9283        adapter->vf_rate_link_speed = actual_link_speed;
9284        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9285        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9286
9287        return 0;
9288}
9289
9290static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9291                                   bool setting)
9292{
9293        struct igb_adapter *adapter = netdev_priv(netdev);
9294        struct e1000_hw *hw = &adapter->hw;
9295        u32 reg_val, reg_offset;
9296
9297        if (!adapter->vfs_allocated_count)
9298                return -EOPNOTSUPP;
9299
9300        if (vf >= adapter->vfs_allocated_count)
9301                return -EINVAL;
9302
9303        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9304        reg_val = rd32(reg_offset);
9305        if (setting)
9306                reg_val |= (BIT(vf) |
9307                            BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9308        else
9309                reg_val &= ~(BIT(vf) |
9310                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9311        wr32(reg_offset, reg_val);
9312
9313        adapter->vf_data[vf].spoofchk_enabled = setting;
9314        return 0;
9315}
9316
9317static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9318{
9319        struct igb_adapter *adapter = netdev_priv(netdev);
9320
9321        if (vf >= adapter->vfs_allocated_count)
9322                return -EINVAL;
9323        if (adapter->vf_data[vf].trusted == setting)
9324                return 0;
9325
9326        adapter->vf_data[vf].trusted = setting;
9327
9328        dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9329                 vf, setting ? "" : "not ");
9330        return 0;
9331}
9332
9333static int igb_ndo_get_vf_config(struct net_device *netdev,
9334                                 int vf, struct ifla_vf_info *ivi)
9335{
9336        struct igb_adapter *adapter = netdev_priv(netdev);
9337        if (vf >= adapter->vfs_allocated_count)
9338                return -EINVAL;
9339        ivi->vf = vf;
9340        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9341        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9342        ivi->min_tx_rate = 0;
9343        ivi->vlan = adapter->vf_data[vf].pf_vlan;
9344        ivi->qos = adapter->vf_data[vf].pf_qos;
9345        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9346        ivi->trusted = adapter->vf_data[vf].trusted;
9347        return 0;
9348}
9349
9350static void igb_vmm_control(struct igb_adapter *adapter)
9351{
9352        struct e1000_hw *hw = &adapter->hw;
9353        u32 reg;
9354
9355        switch (hw->mac.type) {
9356        case e1000_82575:
9357        case e1000_i210:
9358        case e1000_i211:
9359        case e1000_i354:
9360        default:
9361                /* replication is not supported for 82575 */
9362                return;
9363        case e1000_82576:
9364                /* notify HW that the MAC is adding vlan tags */
9365                reg = rd32(E1000_DTXCTL);
9366                reg |= E1000_DTXCTL_VLAN_ADDED;
9367                wr32(E1000_DTXCTL, reg);
9368                /* Fall through */
9369        case e1000_82580:
9370                /* enable replication vlan tag stripping */
9371                reg = rd32(E1000_RPLOLR);
9372                reg |= E1000_RPLOLR_STRVLAN;
9373                wr32(E1000_RPLOLR, reg);
9374                /* Fall through */
9375        case e1000_i350:
9376                /* none of the above registers are supported by i350 */
9377                break;
9378        }
9379
9380        if (adapter->vfs_allocated_count) {
9381                igb_vmdq_set_loopback_pf(hw, true);
9382                igb_vmdq_set_replication_pf(hw, true);
9383                igb_vmdq_set_anti_spoofing_pf(hw, true,
9384                                              adapter->vfs_allocated_count);
9385        } else {
9386                igb_vmdq_set_loopback_pf(hw, false);
9387                igb_vmdq_set_replication_pf(hw, false);
9388        }
9389}
9390
9391static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9392{
9393        struct e1000_hw *hw = &adapter->hw;
9394        u32 dmac_thr;
9395        u16 hwm;
9396
9397        if (hw->mac.type > e1000_82580) {
9398                if (adapter->flags & IGB_FLAG_DMAC) {
9399                        u32 reg;
9400
9401                        /* force threshold to 0. */
9402                        wr32(E1000_DMCTXTH, 0);
9403
9404                        /* DMA Coalescing high water mark needs to be greater
9405                         * than the Rx threshold. Set hwm to PBA - max frame
9406                         * size in 16B units, capping it at PBA - 6KB.
9407                         */
9408                        hwm = 64 * (pba - 6);
9409                        reg = rd32(E1000_FCRTC);
9410                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9411                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9412                                & E1000_FCRTC_RTH_COAL_MASK);
9413                        wr32(E1000_FCRTC, reg);
9414
9415                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9416                         * frame size, capping it at PBA - 10KB.
9417                         */
9418                        dmac_thr = pba - 10;
9419                        reg = rd32(E1000_DMACR);
9420                        reg &= ~E1000_DMACR_DMACTHR_MASK;
9421                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9422                                & E1000_DMACR_DMACTHR_MASK);
9423
9424                        /* transition to L0x or L1 if available..*/
9425                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9426
9427                        /* watchdog timer= +-1000 usec in 32usec intervals */
9428                        reg |= (1000 >> 5);
9429
9430                        /* Disable BMC-to-OS Watchdog Enable */
9431                        if (hw->mac.type != e1000_i354)
9432                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9433
9434                        wr32(E1000_DMACR, reg);
9435
9436                        /* no lower threshold to disable
9437                         * coalescing(smart fifb)-UTRESH=0
9438                         */
9439                        wr32(E1000_DMCRTRH, 0);
9440
9441                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9442
9443                        wr32(E1000_DMCTLX, reg);
9444
9445                        /* free space in tx packet buffer to wake from
9446                         * DMA coal
9447                         */
9448                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9449                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9450
9451                        /* make low power state decision controlled
9452                         * by DMA coal
9453                         */
9454                        reg = rd32(E1000_PCIEMISC);
9455                        reg &= ~E1000_PCIEMISC_LX_DECISION;
9456                        wr32(E1000_PCIEMISC, reg);
9457                } /* endif adapter->dmac is not disabled */
9458        } else if (hw->mac.type == e1000_82580) {
9459                u32 reg = rd32(E1000_PCIEMISC);
9460
9461                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9462                wr32(E1000_DMACR, 0);
9463        }
9464}
9465
9466/**
9467 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9468 *  @hw: pointer to hardware structure
9469 *  @byte_offset: byte offset to read
9470 *  @dev_addr: device address
9471 *  @data: value read
9472 *
9473 *  Performs byte read operation over I2C interface at
9474 *  a specified device address.
9475 **/
9476s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9477                      u8 dev_addr, u8 *data)
9478{
9479        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9480        struct i2c_client *this_client = adapter->i2c_client;
9481        s32 status;
9482        u16 swfw_mask = 0;
9483
9484        if (!this_client)
9485                return E1000_ERR_I2C;
9486
9487        swfw_mask = E1000_SWFW_PHY0_SM;
9488
9489        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9490                return E1000_ERR_SWFW_SYNC;
9491
9492        status = i2c_smbus_read_byte_data(this_client, byte_offset);
9493        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9494
9495        if (status < 0)
9496                return E1000_ERR_I2C;
9497        else {
9498                *data = status;
9499                return 0;
9500        }
9501}
9502
9503/**
9504 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9505 *  @hw: pointer to hardware structure
9506 *  @byte_offset: byte offset to write
9507 *  @dev_addr: device address
9508 *  @data: value to write
9509 *
9510 *  Performs byte write operation over I2C interface at
9511 *  a specified device address.
9512 **/
9513s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9514                       u8 dev_addr, u8 data)
9515{
9516        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9517        struct i2c_client *this_client = adapter->i2c_client;
9518        s32 status;
9519        u16 swfw_mask = E1000_SWFW_PHY0_SM;
9520
9521        if (!this_client)
9522                return E1000_ERR_I2C;
9523
9524        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9525                return E1000_ERR_SWFW_SYNC;
9526        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9527        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9528
9529        if (status)
9530                return E1000_ERR_I2C;
9531        else
9532                return 0;
9533
9534}
9535
9536int igb_reinit_queues(struct igb_adapter *adapter)
9537{
9538        struct net_device *netdev = adapter->netdev;
9539        struct pci_dev *pdev = adapter->pdev;
9540        int err = 0;
9541
9542        if (netif_running(netdev))
9543                igb_close(netdev);
9544
9545        igb_reset_interrupt_capability(adapter);
9546
9547        if (igb_init_interrupt_scheme(adapter, true)) {
9548                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9549                return -ENOMEM;
9550        }
9551
9552        if (netif_running(netdev))
9553                err = igb_open(netdev);
9554
9555        return err;
9556}
9557
9558static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9559{
9560        struct igb_nfc_filter *rule;
9561
9562        spin_lock(&adapter->nfc_lock);
9563
9564        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9565                igb_erase_filter(adapter, rule);
9566
9567        hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9568                igb_erase_filter(adapter, rule);
9569
9570        spin_unlock(&adapter->nfc_lock);
9571}
9572
9573static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9574{
9575        struct igb_nfc_filter *rule;
9576
9577        spin_lock(&adapter->nfc_lock);
9578
9579        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9580                igb_add_filter(adapter, rule);
9581
9582        spin_unlock(&adapter->nfc_lock);
9583}
9584/* igb_main.c */
9585