linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   4        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   5        <http://rt2x00.serialmonkey.com>
   6
   7 */
   8
   9/*
  10        Module: rt2x00lib
  11        Abstract: rt2x00 generic device routines.
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/log2.h>
  18#include <linux/of.h>
  19#include <linux/of_net.h>
  20
  21#include "rt2x00.h"
  22#include "rt2x00lib.h"
  23
  24/*
  25 * Utility functions.
  26 */
  27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  28                         struct ieee80211_vif *vif)
  29{
  30        /*
  31         * When in STA mode, bssidx is always 0 otherwise local_address[5]
  32         * contains the bss number, see BSS_ID_MASK comments for details.
  33         */
  34        if (rt2x00dev->intf_sta_count)
  35                return 0;
  36        return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  37}
  38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  39
  40/*
  41 * Radio control handlers.
  42 */
  43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  44{
  45        int status;
  46
  47        /*
  48         * Don't enable the radio twice.
  49         * And check if the hardware button has been disabled.
  50         */
  51        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  52                return 0;
  53
  54        /*
  55         * Initialize all data queues.
  56         */
  57        rt2x00queue_init_queues(rt2x00dev);
  58
  59        /*
  60         * Enable radio.
  61         */
  62        status =
  63            rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  64        if (status)
  65                return status;
  66
  67        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  68
  69        rt2x00leds_led_radio(rt2x00dev, true);
  70        rt2x00led_led_activity(rt2x00dev, true);
  71
  72        set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  73
  74        /*
  75         * Enable queues.
  76         */
  77        rt2x00queue_start_queues(rt2x00dev);
  78        rt2x00link_start_tuner(rt2x00dev);
  79
  80        /*
  81         * Start watchdog monitoring.
  82         */
  83        rt2x00link_start_watchdog(rt2x00dev);
  84
  85        return 0;
  86}
  87
  88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  89{
  90        if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  91                return;
  92
  93        /*
  94         * Stop watchdog monitoring.
  95         */
  96        rt2x00link_stop_watchdog(rt2x00dev);
  97
  98        /*
  99         * Stop all queues
 100         */
 101        rt2x00link_stop_tuner(rt2x00dev);
 102        rt2x00queue_stop_queues(rt2x00dev);
 103        rt2x00queue_flush_queues(rt2x00dev, true);
 104
 105        /*
 106         * Disable radio.
 107         */
 108        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 109        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 110        rt2x00led_led_activity(rt2x00dev, false);
 111        rt2x00leds_led_radio(rt2x00dev, false);
 112}
 113
 114static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 115                                          struct ieee80211_vif *vif)
 116{
 117        struct rt2x00_dev *rt2x00dev = data;
 118        struct rt2x00_intf *intf = vif_to_intf(vif);
 119
 120        /*
 121         * It is possible the radio was disabled while the work had been
 122         * scheduled. If that happens we should return here immediately,
 123         * note that in the spinlock protected area above the delayed_flags
 124         * have been cleared correctly.
 125         */
 126        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 127                return;
 128
 129        if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
 130                mutex_lock(&intf->beacon_skb_mutex);
 131                rt2x00queue_update_beacon(rt2x00dev, vif);
 132                mutex_unlock(&intf->beacon_skb_mutex);
 133        }
 134}
 135
 136static void rt2x00lib_intf_scheduled(struct work_struct *work)
 137{
 138        struct rt2x00_dev *rt2x00dev =
 139            container_of(work, struct rt2x00_dev, intf_work);
 140
 141        /*
 142         * Iterate over each interface and perform the
 143         * requested configurations.
 144         */
 145        ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 146                                            IEEE80211_IFACE_ITER_RESUME_ALL,
 147                                            rt2x00lib_intf_scheduled_iter,
 148                                            rt2x00dev);
 149}
 150
 151static void rt2x00lib_autowakeup(struct work_struct *work)
 152{
 153        struct rt2x00_dev *rt2x00dev =
 154            container_of(work, struct rt2x00_dev, autowakeup_work.work);
 155
 156        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 157                return;
 158
 159        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 160                rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
 161        clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 162}
 163
 164/*
 165 * Interrupt context handlers.
 166 */
 167static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 168                                     struct ieee80211_vif *vif)
 169{
 170        struct ieee80211_tx_control control = {};
 171        struct rt2x00_dev *rt2x00dev = data;
 172        struct sk_buff *skb;
 173
 174        /*
 175         * Only AP mode interfaces do broad- and multicast buffering
 176         */
 177        if (vif->type != NL80211_IFTYPE_AP)
 178                return;
 179
 180        /*
 181         * Send out buffered broad- and multicast frames
 182         */
 183        skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 184        while (skb) {
 185                rt2x00mac_tx(rt2x00dev->hw, &control, skb);
 186                skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 187        }
 188}
 189
 190static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 191                                        struct ieee80211_vif *vif)
 192{
 193        struct rt2x00_dev *rt2x00dev = data;
 194
 195        if (vif->type != NL80211_IFTYPE_AP &&
 196            vif->type != NL80211_IFTYPE_ADHOC &&
 197            vif->type != NL80211_IFTYPE_MESH_POINT &&
 198            vif->type != NL80211_IFTYPE_WDS)
 199                return;
 200
 201        /*
 202         * Update the beacon without locking. This is safe on PCI devices
 203         * as they only update the beacon periodically here. This should
 204         * never be called for USB devices.
 205         */
 206        WARN_ON(rt2x00_is_usb(rt2x00dev));
 207        rt2x00queue_update_beacon(rt2x00dev, vif);
 208}
 209
 210void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 211{
 212        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 213                return;
 214
 215        /* send buffered bc/mc frames out for every bssid */
 216        ieee80211_iterate_active_interfaces_atomic(
 217                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 218                rt2x00lib_bc_buffer_iter, rt2x00dev);
 219        /*
 220         * Devices with pre tbtt interrupt don't need to update the beacon
 221         * here as they will fetch the next beacon directly prior to
 222         * transmission.
 223         */
 224        if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
 225                return;
 226
 227        /* fetch next beacon */
 228        ieee80211_iterate_active_interfaces_atomic(
 229                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 230                rt2x00lib_beaconupdate_iter, rt2x00dev);
 231}
 232EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 233
 234void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 235{
 236        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 237                return;
 238
 239        /* fetch next beacon */
 240        ieee80211_iterate_active_interfaces_atomic(
 241                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 242                rt2x00lib_beaconupdate_iter, rt2x00dev);
 243}
 244EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 245
 246void rt2x00lib_dmastart(struct queue_entry *entry)
 247{
 248        set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 249        rt2x00queue_index_inc(entry, Q_INDEX);
 250}
 251EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 252
 253void rt2x00lib_dmadone(struct queue_entry *entry)
 254{
 255        set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 256        clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 257        rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 258}
 259EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 260
 261static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
 262{
 263        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 264        struct ieee80211_bar *bar = (void *) entry->skb->data;
 265        struct rt2x00_bar_list_entry *bar_entry;
 266        int ret;
 267
 268        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 269                return 0;
 270
 271        /*
 272         * Unlike all other frames, the status report for BARs does
 273         * not directly come from the hardware as it is incapable of
 274         * matching a BA to a previously send BAR. The hardware will
 275         * report all BARs as if they weren't acked at all.
 276         *
 277         * Instead the RX-path will scan for incoming BAs and set the
 278         * block_acked flag if it sees one that was likely caused by
 279         * a BAR from us.
 280         *
 281         * Remove remaining BARs here and return their status for
 282         * TX done processing.
 283         */
 284        ret = 0;
 285        rcu_read_lock();
 286        list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
 287                if (bar_entry->entry != entry)
 288                        continue;
 289
 290                spin_lock_bh(&rt2x00dev->bar_list_lock);
 291                /* Return whether this BAR was blockacked or not */
 292                ret = bar_entry->block_acked;
 293                /* Remove the BAR from our checklist */
 294                list_del_rcu(&bar_entry->list);
 295                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 296                kfree_rcu(bar_entry, head);
 297
 298                break;
 299        }
 300        rcu_read_unlock();
 301
 302        return ret;
 303}
 304
 305static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
 306                                     struct ieee80211_tx_info *tx_info,
 307                                     struct skb_frame_desc *skbdesc,
 308                                     struct txdone_entry_desc *txdesc,
 309                                     bool success)
 310{
 311        u8 rate_idx, rate_flags, retry_rates;
 312        int i;
 313
 314        rate_idx = skbdesc->tx_rate_idx;
 315        rate_flags = skbdesc->tx_rate_flags;
 316        retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 317            (txdesc->retry + 1) : 1;
 318
 319        /*
 320         * Initialize TX status
 321         */
 322        memset(&tx_info->status, 0, sizeof(tx_info->status));
 323        tx_info->status.ack_signal = 0;
 324
 325        /*
 326         * Frame was send with retries, hardware tried
 327         * different rates to send out the frame, at each
 328         * retry it lowered the rate 1 step except when the
 329         * lowest rate was used.
 330         */
 331        for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 332                tx_info->status.rates[i].idx = rate_idx - i;
 333                tx_info->status.rates[i].flags = rate_flags;
 334
 335                if (rate_idx - i == 0) {
 336                        /*
 337                         * The lowest rate (index 0) was used until the
 338                         * number of max retries was reached.
 339                         */
 340                        tx_info->status.rates[i].count = retry_rates - i;
 341                        i++;
 342                        break;
 343                }
 344                tx_info->status.rates[i].count = 1;
 345        }
 346        if (i < (IEEE80211_TX_MAX_RATES - 1))
 347                tx_info->status.rates[i].idx = -1; /* terminate */
 348
 349        if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
 350                tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
 351
 352        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 353                if (success)
 354                        tx_info->flags |= IEEE80211_TX_STAT_ACK;
 355                else
 356                        rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 357        }
 358
 359        /*
 360         * Every single frame has it's own tx status, hence report
 361         * every frame as ampdu of size 1.
 362         *
 363         * TODO: if we can find out how many frames were aggregated
 364         * by the hw we could provide the real ampdu_len to mac80211
 365         * which would allow the rc algorithm to better decide on
 366         * which rates are suitable.
 367         */
 368        if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 369            tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 370                tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
 371                                  IEEE80211_TX_CTL_AMPDU;
 372                tx_info->status.ampdu_len = 1;
 373                tx_info->status.ampdu_ack_len = success ? 1 : 0;
 374
 375                if (!success)
 376                        tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 377        }
 378
 379        if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 380                if (success)
 381                        rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 382                else
 383                        rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 384        }
 385}
 386
 387static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
 388                                  struct queue_entry *entry)
 389{
 390        /*
 391         * Make this entry available for reuse.
 392         */
 393        entry->skb = NULL;
 394        entry->flags = 0;
 395
 396        rt2x00dev->ops->lib->clear_entry(entry);
 397
 398        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 399
 400        /*
 401         * If the data queue was below the threshold before the txdone
 402         * handler we must make sure the packet queue in the mac80211 stack
 403         * is reenabled when the txdone handler has finished. This has to be
 404         * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 405         * before it was stopped.
 406         */
 407        spin_lock_bh(&entry->queue->tx_lock);
 408        if (!rt2x00queue_threshold(entry->queue))
 409                rt2x00queue_unpause_queue(entry->queue);
 410        spin_unlock_bh(&entry->queue->tx_lock);
 411}
 412
 413void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
 414                              struct txdone_entry_desc *txdesc)
 415{
 416        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 417        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 418        struct ieee80211_tx_info txinfo = {};
 419        bool success;
 420
 421        /*
 422         * Unmap the skb.
 423         */
 424        rt2x00queue_unmap_skb(entry);
 425
 426        /*
 427         * Signal that the TX descriptor is no longer in the skb.
 428         */
 429        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 430
 431        /*
 432         * Send frame to debugfs immediately, after this call is completed
 433         * we are going to overwrite the skb->cb array.
 434         */
 435        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 436
 437        /*
 438         * Determine if the frame has been successfully transmitted and
 439         * remove BARs from our check list while checking for their
 440         * TX status.
 441         */
 442        success =
 443            rt2x00lib_txdone_bar_status(entry) ||
 444            test_bit(TXDONE_SUCCESS, &txdesc->flags);
 445
 446        if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
 447                /*
 448                 * Update TX statistics.
 449                 */
 450                rt2x00dev->link.qual.tx_success += success;
 451                rt2x00dev->link.qual.tx_failed += !success;
 452
 453                rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
 454                                         success);
 455                ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
 456        }
 457
 458        dev_kfree_skb_any(entry->skb);
 459        rt2x00lib_clear_entry(rt2x00dev, entry);
 460}
 461EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
 462
 463void rt2x00lib_txdone(struct queue_entry *entry,
 464                      struct txdone_entry_desc *txdesc)
 465{
 466        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 467        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 468        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 469        u8 skbdesc_flags = skbdesc->flags;
 470        unsigned int header_length;
 471        bool success;
 472
 473        /*
 474         * Unmap the skb.
 475         */
 476        rt2x00queue_unmap_skb(entry);
 477
 478        /*
 479         * Remove the extra tx headroom from the skb.
 480         */
 481        skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
 482
 483        /*
 484         * Signal that the TX descriptor is no longer in the skb.
 485         */
 486        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 487
 488        /*
 489         * Determine the length of 802.11 header.
 490         */
 491        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 492
 493        /*
 494         * Remove L2 padding which was added during
 495         */
 496        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
 497                rt2x00queue_remove_l2pad(entry->skb, header_length);
 498
 499        /*
 500         * If the IV/EIV data was stripped from the frame before it was
 501         * passed to the hardware, we should now reinsert it again because
 502         * mac80211 will expect the same data to be present it the
 503         * frame as it was passed to us.
 504         */
 505        if (rt2x00_has_cap_hw_crypto(rt2x00dev))
 506                rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 507
 508        /*
 509         * Send frame to debugfs immediately, after this call is completed
 510         * we are going to overwrite the skb->cb array.
 511         */
 512        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 513
 514        /*
 515         * Determine if the frame has been successfully transmitted and
 516         * remove BARs from our check list while checking for their
 517         * TX status.
 518         */
 519        success =
 520            rt2x00lib_txdone_bar_status(entry) ||
 521            test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 522            test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 523
 524        /*
 525         * Update TX statistics.
 526         */
 527        rt2x00dev->link.qual.tx_success += success;
 528        rt2x00dev->link.qual.tx_failed += !success;
 529
 530        rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
 531
 532        /*
 533         * Only send the status report to mac80211 when it's a frame
 534         * that originated in mac80211. If this was a extra frame coming
 535         * through a mac80211 library call (RTS/CTS) then we should not
 536         * send the status report back.
 537         */
 538        if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 539                if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
 540                        ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 541                else
 542                        ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 543        } else {
 544                dev_kfree_skb_any(entry->skb);
 545        }
 546
 547        rt2x00lib_clear_entry(rt2x00dev, entry);
 548}
 549EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 550
 551void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 552{
 553        struct txdone_entry_desc txdesc;
 554
 555        txdesc.flags = 0;
 556        __set_bit(status, &txdesc.flags);
 557        txdesc.retry = 0;
 558
 559        rt2x00lib_txdone(entry, &txdesc);
 560}
 561EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 562
 563static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 564{
 565        struct ieee80211_mgmt *mgmt = (void *)data;
 566        u8 *pos, *end;
 567
 568        pos = (u8 *)mgmt->u.beacon.variable;
 569        end = data + len;
 570        while (pos < end) {
 571                if (pos + 2 + pos[1] > end)
 572                        return NULL;
 573
 574                if (pos[0] == ie)
 575                        return pos;
 576
 577                pos += 2 + pos[1];
 578        }
 579
 580        return NULL;
 581}
 582
 583static void rt2x00lib_sleep(struct work_struct *work)
 584{
 585        struct rt2x00_dev *rt2x00dev =
 586            container_of(work, struct rt2x00_dev, sleep_work);
 587
 588        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 589                return;
 590
 591        /*
 592         * Check again is powersaving is enabled, to prevent races from delayed
 593         * work execution.
 594         */
 595        if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 596                rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 597                                 IEEE80211_CONF_CHANGE_PS);
 598}
 599
 600static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
 601                                      struct sk_buff *skb,
 602                                      struct rxdone_entry_desc *rxdesc)
 603{
 604        struct rt2x00_bar_list_entry *entry;
 605        struct ieee80211_bar *ba = (void *)skb->data;
 606
 607        if (likely(!ieee80211_is_back(ba->frame_control)))
 608                return;
 609
 610        if (rxdesc->size < sizeof(*ba) + FCS_LEN)
 611                return;
 612
 613        rcu_read_lock();
 614        list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
 615
 616                if (ba->start_seq_num != entry->start_seq_num)
 617                        continue;
 618
 619#define TID_CHECK(a, b) (                                               \
 620        ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
 621        ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
 622
 623                if (!TID_CHECK(ba->control, entry->control))
 624                        continue;
 625
 626#undef TID_CHECK
 627
 628                if (!ether_addr_equal_64bits(ba->ra, entry->ta))
 629                        continue;
 630
 631                if (!ether_addr_equal_64bits(ba->ta, entry->ra))
 632                        continue;
 633
 634                /* Mark BAR since we received the according BA */
 635                spin_lock_bh(&rt2x00dev->bar_list_lock);
 636                entry->block_acked = 1;
 637                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 638                break;
 639        }
 640        rcu_read_unlock();
 641
 642}
 643
 644static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 645                                      struct sk_buff *skb,
 646                                      struct rxdone_entry_desc *rxdesc)
 647{
 648        struct ieee80211_hdr *hdr = (void *) skb->data;
 649        struct ieee80211_tim_ie *tim_ie;
 650        u8 *tim;
 651        u8 tim_len;
 652        bool cam;
 653
 654        /* If this is not a beacon, or if mac80211 has no powersaving
 655         * configured, or if the device is already in powersaving mode
 656         * we can exit now. */
 657        if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 658                   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 659                return;
 660
 661        /* min. beacon length + FCS_LEN */
 662        if (skb->len <= 40 + FCS_LEN)
 663                return;
 664
 665        /* and only beacons from the associated BSSID, please */
 666        if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 667            !rt2x00dev->aid)
 668                return;
 669
 670        rt2x00dev->last_beacon = jiffies;
 671
 672        tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 673        if (!tim)
 674                return;
 675
 676        if (tim[1] < sizeof(*tim_ie))
 677                return;
 678
 679        tim_len = tim[1];
 680        tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 681
 682        /* Check whenever the PHY can be turned off again. */
 683
 684        /* 1. What about buffered unicast traffic for our AID? */
 685        cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 686
 687        /* 2. Maybe the AP wants to send multicast/broadcast data? */
 688        cam |= (tim_ie->bitmap_ctrl & 0x01);
 689
 690        if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 691                queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 692}
 693
 694static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 695                                        struct rxdone_entry_desc *rxdesc)
 696{
 697        struct ieee80211_supported_band *sband;
 698        const struct rt2x00_rate *rate;
 699        unsigned int i;
 700        int signal = rxdesc->signal;
 701        int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 702
 703        switch (rxdesc->rate_mode) {
 704        case RATE_MODE_CCK:
 705        case RATE_MODE_OFDM:
 706                /*
 707                 * For non-HT rates the MCS value needs to contain the
 708                 * actually used rate modulation (CCK or OFDM).
 709                 */
 710                if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 711                        signal = RATE_MCS(rxdesc->rate_mode, signal);
 712
 713                sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 714                for (i = 0; i < sband->n_bitrates; i++) {
 715                        rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 716                        if (((type == RXDONE_SIGNAL_PLCP) &&
 717                             (rate->plcp == signal)) ||
 718                            ((type == RXDONE_SIGNAL_BITRATE) &&
 719                              (rate->bitrate == signal)) ||
 720                            ((type == RXDONE_SIGNAL_MCS) &&
 721                              (rate->mcs == signal))) {
 722                                return i;
 723                        }
 724                }
 725                break;
 726        case RATE_MODE_HT_MIX:
 727        case RATE_MODE_HT_GREENFIELD:
 728                if (signal >= 0 && signal <= 76)
 729                        return signal;
 730                break;
 731        default:
 732                break;
 733        }
 734
 735        rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
 736                    rxdesc->rate_mode, signal, type);
 737        return 0;
 738}
 739
 740void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 741{
 742        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 743        struct rxdone_entry_desc rxdesc;
 744        struct sk_buff *skb;
 745        struct ieee80211_rx_status *rx_status;
 746        unsigned int header_length;
 747        int rate_idx;
 748
 749        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 750            !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 751                goto submit_entry;
 752
 753        if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 754                goto submit_entry;
 755
 756        /*
 757         * Allocate a new sk_buffer. If no new buffer available, drop the
 758         * received frame and reuse the existing buffer.
 759         */
 760        skb = rt2x00queue_alloc_rxskb(entry, gfp);
 761        if (!skb)
 762                goto submit_entry;
 763
 764        /*
 765         * Unmap the skb.
 766         */
 767        rt2x00queue_unmap_skb(entry);
 768
 769        /*
 770         * Extract the RXD details.
 771         */
 772        memset(&rxdesc, 0, sizeof(rxdesc));
 773        rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 774
 775        /*
 776         * Check for valid size in case we get corrupted descriptor from
 777         * hardware.
 778         */
 779        if (unlikely(rxdesc.size == 0 ||
 780                     rxdesc.size > entry->queue->data_size)) {
 781                rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
 782                           rxdesc.size, entry->queue->data_size);
 783                dev_kfree_skb(entry->skb);
 784                goto renew_skb;
 785        }
 786
 787        /*
 788         * The data behind the ieee80211 header must be
 789         * aligned on a 4 byte boundary.
 790         */
 791        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 792
 793        /*
 794         * Hardware might have stripped the IV/EIV/ICV data,
 795         * in that case it is possible that the data was
 796         * provided separately (through hardware descriptor)
 797         * in which case we should reinsert the data into the frame.
 798         */
 799        if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 800            (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 801                rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 802                                          &rxdesc);
 803        else if (header_length &&
 804                 (rxdesc.size > header_length) &&
 805                 (rxdesc.dev_flags & RXDONE_L2PAD))
 806                rt2x00queue_remove_l2pad(entry->skb, header_length);
 807
 808        /* Trim buffer to correct size */
 809        skb_trim(entry->skb, rxdesc.size);
 810
 811        /*
 812         * Translate the signal to the correct bitrate index.
 813         */
 814        rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 815        if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 816            rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 817                rxdesc.encoding = RX_ENC_HT;
 818
 819        /*
 820         * Check if this is a beacon, and more frames have been
 821         * buffered while we were in powersaving mode.
 822         */
 823        rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 824
 825        /*
 826         * Check for incoming BlockAcks to match to the BlockAckReqs
 827         * we've send out.
 828         */
 829        rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
 830
 831        /*
 832         * Update extra components
 833         */
 834        rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 835        rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 836        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
 837
 838        /*
 839         * Initialize RX status information, and send frame
 840         * to mac80211.
 841         */
 842        rx_status = IEEE80211_SKB_RXCB(entry->skb);
 843
 844        /* Ensure that all fields of rx_status are initialized
 845         * properly. The skb->cb array was used for driver
 846         * specific informations, so rx_status might contain
 847         * garbage.
 848         */
 849        memset(rx_status, 0, sizeof(*rx_status));
 850
 851        rx_status->mactime = rxdesc.timestamp;
 852        rx_status->band = rt2x00dev->curr_band;
 853        rx_status->freq = rt2x00dev->curr_freq;
 854        rx_status->rate_idx = rate_idx;
 855        rx_status->signal = rxdesc.rssi;
 856        rx_status->flag = rxdesc.flags;
 857        rx_status->enc_flags = rxdesc.enc_flags;
 858        rx_status->encoding = rxdesc.encoding;
 859        rx_status->bw = rxdesc.bw;
 860        rx_status->antenna = rt2x00dev->link.ant.active.rx;
 861
 862        ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 863
 864renew_skb:
 865        /*
 866         * Replace the skb with the freshly allocated one.
 867         */
 868        entry->skb = skb;
 869
 870submit_entry:
 871        entry->flags = 0;
 872        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 873        if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 874            test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 875                rt2x00dev->ops->lib->clear_entry(entry);
 876}
 877EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 878
 879/*
 880 * Driver initialization handlers.
 881 */
 882const struct rt2x00_rate rt2x00_supported_rates[12] = {
 883        {
 884                .flags = DEV_RATE_CCK,
 885                .bitrate = 10,
 886                .ratemask = BIT(0),
 887                .plcp = 0x00,
 888                .mcs = RATE_MCS(RATE_MODE_CCK, 0),
 889        },
 890        {
 891                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 892                .bitrate = 20,
 893                .ratemask = BIT(1),
 894                .plcp = 0x01,
 895                .mcs = RATE_MCS(RATE_MODE_CCK, 1),
 896        },
 897        {
 898                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 899                .bitrate = 55,
 900                .ratemask = BIT(2),
 901                .plcp = 0x02,
 902                .mcs = RATE_MCS(RATE_MODE_CCK, 2),
 903        },
 904        {
 905                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 906                .bitrate = 110,
 907                .ratemask = BIT(3),
 908                .plcp = 0x03,
 909                .mcs = RATE_MCS(RATE_MODE_CCK, 3),
 910        },
 911        {
 912                .flags = DEV_RATE_OFDM,
 913                .bitrate = 60,
 914                .ratemask = BIT(4),
 915                .plcp = 0x0b,
 916                .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 917        },
 918        {
 919                .flags = DEV_RATE_OFDM,
 920                .bitrate = 90,
 921                .ratemask = BIT(5),
 922                .plcp = 0x0f,
 923                .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 924        },
 925        {
 926                .flags = DEV_RATE_OFDM,
 927                .bitrate = 120,
 928                .ratemask = BIT(6),
 929                .plcp = 0x0a,
 930                .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 931        },
 932        {
 933                .flags = DEV_RATE_OFDM,
 934                .bitrate = 180,
 935                .ratemask = BIT(7),
 936                .plcp = 0x0e,
 937                .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 938        },
 939        {
 940                .flags = DEV_RATE_OFDM,
 941                .bitrate = 240,
 942                .ratemask = BIT(8),
 943                .plcp = 0x09,
 944                .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 945        },
 946        {
 947                .flags = DEV_RATE_OFDM,
 948                .bitrate = 360,
 949                .ratemask = BIT(9),
 950                .plcp = 0x0d,
 951                .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 952        },
 953        {
 954                .flags = DEV_RATE_OFDM,
 955                .bitrate = 480,
 956                .ratemask = BIT(10),
 957                .plcp = 0x08,
 958                .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 959        },
 960        {
 961                .flags = DEV_RATE_OFDM,
 962                .bitrate = 540,
 963                .ratemask = BIT(11),
 964                .plcp = 0x0c,
 965                .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 966        },
 967};
 968
 969static void rt2x00lib_channel(struct ieee80211_channel *entry,
 970                              const int channel, const int tx_power,
 971                              const int value)
 972{
 973        /* XXX: this assumption about the band is wrong for 802.11j */
 974        entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
 975        entry->center_freq = ieee80211_channel_to_frequency(channel,
 976                                                            entry->band);
 977        entry->hw_value = value;
 978        entry->max_power = tx_power;
 979        entry->max_antenna_gain = 0xff;
 980}
 981
 982static void rt2x00lib_rate(struct ieee80211_rate *entry,
 983                           const u16 index, const struct rt2x00_rate *rate)
 984{
 985        entry->flags = 0;
 986        entry->bitrate = rate->bitrate;
 987        entry->hw_value = index;
 988        entry->hw_value_short = index;
 989
 990        if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 991                entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 992}
 993
 994void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
 995{
 996        const char *mac_addr;
 997
 998        mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
 999        if (!IS_ERR(mac_addr))
1000                ether_addr_copy(eeprom_mac_addr, mac_addr);
1001
1002        if (!is_valid_ether_addr(eeprom_mac_addr)) {
1003                eth_random_addr(eeprom_mac_addr);
1004                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1005        }
1006}
1007EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1008
1009static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1010                                    struct hw_mode_spec *spec)
1011{
1012        struct ieee80211_hw *hw = rt2x00dev->hw;
1013        struct ieee80211_channel *channels;
1014        struct ieee80211_rate *rates;
1015        unsigned int num_rates;
1016        unsigned int i;
1017
1018        num_rates = 0;
1019        if (spec->supported_rates & SUPPORT_RATE_CCK)
1020                num_rates += 4;
1021        if (spec->supported_rates & SUPPORT_RATE_OFDM)
1022                num_rates += 8;
1023
1024        channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1025        if (!channels)
1026                return -ENOMEM;
1027
1028        rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1029        if (!rates)
1030                goto exit_free_channels;
1031
1032        /*
1033         * Initialize Rate list.
1034         */
1035        for (i = 0; i < num_rates; i++)
1036                rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1037
1038        /*
1039         * Initialize Channel list.
1040         */
1041        for (i = 0; i < spec->num_channels; i++) {
1042                rt2x00lib_channel(&channels[i],
1043                                  spec->channels[i].channel,
1044                                  spec->channels_info[i].max_power, i);
1045        }
1046
1047        /*
1048         * Intitialize 802.11b, 802.11g
1049         * Rates: CCK, OFDM.
1050         * Channels: 2.4 GHz
1051         */
1052        if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1053                rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1054                rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1055                rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1056                rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1057                hw->wiphy->bands[NL80211_BAND_2GHZ] =
1058                    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1059                memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1060                       &spec->ht, sizeof(spec->ht));
1061        }
1062
1063        /*
1064         * Intitialize 802.11a
1065         * Rates: OFDM.
1066         * Channels: OFDM, UNII, HiperLAN2.
1067         */
1068        if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1069                rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1070                    spec->num_channels - 14;
1071                rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1072                    num_rates - 4;
1073                rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1074                rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1075                hw->wiphy->bands[NL80211_BAND_5GHZ] =
1076                    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1077                memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1078                       &spec->ht, sizeof(spec->ht));
1079        }
1080
1081        return 0;
1082
1083 exit_free_channels:
1084        kfree(channels);
1085        rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1086        return -ENOMEM;
1087}
1088
1089static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1090{
1091        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1092                ieee80211_unregister_hw(rt2x00dev->hw);
1093
1094        if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1095                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1096                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1097                rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1098                rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1099        }
1100
1101        kfree(rt2x00dev->spec.channels_info);
1102}
1103
1104static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1105{
1106        struct hw_mode_spec *spec = &rt2x00dev->spec;
1107        int status;
1108
1109        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1110                return 0;
1111
1112        /*
1113         * Initialize HW modes.
1114         */
1115        status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1116        if (status)
1117                return status;
1118
1119        /*
1120         * Initialize HW fields.
1121         */
1122        rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1123
1124        /*
1125         * Initialize extra TX headroom required.
1126         */
1127        rt2x00dev->hw->extra_tx_headroom =
1128                max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1129                      rt2x00dev->extra_tx_headroom);
1130
1131        /*
1132         * Take TX headroom required for alignment into account.
1133         */
1134        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1135                rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1136        else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1137                rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1138
1139        /*
1140         * Tell mac80211 about the size of our private STA structure.
1141         */
1142        rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1143
1144        /*
1145         * Allocate tx status FIFO for driver use.
1146         */
1147        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1148                /*
1149                 * Allocate the txstatus fifo. In the worst case the tx
1150                 * status fifo has to hold the tx status of all entries
1151                 * in all tx queues. Hence, calculate the kfifo size as
1152                 * tx_queues * entry_num and round up to the nearest
1153                 * power of 2.
1154                 */
1155                int kfifo_size =
1156                        roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1157                                           rt2x00dev->tx->limit *
1158                                           sizeof(u32));
1159
1160                status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1161                                     GFP_KERNEL);
1162                if (status)
1163                        return status;
1164        }
1165
1166        /*
1167         * Initialize tasklets if used by the driver. Tasklets are
1168         * disabled until the interrupts are turned on. The driver
1169         * has to handle that.
1170         */
1171#define RT2X00_TASKLET_INIT(taskletname) \
1172        if (rt2x00dev->ops->lib->taskletname) { \
1173                tasklet_init(&rt2x00dev->taskletname, \
1174                             rt2x00dev->ops->lib->taskletname, \
1175                             (unsigned long)rt2x00dev); \
1176        }
1177
1178        RT2X00_TASKLET_INIT(txstatus_tasklet);
1179        RT2X00_TASKLET_INIT(pretbtt_tasklet);
1180        RT2X00_TASKLET_INIT(tbtt_tasklet);
1181        RT2X00_TASKLET_INIT(rxdone_tasklet);
1182        RT2X00_TASKLET_INIT(autowake_tasklet);
1183
1184#undef RT2X00_TASKLET_INIT
1185
1186        /*
1187         * Register HW.
1188         */
1189        status = ieee80211_register_hw(rt2x00dev->hw);
1190        if (status)
1191                return status;
1192
1193        set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1194
1195        return 0;
1196}
1197
1198/*
1199 * Initialization/uninitialization handlers.
1200 */
1201static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1202{
1203        if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1204                return;
1205
1206        /*
1207         * Stop rfkill polling.
1208         */
1209        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1210                rt2x00rfkill_unregister(rt2x00dev);
1211
1212        /*
1213         * Allow the HW to uninitialize.
1214         */
1215        rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1216
1217        /*
1218         * Free allocated queue entries.
1219         */
1220        rt2x00queue_uninitialize(rt2x00dev);
1221}
1222
1223static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1224{
1225        int status;
1226
1227        if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1228                return 0;
1229
1230        /*
1231         * Allocate all queue entries.
1232         */
1233        status = rt2x00queue_initialize(rt2x00dev);
1234        if (status)
1235                return status;
1236
1237        /*
1238         * Initialize the device.
1239         */
1240        status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1241        if (status) {
1242                rt2x00queue_uninitialize(rt2x00dev);
1243                return status;
1244        }
1245
1246        set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1247
1248        /*
1249         * Start rfkill polling.
1250         */
1251        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1252                rt2x00rfkill_register(rt2x00dev);
1253
1254        return 0;
1255}
1256
1257int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1258{
1259        int retval;
1260
1261        if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1262                return 0;
1263
1264        /*
1265         * If this is the first interface which is added,
1266         * we should load the firmware now.
1267         */
1268        retval = rt2x00lib_load_firmware(rt2x00dev);
1269        if (retval)
1270                return retval;
1271
1272        /*
1273         * Initialize the device.
1274         */
1275        retval = rt2x00lib_initialize(rt2x00dev);
1276        if (retval)
1277                return retval;
1278
1279        rt2x00dev->intf_ap_count = 0;
1280        rt2x00dev->intf_sta_count = 0;
1281        rt2x00dev->intf_associated = 0;
1282
1283        /* Enable the radio */
1284        retval = rt2x00lib_enable_radio(rt2x00dev);
1285        if (retval)
1286                return retval;
1287
1288        set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1289
1290        return 0;
1291}
1292
1293void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1294{
1295        if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1296                return;
1297
1298        /*
1299         * Perhaps we can add something smarter here,
1300         * but for now just disabling the radio should do.
1301         */
1302        rt2x00lib_disable_radio(rt2x00dev);
1303
1304        rt2x00dev->intf_ap_count = 0;
1305        rt2x00dev->intf_sta_count = 0;
1306        rt2x00dev->intf_associated = 0;
1307}
1308
1309static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1310{
1311        struct ieee80211_iface_limit *if_limit;
1312        struct ieee80211_iface_combination *if_combination;
1313
1314        if (rt2x00dev->ops->max_ap_intf < 2)
1315                return;
1316
1317        /*
1318         * Build up AP interface limits structure.
1319         */
1320        if_limit = &rt2x00dev->if_limits_ap;
1321        if_limit->max = rt2x00dev->ops->max_ap_intf;
1322        if_limit->types = BIT(NL80211_IFTYPE_AP);
1323#ifdef CONFIG_MAC80211_MESH
1324        if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1325#endif
1326
1327        /*
1328         * Build up AP interface combinations structure.
1329         */
1330        if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1331        if_combination->limits = if_limit;
1332        if_combination->n_limits = 1;
1333        if_combination->max_interfaces = if_limit->max;
1334        if_combination->num_different_channels = 1;
1335
1336        /*
1337         * Finally, specify the possible combinations to mac80211.
1338         */
1339        rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1340        rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1341}
1342
1343static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1344{
1345        if (WARN_ON(!rt2x00dev->tx))
1346                return 0;
1347
1348        if (rt2x00_is_usb(rt2x00dev))
1349                return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1350
1351        return rt2x00dev->tx[0].winfo_size;
1352}
1353
1354/*
1355 * driver allocation handlers.
1356 */
1357int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1358{
1359        int retval = -ENOMEM;
1360
1361        /*
1362         * Set possible interface combinations.
1363         */
1364        rt2x00lib_set_if_combinations(rt2x00dev);
1365
1366        /*
1367         * Allocate the driver data memory, if necessary.
1368         */
1369        if (rt2x00dev->ops->drv_data_size > 0) {
1370                rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1371                                              GFP_KERNEL);
1372                if (!rt2x00dev->drv_data) {
1373                        retval = -ENOMEM;
1374                        goto exit;
1375                }
1376        }
1377
1378        spin_lock_init(&rt2x00dev->irqmask_lock);
1379        mutex_init(&rt2x00dev->csr_mutex);
1380        mutex_init(&rt2x00dev->conf_mutex);
1381        INIT_LIST_HEAD(&rt2x00dev->bar_list);
1382        spin_lock_init(&rt2x00dev->bar_list_lock);
1383        hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1384                     HRTIMER_MODE_REL);
1385
1386        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1387
1388        /*
1389         * Make room for rt2x00_intf inside the per-interface
1390         * structure ieee80211_vif.
1391         */
1392        rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1393
1394        /*
1395         * rt2x00 devices can only use the last n bits of the MAC address
1396         * for virtual interfaces.
1397         */
1398        rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1399                (rt2x00dev->ops->max_ap_intf - 1);
1400
1401        /*
1402         * Initialize work.
1403         */
1404        rt2x00dev->workqueue =
1405            alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1406        if (!rt2x00dev->workqueue) {
1407                retval = -ENOMEM;
1408                goto exit;
1409        }
1410
1411        INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1412        INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1413        INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1414
1415        /*
1416         * Let the driver probe the device to detect the capabilities.
1417         */
1418        retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1419        if (retval) {
1420                rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1421                goto exit;
1422        }
1423
1424        /*
1425         * Allocate queue array.
1426         */
1427        retval = rt2x00queue_allocate(rt2x00dev);
1428        if (retval)
1429                goto exit;
1430
1431        /* Cache TX headroom value */
1432        rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1433
1434        /*
1435         * Determine which operating modes are supported, all modes
1436         * which require beaconing, depend on the availability of
1437         * beacon entries.
1438         */
1439        rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1440        if (rt2x00dev->bcn->limit > 0)
1441                rt2x00dev->hw->wiphy->interface_modes |=
1442                    BIT(NL80211_IFTYPE_ADHOC) |
1443#ifdef CONFIG_MAC80211_MESH
1444                    BIT(NL80211_IFTYPE_MESH_POINT) |
1445#endif
1446#ifdef CONFIG_WIRELESS_WDS
1447                    BIT(NL80211_IFTYPE_WDS) |
1448#endif
1449                    BIT(NL80211_IFTYPE_AP);
1450
1451        rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1452
1453        wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1454                              NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1455
1456        /*
1457         * Initialize ieee80211 structure.
1458         */
1459        retval = rt2x00lib_probe_hw(rt2x00dev);
1460        if (retval) {
1461                rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1462                goto exit;
1463        }
1464
1465        /*
1466         * Register extra components.
1467         */
1468        rt2x00link_register(rt2x00dev);
1469        rt2x00leds_register(rt2x00dev);
1470        rt2x00debug_register(rt2x00dev);
1471
1472        /*
1473         * Start rfkill polling.
1474         */
1475        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1476                rt2x00rfkill_register(rt2x00dev);
1477
1478        return 0;
1479
1480exit:
1481        rt2x00lib_remove_dev(rt2x00dev);
1482
1483        return retval;
1484}
1485EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1486
1487void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1488{
1489        clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1490
1491        /*
1492         * Stop rfkill polling.
1493         */
1494        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1495                rt2x00rfkill_unregister(rt2x00dev);
1496
1497        /*
1498         * Disable radio.
1499         */
1500        rt2x00lib_disable_radio(rt2x00dev);
1501
1502        /*
1503         * Stop all work.
1504         */
1505        cancel_work_sync(&rt2x00dev->intf_work);
1506        cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1507        cancel_work_sync(&rt2x00dev->sleep_work);
1508
1509        hrtimer_cancel(&rt2x00dev->txstatus_timer);
1510
1511        /*
1512         * Kill the tx status tasklet.
1513         */
1514        tasklet_kill(&rt2x00dev->txstatus_tasklet);
1515        tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1516        tasklet_kill(&rt2x00dev->tbtt_tasklet);
1517        tasklet_kill(&rt2x00dev->rxdone_tasklet);
1518        tasklet_kill(&rt2x00dev->autowake_tasklet);
1519
1520        /*
1521         * Uninitialize device.
1522         */
1523        rt2x00lib_uninitialize(rt2x00dev);
1524
1525        if (rt2x00dev->workqueue)
1526                destroy_workqueue(rt2x00dev->workqueue);
1527
1528        /*
1529         * Free the tx status fifo.
1530         */
1531        kfifo_free(&rt2x00dev->txstatus_fifo);
1532
1533        /*
1534         * Free extra components
1535         */
1536        rt2x00debug_deregister(rt2x00dev);
1537        rt2x00leds_unregister(rt2x00dev);
1538
1539        /*
1540         * Free ieee80211_hw memory.
1541         */
1542        rt2x00lib_remove_hw(rt2x00dev);
1543
1544        /*
1545         * Free firmware image.
1546         */
1547        rt2x00lib_free_firmware(rt2x00dev);
1548
1549        /*
1550         * Free queue structures.
1551         */
1552        rt2x00queue_free(rt2x00dev);
1553
1554        /*
1555         * Free the driver data.
1556         */
1557        kfree(rt2x00dev->drv_data);
1558}
1559EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1560
1561/*
1562 * Device state handlers
1563 */
1564#ifdef CONFIG_PM
1565int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1566{
1567        rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1568
1569        /*
1570         * Prevent mac80211 from accessing driver while suspended.
1571         */
1572        if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1573                return 0;
1574
1575        /*
1576         * Cleanup as much as possible.
1577         */
1578        rt2x00lib_uninitialize(rt2x00dev);
1579
1580        /*
1581         * Suspend/disable extra components.
1582         */
1583        rt2x00leds_suspend(rt2x00dev);
1584        rt2x00debug_deregister(rt2x00dev);
1585
1586        /*
1587         * Set device mode to sleep for power management,
1588         * on some hardware this call seems to consistently fail.
1589         * From the specifications it is hard to tell why it fails,
1590         * and if this is a "bad thing".
1591         * Overall it is safe to just ignore the failure and
1592         * continue suspending. The only downside is that the
1593         * device will not be in optimal power save mode, but with
1594         * the radio and the other components already disabled the
1595         * device is as good as disabled.
1596         */
1597        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1598                rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1599
1600        return 0;
1601}
1602EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1603
1604int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1605{
1606        rt2x00_dbg(rt2x00dev, "Waking up\n");
1607
1608        /*
1609         * Restore/enable extra components.
1610         */
1611        rt2x00debug_register(rt2x00dev);
1612        rt2x00leds_resume(rt2x00dev);
1613
1614        /*
1615         * We are ready again to receive requests from mac80211.
1616         */
1617        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1618
1619        return 0;
1620}
1621EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1622#endif /* CONFIG_PM */
1623
1624/*
1625 * rt2x00lib module information.
1626 */
1627MODULE_AUTHOR(DRV_PROJECT);
1628MODULE_VERSION(DRV_VERSION);
1629MODULE_DESCRIPTION("rt2x00 library");
1630MODULE_LICENSE("GPL");
1631