linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/aer.h>
   8#include <linux/async.h>
   9#include <linux/blkdev.h>
  10#include <linux/blk-mq.h>
  11#include <linux/blk-mq-pci.h>
  12#include <linux/dmi.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <linux/once.h>
  20#include <linux/pci.h>
  21#include <linux/t10-pi.h>
  22#include <linux/types.h>
  23#include <linux/io-64-nonatomic-lo-hi.h>
  24#include <linux/sed-opal.h>
  25#include <linux/pci-p2pdma.h>
  26
  27#include "trace.h"
  28#include "nvme.h"
  29
  30#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  31#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  32
  33#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  34
  35/*
  36 * These can be higher, but we need to ensure that any command doesn't
  37 * require an sg allocation that needs more than a page of data.
  38 */
  39#define NVME_MAX_KB_SZ  4096
  40#define NVME_MAX_SEGS   127
  41
  42static int use_threaded_interrupts;
  43module_param(use_threaded_interrupts, int, 0);
  44
  45static bool use_cmb_sqes = true;
  46module_param(use_cmb_sqes, bool, 0444);
  47MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  48
  49static unsigned int max_host_mem_size_mb = 128;
  50module_param(max_host_mem_size_mb, uint, 0444);
  51MODULE_PARM_DESC(max_host_mem_size_mb,
  52        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  53
  54static unsigned int sgl_threshold = SZ_32K;
  55module_param(sgl_threshold, uint, 0644);
  56MODULE_PARM_DESC(sgl_threshold,
  57                "Use SGLs when average request segment size is larger or equal to "
  58                "this size. Use 0 to disable SGLs.");
  59
  60static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  61static const struct kernel_param_ops io_queue_depth_ops = {
  62        .set = io_queue_depth_set,
  63        .get = param_get_int,
  64};
  65
  66static int io_queue_depth = 1024;
  67module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  68MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  69
  70static int queue_count_set(const char *val, const struct kernel_param *kp);
  71static const struct kernel_param_ops queue_count_ops = {
  72        .set = queue_count_set,
  73        .get = param_get_int,
  74};
  75
  76static int write_queues;
  77module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
  78MODULE_PARM_DESC(write_queues,
  79        "Number of queues to use for writes. If not set, reads and writes "
  80        "will share a queue set.");
  81
  82static int poll_queues = 0;
  83module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
  84MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  85
  86struct nvme_dev;
  87struct nvme_queue;
  88
  89static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  90static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
  91
  92/*
  93 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  94 */
  95struct nvme_dev {
  96        struct nvme_queue *queues;
  97        struct blk_mq_tag_set tagset;
  98        struct blk_mq_tag_set admin_tagset;
  99        u32 __iomem *dbs;
 100        struct device *dev;
 101        struct dma_pool *prp_page_pool;
 102        struct dma_pool *prp_small_pool;
 103        unsigned online_queues;
 104        unsigned max_qid;
 105        unsigned io_queues[HCTX_MAX_TYPES];
 106        unsigned int num_vecs;
 107        int q_depth;
 108        u32 db_stride;
 109        void __iomem *bar;
 110        unsigned long bar_mapped_size;
 111        struct work_struct remove_work;
 112        struct mutex shutdown_lock;
 113        bool subsystem;
 114        u64 cmb_size;
 115        bool cmb_use_sqes;
 116        u32 cmbsz;
 117        u32 cmbloc;
 118        struct nvme_ctrl ctrl;
 119
 120        mempool_t *iod_mempool;
 121
 122        /* shadow doorbell buffer support: */
 123        u32 *dbbuf_dbs;
 124        dma_addr_t dbbuf_dbs_dma_addr;
 125        u32 *dbbuf_eis;
 126        dma_addr_t dbbuf_eis_dma_addr;
 127
 128        /* host memory buffer support: */
 129        u64 host_mem_size;
 130        u32 nr_host_mem_descs;
 131        dma_addr_t host_mem_descs_dma;
 132        struct nvme_host_mem_buf_desc *host_mem_descs;
 133        void **host_mem_desc_bufs;
 134};
 135
 136static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 137{
 138        int n = 0, ret;
 139
 140        ret = kstrtoint(val, 10, &n);
 141        if (ret != 0 || n < 2)
 142                return -EINVAL;
 143
 144        return param_set_int(val, kp);
 145}
 146
 147static int queue_count_set(const char *val, const struct kernel_param *kp)
 148{
 149        int n, ret;
 150
 151        ret = kstrtoint(val, 10, &n);
 152        if (ret)
 153                return ret;
 154        if (n > num_possible_cpus())
 155                n = num_possible_cpus();
 156
 157        return param_set_int(val, kp);
 158}
 159
 160static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 161{
 162        return qid * 2 * stride;
 163}
 164
 165static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 166{
 167        return (qid * 2 + 1) * stride;
 168}
 169
 170static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 171{
 172        return container_of(ctrl, struct nvme_dev, ctrl);
 173}
 174
 175/*
 176 * An NVM Express queue.  Each device has at least two (one for admin
 177 * commands and one for I/O commands).
 178 */
 179struct nvme_queue {
 180        struct nvme_dev *dev;
 181        spinlock_t sq_lock;
 182        struct nvme_command *sq_cmds;
 183         /* only used for poll queues: */
 184        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 185        volatile struct nvme_completion *cqes;
 186        struct blk_mq_tags **tags;
 187        dma_addr_t sq_dma_addr;
 188        dma_addr_t cq_dma_addr;
 189        u32 __iomem *q_db;
 190        u16 q_depth;
 191        u16 cq_vector;
 192        u16 sq_tail;
 193        u16 last_sq_tail;
 194        u16 cq_head;
 195        u16 last_cq_head;
 196        u16 qid;
 197        u8 cq_phase;
 198        unsigned long flags;
 199#define NVMEQ_ENABLED           0
 200#define NVMEQ_SQ_CMB            1
 201#define NVMEQ_DELETE_ERROR      2
 202#define NVMEQ_POLLED            3
 203        u32 *dbbuf_sq_db;
 204        u32 *dbbuf_cq_db;
 205        u32 *dbbuf_sq_ei;
 206        u32 *dbbuf_cq_ei;
 207        struct completion delete_done;
 208};
 209
 210/*
 211 * The nvme_iod describes the data in an I/O.
 212 *
 213 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 214 * to the actual struct scatterlist.
 215 */
 216struct nvme_iod {
 217        struct nvme_request req;
 218        struct nvme_queue *nvmeq;
 219        bool use_sgl;
 220        int aborted;
 221        int npages;             /* In the PRP list. 0 means small pool in use */
 222        int nents;              /* Used in scatterlist */
 223        dma_addr_t first_dma;
 224        unsigned int dma_len;   /* length of single DMA segment mapping */
 225        dma_addr_t meta_dma;
 226        struct scatterlist *sg;
 227};
 228
 229static unsigned int max_io_queues(void)
 230{
 231        return num_possible_cpus() + write_queues + poll_queues;
 232}
 233
 234static unsigned int max_queue_count(void)
 235{
 236        /* IO queues + admin queue */
 237        return 1 + max_io_queues();
 238}
 239
 240static inline unsigned int nvme_dbbuf_size(u32 stride)
 241{
 242        return (max_queue_count() * 8 * stride);
 243}
 244
 245static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 246{
 247        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 248
 249        if (dev->dbbuf_dbs)
 250                return 0;
 251
 252        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 253                                            &dev->dbbuf_dbs_dma_addr,
 254                                            GFP_KERNEL);
 255        if (!dev->dbbuf_dbs)
 256                return -ENOMEM;
 257        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 258                                            &dev->dbbuf_eis_dma_addr,
 259                                            GFP_KERNEL);
 260        if (!dev->dbbuf_eis) {
 261                dma_free_coherent(dev->dev, mem_size,
 262                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 263                dev->dbbuf_dbs = NULL;
 264                return -ENOMEM;
 265        }
 266
 267        return 0;
 268}
 269
 270static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 271{
 272        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 273
 274        if (dev->dbbuf_dbs) {
 275                dma_free_coherent(dev->dev, mem_size,
 276                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 277                dev->dbbuf_dbs = NULL;
 278        }
 279        if (dev->dbbuf_eis) {
 280                dma_free_coherent(dev->dev, mem_size,
 281                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 282                dev->dbbuf_eis = NULL;
 283        }
 284}
 285
 286static void nvme_dbbuf_init(struct nvme_dev *dev,
 287                            struct nvme_queue *nvmeq, int qid)
 288{
 289        if (!dev->dbbuf_dbs || !qid)
 290                return;
 291
 292        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 293        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 294        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 295        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 296}
 297
 298static void nvme_dbbuf_set(struct nvme_dev *dev)
 299{
 300        struct nvme_command c;
 301
 302        if (!dev->dbbuf_dbs)
 303                return;
 304
 305        memset(&c, 0, sizeof(c));
 306        c.dbbuf.opcode = nvme_admin_dbbuf;
 307        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 308        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 309
 310        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 311                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 312                /* Free memory and continue on */
 313                nvme_dbbuf_dma_free(dev);
 314        }
 315}
 316
 317static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 318{
 319        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 320}
 321
 322/* Update dbbuf and return true if an MMIO is required */
 323static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 324                                              volatile u32 *dbbuf_ei)
 325{
 326        if (dbbuf_db) {
 327                u16 old_value;
 328
 329                /*
 330                 * Ensure that the queue is written before updating
 331                 * the doorbell in memory
 332                 */
 333                wmb();
 334
 335                old_value = *dbbuf_db;
 336                *dbbuf_db = value;
 337
 338                /*
 339                 * Ensure that the doorbell is updated before reading the event
 340                 * index from memory.  The controller needs to provide similar
 341                 * ordering to ensure the envent index is updated before reading
 342                 * the doorbell.
 343                 */
 344                mb();
 345
 346                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 347                        return false;
 348        }
 349
 350        return true;
 351}
 352
 353/*
 354 * Will slightly overestimate the number of pages needed.  This is OK
 355 * as it only leads to a small amount of wasted memory for the lifetime of
 356 * the I/O.
 357 */
 358static int nvme_npages(unsigned size, struct nvme_dev *dev)
 359{
 360        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 361                                      dev->ctrl.page_size);
 362        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 363}
 364
 365/*
 366 * Calculates the number of pages needed for the SGL segments. For example a 4k
 367 * page can accommodate 256 SGL descriptors.
 368 */
 369static int nvme_pci_npages_sgl(unsigned int num_seg)
 370{
 371        return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 372}
 373
 374static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 375                unsigned int size, unsigned int nseg, bool use_sgl)
 376{
 377        size_t alloc_size;
 378
 379        if (use_sgl)
 380                alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 381        else
 382                alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 383
 384        return alloc_size + sizeof(struct scatterlist) * nseg;
 385}
 386
 387static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 388                                unsigned int hctx_idx)
 389{
 390        struct nvme_dev *dev = data;
 391        struct nvme_queue *nvmeq = &dev->queues[0];
 392
 393        WARN_ON(hctx_idx != 0);
 394        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 395        WARN_ON(nvmeq->tags);
 396
 397        hctx->driver_data = nvmeq;
 398        nvmeq->tags = &dev->admin_tagset.tags[0];
 399        return 0;
 400}
 401
 402static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 403{
 404        struct nvme_queue *nvmeq = hctx->driver_data;
 405
 406        nvmeq->tags = NULL;
 407}
 408
 409static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 410                          unsigned int hctx_idx)
 411{
 412        struct nvme_dev *dev = data;
 413        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 414
 415        if (!nvmeq->tags)
 416                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 417
 418        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 419        hctx->driver_data = nvmeq;
 420        return 0;
 421}
 422
 423static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 424                unsigned int hctx_idx, unsigned int numa_node)
 425{
 426        struct nvme_dev *dev = set->driver_data;
 427        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 428        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 429        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 430
 431        BUG_ON(!nvmeq);
 432        iod->nvmeq = nvmeq;
 433
 434        nvme_req(req)->ctrl = &dev->ctrl;
 435        return 0;
 436}
 437
 438static int queue_irq_offset(struct nvme_dev *dev)
 439{
 440        /* if we have more than 1 vec, admin queue offsets us by 1 */
 441        if (dev->num_vecs > 1)
 442                return 1;
 443
 444        return 0;
 445}
 446
 447static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 448{
 449        struct nvme_dev *dev = set->driver_data;
 450        int i, qoff, offset;
 451
 452        offset = queue_irq_offset(dev);
 453        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 454                struct blk_mq_queue_map *map = &set->map[i];
 455
 456                map->nr_queues = dev->io_queues[i];
 457                if (!map->nr_queues) {
 458                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 459                        continue;
 460                }
 461
 462                /*
 463                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 464                 * affinity), so use the regular blk-mq cpu mapping
 465                 */
 466                map->queue_offset = qoff;
 467                if (i != HCTX_TYPE_POLL && offset)
 468                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 469                else
 470                        blk_mq_map_queues(map);
 471                qoff += map->nr_queues;
 472                offset += map->nr_queues;
 473        }
 474
 475        return 0;
 476}
 477
 478/*
 479 * Write sq tail if we are asked to, or if the next command would wrap.
 480 */
 481static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 482{
 483        if (!write_sq) {
 484                u16 next_tail = nvmeq->sq_tail + 1;
 485
 486                if (next_tail == nvmeq->q_depth)
 487                        next_tail = 0;
 488                if (next_tail != nvmeq->last_sq_tail)
 489                        return;
 490        }
 491
 492        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 493                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 494                writel(nvmeq->sq_tail, nvmeq->q_db);
 495        nvmeq->last_sq_tail = nvmeq->sq_tail;
 496}
 497
 498/**
 499 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 500 * @nvmeq: The queue to use
 501 * @cmd: The command to send
 502 * @write_sq: whether to write to the SQ doorbell
 503 */
 504static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 505                            bool write_sq)
 506{
 507        spin_lock(&nvmeq->sq_lock);
 508        memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
 509        if (++nvmeq->sq_tail == nvmeq->q_depth)
 510                nvmeq->sq_tail = 0;
 511        nvme_write_sq_db(nvmeq, write_sq);
 512        spin_unlock(&nvmeq->sq_lock);
 513}
 514
 515static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 516{
 517        struct nvme_queue *nvmeq = hctx->driver_data;
 518
 519        spin_lock(&nvmeq->sq_lock);
 520        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 521                nvme_write_sq_db(nvmeq, true);
 522        spin_unlock(&nvmeq->sq_lock);
 523}
 524
 525static void **nvme_pci_iod_list(struct request *req)
 526{
 527        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 528        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 529}
 530
 531static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 532{
 533        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 534        int nseg = blk_rq_nr_phys_segments(req);
 535        unsigned int avg_seg_size;
 536
 537        if (nseg == 0)
 538                return false;
 539
 540        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 541
 542        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 543                return false;
 544        if (!iod->nvmeq->qid)
 545                return false;
 546        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 547                return false;
 548        return true;
 549}
 550
 551static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 552{
 553        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 554        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 555                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 556        const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 557        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 558        int i;
 559
 560        if (iod->dma_len) {
 561                dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
 562                return;
 563        }
 564
 565        WARN_ON_ONCE(!iod->nents);
 566
 567        /* P2PDMA requests do not need to be unmapped */
 568        if (!is_pci_p2pdma_page(sg_page(iod->sg)))
 569                dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 570
 571
 572        if (iod->npages == 0)
 573                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 574                        dma_addr);
 575
 576        for (i = 0; i < iod->npages; i++) {
 577                void *addr = nvme_pci_iod_list(req)[i];
 578
 579                if (iod->use_sgl) {
 580                        struct nvme_sgl_desc *sg_list = addr;
 581
 582                        next_dma_addr =
 583                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 584                } else {
 585                        __le64 *prp_list = addr;
 586
 587                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 588                }
 589
 590                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 591                dma_addr = next_dma_addr;
 592        }
 593
 594        mempool_free(iod->sg, dev->iod_mempool);
 595}
 596
 597static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 598{
 599        int i;
 600        struct scatterlist *sg;
 601
 602        for_each_sg(sgl, sg, nents, i) {
 603                dma_addr_t phys = sg_phys(sg);
 604                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 605                        "dma_address:%pad dma_length:%d\n",
 606                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 607                        sg_dma_len(sg));
 608        }
 609}
 610
 611static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 612                struct request *req, struct nvme_rw_command *cmnd)
 613{
 614        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 615        struct dma_pool *pool;
 616        int length = blk_rq_payload_bytes(req);
 617        struct scatterlist *sg = iod->sg;
 618        int dma_len = sg_dma_len(sg);
 619        u64 dma_addr = sg_dma_address(sg);
 620        u32 page_size = dev->ctrl.page_size;
 621        int offset = dma_addr & (page_size - 1);
 622        __le64 *prp_list;
 623        void **list = nvme_pci_iod_list(req);
 624        dma_addr_t prp_dma;
 625        int nprps, i;
 626
 627        length -= (page_size - offset);
 628        if (length <= 0) {
 629                iod->first_dma = 0;
 630                goto done;
 631        }
 632
 633        dma_len -= (page_size - offset);
 634        if (dma_len) {
 635                dma_addr += (page_size - offset);
 636        } else {
 637                sg = sg_next(sg);
 638                dma_addr = sg_dma_address(sg);
 639                dma_len = sg_dma_len(sg);
 640        }
 641
 642        if (length <= page_size) {
 643                iod->first_dma = dma_addr;
 644                goto done;
 645        }
 646
 647        nprps = DIV_ROUND_UP(length, page_size);
 648        if (nprps <= (256 / 8)) {
 649                pool = dev->prp_small_pool;
 650                iod->npages = 0;
 651        } else {
 652                pool = dev->prp_page_pool;
 653                iod->npages = 1;
 654        }
 655
 656        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 657        if (!prp_list) {
 658                iod->first_dma = dma_addr;
 659                iod->npages = -1;
 660                return BLK_STS_RESOURCE;
 661        }
 662        list[0] = prp_list;
 663        iod->first_dma = prp_dma;
 664        i = 0;
 665        for (;;) {
 666                if (i == page_size >> 3) {
 667                        __le64 *old_prp_list = prp_list;
 668                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 669                        if (!prp_list)
 670                                return BLK_STS_RESOURCE;
 671                        list[iod->npages++] = prp_list;
 672                        prp_list[0] = old_prp_list[i - 1];
 673                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 674                        i = 1;
 675                }
 676                prp_list[i++] = cpu_to_le64(dma_addr);
 677                dma_len -= page_size;
 678                dma_addr += page_size;
 679                length -= page_size;
 680                if (length <= 0)
 681                        break;
 682                if (dma_len > 0)
 683                        continue;
 684                if (unlikely(dma_len < 0))
 685                        goto bad_sgl;
 686                sg = sg_next(sg);
 687                dma_addr = sg_dma_address(sg);
 688                dma_len = sg_dma_len(sg);
 689        }
 690
 691done:
 692        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 693        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 694
 695        return BLK_STS_OK;
 696
 697 bad_sgl:
 698        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 699                        "Invalid SGL for payload:%d nents:%d\n",
 700                        blk_rq_payload_bytes(req), iod->nents);
 701        return BLK_STS_IOERR;
 702}
 703
 704static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 705                struct scatterlist *sg)
 706{
 707        sge->addr = cpu_to_le64(sg_dma_address(sg));
 708        sge->length = cpu_to_le32(sg_dma_len(sg));
 709        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 710}
 711
 712static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 713                dma_addr_t dma_addr, int entries)
 714{
 715        sge->addr = cpu_to_le64(dma_addr);
 716        if (entries < SGES_PER_PAGE) {
 717                sge->length = cpu_to_le32(entries * sizeof(*sge));
 718                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 719        } else {
 720                sge->length = cpu_to_le32(PAGE_SIZE);
 721                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 722        }
 723}
 724
 725static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 726                struct request *req, struct nvme_rw_command *cmd, int entries)
 727{
 728        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 729        struct dma_pool *pool;
 730        struct nvme_sgl_desc *sg_list;
 731        struct scatterlist *sg = iod->sg;
 732        dma_addr_t sgl_dma;
 733        int i = 0;
 734
 735        /* setting the transfer type as SGL */
 736        cmd->flags = NVME_CMD_SGL_METABUF;
 737
 738        if (entries == 1) {
 739                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 740                return BLK_STS_OK;
 741        }
 742
 743        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 744                pool = dev->prp_small_pool;
 745                iod->npages = 0;
 746        } else {
 747                pool = dev->prp_page_pool;
 748                iod->npages = 1;
 749        }
 750
 751        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 752        if (!sg_list) {
 753                iod->npages = -1;
 754                return BLK_STS_RESOURCE;
 755        }
 756
 757        nvme_pci_iod_list(req)[0] = sg_list;
 758        iod->first_dma = sgl_dma;
 759
 760        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 761
 762        do {
 763                if (i == SGES_PER_PAGE) {
 764                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 765                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 766
 767                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 768                        if (!sg_list)
 769                                return BLK_STS_RESOURCE;
 770
 771                        i = 0;
 772                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 773                        sg_list[i++] = *link;
 774                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 775                }
 776
 777                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 778                sg = sg_next(sg);
 779        } while (--entries > 0);
 780
 781        return BLK_STS_OK;
 782}
 783
 784static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 785                struct request *req, struct nvme_rw_command *cmnd,
 786                struct bio_vec *bv)
 787{
 788        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 789        unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
 790
 791        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 792        if (dma_mapping_error(dev->dev, iod->first_dma))
 793                return BLK_STS_RESOURCE;
 794        iod->dma_len = bv->bv_len;
 795
 796        cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 797        if (bv->bv_len > first_prp_len)
 798                cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 799        return 0;
 800}
 801
 802static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 803                struct request *req, struct nvme_rw_command *cmnd,
 804                struct bio_vec *bv)
 805{
 806        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 807
 808        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 809        if (dma_mapping_error(dev->dev, iod->first_dma))
 810                return BLK_STS_RESOURCE;
 811        iod->dma_len = bv->bv_len;
 812
 813        cmnd->flags = NVME_CMD_SGL_METABUF;
 814        cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 815        cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 816        cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 817        return 0;
 818}
 819
 820static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 821                struct nvme_command *cmnd)
 822{
 823        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 824        blk_status_t ret = BLK_STS_RESOURCE;
 825        int nr_mapped;
 826
 827        if (blk_rq_nr_phys_segments(req) == 1) {
 828                struct bio_vec bv = req_bvec(req);
 829
 830                if (!is_pci_p2pdma_page(bv.bv_page)) {
 831                        if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
 832                                return nvme_setup_prp_simple(dev, req,
 833                                                             &cmnd->rw, &bv);
 834
 835                        if (iod->nvmeq->qid &&
 836                            dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
 837                                return nvme_setup_sgl_simple(dev, req,
 838                                                             &cmnd->rw, &bv);
 839                }
 840        }
 841
 842        iod->dma_len = 0;
 843        iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 844        if (!iod->sg)
 845                return BLK_STS_RESOURCE;
 846        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 847        iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 848        if (!iod->nents)
 849                goto out;
 850
 851        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 852                nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
 853                                              rq_dma_dir(req));
 854        else
 855                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 856                                             rq_dma_dir(req), DMA_ATTR_NO_WARN);
 857        if (!nr_mapped)
 858                goto out;
 859
 860        iod->use_sgl = nvme_pci_use_sgls(dev, req);
 861        if (iod->use_sgl)
 862                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 863        else
 864                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 865out:
 866        if (ret != BLK_STS_OK)
 867                nvme_unmap_data(dev, req);
 868        return ret;
 869}
 870
 871static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 872                struct nvme_command *cmnd)
 873{
 874        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 875
 876        iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 877                        rq_dma_dir(req), 0);
 878        if (dma_mapping_error(dev->dev, iod->meta_dma))
 879                return BLK_STS_IOERR;
 880        cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 881        return 0;
 882}
 883
 884/*
 885 * NOTE: ns is NULL when called on the admin queue.
 886 */
 887static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 888                         const struct blk_mq_queue_data *bd)
 889{
 890        struct nvme_ns *ns = hctx->queue->queuedata;
 891        struct nvme_queue *nvmeq = hctx->driver_data;
 892        struct nvme_dev *dev = nvmeq->dev;
 893        struct request *req = bd->rq;
 894        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 895        struct nvme_command cmnd;
 896        blk_status_t ret;
 897
 898        iod->aborted = 0;
 899        iod->npages = -1;
 900        iod->nents = 0;
 901
 902        /*
 903         * We should not need to do this, but we're still using this to
 904         * ensure we can drain requests on a dying queue.
 905         */
 906        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 907                return BLK_STS_IOERR;
 908
 909        ret = nvme_setup_cmd(ns, req, &cmnd);
 910        if (ret)
 911                return ret;
 912
 913        if (blk_rq_nr_phys_segments(req)) {
 914                ret = nvme_map_data(dev, req, &cmnd);
 915                if (ret)
 916                        goto out_free_cmd;
 917        }
 918
 919        if (blk_integrity_rq(req)) {
 920                ret = nvme_map_metadata(dev, req, &cmnd);
 921                if (ret)
 922                        goto out_unmap_data;
 923        }
 924
 925        blk_mq_start_request(req);
 926        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 927        return BLK_STS_OK;
 928out_unmap_data:
 929        nvme_unmap_data(dev, req);
 930out_free_cmd:
 931        nvme_cleanup_cmd(req);
 932        return ret;
 933}
 934
 935static void nvme_pci_complete_rq(struct request *req)
 936{
 937        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 938        struct nvme_dev *dev = iod->nvmeq->dev;
 939
 940        nvme_cleanup_cmd(req);
 941        if (blk_integrity_rq(req))
 942                dma_unmap_page(dev->dev, iod->meta_dma,
 943                               rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 944        if (blk_rq_nr_phys_segments(req))
 945                nvme_unmap_data(dev, req);
 946        nvme_complete_rq(req);
 947}
 948
 949/* We read the CQE phase first to check if the rest of the entry is valid */
 950static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 951{
 952        return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
 953                        nvmeq->cq_phase;
 954}
 955
 956static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 957{
 958        u16 head = nvmeq->cq_head;
 959
 960        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 961                                              nvmeq->dbbuf_cq_ei))
 962                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 963}
 964
 965static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 966{
 967        volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
 968        struct request *req;
 969
 970        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 971                dev_warn(nvmeq->dev->ctrl.device,
 972                        "invalid id %d completed on queue %d\n",
 973                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 974                return;
 975        }
 976
 977        /*
 978         * AEN requests are special as they don't time out and can
 979         * survive any kind of queue freeze and often don't respond to
 980         * aborts.  We don't even bother to allocate a struct request
 981         * for them but rather special case them here.
 982         */
 983        if (unlikely(nvmeq->qid == 0 &&
 984                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
 985                nvme_complete_async_event(&nvmeq->dev->ctrl,
 986                                cqe->status, &cqe->result);
 987                return;
 988        }
 989
 990        req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
 991        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
 992        nvme_end_request(req, cqe->status, cqe->result);
 993}
 994
 995static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
 996{
 997        while (start != end) {
 998                nvme_handle_cqe(nvmeq, start);
 999                if (++start == nvmeq->q_depth)
1000                        start = 0;
1001        }
1002}
1003
1004static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1005{
1006        if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1007                nvmeq->cq_head = 0;
1008                nvmeq->cq_phase = !nvmeq->cq_phase;
1009        } else {
1010                nvmeq->cq_head++;
1011        }
1012}
1013
1014static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1015                                  u16 *end, unsigned int tag)
1016{
1017        int found = 0;
1018
1019        *start = nvmeq->cq_head;
1020        while (nvme_cqe_pending(nvmeq)) {
1021                if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1022                        found++;
1023                nvme_update_cq_head(nvmeq);
1024        }
1025        *end = nvmeq->cq_head;
1026
1027        if (*start != *end)
1028                nvme_ring_cq_doorbell(nvmeq);
1029        return found;
1030}
1031
1032static irqreturn_t nvme_irq(int irq, void *data)
1033{
1034        struct nvme_queue *nvmeq = data;
1035        irqreturn_t ret = IRQ_NONE;
1036        u16 start, end;
1037
1038        /*
1039         * The rmb/wmb pair ensures we see all updates from a previous run of
1040         * the irq handler, even if that was on another CPU.
1041         */
1042        rmb();
1043        if (nvmeq->cq_head != nvmeq->last_cq_head)
1044                ret = IRQ_HANDLED;
1045        nvme_process_cq(nvmeq, &start, &end, -1);
1046        nvmeq->last_cq_head = nvmeq->cq_head;
1047        wmb();
1048
1049        if (start != end) {
1050                nvme_complete_cqes(nvmeq, start, end);
1051                return IRQ_HANDLED;
1052        }
1053
1054        return ret;
1055}
1056
1057static irqreturn_t nvme_irq_check(int irq, void *data)
1058{
1059        struct nvme_queue *nvmeq = data;
1060        if (nvme_cqe_pending(nvmeq))
1061                return IRQ_WAKE_THREAD;
1062        return IRQ_NONE;
1063}
1064
1065/*
1066 * Poll for completions any queue, including those not dedicated to polling.
1067 * Can be called from any context.
1068 */
1069static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1070{
1071        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1072        u16 start, end;
1073        int found;
1074
1075        /*
1076         * For a poll queue we need to protect against the polling thread
1077         * using the CQ lock.  For normal interrupt driven threads we have
1078         * to disable the interrupt to avoid racing with it.
1079         */
1080        if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1081                spin_lock(&nvmeq->cq_poll_lock);
1082                found = nvme_process_cq(nvmeq, &start, &end, tag);
1083                spin_unlock(&nvmeq->cq_poll_lock);
1084        } else {
1085                disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1086                found = nvme_process_cq(nvmeq, &start, &end, tag);
1087                enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1088        }
1089
1090        nvme_complete_cqes(nvmeq, start, end);
1091        return found;
1092}
1093
1094static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1095{
1096        struct nvme_queue *nvmeq = hctx->driver_data;
1097        u16 start, end;
1098        bool found;
1099
1100        if (!nvme_cqe_pending(nvmeq))
1101                return 0;
1102
1103        spin_lock(&nvmeq->cq_poll_lock);
1104        found = nvme_process_cq(nvmeq, &start, &end, -1);
1105        spin_unlock(&nvmeq->cq_poll_lock);
1106
1107        nvme_complete_cqes(nvmeq, start, end);
1108        return found;
1109}
1110
1111static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1112{
1113        struct nvme_dev *dev = to_nvme_dev(ctrl);
1114        struct nvme_queue *nvmeq = &dev->queues[0];
1115        struct nvme_command c;
1116
1117        memset(&c, 0, sizeof(c));
1118        c.common.opcode = nvme_admin_async_event;
1119        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1120        nvme_submit_cmd(nvmeq, &c, true);
1121}
1122
1123static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1124{
1125        struct nvme_command c;
1126
1127        memset(&c, 0, sizeof(c));
1128        c.delete_queue.opcode = opcode;
1129        c.delete_queue.qid = cpu_to_le16(id);
1130
1131        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1132}
1133
1134static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1135                struct nvme_queue *nvmeq, s16 vector)
1136{
1137        struct nvme_command c;
1138        int flags = NVME_QUEUE_PHYS_CONTIG;
1139
1140        if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1141                flags |= NVME_CQ_IRQ_ENABLED;
1142
1143        /*
1144         * Note: we (ab)use the fact that the prp fields survive if no data
1145         * is attached to the request.
1146         */
1147        memset(&c, 0, sizeof(c));
1148        c.create_cq.opcode = nvme_admin_create_cq;
1149        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1150        c.create_cq.cqid = cpu_to_le16(qid);
1151        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1152        c.create_cq.cq_flags = cpu_to_le16(flags);
1153        c.create_cq.irq_vector = cpu_to_le16(vector);
1154
1155        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1156}
1157
1158static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1159                                                struct nvme_queue *nvmeq)
1160{
1161        struct nvme_ctrl *ctrl = &dev->ctrl;
1162        struct nvme_command c;
1163        int flags = NVME_QUEUE_PHYS_CONTIG;
1164
1165        /*
1166         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1167         * set. Since URGENT priority is zeroes, it makes all queues
1168         * URGENT.
1169         */
1170        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1171                flags |= NVME_SQ_PRIO_MEDIUM;
1172
1173        /*
1174         * Note: we (ab)use the fact that the prp fields survive if no data
1175         * is attached to the request.
1176         */
1177        memset(&c, 0, sizeof(c));
1178        c.create_sq.opcode = nvme_admin_create_sq;
1179        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1180        c.create_sq.sqid = cpu_to_le16(qid);
1181        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1182        c.create_sq.sq_flags = cpu_to_le16(flags);
1183        c.create_sq.cqid = cpu_to_le16(qid);
1184
1185        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1186}
1187
1188static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1189{
1190        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1191}
1192
1193static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1194{
1195        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1196}
1197
1198static void abort_endio(struct request *req, blk_status_t error)
1199{
1200        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1201        struct nvme_queue *nvmeq = iod->nvmeq;
1202
1203        dev_warn(nvmeq->dev->ctrl.device,
1204                 "Abort status: 0x%x", nvme_req(req)->status);
1205        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1206        blk_mq_free_request(req);
1207}
1208
1209static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1210{
1211
1212        /* If true, indicates loss of adapter communication, possibly by a
1213         * NVMe Subsystem reset.
1214         */
1215        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1216
1217        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1218        switch (dev->ctrl.state) {
1219        case NVME_CTRL_RESETTING:
1220        case NVME_CTRL_CONNECTING:
1221                return false;
1222        default:
1223                break;
1224        }
1225
1226        /* We shouldn't reset unless the controller is on fatal error state
1227         * _or_ if we lost the communication with it.
1228         */
1229        if (!(csts & NVME_CSTS_CFS) && !nssro)
1230                return false;
1231
1232        return true;
1233}
1234
1235static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1236{
1237        /* Read a config register to help see what died. */
1238        u16 pci_status;
1239        int result;
1240
1241        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1242                                      &pci_status);
1243        if (result == PCIBIOS_SUCCESSFUL)
1244                dev_warn(dev->ctrl.device,
1245                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1246                         csts, pci_status);
1247        else
1248                dev_warn(dev->ctrl.device,
1249                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1250                         csts, result);
1251}
1252
1253static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1254{
1255        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1256        struct nvme_queue *nvmeq = iod->nvmeq;
1257        struct nvme_dev *dev = nvmeq->dev;
1258        struct request *abort_req;
1259        struct nvme_command cmd;
1260        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1261
1262        /* If PCI error recovery process is happening, we cannot reset or
1263         * the recovery mechanism will surely fail.
1264         */
1265        mb();
1266        if (pci_channel_offline(to_pci_dev(dev->dev)))
1267                return BLK_EH_RESET_TIMER;
1268
1269        /*
1270         * Reset immediately if the controller is failed
1271         */
1272        if (nvme_should_reset(dev, csts)) {
1273                nvme_warn_reset(dev, csts);
1274                nvme_dev_disable(dev, false);
1275                nvme_reset_ctrl(&dev->ctrl);
1276                return BLK_EH_DONE;
1277        }
1278
1279        /*
1280         * Did we miss an interrupt?
1281         */
1282        if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1283                dev_warn(dev->ctrl.device,
1284                         "I/O %d QID %d timeout, completion polled\n",
1285                         req->tag, nvmeq->qid);
1286                return BLK_EH_DONE;
1287        }
1288
1289        /*
1290         * Shutdown immediately if controller times out while starting. The
1291         * reset work will see the pci device disabled when it gets the forced
1292         * cancellation error. All outstanding requests are completed on
1293         * shutdown, so we return BLK_EH_DONE.
1294         */
1295        switch (dev->ctrl.state) {
1296        case NVME_CTRL_CONNECTING:
1297                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1298                /* fall through */
1299        case NVME_CTRL_DELETING:
1300                dev_warn_ratelimited(dev->ctrl.device,
1301                         "I/O %d QID %d timeout, disable controller\n",
1302                         req->tag, nvmeq->qid);
1303                nvme_dev_disable(dev, true);
1304                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1305                return BLK_EH_DONE;
1306        case NVME_CTRL_RESETTING:
1307                return BLK_EH_RESET_TIMER;
1308        default:
1309                break;
1310        }
1311
1312        /*
1313         * Shutdown the controller immediately and schedule a reset if the
1314         * command was already aborted once before and still hasn't been
1315         * returned to the driver, or if this is the admin queue.
1316         */
1317        if (!nvmeq->qid || iod->aborted) {
1318                dev_warn(dev->ctrl.device,
1319                         "I/O %d QID %d timeout, reset controller\n",
1320                         req->tag, nvmeq->qid);
1321                nvme_dev_disable(dev, false);
1322                nvme_reset_ctrl(&dev->ctrl);
1323
1324                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1325                return BLK_EH_DONE;
1326        }
1327
1328        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1329                atomic_inc(&dev->ctrl.abort_limit);
1330                return BLK_EH_RESET_TIMER;
1331        }
1332        iod->aborted = 1;
1333
1334        memset(&cmd, 0, sizeof(cmd));
1335        cmd.abort.opcode = nvme_admin_abort_cmd;
1336        cmd.abort.cid = req->tag;
1337        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1338
1339        dev_warn(nvmeq->dev->ctrl.device,
1340                "I/O %d QID %d timeout, aborting\n",
1341                 req->tag, nvmeq->qid);
1342
1343        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1344                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1345        if (IS_ERR(abort_req)) {
1346                atomic_inc(&dev->ctrl.abort_limit);
1347                return BLK_EH_RESET_TIMER;
1348        }
1349
1350        abort_req->timeout = ADMIN_TIMEOUT;
1351        abort_req->end_io_data = NULL;
1352        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1353
1354        /*
1355         * The aborted req will be completed on receiving the abort req.
1356         * We enable the timer again. If hit twice, it'll cause a device reset,
1357         * as the device then is in a faulty state.
1358         */
1359        return BLK_EH_RESET_TIMER;
1360}
1361
1362static void nvme_free_queue(struct nvme_queue *nvmeq)
1363{
1364        dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1365                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1366        if (!nvmeq->sq_cmds)
1367                return;
1368
1369        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1370                pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1371                                nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1372        } else {
1373                dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1374                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1375        }
1376}
1377
1378static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1379{
1380        int i;
1381
1382        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1383                dev->ctrl.queue_count--;
1384                nvme_free_queue(&dev->queues[i]);
1385        }
1386}
1387
1388/**
1389 * nvme_suspend_queue - put queue into suspended state
1390 * @nvmeq: queue to suspend
1391 */
1392static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1393{
1394        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1395                return 1;
1396
1397        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1398        mb();
1399
1400        nvmeq->dev->online_queues--;
1401        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1402                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1403        if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1404                pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1405        return 0;
1406}
1407
1408static void nvme_suspend_io_queues(struct nvme_dev *dev)
1409{
1410        int i;
1411
1412        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1413                nvme_suspend_queue(&dev->queues[i]);
1414}
1415
1416static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1417{
1418        struct nvme_queue *nvmeq = &dev->queues[0];
1419
1420        if (shutdown)
1421                nvme_shutdown_ctrl(&dev->ctrl);
1422        else
1423                nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1424
1425        nvme_poll_irqdisable(nvmeq, -1);
1426}
1427
1428static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1429                                int entry_size)
1430{
1431        int q_depth = dev->q_depth;
1432        unsigned q_size_aligned = roundup(q_depth * entry_size,
1433                                          dev->ctrl.page_size);
1434
1435        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1436                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1437                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1438                q_depth = div_u64(mem_per_q, entry_size);
1439
1440                /*
1441                 * Ensure the reduced q_depth is above some threshold where it
1442                 * would be better to map queues in system memory with the
1443                 * original depth
1444                 */
1445                if (q_depth < 64)
1446                        return -ENOMEM;
1447        }
1448
1449        return q_depth;
1450}
1451
1452static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1453                                int qid, int depth)
1454{
1455        struct pci_dev *pdev = to_pci_dev(dev->dev);
1456
1457        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1458                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1459                nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1460                                                nvmeq->sq_cmds);
1461                if (nvmeq->sq_dma_addr) {
1462                        set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1463                        return 0; 
1464                }
1465        }
1466
1467        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1468                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1469        if (!nvmeq->sq_cmds)
1470                return -ENOMEM;
1471        return 0;
1472}
1473
1474static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1475{
1476        struct nvme_queue *nvmeq = &dev->queues[qid];
1477
1478        if (dev->ctrl.queue_count > qid)
1479                return 0;
1480
1481        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1482                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1483        if (!nvmeq->cqes)
1484                goto free_nvmeq;
1485
1486        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1487                goto free_cqdma;
1488
1489        nvmeq->dev = dev;
1490        spin_lock_init(&nvmeq->sq_lock);
1491        spin_lock_init(&nvmeq->cq_poll_lock);
1492        nvmeq->cq_head = 0;
1493        nvmeq->cq_phase = 1;
1494        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1495        nvmeq->q_depth = depth;
1496        nvmeq->qid = qid;
1497        dev->ctrl.queue_count++;
1498
1499        return 0;
1500
1501 free_cqdma:
1502        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1503                                                        nvmeq->cq_dma_addr);
1504 free_nvmeq:
1505        return -ENOMEM;
1506}
1507
1508static int queue_request_irq(struct nvme_queue *nvmeq)
1509{
1510        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1511        int nr = nvmeq->dev->ctrl.instance;
1512
1513        if (use_threaded_interrupts) {
1514                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1515                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1516        } else {
1517                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1518                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1519        }
1520}
1521
1522static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1523{
1524        struct nvme_dev *dev = nvmeq->dev;
1525
1526        nvmeq->sq_tail = 0;
1527        nvmeq->last_sq_tail = 0;
1528        nvmeq->cq_head = 0;
1529        nvmeq->cq_phase = 1;
1530        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1531        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1532        nvme_dbbuf_init(dev, nvmeq, qid);
1533        dev->online_queues++;
1534        wmb(); /* ensure the first interrupt sees the initialization */
1535}
1536
1537static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1538{
1539        struct nvme_dev *dev = nvmeq->dev;
1540        int result;
1541        u16 vector = 0;
1542
1543        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1544
1545        /*
1546         * A queue's vector matches the queue identifier unless the controller
1547         * has only one vector available.
1548         */
1549        if (!polled)
1550                vector = dev->num_vecs == 1 ? 0 : qid;
1551        else
1552                set_bit(NVMEQ_POLLED, &nvmeq->flags);
1553
1554        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1555        if (result)
1556                return result;
1557
1558        result = adapter_alloc_sq(dev, qid, nvmeq);
1559        if (result < 0)
1560                return result;
1561        else if (result)
1562                goto release_cq;
1563
1564        nvmeq->cq_vector = vector;
1565        nvme_init_queue(nvmeq, qid);
1566
1567        if (!polled) {
1568                nvmeq->cq_vector = vector;
1569                result = queue_request_irq(nvmeq);
1570                if (result < 0)
1571                        goto release_sq;
1572        }
1573
1574        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1575        return result;
1576
1577release_sq:
1578        dev->online_queues--;
1579        adapter_delete_sq(dev, qid);
1580release_cq:
1581        adapter_delete_cq(dev, qid);
1582        return result;
1583}
1584
1585static const struct blk_mq_ops nvme_mq_admin_ops = {
1586        .queue_rq       = nvme_queue_rq,
1587        .complete       = nvme_pci_complete_rq,
1588        .init_hctx      = nvme_admin_init_hctx,
1589        .exit_hctx      = nvme_admin_exit_hctx,
1590        .init_request   = nvme_init_request,
1591        .timeout        = nvme_timeout,
1592};
1593
1594static const struct blk_mq_ops nvme_mq_ops = {
1595        .queue_rq       = nvme_queue_rq,
1596        .complete       = nvme_pci_complete_rq,
1597        .commit_rqs     = nvme_commit_rqs,
1598        .init_hctx      = nvme_init_hctx,
1599        .init_request   = nvme_init_request,
1600        .map_queues     = nvme_pci_map_queues,
1601        .timeout        = nvme_timeout,
1602        .poll           = nvme_poll,
1603};
1604
1605static void nvme_dev_remove_admin(struct nvme_dev *dev)
1606{
1607        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1608                /*
1609                 * If the controller was reset during removal, it's possible
1610                 * user requests may be waiting on a stopped queue. Start the
1611                 * queue to flush these to completion.
1612                 */
1613                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1614                blk_cleanup_queue(dev->ctrl.admin_q);
1615                blk_mq_free_tag_set(&dev->admin_tagset);
1616        }
1617}
1618
1619static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1620{
1621        if (!dev->ctrl.admin_q) {
1622                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1623                dev->admin_tagset.nr_hw_queues = 1;
1624
1625                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1626                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1627                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1628                dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1629                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1630                dev->admin_tagset.driver_data = dev;
1631
1632                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1633                        return -ENOMEM;
1634                dev->ctrl.admin_tagset = &dev->admin_tagset;
1635
1636                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1637                if (IS_ERR(dev->ctrl.admin_q)) {
1638                        blk_mq_free_tag_set(&dev->admin_tagset);
1639                        return -ENOMEM;
1640                }
1641                if (!blk_get_queue(dev->ctrl.admin_q)) {
1642                        nvme_dev_remove_admin(dev);
1643                        dev->ctrl.admin_q = NULL;
1644                        return -ENODEV;
1645                }
1646        } else
1647                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1648
1649        return 0;
1650}
1651
1652static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1653{
1654        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1655}
1656
1657static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1658{
1659        struct pci_dev *pdev = to_pci_dev(dev->dev);
1660
1661        if (size <= dev->bar_mapped_size)
1662                return 0;
1663        if (size > pci_resource_len(pdev, 0))
1664                return -ENOMEM;
1665        if (dev->bar)
1666                iounmap(dev->bar);
1667        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1668        if (!dev->bar) {
1669                dev->bar_mapped_size = 0;
1670                return -ENOMEM;
1671        }
1672        dev->bar_mapped_size = size;
1673        dev->dbs = dev->bar + NVME_REG_DBS;
1674
1675        return 0;
1676}
1677
1678static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1679{
1680        int result;
1681        u32 aqa;
1682        struct nvme_queue *nvmeq;
1683
1684        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1685        if (result < 0)
1686                return result;
1687
1688        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1689                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1690
1691        if (dev->subsystem &&
1692            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1693                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1694
1695        result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1696        if (result < 0)
1697                return result;
1698
1699        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1700        if (result)
1701                return result;
1702
1703        nvmeq = &dev->queues[0];
1704        aqa = nvmeq->q_depth - 1;
1705        aqa |= aqa << 16;
1706
1707        writel(aqa, dev->bar + NVME_REG_AQA);
1708        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1709        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1710
1711        result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1712        if (result)
1713                return result;
1714
1715        nvmeq->cq_vector = 0;
1716        nvme_init_queue(nvmeq, 0);
1717        result = queue_request_irq(nvmeq);
1718        if (result) {
1719                dev->online_queues--;
1720                return result;
1721        }
1722
1723        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1724        return result;
1725}
1726
1727static int nvme_create_io_queues(struct nvme_dev *dev)
1728{
1729        unsigned i, max, rw_queues;
1730        int ret = 0;
1731
1732        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1733                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1734                        ret = -ENOMEM;
1735                        break;
1736                }
1737        }
1738
1739        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1740        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1741                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1742                                dev->io_queues[HCTX_TYPE_READ];
1743        } else {
1744                rw_queues = max;
1745        }
1746
1747        for (i = dev->online_queues; i <= max; i++) {
1748                bool polled = i > rw_queues;
1749
1750                ret = nvme_create_queue(&dev->queues[i], i, polled);
1751                if (ret)
1752                        break;
1753        }
1754
1755        /*
1756         * Ignore failing Create SQ/CQ commands, we can continue with less
1757         * than the desired amount of queues, and even a controller without
1758         * I/O queues can still be used to issue admin commands.  This might
1759         * be useful to upgrade a buggy firmware for example.
1760         */
1761        return ret >= 0 ? 0 : ret;
1762}
1763
1764static ssize_t nvme_cmb_show(struct device *dev,
1765                             struct device_attribute *attr,
1766                             char *buf)
1767{
1768        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1769
1770        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1771                       ndev->cmbloc, ndev->cmbsz);
1772}
1773static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1774
1775static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1776{
1777        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1778
1779        return 1ULL << (12 + 4 * szu);
1780}
1781
1782static u32 nvme_cmb_size(struct nvme_dev *dev)
1783{
1784        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1785}
1786
1787static void nvme_map_cmb(struct nvme_dev *dev)
1788{
1789        u64 size, offset;
1790        resource_size_t bar_size;
1791        struct pci_dev *pdev = to_pci_dev(dev->dev);
1792        int bar;
1793
1794        if (dev->cmb_size)
1795                return;
1796
1797        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1798        if (!dev->cmbsz)
1799                return;
1800        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1801
1802        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1803        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1804        bar = NVME_CMB_BIR(dev->cmbloc);
1805        bar_size = pci_resource_len(pdev, bar);
1806
1807        if (offset > bar_size)
1808                return;
1809
1810        /*
1811         * Controllers may support a CMB size larger than their BAR,
1812         * for example, due to being behind a bridge. Reduce the CMB to
1813         * the reported size of the BAR
1814         */
1815        if (size > bar_size - offset)
1816                size = bar_size - offset;
1817
1818        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1819                dev_warn(dev->ctrl.device,
1820                         "failed to register the CMB\n");
1821                return;
1822        }
1823
1824        dev->cmb_size = size;
1825        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1826
1827        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1828                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1829                pci_p2pmem_publish(pdev, true);
1830
1831        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1832                                    &dev_attr_cmb.attr, NULL))
1833                dev_warn(dev->ctrl.device,
1834                         "failed to add sysfs attribute for CMB\n");
1835}
1836
1837static inline void nvme_release_cmb(struct nvme_dev *dev)
1838{
1839        if (dev->cmb_size) {
1840                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1841                                             &dev_attr_cmb.attr, NULL);
1842                dev->cmb_size = 0;
1843        }
1844}
1845
1846static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1847{
1848        u64 dma_addr = dev->host_mem_descs_dma;
1849        struct nvme_command c;
1850        int ret;
1851
1852        memset(&c, 0, sizeof(c));
1853        c.features.opcode       = nvme_admin_set_features;
1854        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1855        c.features.dword11      = cpu_to_le32(bits);
1856        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1857                                              ilog2(dev->ctrl.page_size));
1858        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1859        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1860        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1861
1862        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1863        if (ret) {
1864                dev_warn(dev->ctrl.device,
1865                         "failed to set host mem (err %d, flags %#x).\n",
1866                         ret, bits);
1867        }
1868        return ret;
1869}
1870
1871static void nvme_free_host_mem(struct nvme_dev *dev)
1872{
1873        int i;
1874
1875        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1876                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1877                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1878
1879                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1880                               le64_to_cpu(desc->addr),
1881                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1882        }
1883
1884        kfree(dev->host_mem_desc_bufs);
1885        dev->host_mem_desc_bufs = NULL;
1886        dma_free_coherent(dev->dev,
1887                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1888                        dev->host_mem_descs, dev->host_mem_descs_dma);
1889        dev->host_mem_descs = NULL;
1890        dev->nr_host_mem_descs = 0;
1891}
1892
1893static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1894                u32 chunk_size)
1895{
1896        struct nvme_host_mem_buf_desc *descs;
1897        u32 max_entries, len;
1898        dma_addr_t descs_dma;
1899        int i = 0;
1900        void **bufs;
1901        u64 size, tmp;
1902
1903        tmp = (preferred + chunk_size - 1);
1904        do_div(tmp, chunk_size);
1905        max_entries = tmp;
1906
1907        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1908                max_entries = dev->ctrl.hmmaxd;
1909
1910        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1911                                   &descs_dma, GFP_KERNEL);
1912        if (!descs)
1913                goto out;
1914
1915        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1916        if (!bufs)
1917                goto out_free_descs;
1918
1919        for (size = 0; size < preferred && i < max_entries; size += len) {
1920                dma_addr_t dma_addr;
1921
1922                len = min_t(u64, chunk_size, preferred - size);
1923                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1924                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925                if (!bufs[i])
1926                        break;
1927
1928                descs[i].addr = cpu_to_le64(dma_addr);
1929                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1930                i++;
1931        }
1932
1933        if (!size)
1934                goto out_free_bufs;
1935
1936        dev->nr_host_mem_descs = i;
1937        dev->host_mem_size = size;
1938        dev->host_mem_descs = descs;
1939        dev->host_mem_descs_dma = descs_dma;
1940        dev->host_mem_desc_bufs = bufs;
1941        return 0;
1942
1943out_free_bufs:
1944        while (--i >= 0) {
1945                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1946
1947                dma_free_attrs(dev->dev, size, bufs[i],
1948                               le64_to_cpu(descs[i].addr),
1949                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1950        }
1951
1952        kfree(bufs);
1953out_free_descs:
1954        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1955                        descs_dma);
1956out:
1957        dev->host_mem_descs = NULL;
1958        return -ENOMEM;
1959}
1960
1961static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1962{
1963        u32 chunk_size;
1964
1965        /* start big and work our way down */
1966        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1967             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1968             chunk_size /= 2) {
1969                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1970                        if (!min || dev->host_mem_size >= min)
1971                                return 0;
1972                        nvme_free_host_mem(dev);
1973                }
1974        }
1975
1976        return -ENOMEM;
1977}
1978
1979static int nvme_setup_host_mem(struct nvme_dev *dev)
1980{
1981        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1982        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1983        u64 min = (u64)dev->ctrl.hmmin * 4096;
1984        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1985        int ret;
1986
1987        preferred = min(preferred, max);
1988        if (min > max) {
1989                dev_warn(dev->ctrl.device,
1990                        "min host memory (%lld MiB) above limit (%d MiB).\n",
1991                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
1992                nvme_free_host_mem(dev);
1993                return 0;
1994        }
1995
1996        /*
1997         * If we already have a buffer allocated check if we can reuse it.
1998         */
1999        if (dev->host_mem_descs) {
2000                if (dev->host_mem_size >= min)
2001                        enable_bits |= NVME_HOST_MEM_RETURN;
2002                else
2003                        nvme_free_host_mem(dev);
2004        }
2005
2006        if (!dev->host_mem_descs) {
2007                if (nvme_alloc_host_mem(dev, min, preferred)) {
2008                        dev_warn(dev->ctrl.device,
2009                                "failed to allocate host memory buffer.\n");
2010                        return 0; /* controller must work without HMB */
2011                }
2012
2013                dev_info(dev->ctrl.device,
2014                        "allocated %lld MiB host memory buffer.\n",
2015                        dev->host_mem_size >> ilog2(SZ_1M));
2016        }
2017
2018        ret = nvme_set_host_mem(dev, enable_bits);
2019        if (ret)
2020                nvme_free_host_mem(dev);
2021        return ret;
2022}
2023
2024/*
2025 * nirqs is the number of interrupts available for write and read
2026 * queues. The core already reserved an interrupt for the admin queue.
2027 */
2028static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2029{
2030        struct nvme_dev *dev = affd->priv;
2031        unsigned int nr_read_queues;
2032
2033        /*
2034         * If there is no interupt available for queues, ensure that
2035         * the default queue is set to 1. The affinity set size is
2036         * also set to one, but the irq core ignores it for this case.
2037         *
2038         * If only one interrupt is available or 'write_queue' == 0, combine
2039         * write and read queues.
2040         *
2041         * If 'write_queues' > 0, ensure it leaves room for at least one read
2042         * queue.
2043         */
2044        if (!nrirqs) {
2045                nrirqs = 1;
2046                nr_read_queues = 0;
2047        } else if (nrirqs == 1 || !write_queues) {
2048                nr_read_queues = 0;
2049        } else if (write_queues >= nrirqs) {
2050                nr_read_queues = 1;
2051        } else {
2052                nr_read_queues = nrirqs - write_queues;
2053        }
2054
2055        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2056        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2057        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2058        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2059        affd->nr_sets = nr_read_queues ? 2 : 1;
2060}
2061
2062static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2063{
2064        struct pci_dev *pdev = to_pci_dev(dev->dev);
2065        struct irq_affinity affd = {
2066                .pre_vectors    = 1,
2067                .calc_sets      = nvme_calc_irq_sets,
2068                .priv           = dev,
2069        };
2070        unsigned int irq_queues, this_p_queues;
2071
2072        /*
2073         * Poll queues don't need interrupts, but we need at least one IO
2074         * queue left over for non-polled IO.
2075         */
2076        this_p_queues = poll_queues;
2077        if (this_p_queues >= nr_io_queues) {
2078                this_p_queues = nr_io_queues - 1;
2079                irq_queues = 1;
2080        } else {
2081                irq_queues = nr_io_queues - this_p_queues + 1;
2082        }
2083        dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2084
2085        /* Initialize for the single interrupt case */
2086        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2087        dev->io_queues[HCTX_TYPE_READ] = 0;
2088
2089        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2090                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2091}
2092
2093static void nvme_disable_io_queues(struct nvme_dev *dev)
2094{
2095        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2096                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2097}
2098
2099static int nvme_setup_io_queues(struct nvme_dev *dev)
2100{
2101        struct nvme_queue *adminq = &dev->queues[0];
2102        struct pci_dev *pdev = to_pci_dev(dev->dev);
2103        int result, nr_io_queues;
2104        unsigned long size;
2105
2106        nr_io_queues = max_io_queues();
2107        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2108        if (result < 0)
2109                return result;
2110
2111        if (nr_io_queues == 0)
2112                return 0;
2113        
2114        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2115
2116        if (dev->cmb_use_sqes) {
2117                result = nvme_cmb_qdepth(dev, nr_io_queues,
2118                                sizeof(struct nvme_command));
2119                if (result > 0)
2120                        dev->q_depth = result;
2121                else
2122                        dev->cmb_use_sqes = false;
2123        }
2124
2125        do {
2126                size = db_bar_size(dev, nr_io_queues);
2127                result = nvme_remap_bar(dev, size);
2128                if (!result)
2129                        break;
2130                if (!--nr_io_queues)
2131                        return -ENOMEM;
2132        } while (1);
2133        adminq->q_db = dev->dbs;
2134
2135 retry:
2136        /* Deregister the admin queue's interrupt */
2137        pci_free_irq(pdev, 0, adminq);
2138
2139        /*
2140         * If we enable msix early due to not intx, disable it again before
2141         * setting up the full range we need.
2142         */
2143        pci_free_irq_vectors(pdev);
2144
2145        result = nvme_setup_irqs(dev, nr_io_queues);
2146        if (result <= 0)
2147                return -EIO;
2148
2149        dev->num_vecs = result;
2150        result = max(result - 1, 1);
2151        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2152
2153        /*
2154         * Should investigate if there's a performance win from allocating
2155         * more queues than interrupt vectors; it might allow the submission
2156         * path to scale better, even if the receive path is limited by the
2157         * number of interrupts.
2158         */
2159        result = queue_request_irq(adminq);
2160        if (result)
2161                return result;
2162        set_bit(NVMEQ_ENABLED, &adminq->flags);
2163
2164        result = nvme_create_io_queues(dev);
2165        if (result || dev->online_queues < 2)
2166                return result;
2167
2168        if (dev->online_queues - 1 < dev->max_qid) {
2169                nr_io_queues = dev->online_queues - 1;
2170                nvme_disable_io_queues(dev);
2171                nvme_suspend_io_queues(dev);
2172                goto retry;
2173        }
2174        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2175                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2176                                        dev->io_queues[HCTX_TYPE_READ],
2177                                        dev->io_queues[HCTX_TYPE_POLL]);
2178        return 0;
2179}
2180
2181static void nvme_del_queue_end(struct request *req, blk_status_t error)
2182{
2183        struct nvme_queue *nvmeq = req->end_io_data;
2184
2185        blk_mq_free_request(req);
2186        complete(&nvmeq->delete_done);
2187}
2188
2189static void nvme_del_cq_end(struct request *req, blk_status_t error)
2190{
2191        struct nvme_queue *nvmeq = req->end_io_data;
2192
2193        if (error)
2194                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2195
2196        nvme_del_queue_end(req, error);
2197}
2198
2199static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2200{
2201        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2202        struct request *req;
2203        struct nvme_command cmd;
2204
2205        memset(&cmd, 0, sizeof(cmd));
2206        cmd.delete_queue.opcode = opcode;
2207        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2208
2209        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2210        if (IS_ERR(req))
2211                return PTR_ERR(req);
2212
2213        req->timeout = ADMIN_TIMEOUT;
2214        req->end_io_data = nvmeq;
2215
2216        init_completion(&nvmeq->delete_done);
2217        blk_execute_rq_nowait(q, NULL, req, false,
2218                        opcode == nvme_admin_delete_cq ?
2219                                nvme_del_cq_end : nvme_del_queue_end);
2220        return 0;
2221}
2222
2223static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2224{
2225        int nr_queues = dev->online_queues - 1, sent = 0;
2226        unsigned long timeout;
2227
2228 retry:
2229        timeout = ADMIN_TIMEOUT;
2230        while (nr_queues > 0) {
2231                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2232                        break;
2233                nr_queues--;
2234                sent++;
2235        }
2236        while (sent) {
2237                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2238
2239                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2240                                timeout);
2241                if (timeout == 0)
2242                        return false;
2243
2244                /* handle any remaining CQEs */
2245                if (opcode == nvme_admin_delete_cq &&
2246                    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2247                        nvme_poll_irqdisable(nvmeq, -1);
2248
2249                sent--;
2250                if (nr_queues)
2251                        goto retry;
2252        }
2253        return true;
2254}
2255
2256/*
2257 * return error value only when tagset allocation failed
2258 */
2259static int nvme_dev_add(struct nvme_dev *dev)
2260{
2261        int ret;
2262
2263        if (!dev->ctrl.tagset) {
2264                dev->tagset.ops = &nvme_mq_ops;
2265                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2266                dev->tagset.nr_maps = 2; /* default + read */
2267                if (dev->io_queues[HCTX_TYPE_POLL])
2268                        dev->tagset.nr_maps++;
2269                dev->tagset.timeout = NVME_IO_TIMEOUT;
2270                dev->tagset.numa_node = dev_to_node(dev->dev);
2271                dev->tagset.queue_depth =
2272                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2273                dev->tagset.cmd_size = sizeof(struct nvme_iod);
2274                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2275                dev->tagset.driver_data = dev;
2276
2277                ret = blk_mq_alloc_tag_set(&dev->tagset);
2278                if (ret) {
2279                        dev_warn(dev->ctrl.device,
2280                                "IO queues tagset allocation failed %d\n", ret);
2281                        return ret;
2282                }
2283                dev->ctrl.tagset = &dev->tagset;
2284        } else {
2285                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2286
2287                /* Free previously allocated queues that are no longer usable */
2288                nvme_free_queues(dev, dev->online_queues);
2289        }
2290
2291        nvme_dbbuf_set(dev);
2292        return 0;
2293}
2294
2295static int nvme_pci_enable(struct nvme_dev *dev)
2296{
2297        int result = -ENOMEM;
2298        struct pci_dev *pdev = to_pci_dev(dev->dev);
2299
2300        if (pci_enable_device_mem(pdev))
2301                return result;
2302
2303        pci_set_master(pdev);
2304
2305        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2306            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2307                goto disable;
2308
2309        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2310                result = -ENODEV;
2311                goto disable;
2312        }
2313
2314        /*
2315         * Some devices and/or platforms don't advertise or work with INTx
2316         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2317         * adjust this later.
2318         */
2319        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2320        if (result < 0)
2321                return result;
2322
2323        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2324
2325        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2326                                io_queue_depth);
2327        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2328        dev->dbs = dev->bar + 4096;
2329
2330        /*
2331         * Temporary fix for the Apple controller found in the MacBook8,1 and
2332         * some MacBook7,1 to avoid controller resets and data loss.
2333         */
2334        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2335                dev->q_depth = 2;
2336                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2337                        "set queue depth=%u to work around controller resets\n",
2338                        dev->q_depth);
2339        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2340                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2341                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2342                dev->q_depth = 64;
2343                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2344                        "set queue depth=%u\n", dev->q_depth);
2345        }
2346
2347        nvme_map_cmb(dev);
2348
2349        pci_enable_pcie_error_reporting(pdev);
2350        pci_save_state(pdev);
2351        return 0;
2352
2353 disable:
2354        pci_disable_device(pdev);
2355        return result;
2356}
2357
2358static void nvme_dev_unmap(struct nvme_dev *dev)
2359{
2360        if (dev->bar)
2361                iounmap(dev->bar);
2362        pci_release_mem_regions(to_pci_dev(dev->dev));
2363}
2364
2365static void nvme_pci_disable(struct nvme_dev *dev)
2366{
2367        struct pci_dev *pdev = to_pci_dev(dev->dev);
2368
2369        pci_free_irq_vectors(pdev);
2370
2371        if (pci_is_enabled(pdev)) {
2372                pci_disable_pcie_error_reporting(pdev);
2373                pci_disable_device(pdev);
2374        }
2375}
2376
2377static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2378{
2379        bool dead = true, freeze = false;
2380        struct pci_dev *pdev = to_pci_dev(dev->dev);
2381
2382        mutex_lock(&dev->shutdown_lock);
2383        if (pci_is_enabled(pdev)) {
2384                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2385
2386                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2387                    dev->ctrl.state == NVME_CTRL_RESETTING) {
2388                        freeze = true;
2389                        nvme_start_freeze(&dev->ctrl);
2390                }
2391                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2392                        pdev->error_state  != pci_channel_io_normal);
2393        }
2394
2395        /*
2396         * Give the controller a chance to complete all entered requests if
2397         * doing a safe shutdown.
2398         */
2399        if (!dead && shutdown && freeze)
2400                nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2401
2402        nvme_stop_queues(&dev->ctrl);
2403
2404        if (!dead && dev->ctrl.queue_count > 0) {
2405                nvme_disable_io_queues(dev);
2406                nvme_disable_admin_queue(dev, shutdown);
2407        }
2408        nvme_suspend_io_queues(dev);
2409        nvme_suspend_queue(&dev->queues[0]);
2410        nvme_pci_disable(dev);
2411
2412        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2413        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2414
2415        /*
2416         * The driver will not be starting up queues again if shutting down so
2417         * must flush all entered requests to their failed completion to avoid
2418         * deadlocking blk-mq hot-cpu notifier.
2419         */
2420        if (shutdown) {
2421                nvme_start_queues(&dev->ctrl);
2422                if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2423                        blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2424        }
2425        mutex_unlock(&dev->shutdown_lock);
2426}
2427
2428static int nvme_setup_prp_pools(struct nvme_dev *dev)
2429{
2430        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2431                                                PAGE_SIZE, PAGE_SIZE, 0);
2432        if (!dev->prp_page_pool)
2433                return -ENOMEM;
2434
2435        /* Optimisation for I/Os between 4k and 128k */
2436        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2437                                                256, 256, 0);
2438        if (!dev->prp_small_pool) {
2439                dma_pool_destroy(dev->prp_page_pool);
2440                return -ENOMEM;
2441        }
2442        return 0;
2443}
2444
2445static void nvme_release_prp_pools(struct nvme_dev *dev)
2446{
2447        dma_pool_destroy(dev->prp_page_pool);
2448        dma_pool_destroy(dev->prp_small_pool);
2449}
2450
2451static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2452{
2453        struct nvme_dev *dev = to_nvme_dev(ctrl);
2454
2455        nvme_dbbuf_dma_free(dev);
2456        put_device(dev->dev);
2457        if (dev->tagset.tags)
2458                blk_mq_free_tag_set(&dev->tagset);
2459        if (dev->ctrl.admin_q)
2460                blk_put_queue(dev->ctrl.admin_q);
2461        kfree(dev->queues);
2462        free_opal_dev(dev->ctrl.opal_dev);
2463        mempool_destroy(dev->iod_mempool);
2464        kfree(dev);
2465}
2466
2467static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2468{
2469        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2470
2471        nvme_get_ctrl(&dev->ctrl);
2472        nvme_dev_disable(dev, false);
2473        nvme_kill_queues(&dev->ctrl);
2474        if (!queue_work(nvme_wq, &dev->remove_work))
2475                nvme_put_ctrl(&dev->ctrl);
2476}
2477
2478static void nvme_reset_work(struct work_struct *work)
2479{
2480        struct nvme_dev *dev =
2481                container_of(work, struct nvme_dev, ctrl.reset_work);
2482        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2483        int result = -ENODEV;
2484        enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2485
2486        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2487                goto out;
2488
2489        /*
2490         * If we're called to reset a live controller first shut it down before
2491         * moving on.
2492         */
2493        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2494                nvme_dev_disable(dev, false);
2495        nvme_sync_queues(&dev->ctrl);
2496
2497        mutex_lock(&dev->shutdown_lock);
2498        result = nvme_pci_enable(dev);
2499        if (result)
2500                goto out_unlock;
2501
2502        result = nvme_pci_configure_admin_queue(dev);
2503        if (result)
2504                goto out_unlock;
2505
2506        result = nvme_alloc_admin_tags(dev);
2507        if (result)
2508                goto out_unlock;
2509
2510        /*
2511         * Limit the max command size to prevent iod->sg allocations going
2512         * over a single page.
2513         */
2514        dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2515        dev->ctrl.max_segments = NVME_MAX_SEGS;
2516
2517        /*
2518         * Don't limit the IOMMU merged segment size.
2519         */
2520        dma_set_max_seg_size(dev->dev, 0xffffffff);
2521
2522        mutex_unlock(&dev->shutdown_lock);
2523
2524        /*
2525         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2526         * initializing procedure here.
2527         */
2528        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2529                dev_warn(dev->ctrl.device,
2530                        "failed to mark controller CONNECTING\n");
2531                goto out;
2532        }
2533
2534        result = nvme_init_identify(&dev->ctrl);
2535        if (result)
2536                goto out;
2537
2538        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2539                if (!dev->ctrl.opal_dev)
2540                        dev->ctrl.opal_dev =
2541                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2542                else if (was_suspend)
2543                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2544        } else {
2545                free_opal_dev(dev->ctrl.opal_dev);
2546                dev->ctrl.opal_dev = NULL;
2547        }
2548
2549        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2550                result = nvme_dbbuf_dma_alloc(dev);
2551                if (result)
2552                        dev_warn(dev->dev,
2553                                 "unable to allocate dma for dbbuf\n");
2554        }
2555
2556        if (dev->ctrl.hmpre) {
2557                result = nvme_setup_host_mem(dev);
2558                if (result < 0)
2559                        goto out;
2560        }
2561
2562        result = nvme_setup_io_queues(dev);
2563        if (result)
2564                goto out;
2565
2566        /*
2567         * Keep the controller around but remove all namespaces if we don't have
2568         * any working I/O queue.
2569         */
2570        if (dev->online_queues < 2) {
2571                dev_warn(dev->ctrl.device, "IO queues not created\n");
2572                nvme_kill_queues(&dev->ctrl);
2573                nvme_remove_namespaces(&dev->ctrl);
2574                new_state = NVME_CTRL_ADMIN_ONLY;
2575        } else {
2576                nvme_start_queues(&dev->ctrl);
2577                nvme_wait_freeze(&dev->ctrl);
2578                /* hit this only when allocate tagset fails */
2579                if (nvme_dev_add(dev))
2580                        new_state = NVME_CTRL_ADMIN_ONLY;
2581                nvme_unfreeze(&dev->ctrl);
2582        }
2583
2584        /*
2585         * If only admin queue live, keep it to do further investigation or
2586         * recovery.
2587         */
2588        if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2589                dev_warn(dev->ctrl.device,
2590                        "failed to mark controller state %d\n", new_state);
2591                goto out;
2592        }
2593
2594        nvme_start_ctrl(&dev->ctrl);
2595        return;
2596
2597 out_unlock:
2598        mutex_unlock(&dev->shutdown_lock);
2599 out:
2600        nvme_remove_dead_ctrl(dev, result);
2601}
2602
2603static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2604{
2605        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2606        struct pci_dev *pdev = to_pci_dev(dev->dev);
2607
2608        if (pci_get_drvdata(pdev))
2609                device_release_driver(&pdev->dev);
2610        nvme_put_ctrl(&dev->ctrl);
2611}
2612
2613static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2614{
2615        *val = readl(to_nvme_dev(ctrl)->bar + off);
2616        return 0;
2617}
2618
2619static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2620{
2621        writel(val, to_nvme_dev(ctrl)->bar + off);
2622        return 0;
2623}
2624
2625static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2626{
2627        *val = readq(to_nvme_dev(ctrl)->bar + off);
2628        return 0;
2629}
2630
2631static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2632{
2633        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2634
2635        return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2636}
2637
2638static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2639        .name                   = "pcie",
2640        .module                 = THIS_MODULE,
2641        .flags                  = NVME_F_METADATA_SUPPORTED |
2642                                  NVME_F_PCI_P2PDMA,
2643        .reg_read32             = nvme_pci_reg_read32,
2644        .reg_write32            = nvme_pci_reg_write32,
2645        .reg_read64             = nvme_pci_reg_read64,
2646        .free_ctrl              = nvme_pci_free_ctrl,
2647        .submit_async_event     = nvme_pci_submit_async_event,
2648        .get_address            = nvme_pci_get_address,
2649};
2650
2651static int nvme_dev_map(struct nvme_dev *dev)
2652{
2653        struct pci_dev *pdev = to_pci_dev(dev->dev);
2654
2655        if (pci_request_mem_regions(pdev, "nvme"))
2656                return -ENODEV;
2657
2658        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2659                goto release;
2660
2661        return 0;
2662  release:
2663        pci_release_mem_regions(pdev);
2664        return -ENODEV;
2665}
2666
2667static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2668{
2669        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2670                /*
2671                 * Several Samsung devices seem to drop off the PCIe bus
2672                 * randomly when APST is on and uses the deepest sleep state.
2673                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2674                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2675                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2676                 * laptops.
2677                 */
2678                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2679                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2680                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2681                        return NVME_QUIRK_NO_DEEPEST_PS;
2682        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2683                /*
2684                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2685                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2686                 * within few minutes after bootup on a Coffee Lake board -
2687                 * ASUS PRIME Z370-A
2688                 */
2689                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2690                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2691                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2692                        return NVME_QUIRK_NO_APST;
2693        }
2694
2695        return 0;
2696}
2697
2698static void nvme_async_probe(void *data, async_cookie_t cookie)
2699{
2700        struct nvme_dev *dev = data;
2701
2702        nvme_reset_ctrl_sync(&dev->ctrl);
2703        flush_work(&dev->ctrl.scan_work);
2704        nvme_put_ctrl(&dev->ctrl);
2705}
2706
2707static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2708{
2709        int node, result = -ENOMEM;
2710        struct nvme_dev *dev;
2711        unsigned long quirks = id->driver_data;
2712        size_t alloc_size;
2713
2714        node = dev_to_node(&pdev->dev);
2715        if (node == NUMA_NO_NODE)
2716                set_dev_node(&pdev->dev, first_memory_node);
2717
2718        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2719        if (!dev)
2720                return -ENOMEM;
2721
2722        dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2723                                        GFP_KERNEL, node);
2724        if (!dev->queues)
2725                goto free;
2726
2727        dev->dev = get_device(&pdev->dev);
2728        pci_set_drvdata(pdev, dev);
2729
2730        result = nvme_dev_map(dev);
2731        if (result)
2732                goto put_pci;
2733
2734        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2735        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2736        mutex_init(&dev->shutdown_lock);
2737
2738        result = nvme_setup_prp_pools(dev);
2739        if (result)
2740                goto unmap;
2741
2742        quirks |= check_vendor_combination_bug(pdev);
2743
2744        /*
2745         * Double check that our mempool alloc size will cover the biggest
2746         * command we support.
2747         */
2748        alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2749                                                NVME_MAX_SEGS, true);
2750        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2751
2752        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2753                                                mempool_kfree,
2754                                                (void *) alloc_size,
2755                                                GFP_KERNEL, node);
2756        if (!dev->iod_mempool) {
2757                result = -ENOMEM;
2758                goto release_pools;
2759        }
2760
2761        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2762                        quirks);
2763        if (result)
2764                goto release_mempool;
2765
2766        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2767
2768        nvme_get_ctrl(&dev->ctrl);
2769        async_schedule(nvme_async_probe, dev);
2770
2771        return 0;
2772
2773 release_mempool:
2774        mempool_destroy(dev->iod_mempool);
2775 release_pools:
2776        nvme_release_prp_pools(dev);
2777 unmap:
2778        nvme_dev_unmap(dev);
2779 put_pci:
2780        put_device(dev->dev);
2781 free:
2782        kfree(dev->queues);
2783        kfree(dev);
2784        return result;
2785}
2786
2787static void nvme_reset_prepare(struct pci_dev *pdev)
2788{
2789        struct nvme_dev *dev = pci_get_drvdata(pdev);
2790        nvme_dev_disable(dev, false);
2791}
2792
2793static void nvme_reset_done(struct pci_dev *pdev)
2794{
2795        struct nvme_dev *dev = pci_get_drvdata(pdev);
2796        nvme_reset_ctrl_sync(&dev->ctrl);
2797}
2798
2799static void nvme_shutdown(struct pci_dev *pdev)
2800{
2801        struct nvme_dev *dev = pci_get_drvdata(pdev);
2802        nvme_dev_disable(dev, true);
2803}
2804
2805/*
2806 * The driver's remove may be called on a device in a partially initialized
2807 * state. This function must not have any dependencies on the device state in
2808 * order to proceed.
2809 */
2810static void nvme_remove(struct pci_dev *pdev)
2811{
2812        struct nvme_dev *dev = pci_get_drvdata(pdev);
2813
2814        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2815        pci_set_drvdata(pdev, NULL);
2816
2817        if (!pci_device_is_present(pdev)) {
2818                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2819                nvme_dev_disable(dev, true);
2820                nvme_dev_remove_admin(dev);
2821        }
2822
2823        flush_work(&dev->ctrl.reset_work);
2824        nvme_stop_ctrl(&dev->ctrl);
2825        nvme_remove_namespaces(&dev->ctrl);
2826        nvme_dev_disable(dev, true);
2827        nvme_release_cmb(dev);
2828        nvme_free_host_mem(dev);
2829        nvme_dev_remove_admin(dev);
2830        nvme_free_queues(dev, 0);
2831        nvme_uninit_ctrl(&dev->ctrl);
2832        nvme_release_prp_pools(dev);
2833        nvme_dev_unmap(dev);
2834        nvme_put_ctrl(&dev->ctrl);
2835}
2836
2837#ifdef CONFIG_PM_SLEEP
2838static int nvme_suspend(struct device *dev)
2839{
2840        struct pci_dev *pdev = to_pci_dev(dev);
2841        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2842
2843        nvme_dev_disable(ndev, true);
2844        return 0;
2845}
2846
2847static int nvme_resume(struct device *dev)
2848{
2849        struct pci_dev *pdev = to_pci_dev(dev);
2850        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2851
2852        nvme_reset_ctrl(&ndev->ctrl);
2853        return 0;
2854}
2855#endif
2856
2857static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2858
2859static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2860                                                pci_channel_state_t state)
2861{
2862        struct nvme_dev *dev = pci_get_drvdata(pdev);
2863
2864        /*
2865         * A frozen channel requires a reset. When detected, this method will
2866         * shutdown the controller to quiesce. The controller will be restarted
2867         * after the slot reset through driver's slot_reset callback.
2868         */
2869        switch (state) {
2870        case pci_channel_io_normal:
2871                return PCI_ERS_RESULT_CAN_RECOVER;
2872        case pci_channel_io_frozen:
2873                dev_warn(dev->ctrl.device,
2874                        "frozen state error detected, reset controller\n");
2875                nvme_dev_disable(dev, false);
2876                return PCI_ERS_RESULT_NEED_RESET;
2877        case pci_channel_io_perm_failure:
2878                dev_warn(dev->ctrl.device,
2879                        "failure state error detected, request disconnect\n");
2880                return PCI_ERS_RESULT_DISCONNECT;
2881        }
2882        return PCI_ERS_RESULT_NEED_RESET;
2883}
2884
2885static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2886{
2887        struct nvme_dev *dev = pci_get_drvdata(pdev);
2888
2889        dev_info(dev->ctrl.device, "restart after slot reset\n");
2890        pci_restore_state(pdev);
2891        nvme_reset_ctrl(&dev->ctrl);
2892        return PCI_ERS_RESULT_RECOVERED;
2893}
2894
2895static void nvme_error_resume(struct pci_dev *pdev)
2896{
2897        struct nvme_dev *dev = pci_get_drvdata(pdev);
2898
2899        flush_work(&dev->ctrl.reset_work);
2900}
2901
2902static const struct pci_error_handlers nvme_err_handler = {
2903        .error_detected = nvme_error_detected,
2904        .slot_reset     = nvme_slot_reset,
2905        .resume         = nvme_error_resume,
2906        .reset_prepare  = nvme_reset_prepare,
2907        .reset_done     = nvme_reset_done,
2908};
2909
2910static const struct pci_device_id nvme_id_table[] = {
2911        { PCI_VDEVICE(INTEL, 0x0953),
2912                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2913                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2914        { PCI_VDEVICE(INTEL, 0x0a53),
2915                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2916                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2917        { PCI_VDEVICE(INTEL, 0x0a54),
2918                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2919                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2920        { PCI_VDEVICE(INTEL, 0x0a55),
2921                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2922                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2923        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2924                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2925                                NVME_QUIRK_MEDIUM_PRIO_SQ },
2926        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2927                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2928        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2929                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2930                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2931        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2932                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2933        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2934                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2935        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2936                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2937        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2938                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2939        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2940                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2941        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2942                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2943        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2944                .driver_data = NVME_QUIRK_LIGHTNVM, },
2945        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2946                .driver_data = NVME_QUIRK_LIGHTNVM, },
2947        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2948                .driver_data = NVME_QUIRK_LIGHTNVM, },
2949        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2950        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2951        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2952        { 0, }
2953};
2954MODULE_DEVICE_TABLE(pci, nvme_id_table);
2955
2956static struct pci_driver nvme_driver = {
2957        .name           = "nvme",
2958        .id_table       = nvme_id_table,
2959        .probe          = nvme_probe,
2960        .remove         = nvme_remove,
2961        .shutdown       = nvme_shutdown,
2962        .driver         = {
2963                .pm     = &nvme_dev_pm_ops,
2964        },
2965        .sriov_configure = pci_sriov_configure_simple,
2966        .err_handler    = &nvme_err_handler,
2967};
2968
2969static int __init nvme_init(void)
2970{
2971        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
2972        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
2973        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
2974        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2975        return pci_register_driver(&nvme_driver);
2976}
2977
2978static void __exit nvme_exit(void)
2979{
2980        pci_unregister_driver(&nvme_driver);
2981        flush_workqueue(nvme_wq);
2982}
2983
2984MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2985MODULE_LICENSE("GPL");
2986MODULE_VERSION("1.0");
2987module_init(nvme_init);
2988module_exit(nvme_exit);
2989