linux/drivers/net/ethernet/natsemi/ns83820.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2#define VERSION "0.23"
   3/* ns83820.c by Benjamin LaHaise with contributions.
   4 *
   5 * Questions/comments/discussion to linux-ns83820@kvack.org.
   6 *
   7 * $Revision: 1.34.2.23 $
   8 *
   9 * Copyright 2001 Benjamin LaHaise.
  10 * Copyright 2001, 2002 Red Hat.
  11 *
  12 * Mmmm, chocolate vanilla mocha...
  13 *
  14 * ChangeLog
  15 * =========
  16 *      20010414        0.1 - created
  17 *      20010622        0.2 - basic rx and tx.
  18 *      20010711        0.3 - added duplex and link state detection support.
  19 *      20010713        0.4 - zero copy, no hangs.
  20 *                      0.5 - 64 bit dma support (davem will hate me for this)
  21 *                          - disable jumbo frames to avoid tx hangs
  22 *                          - work around tx deadlocks on my 1.02 card via
  23 *                            fiddling with TXCFG
  24 *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  25 *      20010816        0.7 - misc cleanups
  26 *      20010826        0.8 - fix critical zero copy bugs
  27 *                      0.9 - internal experiment
  28 *      20010827        0.10 - fix ia64 unaligned access.
  29 *      20010906        0.11 - accept all packets with checksum errors as
  30 *                             otherwise fragments get lost
  31 *                           - fix >> 32 bugs
  32 *                      0.12 - add statistics counters
  33 *                           - add allmulti/promisc support
  34 *      20011009        0.13 - hotplug support, other smaller pci api cleanups
  35 *      20011204        0.13a - optical transceiver support added
  36 *                              by Michael Clark <michael@metaparadigm.com>
  37 *      20011205        0.13b - call register_netdev earlier in initialization
  38 *                              suppress duplicate link status messages
  39 *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  40 *      20011204        0.15    get ppc (big endian) working
  41 *      20011218        0.16    various cleanups
  42 *      20020310        0.17    speedups
  43 *      20020610        0.18 -  actually use the pci dma api for highmem
  44 *                           -  remove pci latency register fiddling
  45 *                      0.19 -  better bist support
  46 *                           -  add ihr and reset_phy parameters
  47 *                           -  gmii bus probing
  48 *                           -  fix missed txok introduced during performance
  49 *                              tuning
  50 *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
  51 *      20040828        0.21 -  add hardware vlan accleration
  52 *                              by Neil Horman <nhorman@redhat.com>
  53 *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
  54 *                           -  removal of dead code from Adrian Bunk
  55 *                           -  fix half duplex collision behaviour
  56 * Driver Overview
  57 * ===============
  58 *
  59 * This driver was originally written for the National Semiconductor
  60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  61 * this code will turn out to be a) clean, b) correct, and c) fast.
  62 * With that in mind, I'm aiming to split the code up as much as
  63 * reasonably possible.  At present there are X major sections that
  64 * break down into a) packet receive, b) packet transmit, c) link
  65 * management, d) initialization and configuration.  Where possible,
  66 * these code paths are designed to run in parallel.
  67 *
  68 * This driver has been tested and found to work with the following
  69 * cards (in no particular order):
  70 *
  71 *      Cameo           SOHO-GA2000T    SOHO-GA2500T
  72 *      D-Link          DGE-500T
  73 *      PureData        PDP8023Z-TG
  74 *      SMC             SMC9452TX       SMC9462TX
  75 *      Netgear         GA621
  76 *
  77 * Special thanks to SMC for providing hardware to test this driver on.
  78 *
  79 * Reports of success or failure would be greatly appreciated.
  80 */
  81//#define dprintk               printk
  82#define dprintk(x...)           do { } while (0)
  83
  84#include <linux/module.h>
  85#include <linux/moduleparam.h>
  86#include <linux/types.h>
  87#include <linux/pci.h>
  88#include <linux/dma-mapping.h>
  89#include <linux/netdevice.h>
  90#include <linux/etherdevice.h>
  91#include <linux/delay.h>
  92#include <linux/workqueue.h>
  93#include <linux/init.h>
  94#include <linux/interrupt.h>
  95#include <linux/ip.h>   /* for iph */
  96#include <linux/in.h>   /* for IPPROTO_... */
  97#include <linux/compiler.h>
  98#include <linux/prefetch.h>
  99#include <linux/ethtool.h>
 100#include <linux/sched.h>
 101#include <linux/timer.h>
 102#include <linux/if_vlan.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/jiffies.h>
 105#include <linux/slab.h>
 106
 107#include <asm/io.h>
 108#include <linux/uaccess.h>
 109
 110#define DRV_NAME "ns83820"
 111
 112/* Global parameters.  See module_param near the bottom. */
 113static int ihr = 2;
 114static int reset_phy = 0;
 115static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
 116
 117/* Dprintk is used for more interesting debug events */
 118#undef Dprintk
 119#define Dprintk                 dprintk
 120
 121/* tunables */
 122#define RX_BUF_SIZE     1500    /* 8192 */
 123#if IS_ENABLED(CONFIG_VLAN_8021Q)
 124#define NS83820_VLAN_ACCEL_SUPPORT
 125#endif
 126
 127/* Must not exceed ~65000. */
 128#define NR_RX_DESC      64
 129#define NR_TX_DESC      128
 130
 131/* not tunable */
 132#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
 133
 134#define MIN_TX_DESC_FREE        8
 135
 136/* register defines */
 137#define CFGCS           0x04
 138
 139#define CR_TXE          0x00000001
 140#define CR_TXD          0x00000002
 141/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 142 * The Receive engine skips one descriptor and moves
 143 * onto the next one!! */
 144#define CR_RXE          0x00000004
 145#define CR_RXD          0x00000008
 146#define CR_TXR          0x00000010
 147#define CR_RXR          0x00000020
 148#define CR_SWI          0x00000080
 149#define CR_RST          0x00000100
 150
 151#define PTSCR_EEBIST_FAIL       0x00000001
 152#define PTSCR_EEBIST_EN         0x00000002
 153#define PTSCR_EELOAD_EN         0x00000004
 154#define PTSCR_RBIST_FAIL        0x000001b8
 155#define PTSCR_RBIST_DONE        0x00000200
 156#define PTSCR_RBIST_EN          0x00000400
 157#define PTSCR_RBIST_RST         0x00002000
 158
 159#define MEAR_EEDI               0x00000001
 160#define MEAR_EEDO               0x00000002
 161#define MEAR_EECLK              0x00000004
 162#define MEAR_EESEL              0x00000008
 163#define MEAR_MDIO               0x00000010
 164#define MEAR_MDDIR              0x00000020
 165#define MEAR_MDC                0x00000040
 166
 167#define ISR_TXDESC3     0x40000000
 168#define ISR_TXDESC2     0x20000000
 169#define ISR_TXDESC1     0x10000000
 170#define ISR_TXDESC0     0x08000000
 171#define ISR_RXDESC3     0x04000000
 172#define ISR_RXDESC2     0x02000000
 173#define ISR_RXDESC1     0x01000000
 174#define ISR_RXDESC0     0x00800000
 175#define ISR_TXRCMP      0x00400000
 176#define ISR_RXRCMP      0x00200000
 177#define ISR_DPERR       0x00100000
 178#define ISR_SSERR       0x00080000
 179#define ISR_RMABT       0x00040000
 180#define ISR_RTABT       0x00020000
 181#define ISR_RXSOVR      0x00010000
 182#define ISR_HIBINT      0x00008000
 183#define ISR_PHY         0x00004000
 184#define ISR_PME         0x00002000
 185#define ISR_SWI         0x00001000
 186#define ISR_MIB         0x00000800
 187#define ISR_TXURN       0x00000400
 188#define ISR_TXIDLE      0x00000200
 189#define ISR_TXERR       0x00000100
 190#define ISR_TXDESC      0x00000080
 191#define ISR_TXOK        0x00000040
 192#define ISR_RXORN       0x00000020
 193#define ISR_RXIDLE      0x00000010
 194#define ISR_RXEARLY     0x00000008
 195#define ISR_RXERR       0x00000004
 196#define ISR_RXDESC      0x00000002
 197#define ISR_RXOK        0x00000001
 198
 199#define TXCFG_CSI       0x80000000
 200#define TXCFG_HBI       0x40000000
 201#define TXCFG_MLB       0x20000000
 202#define TXCFG_ATP       0x10000000
 203#define TXCFG_ECRETRY   0x00800000
 204#define TXCFG_BRST_DIS  0x00080000
 205#define TXCFG_MXDMA1024 0x00000000
 206#define TXCFG_MXDMA512  0x00700000
 207#define TXCFG_MXDMA256  0x00600000
 208#define TXCFG_MXDMA128  0x00500000
 209#define TXCFG_MXDMA64   0x00400000
 210#define TXCFG_MXDMA32   0x00300000
 211#define TXCFG_MXDMA16   0x00200000
 212#define TXCFG_MXDMA8    0x00100000
 213
 214#define CFG_LNKSTS      0x80000000
 215#define CFG_SPDSTS      0x60000000
 216#define CFG_SPDSTS1     0x40000000
 217#define CFG_SPDSTS0     0x20000000
 218#define CFG_DUPSTS      0x10000000
 219#define CFG_TBI_EN      0x01000000
 220#define CFG_MODE_1000   0x00400000
 221/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 222 * Read the Phy response and then configure the MAC accordingly */
 223#define CFG_AUTO_1000   0x00200000
 224#define CFG_PINT_CTL    0x001c0000
 225#define CFG_PINT_DUPSTS 0x00100000
 226#define CFG_PINT_LNKSTS 0x00080000
 227#define CFG_PINT_SPDSTS 0x00040000
 228#define CFG_TMRTEST     0x00020000
 229#define CFG_MRM_DIS     0x00010000
 230#define CFG_MWI_DIS     0x00008000
 231#define CFG_T64ADDR     0x00004000
 232#define CFG_PCI64_DET   0x00002000
 233#define CFG_DATA64_EN   0x00001000
 234#define CFG_M64ADDR     0x00000800
 235#define CFG_PHY_RST     0x00000400
 236#define CFG_PHY_DIS     0x00000200
 237#define CFG_EXTSTS_EN   0x00000100
 238#define CFG_REQALG      0x00000080
 239#define CFG_SB          0x00000040
 240#define CFG_POW         0x00000020
 241#define CFG_EXD         0x00000010
 242#define CFG_PESEL       0x00000008
 243#define CFG_BROM_DIS    0x00000004
 244#define CFG_EXT_125     0x00000002
 245#define CFG_BEM         0x00000001
 246
 247#define EXTSTS_UDPPKT   0x00200000
 248#define EXTSTS_TCPPKT   0x00080000
 249#define EXTSTS_IPPKT    0x00020000
 250#define EXTSTS_VPKT     0x00010000
 251#define EXTSTS_VTG_MASK 0x0000ffff
 252
 253#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 254
 255#define MIBC_MIBS       0x00000008
 256#define MIBC_ACLR       0x00000004
 257#define MIBC_FRZ        0x00000002
 258#define MIBC_WRN        0x00000001
 259
 260#define PCR_PSEN        (1 << 31)
 261#define PCR_PS_MCAST    (1 << 30)
 262#define PCR_PS_DA       (1 << 29)
 263#define PCR_STHI_8      (3 << 23)
 264#define PCR_STLO_4      (1 << 23)
 265#define PCR_FFHI_8K     (3 << 21)
 266#define PCR_FFLO_4K     (1 << 21)
 267#define PCR_PAUSE_CNT   0xFFFE
 268
 269#define RXCFG_AEP       0x80000000
 270#define RXCFG_ARP       0x40000000
 271#define RXCFG_STRIPCRC  0x20000000
 272#define RXCFG_RX_FD     0x10000000
 273#define RXCFG_ALP       0x08000000
 274#define RXCFG_AIRL      0x04000000
 275#define RXCFG_MXDMA512  0x00700000
 276#define RXCFG_DRTH      0x0000003e
 277#define RXCFG_DRTH0     0x00000002
 278
 279#define RFCR_RFEN       0x80000000
 280#define RFCR_AAB        0x40000000
 281#define RFCR_AAM        0x20000000
 282#define RFCR_AAU        0x10000000
 283#define RFCR_APM        0x08000000
 284#define RFCR_APAT       0x07800000
 285#define RFCR_APAT3      0x04000000
 286#define RFCR_APAT2      0x02000000
 287#define RFCR_APAT1      0x01000000
 288#define RFCR_APAT0      0x00800000
 289#define RFCR_AARP       0x00400000
 290#define RFCR_MHEN       0x00200000
 291#define RFCR_UHEN       0x00100000
 292#define RFCR_ULM        0x00080000
 293
 294#define VRCR_RUDPE      0x00000080
 295#define VRCR_RTCPE      0x00000040
 296#define VRCR_RIPE       0x00000020
 297#define VRCR_IPEN       0x00000010
 298#define VRCR_DUTF       0x00000008
 299#define VRCR_DVTF       0x00000004
 300#define VRCR_VTREN      0x00000002
 301#define VRCR_VTDEN      0x00000001
 302
 303#define VTCR_PPCHK      0x00000008
 304#define VTCR_GCHK       0x00000004
 305#define VTCR_VPPTI      0x00000002
 306#define VTCR_VGTI       0x00000001
 307
 308#define CR              0x00
 309#define CFG             0x04
 310#define MEAR            0x08
 311#define PTSCR           0x0c
 312#define ISR             0x10
 313#define IMR             0x14
 314#define IER             0x18
 315#define IHR             0x1c
 316#define TXDP            0x20
 317#define TXDP_HI         0x24
 318#define TXCFG           0x28
 319#define GPIOR           0x2c
 320#define RXDP            0x30
 321#define RXDP_HI         0x34
 322#define RXCFG           0x38
 323#define PQCR            0x3c
 324#define WCSR            0x40
 325#define PCR             0x44
 326#define RFCR            0x48
 327#define RFDR            0x4c
 328
 329#define SRR             0x58
 330
 331#define VRCR            0xbc
 332#define VTCR            0xc0
 333#define VDR             0xc4
 334#define CCSR            0xcc
 335
 336#define TBICR           0xe0
 337#define TBISR           0xe4
 338#define TANAR           0xe8
 339#define TANLPAR         0xec
 340#define TANER           0xf0
 341#define TESR            0xf4
 342
 343#define TBICR_MR_AN_ENABLE      0x00001000
 344#define TBICR_MR_RESTART_AN     0x00000200
 345
 346#define TBISR_MR_LINK_STATUS    0x00000020
 347#define TBISR_MR_AN_COMPLETE    0x00000004
 348
 349#define TANAR_PS2               0x00000100
 350#define TANAR_PS1               0x00000080
 351#define TANAR_HALF_DUP          0x00000040
 352#define TANAR_FULL_DUP          0x00000020
 353
 354#define GPIOR_GP5_OE            0x00000200
 355#define GPIOR_GP4_OE            0x00000100
 356#define GPIOR_GP3_OE            0x00000080
 357#define GPIOR_GP2_OE            0x00000040
 358#define GPIOR_GP1_OE            0x00000020
 359#define GPIOR_GP3_OUT           0x00000004
 360#define GPIOR_GP1_OUT           0x00000001
 361
 362#define LINK_AUTONEGOTIATE      0x01
 363#define LINK_DOWN               0x02
 364#define LINK_UP                 0x04
 365
 366#define HW_ADDR_LEN     sizeof(dma_addr_t)
 367#define desc_addr_set(desc, addr)                               \
 368        do {                                                    \
 369                ((desc)[0] = cpu_to_le32(addr));                \
 370                if (HW_ADDR_LEN == 8)                           \
 371                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
 372        } while(0)
 373#define desc_addr_get(desc)                                     \
 374        (le32_to_cpu((desc)[0]) | \
 375        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 376
 377#define DESC_LINK               0
 378#define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
 379#define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
 380#define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
 381
 382#define CMDSTS_OWN      0x80000000
 383#define CMDSTS_MORE     0x40000000
 384#define CMDSTS_INTR     0x20000000
 385#define CMDSTS_ERR      0x10000000
 386#define CMDSTS_OK       0x08000000
 387#define CMDSTS_RUNT     0x00200000
 388#define CMDSTS_LEN_MASK 0x0000ffff
 389
 390#define CMDSTS_DEST_MASK        0x01800000
 391#define CMDSTS_DEST_SELF        0x00800000
 392#define CMDSTS_DEST_MULTI       0x01000000
 393
 394#define DESC_SIZE       8               /* Should be cache line sized */
 395
 396struct rx_info {
 397        spinlock_t      lock;
 398        int             up;
 399        unsigned long   idle;
 400
 401        struct sk_buff  *skbs[NR_RX_DESC];
 402
 403        __le32          *next_rx_desc;
 404        u16             next_rx, next_empty;
 405
 406        __le32          *descs;
 407        dma_addr_t      phy_descs;
 408};
 409
 410
 411struct ns83820 {
 412        u8                      __iomem *base;
 413
 414        struct pci_dev          *pci_dev;
 415        struct net_device       *ndev;
 416
 417        struct rx_info          rx_info;
 418        struct tasklet_struct   rx_tasklet;
 419
 420        unsigned                ihr;
 421        struct work_struct      tq_refill;
 422
 423        /* protects everything below.  irqsave when using. */
 424        spinlock_t              misc_lock;
 425
 426        u32                     CFG_cache;
 427
 428        u32                     MEAR_cache;
 429        u32                     IMR_cache;
 430
 431        unsigned                linkstate;
 432
 433        spinlock_t      tx_lock;
 434
 435        u16             tx_done_idx;
 436        u16             tx_idx;
 437        volatile u16    tx_free_idx;    /* idx of free desc chain */
 438        u16             tx_intr_idx;
 439
 440        atomic_t        nr_tx_skbs;
 441        struct sk_buff  *tx_skbs[NR_TX_DESC];
 442
 443        char            pad[16] __attribute__((aligned(16)));
 444        __le32          *tx_descs;
 445        dma_addr_t      tx_phy_descs;
 446
 447        struct timer_list       tx_watchdog;
 448};
 449
 450static inline struct ns83820 *PRIV(struct net_device *dev)
 451{
 452        return netdev_priv(dev);
 453}
 454
 455#define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
 456
 457static inline void kick_rx(struct net_device *ndev)
 458{
 459        struct ns83820 *dev = PRIV(ndev);
 460        dprintk("kick_rx: maybe kicking\n");
 461        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 462                dprintk("actually kicking\n");
 463                writel(dev->rx_info.phy_descs +
 464                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 465                       dev->base + RXDP);
 466                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 467                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 468                                ndev->name);
 469                __kick_rx(dev);
 470        }
 471}
 472
 473//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 474#define start_tx_okay(dev)      \
 475        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 476
 477/* Packet Receiver
 478 *
 479 * The hardware supports linked lists of receive descriptors for
 480 * which ownership is transferred back and forth by means of an
 481 * ownership bit.  While the hardware does support the use of a
 482 * ring for receive descriptors, we only make use of a chain in
 483 * an attempt to reduce bus traffic under heavy load scenarios.
 484 * This will also make bugs a bit more obvious.  The current code
 485 * only makes use of a single rx chain; I hope to implement
 486 * priority based rx for version 1.0.  Goal: even under overload
 487 * conditions, still route realtime traffic with as low jitter as
 488 * possible.
 489 */
 490static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 491{
 492        desc_addr_set(desc + DESC_LINK, link);
 493        desc_addr_set(desc + DESC_BUFPTR, buf);
 494        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 495        mb();
 496        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 497}
 498
 499#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 500static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 501{
 502        unsigned next_empty;
 503        u32 cmdsts;
 504        __le32 *sg;
 505        dma_addr_t buf;
 506
 507        next_empty = dev->rx_info.next_empty;
 508
 509        /* don't overrun last rx marker */
 510        if (unlikely(nr_rx_empty(dev) <= 2)) {
 511                kfree_skb(skb);
 512                return 1;
 513        }
 514
 515#if 0
 516        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 517                dev->rx_info.next_empty,
 518                dev->rx_info.nr_used,
 519                dev->rx_info.next_rx
 520                );
 521#endif
 522
 523        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 524        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 525        dev->rx_info.skbs[next_empty] = skb;
 526
 527        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 528        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 529        buf = pci_map_single(dev->pci_dev, skb->data,
 530                             REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 531        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 532        /* update link of previous rx */
 533        if (likely(next_empty != dev->rx_info.next_rx))
 534                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 535
 536        return 0;
 537}
 538
 539static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 540{
 541        struct ns83820 *dev = PRIV(ndev);
 542        unsigned i;
 543        unsigned long flags = 0;
 544
 545        if (unlikely(nr_rx_empty(dev) <= 2))
 546                return 0;
 547
 548        dprintk("rx_refill(%p)\n", ndev);
 549        if (gfp == GFP_ATOMIC)
 550                spin_lock_irqsave(&dev->rx_info.lock, flags);
 551        for (i=0; i<NR_RX_DESC; i++) {
 552                struct sk_buff *skb;
 553                long res;
 554
 555                /* extra 16 bytes for alignment */
 556                skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 557                if (unlikely(!skb))
 558                        break;
 559
 560                skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 561                if (gfp != GFP_ATOMIC)
 562                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 563                res = ns83820_add_rx_skb(dev, skb);
 564                if (gfp != GFP_ATOMIC)
 565                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 566                if (res) {
 567                        i = 1;
 568                        break;
 569                }
 570        }
 571        if (gfp == GFP_ATOMIC)
 572                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 573
 574        return i ? 0 : -ENOMEM;
 575}
 576
 577static void rx_refill_atomic(struct net_device *ndev)
 578{
 579        rx_refill(ndev, GFP_ATOMIC);
 580}
 581
 582/* REFILL */
 583static inline void queue_refill(struct work_struct *work)
 584{
 585        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 586        struct net_device *ndev = dev->ndev;
 587
 588        rx_refill(ndev, GFP_KERNEL);
 589        if (dev->rx_info.up)
 590                kick_rx(ndev);
 591}
 592
 593static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 594{
 595        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 596}
 597
 598static void phy_intr(struct net_device *ndev)
 599{
 600        struct ns83820 *dev = PRIV(ndev);
 601        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 602        u32 cfg, new_cfg;
 603        u32 tbisr, tanar, tanlpar;
 604        int speed, fullduplex, newlinkstate;
 605
 606        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 607
 608        if (dev->CFG_cache & CFG_TBI_EN) {
 609                /* we have an optical transceiver */
 610                tbisr = readl(dev->base + TBISR);
 611                tanar = readl(dev->base + TANAR);
 612                tanlpar = readl(dev->base + TANLPAR);
 613                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 614                        tbisr, tanar, tanlpar);
 615
 616                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 617                      (tanar & TANAR_FULL_DUP)) ) {
 618
 619                        /* both of us are full duplex */
 620                        writel(readl(dev->base + TXCFG)
 621                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 622                               dev->base + TXCFG);
 623                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 624                               dev->base + RXCFG);
 625                        /* Light up full duplex LED */
 626                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 627                               dev->base + GPIOR);
 628
 629                } else if (((tanlpar & TANAR_HALF_DUP) &&
 630                            (tanar & TANAR_HALF_DUP)) ||
 631                           ((tanlpar & TANAR_FULL_DUP) &&
 632                            (tanar & TANAR_HALF_DUP)) ||
 633                           ((tanlpar & TANAR_HALF_DUP) &&
 634                            (tanar & TANAR_FULL_DUP))) {
 635
 636                        /* one or both of us are half duplex */
 637                        writel((readl(dev->base + TXCFG)
 638                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 639                               dev->base + TXCFG);
 640                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 641                               dev->base + RXCFG);
 642                        /* Turn off full duplex LED */
 643                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 644                               dev->base + GPIOR);
 645                }
 646
 647                speed = 4; /* 1000F */
 648
 649        } else {
 650                /* we have a copper transceiver */
 651                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 652
 653                if (cfg & CFG_SPDSTS1)
 654                        new_cfg |= CFG_MODE_1000;
 655                else
 656                        new_cfg &= ~CFG_MODE_1000;
 657
 658                speed = ((cfg / CFG_SPDSTS0) & 3);
 659                fullduplex = (cfg & CFG_DUPSTS);
 660
 661                if (fullduplex) {
 662                        new_cfg |= CFG_SB;
 663                        writel(readl(dev->base + TXCFG)
 664                                        | TXCFG_CSI | TXCFG_HBI,
 665                               dev->base + TXCFG);
 666                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 667                               dev->base + RXCFG);
 668                } else {
 669                        writel(readl(dev->base + TXCFG)
 670                                        & ~(TXCFG_CSI | TXCFG_HBI),
 671                               dev->base + TXCFG);
 672                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 673                               dev->base + RXCFG);
 674                }
 675
 676                if ((cfg & CFG_LNKSTS) &&
 677                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 678                        writel(new_cfg, dev->base + CFG);
 679                        dev->CFG_cache = new_cfg;
 680                }
 681
 682                dev->CFG_cache &= ~CFG_SPDSTS;
 683                dev->CFG_cache |= cfg & CFG_SPDSTS;
 684        }
 685
 686        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 687
 688        if (newlinkstate & LINK_UP &&
 689            dev->linkstate != newlinkstate) {
 690                netif_start_queue(ndev);
 691                netif_wake_queue(ndev);
 692                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 693                        ndev->name,
 694                        speeds[speed],
 695                        fullduplex ? "full" : "half");
 696        } else if (newlinkstate & LINK_DOWN &&
 697                   dev->linkstate != newlinkstate) {
 698                netif_stop_queue(ndev);
 699                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 700        }
 701
 702        dev->linkstate = newlinkstate;
 703}
 704
 705static int ns83820_setup_rx(struct net_device *ndev)
 706{
 707        struct ns83820 *dev = PRIV(ndev);
 708        unsigned i;
 709        int ret;
 710
 711        dprintk("ns83820_setup_rx(%p)\n", ndev);
 712
 713        dev->rx_info.idle = 1;
 714        dev->rx_info.next_rx = 0;
 715        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 716        dev->rx_info.next_empty = 0;
 717
 718        for (i=0; i<NR_RX_DESC; i++)
 719                clear_rx_desc(dev, i);
 720
 721        writel(0, dev->base + RXDP_HI);
 722        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 723
 724        ret = rx_refill(ndev, GFP_KERNEL);
 725        if (!ret) {
 726                dprintk("starting receiver\n");
 727                /* prevent the interrupt handler from stomping on us */
 728                spin_lock_irq(&dev->rx_info.lock);
 729
 730                writel(0x0001, dev->base + CCSR);
 731                writel(0, dev->base + RFCR);
 732                writel(0x7fc00000, dev->base + RFCR);
 733                writel(0xffc00000, dev->base + RFCR);
 734
 735                dev->rx_info.up = 1;
 736
 737                phy_intr(ndev);
 738
 739                /* Okay, let it rip */
 740                spin_lock(&dev->misc_lock);
 741                dev->IMR_cache |= ISR_PHY;
 742                dev->IMR_cache |= ISR_RXRCMP;
 743                //dev->IMR_cache |= ISR_RXERR;
 744                //dev->IMR_cache |= ISR_RXOK;
 745                dev->IMR_cache |= ISR_RXORN;
 746                dev->IMR_cache |= ISR_RXSOVR;
 747                dev->IMR_cache |= ISR_RXDESC;
 748                dev->IMR_cache |= ISR_RXIDLE;
 749                dev->IMR_cache |= ISR_TXDESC;
 750                dev->IMR_cache |= ISR_TXIDLE;
 751
 752                writel(dev->IMR_cache, dev->base + IMR);
 753                writel(1, dev->base + IER);
 754                spin_unlock(&dev->misc_lock);
 755
 756                kick_rx(ndev);
 757
 758                spin_unlock_irq(&dev->rx_info.lock);
 759        }
 760        return ret;
 761}
 762
 763static void ns83820_cleanup_rx(struct ns83820 *dev)
 764{
 765        unsigned i;
 766        unsigned long flags;
 767
 768        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 769
 770        /* disable receive interrupts */
 771        spin_lock_irqsave(&dev->misc_lock, flags);
 772        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 773        writel(dev->IMR_cache, dev->base + IMR);
 774        spin_unlock_irqrestore(&dev->misc_lock, flags);
 775
 776        /* synchronize with the interrupt handler and kill it */
 777        dev->rx_info.up = 0;
 778        synchronize_irq(dev->pci_dev->irq);
 779
 780        /* touch the pci bus... */
 781        readl(dev->base + IMR);
 782
 783        /* assumes the transmitter is already disabled and reset */
 784        writel(0, dev->base + RXDP_HI);
 785        writel(0, dev->base + RXDP);
 786
 787        for (i=0; i<NR_RX_DESC; i++) {
 788                struct sk_buff *skb = dev->rx_info.skbs[i];
 789                dev->rx_info.skbs[i] = NULL;
 790                clear_rx_desc(dev, i);
 791                kfree_skb(skb);
 792        }
 793}
 794
 795static void ns83820_rx_kick(struct net_device *ndev)
 796{
 797        struct ns83820 *dev = PRIV(ndev);
 798        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 799                if (dev->rx_info.up) {
 800                        rx_refill_atomic(ndev);
 801                        kick_rx(ndev);
 802                }
 803        }
 804
 805        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 806                schedule_work(&dev->tq_refill);
 807        else
 808                kick_rx(ndev);
 809        if (dev->rx_info.idle)
 810                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 811}
 812
 813/* rx_irq
 814 *
 815 */
 816static void rx_irq(struct net_device *ndev)
 817{
 818        struct ns83820 *dev = PRIV(ndev);
 819        struct rx_info *info = &dev->rx_info;
 820        unsigned next_rx;
 821        int rx_rc, len;
 822        u32 cmdsts;
 823        __le32 *desc;
 824        unsigned long flags;
 825        int nr = 0;
 826
 827        dprintk("rx_irq(%p)\n", ndev);
 828        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 829                readl(dev->base + RXDP),
 830                (long)(dev->rx_info.phy_descs),
 831                (int)dev->rx_info.next_rx,
 832                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 833                (int)dev->rx_info.next_empty,
 834                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 835                );
 836
 837        spin_lock_irqsave(&info->lock, flags);
 838        if (!info->up)
 839                goto out;
 840
 841        dprintk("walking descs\n");
 842        next_rx = info->next_rx;
 843        desc = info->next_rx_desc;
 844        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 845               (cmdsts != CMDSTS_OWN)) {
 846                struct sk_buff *skb;
 847                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 848                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 849
 850                dprintk("cmdsts: %08x\n", cmdsts);
 851                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 852                dprintk("extsts: %08x\n", extsts);
 853
 854                skb = info->skbs[next_rx];
 855                info->skbs[next_rx] = NULL;
 856                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 857
 858                mb();
 859                clear_rx_desc(dev, next_rx);
 860
 861                pci_unmap_single(dev->pci_dev, bufptr,
 862                                 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 863                len = cmdsts & CMDSTS_LEN_MASK;
 864#ifdef NS83820_VLAN_ACCEL_SUPPORT
 865                /* NH: As was mentioned below, this chip is kinda
 866                 * brain dead about vlan tag stripping.  Frames
 867                 * that are 64 bytes with a vlan header appended
 868                 * like arp frames, or pings, are flagged as Runts
 869                 * when the tag is stripped and hardware.  This
 870                 * also means that the OK bit in the descriptor
 871                 * is cleared when the frame comes in so we have
 872                 * to do a specific length check here to make sure
 873                 * the frame would have been ok, had we not stripped
 874                 * the tag.
 875                 */
 876                if (likely((CMDSTS_OK & cmdsts) ||
 877                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 878#else
 879                if (likely(CMDSTS_OK & cmdsts)) {
 880#endif
 881                        skb_put(skb, len);
 882                        if (unlikely(!skb))
 883                                goto netdev_mangle_me_harder_failed;
 884                        if (cmdsts & CMDSTS_DEST_MULTI)
 885                                ndev->stats.multicast++;
 886                        ndev->stats.rx_packets++;
 887                        ndev->stats.rx_bytes += len;
 888                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 889                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 890                        } else {
 891                                skb_checksum_none_assert(skb);
 892                        }
 893                        skb->protocol = eth_type_trans(skb, ndev);
 894#ifdef NS83820_VLAN_ACCEL_SUPPORT
 895                        if(extsts & EXTSTS_VPKT) {
 896                                unsigned short tag;
 897
 898                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 899                                __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
 900                        }
 901#endif
 902                        rx_rc = netif_rx(skb);
 903                        if (NET_RX_DROP == rx_rc) {
 904netdev_mangle_me_harder_failed:
 905                                ndev->stats.rx_dropped++;
 906                        }
 907                } else {
 908                        dev_kfree_skb_irq(skb);
 909                }
 910
 911                nr++;
 912                next_rx = info->next_rx;
 913                desc = info->descs + (DESC_SIZE * next_rx);
 914        }
 915        info->next_rx = next_rx;
 916        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 917
 918out:
 919        if (0 && !nr) {
 920                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 921        }
 922
 923        spin_unlock_irqrestore(&info->lock, flags);
 924}
 925
 926static void rx_action(unsigned long _dev)
 927{
 928        struct net_device *ndev = (void *)_dev;
 929        struct ns83820 *dev = PRIV(ndev);
 930        rx_irq(ndev);
 931        writel(ihr, dev->base + IHR);
 932
 933        spin_lock_irq(&dev->misc_lock);
 934        dev->IMR_cache |= ISR_RXDESC;
 935        writel(dev->IMR_cache, dev->base + IMR);
 936        spin_unlock_irq(&dev->misc_lock);
 937
 938        rx_irq(ndev);
 939        ns83820_rx_kick(ndev);
 940}
 941
 942/* Packet Transmit code
 943 */
 944static inline void kick_tx(struct ns83820 *dev)
 945{
 946        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 947                dev, dev->tx_idx, dev->tx_free_idx);
 948        writel(CR_TXE, dev->base + CR);
 949}
 950
 951/* No spinlock needed on the transmit irq path as the interrupt handler is
 952 * serialized.
 953 */
 954static void do_tx_done(struct net_device *ndev)
 955{
 956        struct ns83820 *dev = PRIV(ndev);
 957        u32 cmdsts, tx_done_idx;
 958        __le32 *desc;
 959
 960        dprintk("do_tx_done(%p)\n", ndev);
 961        tx_done_idx = dev->tx_done_idx;
 962        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 963
 964        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 965                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 966        while ((tx_done_idx != dev->tx_free_idx) &&
 967               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 968                struct sk_buff *skb;
 969                unsigned len;
 970                dma_addr_t addr;
 971
 972                if (cmdsts & CMDSTS_ERR)
 973                        ndev->stats.tx_errors++;
 974                if (cmdsts & CMDSTS_OK)
 975                        ndev->stats.tx_packets++;
 976                if (cmdsts & CMDSTS_OK)
 977                        ndev->stats.tx_bytes += cmdsts & 0xffff;
 978
 979                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 980                        tx_done_idx, dev->tx_free_idx, cmdsts);
 981                skb = dev->tx_skbs[tx_done_idx];
 982                dev->tx_skbs[tx_done_idx] = NULL;
 983                dprintk("done(%p)\n", skb);
 984
 985                len = cmdsts & CMDSTS_LEN_MASK;
 986                addr = desc_addr_get(desc + DESC_BUFPTR);
 987                if (skb) {
 988                        pci_unmap_single(dev->pci_dev,
 989                                        addr,
 990                                        len,
 991                                        PCI_DMA_TODEVICE);
 992                        dev_consume_skb_irq(skb);
 993                        atomic_dec(&dev->nr_tx_skbs);
 994                } else
 995                        pci_unmap_page(dev->pci_dev,
 996                                        addr,
 997                                        len,
 998                                        PCI_DMA_TODEVICE);
 999
1000                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1001                dev->tx_done_idx = tx_done_idx;
1002                desc[DESC_CMDSTS] = cpu_to_le32(0);
1003                mb();
1004                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1005        }
1006
1007        /* Allow network stack to resume queueing packets after we've
1008         * finished transmitting at least 1/4 of the packets in the queue.
1009         */
1010        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1011                dprintk("start_queue(%p)\n", ndev);
1012                netif_start_queue(ndev);
1013                netif_wake_queue(ndev);
1014        }
1015}
1016
1017static void ns83820_cleanup_tx(struct ns83820 *dev)
1018{
1019        unsigned i;
1020
1021        for (i=0; i<NR_TX_DESC; i++) {
1022                struct sk_buff *skb = dev->tx_skbs[i];
1023                dev->tx_skbs[i] = NULL;
1024                if (skb) {
1025                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1026                        pci_unmap_single(dev->pci_dev,
1027                                        desc_addr_get(desc + DESC_BUFPTR),
1028                                        le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1029                                        PCI_DMA_TODEVICE);
1030                        dev_kfree_skb_irq(skb);
1031                        atomic_dec(&dev->nr_tx_skbs);
1032                }
1033        }
1034
1035        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1036}
1037
1038/* transmit routine.  This code relies on the network layer serializing
1039 * its calls in, but will run happily in parallel with the interrupt
1040 * handler.  This code currently has provisions for fragmenting tx buffers
1041 * while trying to track down a bug in either the zero copy code or
1042 * the tx fifo (hence the MAX_FRAG_LEN).
1043 */
1044static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1045                                           struct net_device *ndev)
1046{
1047        struct ns83820 *dev = PRIV(ndev);
1048        u32 free_idx, cmdsts, extsts;
1049        int nr_free, nr_frags;
1050        unsigned tx_done_idx, last_idx;
1051        dma_addr_t buf;
1052        unsigned len;
1053        skb_frag_t *frag;
1054        int stopped = 0;
1055        int do_intr = 0;
1056        volatile __le32 *first_desc;
1057
1058        dprintk("ns83820_hard_start_xmit\n");
1059
1060        nr_frags =  skb_shinfo(skb)->nr_frags;
1061again:
1062        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1063                netif_stop_queue(ndev);
1064                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1065                        return NETDEV_TX_BUSY;
1066                netif_start_queue(ndev);
1067        }
1068
1069        last_idx = free_idx = dev->tx_free_idx;
1070        tx_done_idx = dev->tx_done_idx;
1071        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1072        nr_free -= 1;
1073        if (nr_free <= nr_frags) {
1074                dprintk("stop_queue - not enough(%p)\n", ndev);
1075                netif_stop_queue(ndev);
1076
1077                /* Check again: we may have raced with a tx done irq */
1078                if (dev->tx_done_idx != tx_done_idx) {
1079                        dprintk("restart queue(%p)\n", ndev);
1080                        netif_start_queue(ndev);
1081                        goto again;
1082                }
1083                return NETDEV_TX_BUSY;
1084        }
1085
1086        if (free_idx == dev->tx_intr_idx) {
1087                do_intr = 1;
1088                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1089        }
1090
1091        nr_free -= nr_frags;
1092        if (nr_free < MIN_TX_DESC_FREE) {
1093                dprintk("stop_queue - last entry(%p)\n", ndev);
1094                netif_stop_queue(ndev);
1095                stopped = 1;
1096        }
1097
1098        frag = skb_shinfo(skb)->frags;
1099        if (!nr_frags)
1100                frag = NULL;
1101        extsts = 0;
1102        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1103                extsts |= EXTSTS_IPPKT;
1104                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1105                        extsts |= EXTSTS_TCPPKT;
1106                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1107                        extsts |= EXTSTS_UDPPKT;
1108        }
1109
1110#ifdef NS83820_VLAN_ACCEL_SUPPORT
1111        if (skb_vlan_tag_present(skb)) {
1112                /* fetch the vlan tag info out of the
1113                 * ancillary data if the vlan code
1114                 * is using hw vlan acceleration
1115                 */
1116                short tag = skb_vlan_tag_get(skb);
1117                extsts |= (EXTSTS_VPKT | htons(tag));
1118        }
1119#endif
1120
1121        len = skb->len;
1122        if (nr_frags)
1123                len -= skb->data_len;
1124        buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1125
1126        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1127
1128        for (;;) {
1129                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1130
1131                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1132                        (unsigned long long)buf);
1133                last_idx = free_idx;
1134                free_idx = (free_idx + 1) % NR_TX_DESC;
1135                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1136                desc_addr_set(desc + DESC_BUFPTR, buf);
1137                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1138
1139                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1140                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1141                cmdsts |= len;
1142                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1143
1144                if (!nr_frags)
1145                        break;
1146
1147                buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1148                                       skb_frag_size(frag), DMA_TO_DEVICE);
1149                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1150                        (long long)buf, (long) page_to_pfn(frag->page),
1151                        frag->page_offset);
1152                len = skb_frag_size(frag);
1153                frag++;
1154                nr_frags--;
1155        }
1156        dprintk("done pkt\n");
1157
1158        spin_lock_irq(&dev->tx_lock);
1159        dev->tx_skbs[last_idx] = skb;
1160        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1161        dev->tx_free_idx = free_idx;
1162        atomic_inc(&dev->nr_tx_skbs);
1163        spin_unlock_irq(&dev->tx_lock);
1164
1165        kick_tx(dev);
1166
1167        /* Check again: we may have raced with a tx done irq */
1168        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1169                netif_start_queue(ndev);
1170
1171        return NETDEV_TX_OK;
1172}
1173
1174static void ns83820_update_stats(struct ns83820 *dev)
1175{
1176        struct net_device *ndev = dev->ndev;
1177        u8 __iomem *base = dev->base;
1178
1179        /* the DP83820 will freeze counters, so we need to read all of them */
1180        ndev->stats.rx_errors           += readl(base + 0x60) & 0xffff;
1181        ndev->stats.rx_crc_errors       += readl(base + 0x64) & 0xffff;
1182        ndev->stats.rx_missed_errors    += readl(base + 0x68) & 0xffff;
1183        ndev->stats.rx_frame_errors     += readl(base + 0x6c) & 0xffff;
1184        /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1185        ndev->stats.rx_length_errors    += readl(base + 0x74) & 0xffff;
1186        ndev->stats.rx_length_errors    += readl(base + 0x78) & 0xffff;
1187        /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1188        /*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1189        /*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1190        ndev->stats.tx_carrier_errors   += readl(base + 0x88) & 0xff;
1191}
1192
1193static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1194{
1195        struct ns83820 *dev = PRIV(ndev);
1196
1197        /* somewhat overkill */
1198        spin_lock_irq(&dev->misc_lock);
1199        ns83820_update_stats(dev);
1200        spin_unlock_irq(&dev->misc_lock);
1201
1202        return &ndev->stats;
1203}
1204
1205/* Let ethtool retrieve info */
1206static int ns83820_get_link_ksettings(struct net_device *ndev,
1207                                      struct ethtool_link_ksettings *cmd)
1208{
1209        struct ns83820 *dev = PRIV(ndev);
1210        u32 cfg, tanar, tbicr;
1211        int fullduplex   = 0;
1212        u32 supported;
1213
1214        /*
1215         * Here's the list of available ethtool commands from other drivers:
1216         *      cmd->advertising =
1217         *      ethtool_cmd_speed_set(cmd, ...)
1218         *      cmd->duplex =
1219         *      cmd->port = 0;
1220         *      cmd->phy_address =
1221         *      cmd->transceiver = 0;
1222         *      cmd->autoneg =
1223         *      cmd->maxtxpkt = 0;
1224         *      cmd->maxrxpkt = 0;
1225         */
1226
1227        /* read current configuration */
1228        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1229        tanar = readl(dev->base + TANAR);
1230        tbicr = readl(dev->base + TBICR);
1231
1232        fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1233
1234        supported = SUPPORTED_Autoneg;
1235
1236        if (dev->CFG_cache & CFG_TBI_EN) {
1237                /* we have optical interface */
1238                supported |= SUPPORTED_1000baseT_Half |
1239                                        SUPPORTED_1000baseT_Full |
1240                                        SUPPORTED_FIBRE;
1241                cmd->base.port       = PORT_FIBRE;
1242        } else {
1243                /* we have copper */
1244                supported |= SUPPORTED_10baseT_Half |
1245                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1246                        SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1247                        SUPPORTED_1000baseT_Full |
1248                        SUPPORTED_MII;
1249                cmd->base.port = PORT_MII;
1250        }
1251
1252        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1253                                                supported);
1254
1255        cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1256        switch (cfg / CFG_SPDSTS0 & 3) {
1257        case 2:
1258                cmd->base.speed = SPEED_1000;
1259                break;
1260        case 1:
1261                cmd->base.speed = SPEED_100;
1262                break;
1263        default:
1264                cmd->base.speed = SPEED_10;
1265                break;
1266        }
1267        cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1268                ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1269        return 0;
1270}
1271
1272/* Let ethool change settings*/
1273static int ns83820_set_link_ksettings(struct net_device *ndev,
1274                                      const struct ethtool_link_ksettings *cmd)
1275{
1276        struct ns83820 *dev = PRIV(ndev);
1277        u32 cfg, tanar;
1278        int have_optical = 0;
1279        int fullduplex   = 0;
1280
1281        /* read current configuration */
1282        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1283        tanar = readl(dev->base + TANAR);
1284
1285        if (dev->CFG_cache & CFG_TBI_EN) {
1286                /* we have optical */
1287                have_optical = 1;
1288                fullduplex   = (tanar & TANAR_FULL_DUP);
1289
1290        } else {
1291                /* we have copper */
1292                fullduplex = cfg & CFG_DUPSTS;
1293        }
1294
1295        spin_lock_irq(&dev->misc_lock);
1296        spin_lock(&dev->tx_lock);
1297
1298        /* Set duplex */
1299        if (cmd->base.duplex != fullduplex) {
1300                if (have_optical) {
1301                        /*set full duplex*/
1302                        if (cmd->base.duplex == DUPLEX_FULL) {
1303                                /* force full duplex */
1304                                writel(readl(dev->base + TXCFG)
1305                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1306                                        dev->base + TXCFG);
1307                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1308                                        dev->base + RXCFG);
1309                                /* Light up full duplex LED */
1310                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1311                                        dev->base + GPIOR);
1312                        } else {
1313                                /*TODO: set half duplex */
1314                        }
1315
1316                } else {
1317                        /*we have copper*/
1318                        /* TODO: Set duplex for copper cards */
1319                }
1320                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1321                ndev->name);
1322        }
1323
1324        /* Set autonegotiation */
1325        if (1) {
1326                if (cmd->base.autoneg == AUTONEG_ENABLE) {
1327                        /* restart auto negotiation */
1328                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1329                                dev->base + TBICR);
1330                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1331                                dev->linkstate = LINK_AUTONEGOTIATE;
1332
1333                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1334                                ndev->name);
1335                } else {
1336                        /* disable auto negotiation */
1337                        writel(0x00000000, dev->base + TBICR);
1338                }
1339
1340                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1341                                cmd->base.autoneg ? "ENABLED" : "DISABLED");
1342        }
1343
1344        phy_intr(ndev);
1345        spin_unlock(&dev->tx_lock);
1346        spin_unlock_irq(&dev->misc_lock);
1347
1348        return 0;
1349}
1350/* end ethtool get/set support -df */
1351
1352static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1353{
1354        struct ns83820 *dev = PRIV(ndev);
1355        strlcpy(info->driver, "ns83820", sizeof(info->driver));
1356        strlcpy(info->version, VERSION, sizeof(info->version));
1357        strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1358}
1359
1360static u32 ns83820_get_link(struct net_device *ndev)
1361{
1362        struct ns83820 *dev = PRIV(ndev);
1363        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1364        return cfg & CFG_LNKSTS ? 1 : 0;
1365}
1366
1367static const struct ethtool_ops ops = {
1368        .get_drvinfo     = ns83820_get_drvinfo,
1369        .get_link        = ns83820_get_link,
1370        .get_link_ksettings = ns83820_get_link_ksettings,
1371        .set_link_ksettings = ns83820_set_link_ksettings,
1372};
1373
1374static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1375{
1376        writel(0, dev->base + IMR);
1377        writel(0, dev->base + IER);
1378        readl(dev->base + IER);
1379}
1380
1381/* this function is called in irq context from the ISR */
1382static void ns83820_mib_isr(struct ns83820 *dev)
1383{
1384        unsigned long flags;
1385        spin_lock_irqsave(&dev->misc_lock, flags);
1386        ns83820_update_stats(dev);
1387        spin_unlock_irqrestore(&dev->misc_lock, flags);
1388}
1389
1390static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1391static irqreturn_t ns83820_irq(int foo, void *data)
1392{
1393        struct net_device *ndev = data;
1394        struct ns83820 *dev = PRIV(ndev);
1395        u32 isr;
1396        dprintk("ns83820_irq(%p)\n", ndev);
1397
1398        dev->ihr = 0;
1399
1400        isr = readl(dev->base + ISR);
1401        dprintk("irq: %08x\n", isr);
1402        ns83820_do_isr(ndev, isr);
1403        return IRQ_HANDLED;
1404}
1405
1406static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1407{
1408        struct ns83820 *dev = PRIV(ndev);
1409        unsigned long flags;
1410
1411#ifdef DEBUG
1412        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1413                Dprintk("odd isr? 0x%08x\n", isr);
1414#endif
1415
1416        if (ISR_RXIDLE & isr) {
1417                dev->rx_info.idle = 1;
1418                Dprintk("oh dear, we are idle\n");
1419                ns83820_rx_kick(ndev);
1420        }
1421
1422        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1423                prefetch(dev->rx_info.next_rx_desc);
1424
1425                spin_lock_irqsave(&dev->misc_lock, flags);
1426                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1427                writel(dev->IMR_cache, dev->base + IMR);
1428                spin_unlock_irqrestore(&dev->misc_lock, flags);
1429
1430                tasklet_schedule(&dev->rx_tasklet);
1431                //rx_irq(ndev);
1432                //writel(4, dev->base + IHR);
1433        }
1434
1435        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1436                ns83820_rx_kick(ndev);
1437
1438        if (unlikely(ISR_RXSOVR & isr)) {
1439                //printk("overrun: rxsovr\n");
1440                ndev->stats.rx_fifo_errors++;
1441        }
1442
1443        if (unlikely(ISR_RXORN & isr)) {
1444                //printk("overrun: rxorn\n");
1445                ndev->stats.rx_fifo_errors++;
1446        }
1447
1448        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1449                writel(CR_RXE, dev->base + CR);
1450
1451        if (ISR_TXIDLE & isr) {
1452                u32 txdp;
1453                txdp = readl(dev->base + TXDP);
1454                dprintk("txdp: %08x\n", txdp);
1455                txdp -= dev->tx_phy_descs;
1456                dev->tx_idx = txdp / (DESC_SIZE * 4);
1457                if (dev->tx_idx >= NR_TX_DESC) {
1458                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1459                        dev->tx_idx = 0;
1460                }
1461                /* The may have been a race between a pci originated read
1462                 * and the descriptor update from the cpu.  Just in case,
1463                 * kick the transmitter if the hardware thinks it is on a
1464                 * different descriptor than we are.
1465                 */
1466                if (dev->tx_idx != dev->tx_free_idx)
1467                        kick_tx(dev);
1468        }
1469
1470        /* Defer tx ring processing until more than a minimum amount of
1471         * work has accumulated
1472         */
1473        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1474                spin_lock_irqsave(&dev->tx_lock, flags);
1475                do_tx_done(ndev);
1476                spin_unlock_irqrestore(&dev->tx_lock, flags);
1477
1478                /* Disable TxOk if there are no outstanding tx packets.
1479                 */
1480                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1481                    (dev->IMR_cache & ISR_TXOK)) {
1482                        spin_lock_irqsave(&dev->misc_lock, flags);
1483                        dev->IMR_cache &= ~ISR_TXOK;
1484                        writel(dev->IMR_cache, dev->base + IMR);
1485                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1486                }
1487        }
1488
1489        /* The TxIdle interrupt can come in before the transmit has
1490         * completed.  Normally we reap packets off of the combination
1491         * of TxDesc and TxIdle and leave TxOk disabled (since it
1492         * occurs on every packet), but when no further irqs of this
1493         * nature are expected, we must enable TxOk.
1494         */
1495        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1496                spin_lock_irqsave(&dev->misc_lock, flags);
1497                dev->IMR_cache |= ISR_TXOK;
1498                writel(dev->IMR_cache, dev->base + IMR);
1499                spin_unlock_irqrestore(&dev->misc_lock, flags);
1500        }
1501
1502        /* MIB interrupt: one of the statistics counters is about to overflow */
1503        if (unlikely(ISR_MIB & isr))
1504                ns83820_mib_isr(dev);
1505
1506        /* PHY: Link up/down/negotiation state change */
1507        if (unlikely(ISR_PHY & isr))
1508                phy_intr(ndev);
1509
1510#if 0   /* Still working on the interrupt mitigation strategy */
1511        if (dev->ihr)
1512                writel(dev->ihr, dev->base + IHR);
1513#endif
1514}
1515
1516static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1517{
1518        Dprintk("resetting chip...\n");
1519        writel(which, dev->base + CR);
1520        do {
1521                schedule();
1522        } while (readl(dev->base + CR) & which);
1523        Dprintk("okay!\n");
1524}
1525
1526static int ns83820_stop(struct net_device *ndev)
1527{
1528        struct ns83820 *dev = PRIV(ndev);
1529
1530        /* FIXME: protect against interrupt handler? */
1531        del_timer_sync(&dev->tx_watchdog);
1532
1533        ns83820_disable_interrupts(dev);
1534
1535        dev->rx_info.up = 0;
1536        synchronize_irq(dev->pci_dev->irq);
1537
1538        ns83820_do_reset(dev, CR_RST);
1539
1540        synchronize_irq(dev->pci_dev->irq);
1541
1542        spin_lock_irq(&dev->misc_lock);
1543        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1544        spin_unlock_irq(&dev->misc_lock);
1545
1546        ns83820_cleanup_rx(dev);
1547        ns83820_cleanup_tx(dev);
1548
1549        return 0;
1550}
1551
1552static void ns83820_tx_timeout(struct net_device *ndev)
1553{
1554        struct ns83820 *dev = PRIV(ndev);
1555        u32 tx_done_idx;
1556        __le32 *desc;
1557        unsigned long flags;
1558
1559        spin_lock_irqsave(&dev->tx_lock, flags);
1560
1561        tx_done_idx = dev->tx_done_idx;
1562        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1563
1564        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1565                ndev->name,
1566                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1567
1568#if defined(DEBUG)
1569        {
1570                u32 isr;
1571                isr = readl(dev->base + ISR);
1572                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1573                ns83820_do_isr(ndev, isr);
1574        }
1575#endif
1576
1577        do_tx_done(ndev);
1578
1579        tx_done_idx = dev->tx_done_idx;
1580        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1581
1582        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1583                ndev->name,
1584                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1585
1586        spin_unlock_irqrestore(&dev->tx_lock, flags);
1587}
1588
1589static void ns83820_tx_watch(struct timer_list *t)
1590{
1591        struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1592        struct net_device *ndev = dev->ndev;
1593
1594#if defined(DEBUG)
1595        printk("ns83820_tx_watch: %u %u %d\n",
1596                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1597                );
1598#endif
1599
1600        if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1601            dev->tx_done_idx != dev->tx_free_idx) {
1602                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1603                        ndev->name,
1604                        dev->tx_done_idx, dev->tx_free_idx,
1605                        atomic_read(&dev->nr_tx_skbs));
1606                ns83820_tx_timeout(ndev);
1607        }
1608
1609        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1610}
1611
1612static int ns83820_open(struct net_device *ndev)
1613{
1614        struct ns83820 *dev = PRIV(ndev);
1615        unsigned i;
1616        u32 desc;
1617        int ret;
1618
1619        dprintk("ns83820_open\n");
1620
1621        writel(0, dev->base + PQCR);
1622
1623        ret = ns83820_setup_rx(ndev);
1624        if (ret)
1625                goto failed;
1626
1627        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1628        for (i=0; i<NR_TX_DESC; i++) {
1629                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1630                                = cpu_to_le32(
1631                                  dev->tx_phy_descs
1632                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1633        }
1634
1635        dev->tx_idx = 0;
1636        dev->tx_done_idx = 0;
1637        desc = dev->tx_phy_descs;
1638        writel(0, dev->base + TXDP_HI);
1639        writel(desc, dev->base + TXDP);
1640
1641        timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1642        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1643
1644        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1645
1646        return 0;
1647
1648failed:
1649        ns83820_stop(ndev);
1650        return ret;
1651}
1652
1653static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1654{
1655        unsigned i;
1656        for (i=0; i<3; i++) {
1657                u32 data;
1658
1659                /* Read from the perfect match memory: this is loaded by
1660                 * the chip from the EEPROM via the EELOAD self test.
1661                 */
1662                writel(i*2, dev->base + RFCR);
1663                data = readl(dev->base + RFDR);
1664
1665                *mac++ = data;
1666                *mac++ = data >> 8;
1667        }
1668}
1669
1670static void ns83820_set_multicast(struct net_device *ndev)
1671{
1672        struct ns83820 *dev = PRIV(ndev);
1673        u8 __iomem *rfcr = dev->base + RFCR;
1674        u32 and_mask = 0xffffffff;
1675        u32 or_mask = 0;
1676        u32 val;
1677
1678        if (ndev->flags & IFF_PROMISC)
1679                or_mask |= RFCR_AAU | RFCR_AAM;
1680        else
1681                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1682
1683        if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1684                or_mask |= RFCR_AAM;
1685        else
1686                and_mask &= ~RFCR_AAM;
1687
1688        spin_lock_irq(&dev->misc_lock);
1689        val = (readl(rfcr) & and_mask) | or_mask;
1690        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1691        writel(val & ~RFCR_RFEN, rfcr);
1692        writel(val, rfcr);
1693        spin_unlock_irq(&dev->misc_lock);
1694}
1695
1696static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1697{
1698        struct ns83820 *dev = PRIV(ndev);
1699        int timed_out = 0;
1700        unsigned long start;
1701        u32 status;
1702        int loops = 0;
1703
1704        dprintk("%s: start %s\n", ndev->name, name);
1705
1706        start = jiffies;
1707
1708        writel(enable, dev->base + PTSCR);
1709        for (;;) {
1710                loops++;
1711                status = readl(dev->base + PTSCR);
1712                if (!(status & enable))
1713                        break;
1714                if (status & done)
1715                        break;
1716                if (status & fail)
1717                        break;
1718                if (time_after_eq(jiffies, start + HZ)) {
1719                        timed_out = 1;
1720                        break;
1721                }
1722                schedule_timeout_uninterruptible(1);
1723        }
1724
1725        if (status & fail)
1726                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1727                        ndev->name, name, status, fail);
1728        else if (timed_out)
1729                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1730                        ndev->name, name, status);
1731
1732        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1733}
1734
1735#ifdef PHY_CODE_IS_FINISHED
1736static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1737{
1738        /* drive MDC low */
1739        dev->MEAR_cache &= ~MEAR_MDC;
1740        writel(dev->MEAR_cache, dev->base + MEAR);
1741        readl(dev->base + MEAR);
1742
1743        /* enable output, set bit */
1744        dev->MEAR_cache |= MEAR_MDDIR;
1745        if (bit)
1746                dev->MEAR_cache |= MEAR_MDIO;
1747        else
1748                dev->MEAR_cache &= ~MEAR_MDIO;
1749
1750        /* set the output bit */
1751        writel(dev->MEAR_cache, dev->base + MEAR);
1752        readl(dev->base + MEAR);
1753
1754        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1755        udelay(1);
1756
1757        /* drive MDC high causing the data bit to be latched */
1758        dev->MEAR_cache |= MEAR_MDC;
1759        writel(dev->MEAR_cache, dev->base + MEAR);
1760        readl(dev->base + MEAR);
1761
1762        /* Wait again... */
1763        udelay(1);
1764}
1765
1766static int ns83820_mii_read_bit(struct ns83820 *dev)
1767{
1768        int bit;
1769
1770        /* drive MDC low, disable output */
1771        dev->MEAR_cache &= ~MEAR_MDC;
1772        dev->MEAR_cache &= ~MEAR_MDDIR;
1773        writel(dev->MEAR_cache, dev->base + MEAR);
1774        readl(dev->base + MEAR);
1775
1776        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1777        udelay(1);
1778
1779        /* drive MDC high causing the data bit to be latched */
1780        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1781        dev->MEAR_cache |= MEAR_MDC;
1782        writel(dev->MEAR_cache, dev->base + MEAR);
1783
1784        /* Wait again... */
1785        udelay(1);
1786
1787        return bit;
1788}
1789
1790static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1791{
1792        unsigned data = 0;
1793        int i;
1794
1795        /* read some garbage so that we eventually sync up */
1796        for (i=0; i<64; i++)
1797                ns83820_mii_read_bit(dev);
1798
1799        ns83820_mii_write_bit(dev, 0);  /* start */
1800        ns83820_mii_write_bit(dev, 1);
1801        ns83820_mii_write_bit(dev, 1);  /* opcode read */
1802        ns83820_mii_write_bit(dev, 0);
1803
1804        /* write out the phy address: 5 bits, msb first */
1805        for (i=0; i<5; i++)
1806                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1807
1808        /* write out the register address, 5 bits, msb first */
1809        for (i=0; i<5; i++)
1810                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1811
1812        ns83820_mii_read_bit(dev);      /* turn around cycles */
1813        ns83820_mii_read_bit(dev);
1814
1815        /* read in the register data, 16 bits msb first */
1816        for (i=0; i<16; i++) {
1817                data <<= 1;
1818                data |= ns83820_mii_read_bit(dev);
1819        }
1820
1821        return data;
1822}
1823
1824static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1825{
1826        int i;
1827
1828        /* read some garbage so that we eventually sync up */
1829        for (i=0; i<64; i++)
1830                ns83820_mii_read_bit(dev);
1831
1832        ns83820_mii_write_bit(dev, 0);  /* start */
1833        ns83820_mii_write_bit(dev, 1);
1834        ns83820_mii_write_bit(dev, 0);  /* opcode read */
1835        ns83820_mii_write_bit(dev, 1);
1836
1837        /* write out the phy address: 5 bits, msb first */
1838        for (i=0; i<5; i++)
1839                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1840
1841        /* write out the register address, 5 bits, msb first */
1842        for (i=0; i<5; i++)
1843                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1844
1845        ns83820_mii_read_bit(dev);      /* turn around cycles */
1846        ns83820_mii_read_bit(dev);
1847
1848        /* read in the register data, 16 bits msb first */
1849        for (i=0; i<16; i++)
1850                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1851
1852        return data;
1853}
1854
1855static void ns83820_probe_phy(struct net_device *ndev)
1856{
1857        struct ns83820 *dev = PRIV(ndev);
1858        int j;
1859        unsigned a, b;
1860
1861        for (j = 0; j < 0x16; j += 4) {
1862                dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1863                        ndev->name, j,
1864                        ns83820_mii_read_reg(dev, 1, 0 + j),
1865                        ns83820_mii_read_reg(dev, 1, 1 + j),
1866                        ns83820_mii_read_reg(dev, 1, 2 + j),
1867                        ns83820_mii_read_reg(dev, 1, 3 + j)
1868                        );
1869        }
1870
1871        /* read firmware version: memory addr is 0x8402 and 0x8403 */
1872        ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1873        ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1874        a = ns83820_mii_read_reg(dev, 1, 0x1d);
1875
1876        ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1877        ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1878        b = ns83820_mii_read_reg(dev, 1, 0x1d);
1879        dprintk("version: 0x%04x 0x%04x\n", a, b);
1880}
1881#endif
1882
1883static const struct net_device_ops netdev_ops = {
1884        .ndo_open               = ns83820_open,
1885        .ndo_stop               = ns83820_stop,
1886        .ndo_start_xmit         = ns83820_hard_start_xmit,
1887        .ndo_get_stats          = ns83820_get_stats,
1888        .ndo_set_rx_mode        = ns83820_set_multicast,
1889        .ndo_validate_addr      = eth_validate_addr,
1890        .ndo_set_mac_address    = eth_mac_addr,
1891        .ndo_tx_timeout         = ns83820_tx_timeout,
1892};
1893
1894static int ns83820_init_one(struct pci_dev *pci_dev,
1895                            const struct pci_device_id *id)
1896{
1897        struct net_device *ndev;
1898        struct ns83820 *dev;
1899        long addr;
1900        int err;
1901        int using_dac = 0;
1902
1903        /* See if we can set the dma mask early on; failure is fatal. */
1904        if (sizeof(dma_addr_t) == 8 &&
1905                !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1906                using_dac = 1;
1907        } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1908                using_dac = 0;
1909        } else {
1910                dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1911                return -ENODEV;
1912        }
1913
1914        ndev = alloc_etherdev(sizeof(struct ns83820));
1915        err = -ENOMEM;
1916        if (!ndev)
1917                goto out;
1918
1919        dev = PRIV(ndev);
1920        dev->ndev = ndev;
1921
1922        spin_lock_init(&dev->rx_info.lock);
1923        spin_lock_init(&dev->tx_lock);
1924        spin_lock_init(&dev->misc_lock);
1925        dev->pci_dev = pci_dev;
1926
1927        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1928
1929        INIT_WORK(&dev->tq_refill, queue_refill);
1930        tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1931
1932        err = pci_enable_device(pci_dev);
1933        if (err) {
1934                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1935                goto out_free;
1936        }
1937
1938        pci_set_master(pci_dev);
1939        addr = pci_resource_start(pci_dev, 1);
1940        dev->base = ioremap_nocache(addr, PAGE_SIZE);
1941        dev->tx_descs = pci_alloc_consistent(pci_dev,
1942                        4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1943        dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1944                        4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1945        err = -ENOMEM;
1946        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1947                goto out_disable;
1948
1949        dprintk("%p: %08lx  %p: %08lx\n",
1950                dev->tx_descs, (long)dev->tx_phy_descs,
1951                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1952
1953        ns83820_disable_interrupts(dev);
1954
1955        dev->IMR_cache = 0;
1956
1957        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1958                          DRV_NAME, ndev);
1959        if (err) {
1960                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1961                        pci_dev->irq, err);
1962                goto out_disable;
1963        }
1964
1965        /*
1966         * FIXME: we are holding rtnl_lock() over obscenely long area only
1967         * because some of the setup code uses dev->name.  It's Wrong(tm) -
1968         * we should be using driver-specific names for all that stuff.
1969         * For now that will do, but we really need to come back and kill
1970         * most of the dev_alloc_name() users later.
1971         */
1972        rtnl_lock();
1973        err = dev_alloc_name(ndev, ndev->name);
1974        if (err < 0) {
1975                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1976                goto out_free_irq;
1977        }
1978
1979        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1980                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1981                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1982
1983        ndev->netdev_ops = &netdev_ops;
1984        ndev->ethtool_ops = &ops;
1985        ndev->watchdog_timeo = 5 * HZ;
1986        pci_set_drvdata(pci_dev, ndev);
1987
1988        ns83820_do_reset(dev, CR_RST);
1989
1990        /* Must reset the ram bist before running it */
1991        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1992        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1993                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1994        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1995                         PTSCR_EEBIST_FAIL);
1996        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1997
1998        /* I love config registers */
1999        dev->CFG_cache = readl(dev->base + CFG);
2000
2001        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2002                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2003                        ndev->name);
2004                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2005                if (!(dev->CFG_cache & CFG_DATA64_EN))
2006                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2007                                ndev->name);
2008        } else
2009                dev->CFG_cache &= ~(CFG_DATA64_EN);
2010
2011        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2012                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2013                           CFG_M64ADDR);
2014        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2015                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2016        dev->CFG_cache |= CFG_REQALG;
2017        dev->CFG_cache |= CFG_POW;
2018        dev->CFG_cache |= CFG_TMRTEST;
2019
2020        /* When compiled with 64 bit addressing, we must always enable
2021         * the 64 bit descriptor format.
2022         */
2023        if (sizeof(dma_addr_t) == 8)
2024                dev->CFG_cache |= CFG_M64ADDR;
2025        if (using_dac)
2026                dev->CFG_cache |= CFG_T64ADDR;
2027
2028        /* Big endian mode does not seem to do what the docs suggest */
2029        dev->CFG_cache &= ~CFG_BEM;
2030
2031        /* setup optical transceiver if we have one */
2032        if (dev->CFG_cache & CFG_TBI_EN) {
2033                printk(KERN_INFO "%s: enabling optical transceiver\n",
2034                        ndev->name);
2035                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2036
2037                /* setup auto negotiation feature advertisement */
2038                writel(readl(dev->base + TANAR)
2039                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2040                       dev->base + TANAR);
2041
2042                /* start auto negotiation */
2043                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2044                       dev->base + TBICR);
2045                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2046                dev->linkstate = LINK_AUTONEGOTIATE;
2047
2048                dev->CFG_cache |= CFG_MODE_1000;
2049        }
2050
2051        writel(dev->CFG_cache, dev->base + CFG);
2052        dprintk("CFG: %08x\n", dev->CFG_cache);
2053
2054        if (reset_phy) {
2055                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2056                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2057                msleep(10);
2058                writel(dev->CFG_cache, dev->base + CFG);
2059        }
2060
2061#if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2062         * the PCI layer.  FIXME.
2063         */
2064        if (readl(dev->base + SRR))
2065                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2066#endif
2067
2068        /* Note!  The DMA burst size interacts with packet
2069         * transmission, such that the largest packet that
2070         * can be transmitted is 8192 - FLTH - burst size.
2071         * If only the transmit fifo was larger...
2072         */
2073        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2074         * some DELL and COMPAQ SMP systems */
2075        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2076                | ((1600 / 32) * 0x100),
2077                dev->base + TXCFG);
2078
2079        /* Flush the interrupt holdoff timer */
2080        writel(0x000, dev->base + IHR);
2081        writel(0x100, dev->base + IHR);
2082        writel(0x000, dev->base + IHR);
2083
2084        /* Set Rx to full duplex, don't accept runt, errored, long or length
2085         * range errored packets.  Use 512 byte DMA.
2086         */
2087        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2088         * some DELL and COMPAQ SMP systems
2089         * Turn on ALP, only we are accpeting Jumbo Packets */
2090        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2091                | RXCFG_STRIPCRC
2092                //| RXCFG_ALP
2093                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2094
2095        /* Disable priority queueing */
2096        writel(0, dev->base + PQCR);
2097
2098        /* Enable IP checksum validation and detetion of VLAN headers.
2099         * Note: do not set the reject options as at least the 0x102
2100         * revision of the chip does not properly accept IP fragments
2101         * at least for UDP.
2102         */
2103        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2104         * the MAC it calculates the packetsize AFTER stripping the VLAN
2105         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2106         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2107         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2108         * it discrards it!.  These guys......
2109         * also turn on tag stripping if hardware acceleration is enabled
2110         */
2111#ifdef NS83820_VLAN_ACCEL_SUPPORT
2112#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2113#else
2114#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2115#endif
2116        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2117
2118        /* Enable per-packet TCP/UDP/IP checksumming
2119         * and per packet vlan tag insertion if
2120         * vlan hardware acceleration is enabled
2121         */
2122#ifdef NS83820_VLAN_ACCEL_SUPPORT
2123#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2124#else
2125#define VTCR_INIT_VALUE VTCR_PPCHK
2126#endif
2127        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2128
2129        /* Ramit : Enable async and sync pause frames */
2130        /* writel(0, dev->base + PCR); */
2131        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2132                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2133                dev->base + PCR);
2134
2135        /* Disable Wake On Lan */
2136        writel(0, dev->base + WCSR);
2137
2138        ns83820_getmac(dev, ndev->dev_addr);
2139
2140        /* Yes, we support dumb IP checksum on transmit */
2141        ndev->features |= NETIF_F_SG;
2142        ndev->features |= NETIF_F_IP_CSUM;
2143
2144        ndev->min_mtu = 0;
2145
2146#ifdef NS83820_VLAN_ACCEL_SUPPORT
2147        /* We also support hardware vlan acceleration */
2148        ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2149#endif
2150
2151        if (using_dac) {
2152                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2153                        ndev->name);
2154                ndev->features |= NETIF_F_HIGHDMA;
2155        }
2156
2157        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2158                ndev->name,
2159                (unsigned)readl(dev->base + SRR) >> 8,
2160                (unsigned)readl(dev->base + SRR) & 0xff,
2161                ndev->dev_addr, addr, pci_dev->irq,
2162                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2163                );
2164
2165#ifdef PHY_CODE_IS_FINISHED
2166        ns83820_probe_phy(ndev);
2167#endif
2168
2169        err = register_netdevice(ndev);
2170        if (err) {
2171                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2172                goto out_cleanup;
2173        }
2174        rtnl_unlock();
2175
2176        return 0;
2177
2178out_cleanup:
2179        ns83820_disable_interrupts(dev); /* paranoia */
2180out_free_irq:
2181        rtnl_unlock();
2182        free_irq(pci_dev->irq, ndev);
2183out_disable:
2184        if (dev->base)
2185                iounmap(dev->base);
2186        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2187        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2188        pci_disable_device(pci_dev);
2189out_free:
2190        free_netdev(ndev);
2191out:
2192        return err;
2193}
2194
2195static void ns83820_remove_one(struct pci_dev *pci_dev)
2196{
2197        struct net_device *ndev = pci_get_drvdata(pci_dev);
2198        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2199
2200        if (!ndev)                      /* paranoia */
2201                return;
2202
2203        ns83820_disable_interrupts(dev); /* paranoia */
2204
2205        unregister_netdev(ndev);
2206        free_irq(dev->pci_dev->irq, ndev);
2207        iounmap(dev->base);
2208        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2209                        dev->tx_descs, dev->tx_phy_descs);
2210        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2211                        dev->rx_info.descs, dev->rx_info.phy_descs);
2212        pci_disable_device(dev->pci_dev);
2213        free_netdev(ndev);
2214}
2215
2216static const struct pci_device_id ns83820_pci_tbl[] = {
2217        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2218        { 0, },
2219};
2220
2221static struct pci_driver driver = {
2222        .name           = "ns83820",
2223        .id_table       = ns83820_pci_tbl,
2224        .probe          = ns83820_init_one,
2225        .remove         = ns83820_remove_one,
2226#if 0   /* FIXME: implement */
2227        .suspend        = ,
2228        .resume         = ,
2229#endif
2230};
2231
2232
2233static int __init ns83820_init(void)
2234{
2235        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2236        return pci_register_driver(&driver);
2237}
2238
2239static void __exit ns83820_exit(void)
2240{
2241        pci_unregister_driver(&driver);
2242}
2243
2244MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2245MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2246MODULE_LICENSE("GPL");
2247
2248MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2249
2250module_param(lnksts, int, 0);
2251MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2252
2253module_param(ihr, int, 0);
2254MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2255
2256module_param(reset_phy, int, 0);
2257MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2258
2259module_init(ns83820_init);
2260module_exit(ns83820_exit);
2261