linux/drivers/scsi/csiostor/csio_hw_t5.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include "csio_hw.h"
  35#include "csio_init.h"
  36
  37static int
  38csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
  39{
  40        u32 mem_win_base;
  41        /*
  42         * Truncation intentional: we only read the bottom 32-bits of the
  43         * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
  44         * read BAR0 instead of using pci_resource_start() because we could be
  45         * operating from within a Virtual Machine which is trapping our
  46         * accesses to our Configuration Space and we need to set up the PCI-E
  47         * Memory Window decoders with the actual addresses which will be
  48         * coming across the PCI-E link.
  49         */
  50
  51        /* For T5, only relative offset inside the PCIe BAR is passed */
  52        mem_win_base = MEMWIN_BASE;
  53
  54        /*
  55         * Set up memory window for accessing adapter memory ranges.  (Read
  56         * back MA register to ensure that changes propagate before we attempt
  57         * to use the new values.)
  58         */
  59        csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
  60                          WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
  61                          PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
  62        csio_rd_reg32(hw,
  63                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
  64
  65        return 0;
  66}
  67
  68/*
  69 * Interrupt handler for the PCIE module.
  70 */
  71static void
  72csio_t5_pcie_intr_handler(struct csio_hw *hw)
  73{
  74        static struct intr_info pcie_intr_info[] = {
  75                { MSTGRPPERR_F, "Master Response Read Queue parity error",
  76                -1, 1 },
  77                { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
  78                { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
  79                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
  80                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
  81                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
  82                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
  83                { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
  84                -1, 1 },
  85                { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
  86                -1, 1 },
  87                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
  88                { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
  89                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
  90                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
  91                { DREQWRPERR_F, "PCI DMA channel write request parity error",
  92                -1, 1 },
  93                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
  94                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
  95                { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
  96                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
  97                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
  98                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
  99                { FIDPERR_F, "PCI FID parity error", -1, 1 },
 100                { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
 101                { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
 102                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
 103                { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
 104                -1, 1 },
 105                { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
 106                -1, 1 },
 107                { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
 108                { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
 109                { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
 110                { READRSPERR_F, "Outbound read error", -1, 0 },
 111                { 0, NULL, 0, 0 }
 112        };
 113
 114        int fat;
 115        fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
 116        if (fat)
 117                csio_hw_fatal_err(hw);
 118}
 119
 120/*
 121 * csio_t5_flash_cfg_addr - return the address of the flash configuration file
 122 * @hw: the HW module
 123 *
 124 * Return the address within the flash where the Firmware Configuration
 125 * File is stored.
 126 */
 127static unsigned int
 128csio_t5_flash_cfg_addr(struct csio_hw *hw)
 129{
 130        return FLASH_CFG_START;
 131}
 132
 133/*
 134 *      csio_t5_mc_read - read from MC through backdoor accesses
 135 *      @hw: the hw module
 136 *      @idx: index to the register
 137 *      @addr: address of first byte requested
 138 *      @data: 64 bytes of data containing the requested address
 139 *      @ecc: where to store the corresponding 64-bit ECC word
 140 *
 141 *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
 142 *      that covers the requested address @addr.  If @parity is not %NULL it
 143 *      is assigned the 64-bit ECC word for the read data.
 144 */
 145static int
 146csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
 147                uint64_t *ecc)
 148{
 149        int i;
 150        uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
 151        uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
 152
 153        mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
 154        mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
 155        mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
 156        mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
 157        mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
 158
 159        if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
 160                return -EBUSY;
 161        csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
 162        csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
 163        csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
 164        csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
 165                      mc_bist_cmd_reg);
 166        i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
 167                                     0, 10, 1, NULL);
 168        if (i)
 169                return i;
 170
 171#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
 172
 173        for (i = 15; i >= 0; i--)
 174                *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
 175        if (ecc)
 176                *ecc = csio_rd_reg64(hw, MC_DATA(16));
 177#undef MC_DATA
 178        return 0;
 179}
 180
 181/*
 182 *      csio_t5_edc_read - read from EDC through backdoor accesses
 183 *      @hw: the hw module
 184 *      @idx: which EDC to access
 185 *      @addr: address of first byte requested
 186 *      @data: 64 bytes of data containing the requested address
 187 *      @ecc: where to store the corresponding 64-bit ECC word
 188 *
 189 *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 190 *      that covers the requested address @addr.  If @parity is not %NULL it
 191 *      is assigned the 64-bit ECC word for the read data.
 192 */
 193static int
 194csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
 195                uint64_t *ecc)
 196{
 197        int i;
 198        uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
 199        uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
 200
 201/*
 202 * These macro are missing in t4_regs.h file.
 203 */
 204#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
 205#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
 206
 207        edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
 208        edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
 209        edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
 210        edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
 211        edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
 212#undef EDC_REG_T5
 213#undef EDC_STRIDE_T5
 214
 215        if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
 216                return -EBUSY;
 217        csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
 218        csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
 219        csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
 220        csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
 221                      edc_bist_cmd_reg);
 222        i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
 223                                     0, 10, 1, NULL);
 224        if (i)
 225                return i;
 226
 227#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
 228
 229        for (i = 15; i >= 0; i--)
 230                *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
 231        if (ecc)
 232                *ecc = csio_rd_reg64(hw, EDC_DATA(16));
 233#undef EDC_DATA
 234        return 0;
 235}
 236
 237/*
 238 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 239 * @hw: the csio_hw
 240 * @win: PCI-E memory Window to use
 241 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
 242 * @addr: address within indicated memory type
 243 * @len: amount of memory to transfer
 244 * @buf: host memory buffer
 245 * @dir: direction of transfer 1 => read, 0 => write
 246 *
 247 * Reads/writes an [almost] arbitrary memory region in the firmware: the
 248 * firmware memory address, length and host buffer must be aligned on
 249 * 32-bit boudaries.  The memory is transferred as a raw byte sequence
 250 * from/to the firmware's memory.  If this memory contains data
 251 * structures which contain multi-byte integers, it's the callers
 252 * responsibility to perform appropriate byte order conversions.
 253 */
 254static int
 255csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
 256                u32 len, uint32_t *buf, int dir)
 257{
 258        u32 pos, start, offset, memoffset;
 259        u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
 260
 261        /*
 262         * Argument sanity checks ...
 263         */
 264        if ((addr & 0x3) || (len & 0x3))
 265                return -EINVAL;
 266
 267        /* Offset into the region of memory which is being accessed
 268         * MEM_EDC0 = 0
 269         * MEM_EDC1 = 1
 270         * MEM_MC   = 2 -- T4
 271         * MEM_MC0  = 2 -- For T5
 272         * MEM_MC1  = 3 -- For T5
 273         */
 274        edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
 275        if (mtype != MEM_MC1)
 276                memoffset = (mtype * (edc_size * 1024 * 1024));
 277        else {
 278                mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
 279                                                       MA_EXT_MEMORY_BAR_A));
 280                memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 281        }
 282
 283        /* Determine the PCIE_MEM_ACCESS_OFFSET */
 284        addr = addr + memoffset;
 285
 286        /*
 287         * Each PCI-E Memory Window is programmed with a window size -- or
 288         * "aperture" -- which controls the granularity of its mapping onto
 289         * adapter memory.  We need to grab that aperture in order to know
 290         * how to use the specified window.  The window is also programmed
 291         * with the base address of the Memory Window in BAR0's address
 292         * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 293         * the address is relative to BAR0.
 294         */
 295        mem_reg = csio_rd_reg32(hw,
 296                        PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
 297        mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
 298        mem_base = PCIEOFST_G(mem_reg) << 10;
 299
 300        start = addr & ~(mem_aperture-1);
 301        offset = addr - start;
 302        win_pf = PFNUM_V(hw->pfn);
 303
 304        csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
 305                 mem_reg, mem_aperture);
 306        csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
 307                 mem_base, memoffset);
 308        csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
 309                 start, offset, win_pf);
 310        csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
 311                 mtype, addr, len);
 312
 313        for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
 314                /*
 315                 * Move PCI-E Memory Window to our current transfer
 316                 * position.  Read it back to ensure that changes propagate
 317                 * before we attempt to use the new value.
 318                 */
 319                csio_wr_reg32(hw, pos | win_pf,
 320                        PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 321                csio_rd_reg32(hw,
 322                        PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 323
 324                while (offset < mem_aperture && len > 0) {
 325                        if (dir)
 326                                *buf++ = csio_rd_reg32(hw, mem_base + offset);
 327                        else
 328                                csio_wr_reg32(hw, *buf++, mem_base + offset);
 329
 330                        offset += sizeof(__be32);
 331                        len -= sizeof(__be32);
 332                }
 333        }
 334        return 0;
 335}
 336
 337/*
 338 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
 339 * @hw: the csio_hw
 340 *
 341 * This function creates files in the debugfs with external memory region
 342 * MC0 & MC1.
 343 */
 344static void
 345csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
 346{
 347        u32 size;
 348        int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
 349
 350        if (i & EXT_MEM_ENABLE_F) {
 351                size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
 352                csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
 353                                     EXT_MEM_SIZE_G(size));
 354        }
 355        if (i & EXT_MEM1_ENABLE_F) {
 356                size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
 357                csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
 358                                     EXT_MEM_SIZE_G(size));
 359        }
 360}
 361
 362/* T5 adapter specific function */
 363struct csio_hw_chip_ops t5_ops = {
 364        .chip_set_mem_win               = csio_t5_set_mem_win,
 365        .chip_pcie_intr_handler         = csio_t5_pcie_intr_handler,
 366        .chip_flash_cfg_addr            = csio_t5_flash_cfg_addr,
 367        .chip_mc_read                   = csio_t5_mc_read,
 368        .chip_edc_read                  = csio_t5_edc_read,
 369        .chip_memory_rw                 = csio_t5_memory_rw,
 370        .chip_dfs_create_ext_mem        = csio_t5_dfs_create_ext_mem,
 371};
 372