linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-160"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76
  77/* Embedded module documentation macros - see modules.h */
  78MODULE_AUTHOR("Hewlett-Packard Company");
  79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  80        HPSA_DRIVER_VERSION);
  81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  82MODULE_VERSION(HPSA_DRIVER_VERSION);
  83MODULE_LICENSE("GPL");
  84MODULE_ALIAS("cciss");
  85
  86static int hpsa_simple_mode;
  87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  88MODULE_PARM_DESC(hpsa_simple_mode,
  89        "Use 'simple mode' rather than 'performant mode'");
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id hpsa_pci_device_id[] = {
  93        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  94        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  95        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 135        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 136        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 141        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 142        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 145        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 146        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 147                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 148        {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 149                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150        {0,}
 151};
 152
 153MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 154
 155/*  board_id = Subsystem Device ID & Vendor ID
 156 *  product = Marketing Name for the board
 157 *  access = Address of the struct of function pointers
 158 */
 159static struct board_type products[] = {
 160        {0x40700E11, "Smart Array 5300", &SA5A_access},
 161        {0x40800E11, "Smart Array 5i", &SA5B_access},
 162        {0x40820E11, "Smart Array 532", &SA5B_access},
 163        {0x40830E11, "Smart Array 5312", &SA5B_access},
 164        {0x409A0E11, "Smart Array 641", &SA5A_access},
 165        {0x409B0E11, "Smart Array 642", &SA5A_access},
 166        {0x409C0E11, "Smart Array 6400", &SA5A_access},
 167        {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 168        {0x40910E11, "Smart Array 6i", &SA5A_access},
 169        {0x3225103C, "Smart Array P600", &SA5A_access},
 170        {0x3223103C, "Smart Array P800", &SA5A_access},
 171        {0x3234103C, "Smart Array P400", &SA5A_access},
 172        {0x3235103C, "Smart Array P400i", &SA5A_access},
 173        {0x3211103C, "Smart Array E200i", &SA5A_access},
 174        {0x3212103C, "Smart Array E200", &SA5A_access},
 175        {0x3213103C, "Smart Array E200i", &SA5A_access},
 176        {0x3214103C, "Smart Array E200i", &SA5A_access},
 177        {0x3215103C, "Smart Array E200i", &SA5A_access},
 178        {0x3237103C, "Smart Array E500", &SA5A_access},
 179        {0x323D103C, "Smart Array P700m", &SA5A_access},
 180        {0x3241103C, "Smart Array P212", &SA5_access},
 181        {0x3243103C, "Smart Array P410", &SA5_access},
 182        {0x3245103C, "Smart Array P410i", &SA5_access},
 183        {0x3247103C, "Smart Array P411", &SA5_access},
 184        {0x3249103C, "Smart Array P812", &SA5_access},
 185        {0x324A103C, "Smart Array P712m", &SA5_access},
 186        {0x324B103C, "Smart Array P711m", &SA5_access},
 187        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 188        {0x3350103C, "Smart Array P222", &SA5_access},
 189        {0x3351103C, "Smart Array P420", &SA5_access},
 190        {0x3352103C, "Smart Array P421", &SA5_access},
 191        {0x3353103C, "Smart Array P822", &SA5_access},
 192        {0x3354103C, "Smart Array P420i", &SA5_access},
 193        {0x3355103C, "Smart Array P220i", &SA5_access},
 194        {0x3356103C, "Smart Array P721m", &SA5_access},
 195        {0x1920103C, "Smart Array P430i", &SA5_access},
 196        {0x1921103C, "Smart Array P830i", &SA5_access},
 197        {0x1922103C, "Smart Array P430", &SA5_access},
 198        {0x1923103C, "Smart Array P431", &SA5_access},
 199        {0x1924103C, "Smart Array P830", &SA5_access},
 200        {0x1925103C, "Smart Array P831", &SA5_access},
 201        {0x1926103C, "Smart Array P731m", &SA5_access},
 202        {0x1928103C, "Smart Array P230i", &SA5_access},
 203        {0x1929103C, "Smart Array P530", &SA5_access},
 204        {0x21BD103C, "Smart Array P244br", &SA5_access},
 205        {0x21BE103C, "Smart Array P741m", &SA5_access},
 206        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 207        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 208        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 209        {0x21C2103C, "Smart Array P440", &SA5_access},
 210        {0x21C3103C, "Smart Array P441", &SA5_access},
 211        {0x21C4103C, "Smart Array", &SA5_access},
 212        {0x21C5103C, "Smart Array P841", &SA5_access},
 213        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 214        {0x21C7103C, "Smart HBA H240", &SA5_access},
 215        {0x21C8103C, "Smart HBA H241", &SA5_access},
 216        {0x21C9103C, "Smart Array", &SA5_access},
 217        {0x21CA103C, "Smart Array P246br", &SA5_access},
 218        {0x21CB103C, "Smart Array P840", &SA5_access},
 219        {0x21CC103C, "Smart Array", &SA5_access},
 220        {0x21CD103C, "Smart Array", &SA5_access},
 221        {0x21CE103C, "Smart HBA", &SA5_access},
 222        {0x05809005, "SmartHBA-SA", &SA5_access},
 223        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 224        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 225        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 226        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 227        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 228        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 229        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 230        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 231        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 232        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 233        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 234};
 235
 236static struct scsi_transport_template *hpsa_sas_transport_template;
 237static int hpsa_add_sas_host(struct ctlr_info *h);
 238static void hpsa_delete_sas_host(struct ctlr_info *h);
 239static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 240                        struct hpsa_scsi_dev_t *device);
 241static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 242static struct hpsa_scsi_dev_t
 243        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 244                struct sas_rphy *rphy);
 245
 246#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 247static const struct scsi_cmnd hpsa_cmd_busy;
 248#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 249static const struct scsi_cmnd hpsa_cmd_idle;
 250static int number_of_controllers;
 251
 252static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 253static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 254static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 255                      void __user *arg);
 256
 257#ifdef CONFIG_COMPAT
 258static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 259        void __user *arg);
 260#endif
 261
 262static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 263static struct CommandList *cmd_alloc(struct ctlr_info *h);
 264static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 265static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 266                                            struct scsi_cmnd *scmd);
 267static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 268        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 269        int cmd_type);
 270static void hpsa_free_cmd_pool(struct ctlr_info *h);
 271#define VPD_PAGE (1 << 8)
 272#define HPSA_SIMPLE_ERROR_BITS 0x03
 273
 274static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 275static void hpsa_scan_start(struct Scsi_Host *);
 276static int hpsa_scan_finished(struct Scsi_Host *sh,
 277        unsigned long elapsed_time);
 278static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 279
 280static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 281static int hpsa_slave_alloc(struct scsi_device *sdev);
 282static int hpsa_slave_configure(struct scsi_device *sdev);
 283static void hpsa_slave_destroy(struct scsi_device *sdev);
 284
 285static void hpsa_update_scsi_devices(struct ctlr_info *h);
 286static int check_for_unit_attention(struct ctlr_info *h,
 287        struct CommandList *c);
 288static void check_ioctl_unit_attention(struct ctlr_info *h,
 289        struct CommandList *c);
 290/* performant mode helper functions */
 291static void calc_bucket_map(int *bucket, int num_buckets,
 292        int nsgs, int min_blocks, u32 *bucket_map);
 293static void hpsa_free_performant_mode(struct ctlr_info *h);
 294static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 295static inline u32 next_command(struct ctlr_info *h, u8 q);
 296static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 297                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 298                               u64 *cfg_offset);
 299static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 300                                    unsigned long *memory_bar);
 301static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 302                                bool *legacy_board);
 303static int wait_for_device_to_become_ready(struct ctlr_info *h,
 304                                           unsigned char lunaddr[],
 305                                           int reply_queue);
 306static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 307                                     int wait_for_ready);
 308static inline void finish_cmd(struct CommandList *c);
 309static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 310#define BOARD_NOT_READY 0
 311#define BOARD_READY 1
 312static void hpsa_drain_accel_commands(struct ctlr_info *h);
 313static void hpsa_flush_cache(struct ctlr_info *h);
 314static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 315        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 316        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 317static void hpsa_command_resubmit_worker(struct work_struct *work);
 318static u32 lockup_detected(struct ctlr_info *h);
 319static int detect_controller_lockup(struct ctlr_info *h);
 320static void hpsa_disable_rld_caching(struct ctlr_info *h);
 321static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 322        struct ReportExtendedLUNdata *buf, int bufsize);
 323static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 324        unsigned char scsi3addr[], u8 page);
 325static int hpsa_luns_changed(struct ctlr_info *h);
 326static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 327                               struct hpsa_scsi_dev_t *dev,
 328                               unsigned char *scsi3addr);
 329
 330static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 331{
 332        unsigned long *priv = shost_priv(sdev->host);
 333        return (struct ctlr_info *) *priv;
 334}
 335
 336static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 337{
 338        unsigned long *priv = shost_priv(sh);
 339        return (struct ctlr_info *) *priv;
 340}
 341
 342static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 343{
 344        return c->scsi_cmd == SCSI_CMD_IDLE;
 345}
 346
 347static inline bool hpsa_is_pending_event(struct CommandList *c)
 348{
 349        return c->reset_pending;
 350}
 351
 352/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 353static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 354                        u8 *sense_key, u8 *asc, u8 *ascq)
 355{
 356        struct scsi_sense_hdr sshdr;
 357        bool rc;
 358
 359        *sense_key = -1;
 360        *asc = -1;
 361        *ascq = -1;
 362
 363        if (sense_data_len < 1)
 364                return;
 365
 366        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 367        if (rc) {
 368                *sense_key = sshdr.sense_key;
 369                *asc = sshdr.asc;
 370                *ascq = sshdr.ascq;
 371        }
 372}
 373
 374static int check_for_unit_attention(struct ctlr_info *h,
 375        struct CommandList *c)
 376{
 377        u8 sense_key, asc, ascq;
 378        int sense_len;
 379
 380        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 381                sense_len = sizeof(c->err_info->SenseInfo);
 382        else
 383                sense_len = c->err_info->SenseLen;
 384
 385        decode_sense_data(c->err_info->SenseInfo, sense_len,
 386                                &sense_key, &asc, &ascq);
 387        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 388                return 0;
 389
 390        switch (asc) {
 391        case STATE_CHANGED:
 392                dev_warn(&h->pdev->dev,
 393                        "%s: a state change detected, command retried\n",
 394                        h->devname);
 395                break;
 396        case LUN_FAILED:
 397                dev_warn(&h->pdev->dev,
 398                        "%s: LUN failure detected\n", h->devname);
 399                break;
 400        case REPORT_LUNS_CHANGED:
 401                dev_warn(&h->pdev->dev,
 402                        "%s: report LUN data changed\n", h->devname);
 403        /*
 404         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 405         * target (array) devices.
 406         */
 407                break;
 408        case POWER_OR_RESET:
 409                dev_warn(&h->pdev->dev,
 410                        "%s: a power on or device reset detected\n",
 411                        h->devname);
 412                break;
 413        case UNIT_ATTENTION_CLEARED:
 414                dev_warn(&h->pdev->dev,
 415                        "%s: unit attention cleared by another initiator\n",
 416                        h->devname);
 417                break;
 418        default:
 419                dev_warn(&h->pdev->dev,
 420                        "%s: unknown unit attention detected\n",
 421                        h->devname);
 422                break;
 423        }
 424        return 1;
 425}
 426
 427static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 428{
 429        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 430                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 431                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 432                return 0;
 433        dev_warn(&h->pdev->dev, HPSA "device busy");
 434        return 1;
 435}
 436
 437static u32 lockup_detected(struct ctlr_info *h);
 438static ssize_t host_show_lockup_detected(struct device *dev,
 439                struct device_attribute *attr, char *buf)
 440{
 441        int ld;
 442        struct ctlr_info *h;
 443        struct Scsi_Host *shost = class_to_shost(dev);
 444
 445        h = shost_to_hba(shost);
 446        ld = lockup_detected(h);
 447
 448        return sprintf(buf, "ld=%d\n", ld);
 449}
 450
 451static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 452                                         struct device_attribute *attr,
 453                                         const char *buf, size_t count)
 454{
 455        int status, len;
 456        struct ctlr_info *h;
 457        struct Scsi_Host *shost = class_to_shost(dev);
 458        char tmpbuf[10];
 459
 460        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 461                return -EACCES;
 462        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 463        strncpy(tmpbuf, buf, len);
 464        tmpbuf[len] = '\0';
 465        if (sscanf(tmpbuf, "%d", &status) != 1)
 466                return -EINVAL;
 467        h = shost_to_hba(shost);
 468        h->acciopath_status = !!status;
 469        dev_warn(&h->pdev->dev,
 470                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 471                h->acciopath_status ? "enabled" : "disabled");
 472        return count;
 473}
 474
 475static ssize_t host_store_raid_offload_debug(struct device *dev,
 476                                         struct device_attribute *attr,
 477                                         const char *buf, size_t count)
 478{
 479        int debug_level, len;
 480        struct ctlr_info *h;
 481        struct Scsi_Host *shost = class_to_shost(dev);
 482        char tmpbuf[10];
 483
 484        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 485                return -EACCES;
 486        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 487        strncpy(tmpbuf, buf, len);
 488        tmpbuf[len] = '\0';
 489        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 490                return -EINVAL;
 491        if (debug_level < 0)
 492                debug_level = 0;
 493        h = shost_to_hba(shost);
 494        h->raid_offload_debug = debug_level;
 495        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 496                h->raid_offload_debug);
 497        return count;
 498}
 499
 500static ssize_t host_store_rescan(struct device *dev,
 501                                 struct device_attribute *attr,
 502                                 const char *buf, size_t count)
 503{
 504        struct ctlr_info *h;
 505        struct Scsi_Host *shost = class_to_shost(dev);
 506        h = shost_to_hba(shost);
 507        hpsa_scan_start(h->scsi_host);
 508        return count;
 509}
 510
 511static ssize_t host_show_firmware_revision(struct device *dev,
 512             struct device_attribute *attr, char *buf)
 513{
 514        struct ctlr_info *h;
 515        struct Scsi_Host *shost = class_to_shost(dev);
 516        unsigned char *fwrev;
 517
 518        h = shost_to_hba(shost);
 519        if (!h->hba_inquiry_data)
 520                return 0;
 521        fwrev = &h->hba_inquiry_data[32];
 522        return snprintf(buf, 20, "%c%c%c%c\n",
 523                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 524}
 525
 526static ssize_t host_show_commands_outstanding(struct device *dev,
 527             struct device_attribute *attr, char *buf)
 528{
 529        struct Scsi_Host *shost = class_to_shost(dev);
 530        struct ctlr_info *h = shost_to_hba(shost);
 531
 532        return snprintf(buf, 20, "%d\n",
 533                        atomic_read(&h->commands_outstanding));
 534}
 535
 536static ssize_t host_show_transport_mode(struct device *dev,
 537        struct device_attribute *attr, char *buf)
 538{
 539        struct ctlr_info *h;
 540        struct Scsi_Host *shost = class_to_shost(dev);
 541
 542        h = shost_to_hba(shost);
 543        return snprintf(buf, 20, "%s\n",
 544                h->transMethod & CFGTBL_Trans_Performant ?
 545                        "performant" : "simple");
 546}
 547
 548static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 549        struct device_attribute *attr, char *buf)
 550{
 551        struct ctlr_info *h;
 552        struct Scsi_Host *shost = class_to_shost(dev);
 553
 554        h = shost_to_hba(shost);
 555        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 556                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 557}
 558
 559/* List of controllers which cannot be hard reset on kexec with reset_devices */
 560static u32 unresettable_controller[] = {
 561        0x324a103C, /* Smart Array P712m */
 562        0x324b103C, /* Smart Array P711m */
 563        0x3223103C, /* Smart Array P800 */
 564        0x3234103C, /* Smart Array P400 */
 565        0x3235103C, /* Smart Array P400i */
 566        0x3211103C, /* Smart Array E200i */
 567        0x3212103C, /* Smart Array E200 */
 568        0x3213103C, /* Smart Array E200i */
 569        0x3214103C, /* Smart Array E200i */
 570        0x3215103C, /* Smart Array E200i */
 571        0x3237103C, /* Smart Array E500 */
 572        0x323D103C, /* Smart Array P700m */
 573        0x40800E11, /* Smart Array 5i */
 574        0x409C0E11, /* Smart Array 6400 */
 575        0x409D0E11, /* Smart Array 6400 EM */
 576        0x40700E11, /* Smart Array 5300 */
 577        0x40820E11, /* Smart Array 532 */
 578        0x40830E11, /* Smart Array 5312 */
 579        0x409A0E11, /* Smart Array 641 */
 580        0x409B0E11, /* Smart Array 642 */
 581        0x40910E11, /* Smart Array 6i */
 582};
 583
 584/* List of controllers which cannot even be soft reset */
 585static u32 soft_unresettable_controller[] = {
 586        0x40800E11, /* Smart Array 5i */
 587        0x40700E11, /* Smart Array 5300 */
 588        0x40820E11, /* Smart Array 532 */
 589        0x40830E11, /* Smart Array 5312 */
 590        0x409A0E11, /* Smart Array 641 */
 591        0x409B0E11, /* Smart Array 642 */
 592        0x40910E11, /* Smart Array 6i */
 593        /* Exclude 640x boards.  These are two pci devices in one slot
 594         * which share a battery backed cache module.  One controls the
 595         * cache, the other accesses the cache through the one that controls
 596         * it.  If we reset the one controlling the cache, the other will
 597         * likely not be happy.  Just forbid resetting this conjoined mess.
 598         * The 640x isn't really supported by hpsa anyway.
 599         */
 600        0x409C0E11, /* Smart Array 6400 */
 601        0x409D0E11, /* Smart Array 6400 EM */
 602};
 603
 604static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 605{
 606        int i;
 607
 608        for (i = 0; i < nelems; i++)
 609                if (a[i] == board_id)
 610                        return 1;
 611        return 0;
 612}
 613
 614static int ctlr_is_hard_resettable(u32 board_id)
 615{
 616        return !board_id_in_array(unresettable_controller,
 617                        ARRAY_SIZE(unresettable_controller), board_id);
 618}
 619
 620static int ctlr_is_soft_resettable(u32 board_id)
 621{
 622        return !board_id_in_array(soft_unresettable_controller,
 623                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 624}
 625
 626static int ctlr_is_resettable(u32 board_id)
 627{
 628        return ctlr_is_hard_resettable(board_id) ||
 629                ctlr_is_soft_resettable(board_id);
 630}
 631
 632static ssize_t host_show_resettable(struct device *dev,
 633        struct device_attribute *attr, char *buf)
 634{
 635        struct ctlr_info *h;
 636        struct Scsi_Host *shost = class_to_shost(dev);
 637
 638        h = shost_to_hba(shost);
 639        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 640}
 641
 642static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 643{
 644        return (scsi3addr[3] & 0xC0) == 0x40;
 645}
 646
 647static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 648        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 649};
 650#define HPSA_RAID_0     0
 651#define HPSA_RAID_4     1
 652#define HPSA_RAID_1     2       /* also used for RAID 10 */
 653#define HPSA_RAID_5     3       /* also used for RAID 50 */
 654#define HPSA_RAID_51    4
 655#define HPSA_RAID_6     5       /* also used for RAID 60 */
 656#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 657#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 658#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 659
 660static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 661{
 662        return !device->physical_device;
 663}
 664
 665static ssize_t raid_level_show(struct device *dev,
 666             struct device_attribute *attr, char *buf)
 667{
 668        ssize_t l = 0;
 669        unsigned char rlevel;
 670        struct ctlr_info *h;
 671        struct scsi_device *sdev;
 672        struct hpsa_scsi_dev_t *hdev;
 673        unsigned long flags;
 674
 675        sdev = to_scsi_device(dev);
 676        h = sdev_to_hba(sdev);
 677        spin_lock_irqsave(&h->lock, flags);
 678        hdev = sdev->hostdata;
 679        if (!hdev) {
 680                spin_unlock_irqrestore(&h->lock, flags);
 681                return -ENODEV;
 682        }
 683
 684        /* Is this even a logical drive? */
 685        if (!is_logical_device(hdev)) {
 686                spin_unlock_irqrestore(&h->lock, flags);
 687                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 688                return l;
 689        }
 690
 691        rlevel = hdev->raid_level;
 692        spin_unlock_irqrestore(&h->lock, flags);
 693        if (rlevel > RAID_UNKNOWN)
 694                rlevel = RAID_UNKNOWN;
 695        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 696        return l;
 697}
 698
 699static ssize_t lunid_show(struct device *dev,
 700             struct device_attribute *attr, char *buf)
 701{
 702        struct ctlr_info *h;
 703        struct scsi_device *sdev;
 704        struct hpsa_scsi_dev_t *hdev;
 705        unsigned long flags;
 706        unsigned char lunid[8];
 707
 708        sdev = to_scsi_device(dev);
 709        h = sdev_to_hba(sdev);
 710        spin_lock_irqsave(&h->lock, flags);
 711        hdev = sdev->hostdata;
 712        if (!hdev) {
 713                spin_unlock_irqrestore(&h->lock, flags);
 714                return -ENODEV;
 715        }
 716        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 717        spin_unlock_irqrestore(&h->lock, flags);
 718        return snprintf(buf, 20, "0x%8phN\n", lunid);
 719}
 720
 721static ssize_t unique_id_show(struct device *dev,
 722             struct device_attribute *attr, char *buf)
 723{
 724        struct ctlr_info *h;
 725        struct scsi_device *sdev;
 726        struct hpsa_scsi_dev_t *hdev;
 727        unsigned long flags;
 728        unsigned char sn[16];
 729
 730        sdev = to_scsi_device(dev);
 731        h = sdev_to_hba(sdev);
 732        spin_lock_irqsave(&h->lock, flags);
 733        hdev = sdev->hostdata;
 734        if (!hdev) {
 735                spin_unlock_irqrestore(&h->lock, flags);
 736                return -ENODEV;
 737        }
 738        memcpy(sn, hdev->device_id, sizeof(sn));
 739        spin_unlock_irqrestore(&h->lock, flags);
 740        return snprintf(buf, 16 * 2 + 2,
 741                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 742                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 743                        sn[0], sn[1], sn[2], sn[3],
 744                        sn[4], sn[5], sn[6], sn[7],
 745                        sn[8], sn[9], sn[10], sn[11],
 746                        sn[12], sn[13], sn[14], sn[15]);
 747}
 748
 749static ssize_t sas_address_show(struct device *dev,
 750              struct device_attribute *attr, char *buf)
 751{
 752        struct ctlr_info *h;
 753        struct scsi_device *sdev;
 754        struct hpsa_scsi_dev_t *hdev;
 755        unsigned long flags;
 756        u64 sas_address;
 757
 758        sdev = to_scsi_device(dev);
 759        h = sdev_to_hba(sdev);
 760        spin_lock_irqsave(&h->lock, flags);
 761        hdev = sdev->hostdata;
 762        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 763                spin_unlock_irqrestore(&h->lock, flags);
 764                return -ENODEV;
 765        }
 766        sas_address = hdev->sas_address;
 767        spin_unlock_irqrestore(&h->lock, flags);
 768
 769        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 770}
 771
 772static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 773             struct device_attribute *attr, char *buf)
 774{
 775        struct ctlr_info *h;
 776        struct scsi_device *sdev;
 777        struct hpsa_scsi_dev_t *hdev;
 778        unsigned long flags;
 779        int offload_enabled;
 780
 781        sdev = to_scsi_device(dev);
 782        h = sdev_to_hba(sdev);
 783        spin_lock_irqsave(&h->lock, flags);
 784        hdev = sdev->hostdata;
 785        if (!hdev) {
 786                spin_unlock_irqrestore(&h->lock, flags);
 787                return -ENODEV;
 788        }
 789        offload_enabled = hdev->offload_enabled;
 790        spin_unlock_irqrestore(&h->lock, flags);
 791
 792        if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 793                return snprintf(buf, 20, "%d\n", offload_enabled);
 794        else
 795                return snprintf(buf, 40, "%s\n",
 796                                "Not applicable for a controller");
 797}
 798
 799#define MAX_PATHS 8
 800static ssize_t path_info_show(struct device *dev,
 801             struct device_attribute *attr, char *buf)
 802{
 803        struct ctlr_info *h;
 804        struct scsi_device *sdev;
 805        struct hpsa_scsi_dev_t *hdev;
 806        unsigned long flags;
 807        int i;
 808        int output_len = 0;
 809        u8 box;
 810        u8 bay;
 811        u8 path_map_index = 0;
 812        char *active;
 813        unsigned char phys_connector[2];
 814
 815        sdev = to_scsi_device(dev);
 816        h = sdev_to_hba(sdev);
 817        spin_lock_irqsave(&h->devlock, flags);
 818        hdev = sdev->hostdata;
 819        if (!hdev) {
 820                spin_unlock_irqrestore(&h->devlock, flags);
 821                return -ENODEV;
 822        }
 823
 824        bay = hdev->bay;
 825        for (i = 0; i < MAX_PATHS; i++) {
 826                path_map_index = 1<<i;
 827                if (i == hdev->active_path_index)
 828                        active = "Active";
 829                else if (hdev->path_map & path_map_index)
 830                        active = "Inactive";
 831                else
 832                        continue;
 833
 834                output_len += scnprintf(buf + output_len,
 835                                PAGE_SIZE - output_len,
 836                                "[%d:%d:%d:%d] %20.20s ",
 837                                h->scsi_host->host_no,
 838                                hdev->bus, hdev->target, hdev->lun,
 839                                scsi_device_type(hdev->devtype));
 840
 841                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 842                        output_len += scnprintf(buf + output_len,
 843                                                PAGE_SIZE - output_len,
 844                                                "%s\n", active);
 845                        continue;
 846                }
 847
 848                box = hdev->box[i];
 849                memcpy(&phys_connector, &hdev->phys_connector[i],
 850                        sizeof(phys_connector));
 851                if (phys_connector[0] < '0')
 852                        phys_connector[0] = '0';
 853                if (phys_connector[1] < '0')
 854                        phys_connector[1] = '0';
 855                output_len += scnprintf(buf + output_len,
 856                                PAGE_SIZE - output_len,
 857                                "PORT: %.2s ",
 858                                phys_connector);
 859                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 860                        hdev->expose_device) {
 861                        if (box == 0 || box == 0xFF) {
 862                                output_len += scnprintf(buf + output_len,
 863                                        PAGE_SIZE - output_len,
 864                                        "BAY: %hhu %s\n",
 865                                        bay, active);
 866                        } else {
 867                                output_len += scnprintf(buf + output_len,
 868                                        PAGE_SIZE - output_len,
 869                                        "BOX: %hhu BAY: %hhu %s\n",
 870                                        box, bay, active);
 871                        }
 872                } else if (box != 0 && box != 0xFF) {
 873                        output_len += scnprintf(buf + output_len,
 874                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 875                                box, active);
 876                } else
 877                        output_len += scnprintf(buf + output_len,
 878                                PAGE_SIZE - output_len, "%s\n", active);
 879        }
 880
 881        spin_unlock_irqrestore(&h->devlock, flags);
 882        return output_len;
 883}
 884
 885static ssize_t host_show_ctlr_num(struct device *dev,
 886        struct device_attribute *attr, char *buf)
 887{
 888        struct ctlr_info *h;
 889        struct Scsi_Host *shost = class_to_shost(dev);
 890
 891        h = shost_to_hba(shost);
 892        return snprintf(buf, 20, "%d\n", h->ctlr);
 893}
 894
 895static ssize_t host_show_legacy_board(struct device *dev,
 896        struct device_attribute *attr, char *buf)
 897{
 898        struct ctlr_info *h;
 899        struct Scsi_Host *shost = class_to_shost(dev);
 900
 901        h = shost_to_hba(shost);
 902        return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 903}
 904
 905static DEVICE_ATTR_RO(raid_level);
 906static DEVICE_ATTR_RO(lunid);
 907static DEVICE_ATTR_RO(unique_id);
 908static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 909static DEVICE_ATTR_RO(sas_address);
 910static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 911                        host_show_hp_ssd_smart_path_enabled, NULL);
 912static DEVICE_ATTR_RO(path_info);
 913static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 914                host_show_hp_ssd_smart_path_status,
 915                host_store_hp_ssd_smart_path_status);
 916static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 917                        host_store_raid_offload_debug);
 918static DEVICE_ATTR(firmware_revision, S_IRUGO,
 919        host_show_firmware_revision, NULL);
 920static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 921        host_show_commands_outstanding, NULL);
 922static DEVICE_ATTR(transport_mode, S_IRUGO,
 923        host_show_transport_mode, NULL);
 924static DEVICE_ATTR(resettable, S_IRUGO,
 925        host_show_resettable, NULL);
 926static DEVICE_ATTR(lockup_detected, S_IRUGO,
 927        host_show_lockup_detected, NULL);
 928static DEVICE_ATTR(ctlr_num, S_IRUGO,
 929        host_show_ctlr_num, NULL);
 930static DEVICE_ATTR(legacy_board, S_IRUGO,
 931        host_show_legacy_board, NULL);
 932
 933static struct device_attribute *hpsa_sdev_attrs[] = {
 934        &dev_attr_raid_level,
 935        &dev_attr_lunid,
 936        &dev_attr_unique_id,
 937        &dev_attr_hp_ssd_smart_path_enabled,
 938        &dev_attr_path_info,
 939        &dev_attr_sas_address,
 940        NULL,
 941};
 942
 943static struct device_attribute *hpsa_shost_attrs[] = {
 944        &dev_attr_rescan,
 945        &dev_attr_firmware_revision,
 946        &dev_attr_commands_outstanding,
 947        &dev_attr_transport_mode,
 948        &dev_attr_resettable,
 949        &dev_attr_hp_ssd_smart_path_status,
 950        &dev_attr_raid_offload_debug,
 951        &dev_attr_lockup_detected,
 952        &dev_attr_ctlr_num,
 953        &dev_attr_legacy_board,
 954        NULL,
 955};
 956
 957#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 958                                 HPSA_MAX_CONCURRENT_PASSTHRUS)
 959
 960static struct scsi_host_template hpsa_driver_template = {
 961        .module                 = THIS_MODULE,
 962        .name                   = HPSA,
 963        .proc_name              = HPSA,
 964        .queuecommand           = hpsa_scsi_queue_command,
 965        .scan_start             = hpsa_scan_start,
 966        .scan_finished          = hpsa_scan_finished,
 967        .change_queue_depth     = hpsa_change_queue_depth,
 968        .this_id                = -1,
 969        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 970        .ioctl                  = hpsa_ioctl,
 971        .slave_alloc            = hpsa_slave_alloc,
 972        .slave_configure        = hpsa_slave_configure,
 973        .slave_destroy          = hpsa_slave_destroy,
 974#ifdef CONFIG_COMPAT
 975        .compat_ioctl           = hpsa_compat_ioctl,
 976#endif
 977        .sdev_attrs = hpsa_sdev_attrs,
 978        .shost_attrs = hpsa_shost_attrs,
 979        .max_sectors = 2048,
 980        .no_write_same = 1,
 981};
 982
 983static inline u32 next_command(struct ctlr_info *h, u8 q)
 984{
 985        u32 a;
 986        struct reply_queue_buffer *rq = &h->reply_queue[q];
 987
 988        if (h->transMethod & CFGTBL_Trans_io_accel1)
 989                return h->access.command_completed(h, q);
 990
 991        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 992                return h->access.command_completed(h, q);
 993
 994        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 995                a = rq->head[rq->current_entry];
 996                rq->current_entry++;
 997                atomic_dec(&h->commands_outstanding);
 998        } else {
 999                a = FIFO_EMPTY;
1000        }
1001        /* Check for wraparound */
1002        if (rq->current_entry == h->max_commands) {
1003                rq->current_entry = 0;
1004                rq->wraparound ^= 1;
1005        }
1006        return a;
1007}
1008
1009/*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035/*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040#define DEFAULT_REPLY_QUEUE (-1)
1041static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                        int reply_queue)
1043{
1044        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                if (unlikely(!h->msix_vectors))
1047                        return;
1048                c->Header.ReplyQueue = reply_queue;
1049        }
1050}
1051
1052static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                struct CommandList *c,
1054                                                int reply_queue)
1055{
1056        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058        /*
1059         * Tell the controller to post the reply to the queue for this
1060         * processor.  This seems to give the best I/O throughput.
1061         */
1062        cp->ReplyQueue = reply_queue;
1063        /*
1064         * Set the bits in the address sent down to include:
1065         *  - performant mode bit (bit 0)
1066         *  - pull count (bits 1-3)
1067         *  - command type (bits 4-6)
1068         */
1069        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                        IOACCEL1_BUSADDR_CMDTYPE;
1071}
1072
1073static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                struct CommandList *c,
1075                                                int reply_queue)
1076{
1077        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080        /* Tell the controller to post the reply to the queue for this
1081         * processor.  This seems to give the best I/O throughput.
1082         */
1083        cp->reply_queue = reply_queue;
1084        /* Set the bits in the address sent down to include:
1085         *  - performant mode bit not used in ioaccel mode 2
1086         *  - pull count (bits 0-3)
1087         *  - command type isn't needed for ioaccel2
1088         */
1089        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090}
1091
1092static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                struct CommandList *c,
1094                                                int reply_queue)
1095{
1096        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098        /*
1099         * Tell the controller to post the reply to the queue for this
1100         * processor.  This seems to give the best I/O throughput.
1101         */
1102        cp->reply_queue = reply_queue;
1103        /*
1104         * Set the bits in the address sent down to include:
1105         *  - performant mode bit not used in ioaccel mode 2
1106         *  - pull count (bits 0-3)
1107         *  - command type isn't needed for ioaccel2
1108         */
1109        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110}
1111
1112static int is_firmware_flash_cmd(u8 *cdb)
1113{
1114        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115}
1116
1117/*
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should.  So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1121 */
1122#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                struct CommandList *c)
1127{
1128        if (!is_firmware_flash_cmd(c->Request.CDB))
1129                return;
1130        atomic_inc(&h->firmware_flash_in_progress);
1131        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132}
1133
1134static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                struct CommandList *c)
1136{
1137        if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140}
1141
1142static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143        struct CommandList *c, int reply_queue)
1144{
1145        dial_down_lockup_detection_during_fw_flash(h, c);
1146        atomic_inc(&h->commands_outstanding);
1147
1148        reply_queue = h->reply_map[raw_smp_processor_id()];
1149        switch (c->cmd_type) {
1150        case CMD_IOACCEL1:
1151                set_ioaccel1_performant_mode(h, c, reply_queue);
1152                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                break;
1154        case CMD_IOACCEL2:
1155                set_ioaccel2_performant_mode(h, c, reply_queue);
1156                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                break;
1158        case IOACCEL2_TMF:
1159                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                break;
1162        default:
1163                set_performant_mode(h, c, reply_queue);
1164                h->access.submit_command(h, c);
1165        }
1166}
1167
1168static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169{
1170        if (unlikely(hpsa_is_pending_event(c)))
1171                return finish_cmd(c);
1172
1173        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174}
1175
1176static inline int is_hba_lunid(unsigned char scsi3addr[])
1177{
1178        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179}
1180
1181static inline int is_scsi_rev_5(struct ctlr_info *h)
1182{
1183        if (!h->hba_inquiry_data)
1184                return 0;
1185        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                return 1;
1187        return 0;
1188}
1189
1190static int hpsa_find_target_lun(struct ctlr_info *h,
1191        unsigned char scsi3addr[], int bus, int *target, int *lun)
1192{
1193        /* finds an unused bus, target, lun for a new physical device
1194         * assumes h->devlock is held
1195         */
1196        int i, found = 0;
1197        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201        for (i = 0; i < h->ndevices; i++) {
1202                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                        __set_bit(h->dev[i]->target, lun_taken);
1204        }
1205
1206        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207        if (i < HPSA_MAX_DEVICES) {
1208                /* *bus = 1; */
1209                *target = i;
1210                *lun = 0;
1211                found = 1;
1212        }
1213        return !found;
1214}
1215
1216static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217        struct hpsa_scsi_dev_t *dev, char *description)
1218{
1219#define LABEL_SIZE 25
1220        char label[LABEL_SIZE];
1221
1222        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                return;
1224
1225        switch (dev->devtype) {
1226        case TYPE_RAID:
1227                snprintf(label, LABEL_SIZE, "controller");
1228                break;
1229        case TYPE_ENCLOSURE:
1230                snprintf(label, LABEL_SIZE, "enclosure");
1231                break;
1232        case TYPE_DISK:
1233        case TYPE_ZBC:
1234                if (dev->external)
1235                        snprintf(label, LABEL_SIZE, "external");
1236                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                        snprintf(label, LABEL_SIZE, "%s",
1238                                raid_label[PHYSICAL_DRIVE]);
1239                else
1240                        snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                raid_label[dev->raid_level]);
1243                break;
1244        case TYPE_ROM:
1245                snprintf(label, LABEL_SIZE, "rom");
1246                break;
1247        case TYPE_TAPE:
1248                snprintf(label, LABEL_SIZE, "tape");
1249                break;
1250        case TYPE_MEDIUM_CHANGER:
1251                snprintf(label, LABEL_SIZE, "changer");
1252                break;
1253        default:
1254                snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                break;
1256        }
1257
1258        dev_printk(level, &h->pdev->dev,
1259                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                        description,
1262                        scsi_device_type(dev->devtype),
1263                        dev->vendor,
1264                        dev->model,
1265                        label,
1266                        dev->offload_config ? '+' : '-',
1267                        dev->offload_to_be_enabled ? '+' : '-',
1268                        dev->expose_device);
1269}
1270
1271/* Add an entry into h->dev[] array. */
1272static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                struct hpsa_scsi_dev_t *device,
1274                struct hpsa_scsi_dev_t *added[], int *nadded)
1275{
1276        /* assumes h->devlock is held */
1277        int n = h->ndevices;
1278        int i;
1279        unsigned char addr1[8], addr2[8];
1280        struct hpsa_scsi_dev_t *sd;
1281
1282        if (n >= HPSA_MAX_DEVICES) {
1283                dev_err(&h->pdev->dev, "too many devices, some will be "
1284                        "inaccessible.\n");
1285                return -1;
1286        }
1287
1288        /* physical devices do not have lun or target assigned until now. */
1289        if (device->lun != -1)
1290                /* Logical device, lun is already assigned. */
1291                goto lun_assigned;
1292
1293        /* If this device a non-zero lun of a multi-lun device
1294         * byte 4 of the 8-byte LUN addr will contain the logical
1295         * unit no, zero otherwise.
1296         */
1297        if (device->scsi3addr[4] == 0) {
1298                /* This is not a non-zero lun of a multi-lun device */
1299                if (hpsa_find_target_lun(h, device->scsi3addr,
1300                        device->bus, &device->target, &device->lun) != 0)
1301                        return -1;
1302                goto lun_assigned;
1303        }
1304
1305        /* This is a non-zero lun of a multi-lun device.
1306         * Search through our list and find the device which
1307         * has the same 8 byte LUN address, excepting byte 4 and 5.
1308         * Assign the same bus and target for this new LUN.
1309         * Use the logical unit number from the firmware.
1310         */
1311        memcpy(addr1, device->scsi3addr, 8);
1312        addr1[4] = 0;
1313        addr1[5] = 0;
1314        for (i = 0; i < n; i++) {
1315                sd = h->dev[i];
1316                memcpy(addr2, sd->scsi3addr, 8);
1317                addr2[4] = 0;
1318                addr2[5] = 0;
1319                /* differ only in byte 4 and 5? */
1320                if (memcmp(addr1, addr2, 8) == 0) {
1321                        device->bus = sd->bus;
1322                        device->target = sd->target;
1323                        device->lun = device->scsi3addr[4];
1324                        break;
1325                }
1326        }
1327        if (device->lun == -1) {
1328                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                        " suspect firmware bug or unsupported hardware "
1330                        "configuration.\n");
1331                return -1;
1332        }
1333
1334lun_assigned:
1335
1336        h->dev[n] = device;
1337        h->ndevices++;
1338        added[*nadded] = device;
1339        (*nadded)++;
1340        hpsa_show_dev_msg(KERN_INFO, h, device,
1341                device->expose_device ? "added" : "masked");
1342        return 0;
1343}
1344
1345/*
1346 * Called during a scan operation.
1347 *
1348 * Update an entry in h->dev[] array.
1349 */
1350static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351        int entry, struct hpsa_scsi_dev_t *new_entry)
1352{
1353        /* assumes h->devlock is held */
1354        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356        /* Raid level changed. */
1357        h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359        /*
1360         * ioacccel_handle may have changed for a dual domain disk
1361         */
1362        h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364        /* Raid offload parameters changed.  Careful about the ordering. */
1365        if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                /*
1367                 * if drive is newly offload_enabled, we want to copy the
1368                 * raid map data first.  If previously offload_enabled and
1369                 * offload_config were set, raid map data had better be
1370                 * the same as it was before. If raid map data has changed
1371                 * then it had better be the case that
1372                 * h->dev[entry]->offload_enabled is currently 0.
1373                 */
1374                h->dev[entry]->raid_map = new_entry->raid_map;
1375                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376        }
1377        if (new_entry->offload_to_be_enabled) {
1378                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380        }
1381        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382        h->dev[entry]->offload_config = new_entry->offload_config;
1383        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384        h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386        /*
1387         * We can turn off ioaccel offload now, but need to delay turning
1388         * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389         * can't do that until all the devices are updated.
1390         */
1391        h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393        /*
1394         * turn ioaccel off immediately if told to do so.
1395         */
1396        if (!new_entry->offload_to_be_enabled)
1397                h->dev[entry]->offload_enabled = 0;
1398
1399        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400}
1401
1402/* Replace an entry from h->dev[] array. */
1403static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404        int entry, struct hpsa_scsi_dev_t *new_entry,
1405        struct hpsa_scsi_dev_t *added[], int *nadded,
1406        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407{
1408        /* assumes h->devlock is held */
1409        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410        removed[*nremoved] = h->dev[entry];
1411        (*nremoved)++;
1412
1413        /*
1414         * New physical devices won't have target/lun assigned yet
1415         * so we need to preserve the values in the slot we are replacing.
1416         */
1417        if (new_entry->target == -1) {
1418                new_entry->target = h->dev[entry]->target;
1419                new_entry->lun = h->dev[entry]->lun;
1420        }
1421
1422        h->dev[entry] = new_entry;
1423        added[*nadded] = new_entry;
1424        (*nadded)++;
1425
1426        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427}
1428
1429/* Remove an entry from h->dev[] array. */
1430static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432{
1433        /* assumes h->devlock is held */
1434        int i;
1435        struct hpsa_scsi_dev_t *sd;
1436
1437        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439        sd = h->dev[entry];
1440        removed[*nremoved] = h->dev[entry];
1441        (*nremoved)++;
1442
1443        for (i = entry; i < h->ndevices-1; i++)
1444                h->dev[i] = h->dev[i+1];
1445        h->ndevices--;
1446        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447}
1448
1449#define SCSI3ADDR_EQ(a, b) ( \
1450        (a)[7] == (b)[7] && \
1451        (a)[6] == (b)[6] && \
1452        (a)[5] == (b)[5] && \
1453        (a)[4] == (b)[4] && \
1454        (a)[3] == (b)[3] && \
1455        (a)[2] == (b)[2] && \
1456        (a)[1] == (b)[1] && \
1457        (a)[0] == (b)[0])
1458
1459static void fixup_botched_add(struct ctlr_info *h,
1460        struct hpsa_scsi_dev_t *added)
1461{
1462        /* called when scsi_add_device fails in order to re-adjust
1463         * h->dev[] to match the mid layer's view.
1464         */
1465        unsigned long flags;
1466        int i, j;
1467
1468        spin_lock_irqsave(&h->lock, flags);
1469        for (i = 0; i < h->ndevices; i++) {
1470                if (h->dev[i] == added) {
1471                        for (j = i; j < h->ndevices-1; j++)
1472                                h->dev[j] = h->dev[j+1];
1473                        h->ndevices--;
1474                        break;
1475                }
1476        }
1477        spin_unlock_irqrestore(&h->lock, flags);
1478        kfree(added);
1479}
1480
1481static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482        struct hpsa_scsi_dev_t *dev2)
1483{
1484        /* we compare everything except lun and target as these
1485         * are not yet assigned.  Compare parts likely
1486         * to differ first
1487         */
1488        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                sizeof(dev1->scsi3addr)) != 0)
1490                return 0;
1491        if (memcmp(dev1->device_id, dev2->device_id,
1492                sizeof(dev1->device_id)) != 0)
1493                return 0;
1494        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                return 0;
1496        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                return 0;
1498        if (dev1->devtype != dev2->devtype)
1499                return 0;
1500        if (dev1->bus != dev2->bus)
1501                return 0;
1502        return 1;
1503}
1504
1505static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506        struct hpsa_scsi_dev_t *dev2)
1507{
1508        /* Device attributes that can change, but don't mean
1509         * that the device is a different device, nor that the OS
1510         * needs to be told anything about the change.
1511         */
1512        if (dev1->raid_level != dev2->raid_level)
1513                return 1;
1514        if (dev1->offload_config != dev2->offload_config)
1515                return 1;
1516        if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                return 1;
1518        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                if (dev1->queue_depth != dev2->queue_depth)
1520                        return 1;
1521        /*
1522         * This can happen for dual domain devices. An active
1523         * path change causes the ioaccel handle to change
1524         *
1525         * for example note the handle differences between p0 and p1
1526         * Device                    WWN               ,WWN hash,Handle
1527         * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528         *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529         */
1530        if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                return 1;
1532        return 0;
1533}
1534
1535/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index.  If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1542 */
1543static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545        int *index)
1546{
1547        int i;
1548#define DEVICE_NOT_FOUND 0
1549#define DEVICE_CHANGED 1
1550#define DEVICE_SAME 2
1551#define DEVICE_UPDATED 3
1552        if (needle == NULL)
1553                return DEVICE_NOT_FOUND;
1554
1555        for (i = 0; i < haystack_size; i++) {
1556                if (haystack[i] == NULL) /* previously removed. */
1557                        continue;
1558                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                        *index = i;
1560                        if (device_is_the_same(needle, haystack[i])) {
1561                                if (device_updated(needle, haystack[i]))
1562                                        return DEVICE_UPDATED;
1563                                return DEVICE_SAME;
1564                        } else {
1565                                /* Keep offline devices offline */
1566                                if (needle->volume_offline)
1567                                        return DEVICE_NOT_FOUND;
1568                                return DEVICE_CHANGED;
1569                        }
1570                }
1571        }
1572        *index = -1;
1573        return DEVICE_NOT_FOUND;
1574}
1575
1576static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                        unsigned char scsi3addr[])
1578{
1579        struct offline_device_entry *device;
1580        unsigned long flags;
1581
1582        /* Check to see if device is already on the list */
1583        spin_lock_irqsave(&h->offline_device_lock, flags);
1584        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                if (memcmp(device->scsi3addr, scsi3addr,
1586                        sizeof(device->scsi3addr)) == 0) {
1587                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                        return;
1589                }
1590        }
1591        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593        /* Device is not on the list, add it. */
1594        device = kmalloc(sizeof(*device), GFP_KERNEL);
1595        if (!device)
1596                return;
1597
1598        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599        spin_lock_irqsave(&h->offline_device_lock, flags);
1600        list_add_tail(&device->offline_list, &h->offline_device_list);
1601        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602}
1603
1604/* Print a message explaining various offline volume states */
1605static void hpsa_show_volume_status(struct ctlr_info *h,
1606        struct hpsa_scsi_dev_t *sd)
1607{
1608        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                dev_info(&h->pdev->dev,
1610                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                        h->scsi_host->host_no,
1612                        sd->bus, sd->target, sd->lun);
1613        switch (sd->volume_offline) {
1614        case HPSA_LV_OK:
1615                break;
1616        case HPSA_LV_UNDERGOING_ERASE:
1617                dev_info(&h->pdev->dev,
1618                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                        h->scsi_host->host_no,
1620                        sd->bus, sd->target, sd->lun);
1621                break;
1622        case HPSA_LV_NOT_AVAILABLE:
1623                dev_info(&h->pdev->dev,
1624                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                        h->scsi_host->host_no,
1626                        sd->bus, sd->target, sd->lun);
1627                break;
1628        case HPSA_LV_UNDERGOING_RPI:
1629                dev_info(&h->pdev->dev,
1630                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                        h->scsi_host->host_no,
1632                        sd->bus, sd->target, sd->lun);
1633                break;
1634        case HPSA_LV_PENDING_RPI:
1635                dev_info(&h->pdev->dev,
1636                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                        h->scsi_host->host_no,
1638                        sd->bus, sd->target, sd->lun);
1639                break;
1640        case HPSA_LV_ENCRYPTED_NO_KEY:
1641                dev_info(&h->pdev->dev,
1642                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                        h->scsi_host->host_no,
1644                        sd->bus, sd->target, sd->lun);
1645                break;
1646        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                dev_info(&h->pdev->dev,
1648                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                        h->scsi_host->host_no,
1650                        sd->bus, sd->target, sd->lun);
1651                break;
1652        case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                dev_info(&h->pdev->dev,
1654                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                        h->scsi_host->host_no,
1656                        sd->bus, sd->target, sd->lun);
1657                break;
1658        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                dev_info(&h->pdev->dev,
1660                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                        h->scsi_host->host_no,
1662                        sd->bus, sd->target, sd->lun);
1663                break;
1664        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                dev_info(&h->pdev->dev,
1666                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                        h->scsi_host->host_no,
1668                        sd->bus, sd->target, sd->lun);
1669                break;
1670        case HPSA_LV_PENDING_ENCRYPTION:
1671                dev_info(&h->pdev->dev,
1672                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                        h->scsi_host->host_no,
1674                        sd->bus, sd->target, sd->lun);
1675                break;
1676        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                dev_info(&h->pdev->dev,
1678                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                        h->scsi_host->host_no,
1680                        sd->bus, sd->target, sd->lun);
1681                break;
1682        }
1683}
1684
1685/*
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1688 */
1689static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                struct hpsa_scsi_dev_t *logical_drive)
1692{
1693        struct raid_map_data *map = &logical_drive->raid_map;
1694        struct raid_map_disk_data *dd = &map->data[0];
1695        int i, j;
1696        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                le16_to_cpu(map->metadata_disks_per_row);
1698        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                le16_to_cpu(map->layout_map_count) *
1700                                total_disks_per_row;
1701        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                total_disks_per_row;
1703        int qdepth;
1704
1705        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708        logical_drive->nphysical_disks = nraid_map_entries;
1709
1710        qdepth = 0;
1711        for (i = 0; i < nraid_map_entries; i++) {
1712                logical_drive->phys_disk[i] = NULL;
1713                if (!logical_drive->offload_config)
1714                        continue;
1715                for (j = 0; j < ndevices; j++) {
1716                        if (dev[j] == NULL)
1717                                continue;
1718                        if (dev[j]->devtype != TYPE_DISK &&
1719                            dev[j]->devtype != TYPE_ZBC)
1720                                continue;
1721                        if (is_logical_device(dev[j]))
1722                                continue;
1723                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                continue;
1725
1726                        logical_drive->phys_disk[i] = dev[j];
1727                        if (i < nphys_disk)
1728                                qdepth = min(h->nr_cmds, qdepth +
1729                                    logical_drive->phys_disk[i]->queue_depth);
1730                        break;
1731                }
1732
1733                /*
1734                 * This can happen if a physical drive is removed and
1735                 * the logical drive is degraded.  In that case, the RAID
1736                 * map data will refer to a physical disk which isn't actually
1737                 * present.  And in that case offload_enabled should already
1738                 * be 0, but we'll turn it off here just in case
1739                 */
1740                if (!logical_drive->phys_disk[i]) {
1741                        dev_warn(&h->pdev->dev,
1742                                "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                __func__,
1744                                h->scsi_host->host_no, logical_drive->bus,
1745                                logical_drive->target, logical_drive->lun);
1746                        logical_drive->offload_enabled = 0;
1747                        logical_drive->offload_to_be_enabled = 0;
1748                        logical_drive->queue_depth = 8;
1749                }
1750        }
1751        if (nraid_map_entries)
1752                /*
1753                 * This is correct for reads, too high for full stripe writes,
1754                 * way too high for partial stripe writes
1755                 */
1756                logical_drive->queue_depth = qdepth;
1757        else {
1758                if (logical_drive->external)
1759                        logical_drive->queue_depth = EXTERNAL_QD;
1760                else
1761                        logical_drive->queue_depth = h->nr_cmds;
1762        }
1763}
1764
1765static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1767{
1768        int i;
1769
1770        for (i = 0; i < ndevices; i++) {
1771                if (dev[i] == NULL)
1772                        continue;
1773                if (dev[i]->devtype != TYPE_DISK &&
1774                    dev[i]->devtype != TYPE_ZBC)
1775                        continue;
1776                if (!is_logical_device(dev[i]))
1777                        continue;
1778
1779                /*
1780                 * If offload is currently enabled, the RAID map and
1781                 * phys_disk[] assignment *better* not be changing
1782                 * because we would be changing ioaccel phsy_disk[] pointers
1783                 * on a ioaccel volume processing I/O requests.
1784                 *
1785                 * If an ioaccel volume status changed, initially because it was
1786                 * re-configured and thus underwent a transformation, or
1787                 * a drive failed, we would have received a state change
1788                 * request and ioaccel should have been turned off. When the
1789                 * transformation completes, we get another state change
1790                 * request to turn ioaccel back on. In this case, we need
1791                 * to update the ioaccel information.
1792                 *
1793                 * Thus: If it is not currently enabled, but will be after
1794                 * the scan completes, make sure the ioaccel pointers
1795                 * are up to date.
1796                 */
1797
1798                if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                        hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800        }
1801}
1802
1803static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804{
1805        int rc = 0;
1806
1807        if (!h->scsi_host)
1808                return 1;
1809
1810        if (is_logical_device(device)) /* RAID */
1811                rc = scsi_add_device(h->scsi_host, device->bus,
1812                                        device->target, device->lun);
1813        else /* HBA */
1814                rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816        return rc;
1817}
1818
1819static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                struct hpsa_scsi_dev_t *dev)
1821{
1822        int i;
1823        int count = 0;
1824
1825        for (i = 0; i < h->nr_cmds; i++) {
1826                struct CommandList *c = h->cmd_pool + i;
1827                int refcount = atomic_inc_return(&c->refcount);
1828
1829                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                dev->scsi3addr)) {
1831                        unsigned long flags;
1832
1833                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                        if (!hpsa_is_cmd_idle(c))
1835                                ++count;
1836                        spin_unlock_irqrestore(&h->lock, flags);
1837                }
1838
1839                cmd_free(h, c);
1840        }
1841
1842        return count;
1843}
1844
1845static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                struct hpsa_scsi_dev_t *device)
1847{
1848        int cmds = 0;
1849        int waits = 0;
1850
1851        while (1) {
1852                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                if (cmds == 0)
1854                        break;
1855                if (++waits > 20)
1856                        break;
1857                msleep(1000);
1858        }
1859
1860        if (waits > 20)
1861                dev_warn(&h->pdev->dev,
1862                        "%s: removing device with %d outstanding commands!\n",
1863                        __func__, cmds);
1864}
1865
1866static void hpsa_remove_device(struct ctlr_info *h,
1867                        struct hpsa_scsi_dev_t *device)
1868{
1869        struct scsi_device *sdev = NULL;
1870
1871        if (!h->scsi_host)
1872                return;
1873
1874        /*
1875         * Allow for commands to drain
1876         */
1877        device->removed = 1;
1878        hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880        if (is_logical_device(device)) { /* RAID */
1881                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                device->target, device->lun);
1883                if (sdev) {
1884                        scsi_remove_device(sdev);
1885                        scsi_device_put(sdev);
1886                } else {
1887                        /*
1888                         * We don't expect to get here.  Future commands
1889                         * to this device will get a selection timeout as
1890                         * if the device were gone.
1891                         */
1892                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                        "didn't find device for removal.");
1894                }
1895        } else { /* HBA */
1896
1897                hpsa_remove_sas_device(device);
1898        }
1899}
1900
1901static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902        struct hpsa_scsi_dev_t *sd[], int nsds)
1903{
1904        /* sd contains scsi3 addresses and devtypes, and inquiry
1905         * data.  This function takes what's in sd to be the current
1906         * reality and updates h->dev[] to reflect that reality.
1907         */
1908        int i, entry, device_change, changes = 0;
1909        struct hpsa_scsi_dev_t *csd;
1910        unsigned long flags;
1911        struct hpsa_scsi_dev_t **added, **removed;
1912        int nadded, nremoved;
1913
1914        /*
1915         * A reset can cause a device status to change
1916         * re-schedule the scan to see what happened.
1917         */
1918        spin_lock_irqsave(&h->reset_lock, flags);
1919        if (h->reset_in_progress) {
1920                h->drv_req_rescan = 1;
1921                spin_unlock_irqrestore(&h->reset_lock, flags);
1922                return;
1923        }
1924        spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926        added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927        removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929        if (!added || !removed) {
1930                dev_warn(&h->pdev->dev, "out of memory in "
1931                        "adjust_hpsa_scsi_table\n");
1932                goto free_and_out;
1933        }
1934
1935        spin_lock_irqsave(&h->devlock, flags);
1936
1937        /* find any devices in h->dev[] that are not in
1938         * sd[] and remove them from h->dev[], and for any
1939         * devices which have changed, remove the old device
1940         * info and add the new device info.
1941         * If minor device attributes change, just update
1942         * the existing device structure.
1943         */
1944        i = 0;
1945        nremoved = 0;
1946        nadded = 0;
1947        while (i < h->ndevices) {
1948                csd = h->dev[i];
1949                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                if (device_change == DEVICE_NOT_FOUND) {
1951                        changes++;
1952                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                        continue; /* remove ^^^, hence i not incremented */
1954                } else if (device_change == DEVICE_CHANGED) {
1955                        changes++;
1956                        hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                added, &nadded, removed, &nremoved);
1958                        /* Set it to NULL to prevent it from being freed
1959                         * at the bottom of hpsa_update_scsi_devices()
1960                         */
1961                        sd[entry] = NULL;
1962                } else if (device_change == DEVICE_UPDATED) {
1963                        hpsa_scsi_update_entry(h, i, sd[entry]);
1964                }
1965                i++;
1966        }
1967
1968        /* Now, make sure every device listed in sd[] is also
1969         * listed in h->dev[], adding them if they aren't found
1970         */
1971
1972        for (i = 0; i < nsds; i++) {
1973                if (!sd[i]) /* if already added above. */
1974                        continue;
1975
1976                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                 * as the SCSI mid-layer does not handle such devices well.
1978                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                 * at 160Hz, and prevents the system from coming up.
1980                 */
1981                if (sd[i]->volume_offline) {
1982                        hpsa_show_volume_status(h, sd[i]);
1983                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                        continue;
1985                }
1986
1987                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                        h->ndevices, &entry);
1989                if (device_change == DEVICE_NOT_FOUND) {
1990                        changes++;
1991                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                break;
1993                        sd[i] = NULL; /* prevent from being freed later. */
1994                } else if (device_change == DEVICE_CHANGED) {
1995                        /* should never happen... */
1996                        changes++;
1997                        dev_warn(&h->pdev->dev,
1998                                "device unexpectedly changed.\n");
1999                        /* but if it does happen, we just ignore that device */
2000                }
2001        }
2002        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004        /*
2005         * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006         * any logical drives that need it enabled.
2007         *
2008         * The raid map should be current by now.
2009         *
2010         * We are updating the device list used for I/O requests.
2011         */
2012        for (i = 0; i < h->ndevices; i++) {
2013                if (h->dev[i] == NULL)
2014                        continue;
2015                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016        }
2017
2018        spin_unlock_irqrestore(&h->devlock, flags);
2019
2020        /* Monitor devices which are in one of several NOT READY states to be
2021         * brought online later. This must be done without holding h->devlock,
2022         * so don't touch h->dev[]
2023         */
2024        for (i = 0; i < nsds; i++) {
2025                if (!sd[i]) /* if already added above. */
2026                        continue;
2027                if (sd[i]->volume_offline)
2028                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029        }
2030
2031        /* Don't notify scsi mid layer of any changes the first time through
2032         * (or if there are no changes) scsi_scan_host will do it later the
2033         * first time through.
2034         */
2035        if (!changes)
2036                goto free_and_out;
2037
2038        /* Notify scsi mid layer of any removed devices */
2039        for (i = 0; i < nremoved; i++) {
2040                if (removed[i] == NULL)
2041                        continue;
2042                if (removed[i]->expose_device)
2043                        hpsa_remove_device(h, removed[i]);
2044                kfree(removed[i]);
2045                removed[i] = NULL;
2046        }
2047
2048        /* Notify scsi mid layer of any added devices */
2049        for (i = 0; i < nadded; i++) {
2050                int rc = 0;
2051
2052                if (added[i] == NULL)
2053                        continue;
2054                if (!(added[i]->expose_device))
2055                        continue;
2056                rc = hpsa_add_device(h, added[i]);
2057                if (!rc)
2058                        continue;
2059                dev_warn(&h->pdev->dev,
2060                        "addition failed %d, device not added.", rc);
2061                /* now we have to remove it from h->dev,
2062                 * since it didn't get added to scsi mid layer
2063                 */
2064                fixup_botched_add(h, added[i]);
2065                h->drv_req_rescan = 1;
2066        }
2067
2068free_and_out:
2069        kfree(added);
2070        kfree(removed);
2071}
2072
2073/*
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2076 */
2077static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078        int bus, int target, int lun)
2079{
2080        int i;
2081        struct hpsa_scsi_dev_t *sd;
2082
2083        for (i = 0; i < h->ndevices; i++) {
2084                sd = h->dev[i];
2085                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                        return sd;
2087        }
2088        return NULL;
2089}
2090
2091static int hpsa_slave_alloc(struct scsi_device *sdev)
2092{
2093        struct hpsa_scsi_dev_t *sd = NULL;
2094        unsigned long flags;
2095        struct ctlr_info *h;
2096
2097        h = sdev_to_hba(sdev);
2098        spin_lock_irqsave(&h->devlock, flags);
2099        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                struct scsi_target *starget;
2101                struct sas_rphy *rphy;
2102
2103                starget = scsi_target(sdev);
2104                rphy = target_to_rphy(starget);
2105                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                if (sd) {
2107                        sd->target = sdev_id(sdev);
2108                        sd->lun = sdev->lun;
2109                }
2110        }
2111        if (!sd)
2112                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                        sdev_id(sdev), sdev->lun);
2114
2115        if (sd && sd->expose_device) {
2116                atomic_set(&sd->ioaccel_cmds_out, 0);
2117                sdev->hostdata = sd;
2118        } else
2119                sdev->hostdata = NULL;
2120        spin_unlock_irqrestore(&h->devlock, flags);
2121        return 0;
2122}
2123
2124/* configure scsi device based on internal per-device structure */
2125static int hpsa_slave_configure(struct scsi_device *sdev)
2126{
2127        struct hpsa_scsi_dev_t *sd;
2128        int queue_depth;
2129
2130        sd = sdev->hostdata;
2131        sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133        if (sd) {
2134                if (sd->external)
2135                        queue_depth = EXTERNAL_QD;
2136                else
2137                        queue_depth = sd->queue_depth != 0 ?
2138                                        sd->queue_depth : sdev->host->can_queue;
2139        } else
2140                queue_depth = sdev->host->can_queue;
2141
2142        scsi_change_queue_depth(sdev, queue_depth);
2143
2144        return 0;
2145}
2146
2147static void hpsa_slave_destroy(struct scsi_device *sdev)
2148{
2149        /* nothing to do. */
2150}
2151
2152static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153{
2154        int i;
2155
2156        if (!h->ioaccel2_cmd_sg_list)
2157                return;
2158        for (i = 0; i < h->nr_cmds; i++) {
2159                kfree(h->ioaccel2_cmd_sg_list[i]);
2160                h->ioaccel2_cmd_sg_list[i] = NULL;
2161        }
2162        kfree(h->ioaccel2_cmd_sg_list);
2163        h->ioaccel2_cmd_sg_list = NULL;
2164}
2165
2166static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167{
2168        int i;
2169
2170        if (h->chainsize <= 0)
2171                return 0;
2172
2173        h->ioaccel2_cmd_sg_list =
2174                kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175                                        GFP_KERNEL);
2176        if (!h->ioaccel2_cmd_sg_list)
2177                return -ENOMEM;
2178        for (i = 0; i < h->nr_cmds; i++) {
2179                h->ioaccel2_cmd_sg_list[i] =
2180                        kmalloc_array(h->maxsgentries,
2181                                      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182                                      GFP_KERNEL);
2183                if (!h->ioaccel2_cmd_sg_list[i])
2184                        goto clean;
2185        }
2186        return 0;
2187
2188clean:
2189        hpsa_free_ioaccel2_sg_chain_blocks(h);
2190        return -ENOMEM;
2191}
2192
2193static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194{
2195        int i;
2196
2197        if (!h->cmd_sg_list)
2198                return;
2199        for (i = 0; i < h->nr_cmds; i++) {
2200                kfree(h->cmd_sg_list[i]);
2201                h->cmd_sg_list[i] = NULL;
2202        }
2203        kfree(h->cmd_sg_list);
2204        h->cmd_sg_list = NULL;
2205}
2206
2207static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208{
2209        int i;
2210
2211        if (h->chainsize <= 0)
2212                return 0;
2213
2214        h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215                                 GFP_KERNEL);
2216        if (!h->cmd_sg_list)
2217                return -ENOMEM;
2218
2219        for (i = 0; i < h->nr_cmds; i++) {
2220                h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221                                                  sizeof(*h->cmd_sg_list[i]),
2222                                                  GFP_KERNEL);
2223                if (!h->cmd_sg_list[i])
2224                        goto clean;
2225
2226        }
2227        return 0;
2228
2229clean:
2230        hpsa_free_sg_chain_blocks(h);
2231        return -ENOMEM;
2232}
2233
2234static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235        struct io_accel2_cmd *cp, struct CommandList *c)
2236{
2237        struct ioaccel2_sg_element *chain_block;
2238        u64 temp64;
2239        u32 chain_size;
2240
2241        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242        chain_size = le32_to_cpu(cp->sg[0].length);
2243        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244                                DMA_TO_DEVICE);
2245        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246                /* prevent subsequent unmapping */
2247                cp->sg->address = 0;
2248                return -1;
2249        }
2250        cp->sg->address = cpu_to_le64(temp64);
2251        return 0;
2252}
2253
2254static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255        struct io_accel2_cmd *cp)
2256{
2257        struct ioaccel2_sg_element *chain_sg;
2258        u64 temp64;
2259        u32 chain_size;
2260
2261        chain_sg = cp->sg;
2262        temp64 = le64_to_cpu(chain_sg->address);
2263        chain_size = le32_to_cpu(cp->sg[0].length);
2264        dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265}
2266
2267static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268        struct CommandList *c)
2269{
2270        struct SGDescriptor *chain_sg, *chain_block;
2271        u64 temp64;
2272        u32 chain_len;
2273
2274        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275        chain_block = h->cmd_sg_list[c->cmdindex];
2276        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277        chain_len = sizeof(*chain_sg) *
2278                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279        chain_sg->Len = cpu_to_le32(chain_len);
2280        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281                                DMA_TO_DEVICE);
2282        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283                /* prevent subsequent unmapping */
2284                chain_sg->Addr = cpu_to_le64(0);
2285                return -1;
2286        }
2287        chain_sg->Addr = cpu_to_le64(temp64);
2288        return 0;
2289}
2290
2291static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292        struct CommandList *c)
2293{
2294        struct SGDescriptor *chain_sg;
2295
2296        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297                return;
2298
2299        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300        dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301                        le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302}
2303
2304
2305/* Decode the various types of errors on ioaccel2 path.
2306 * Return 1 for any error that should generate a RAID path retry.
2307 * Return 0 for errors that don't require a RAID path retry.
2308 */
2309static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310                                        struct CommandList *c,
2311                                        struct scsi_cmnd *cmd,
2312                                        struct io_accel2_cmd *c2,
2313                                        struct hpsa_scsi_dev_t *dev)
2314{
2315        int data_len;
2316        int retry = 0;
2317        u32 ioaccel2_resid = 0;
2318
2319        switch (c2->error_data.serv_response) {
2320        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321                switch (c2->error_data.status) {
2322                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323                        break;
2324                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2326                        if (c2->error_data.data_present !=
2327                                        IOACCEL2_SENSE_DATA_PRESENT) {
2328                                memset(cmd->sense_buffer, 0,
2329                                        SCSI_SENSE_BUFFERSIZE);
2330                                break;
2331                        }
2332                        /* copy the sense data */
2333                        data_len = c2->error_data.sense_data_len;
2334                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2335                                data_len = SCSI_SENSE_BUFFERSIZE;
2336                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2337                                data_len =
2338                                        sizeof(c2->error_data.sense_data_buff);
2339                        memcpy(cmd->sense_buffer,
2340                                c2->error_data.sense_data_buff, data_len);
2341                        retry = 1;
2342                        break;
2343                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344                        retry = 1;
2345                        break;
2346                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347                        retry = 1;
2348                        break;
2349                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350                        retry = 1;
2351                        break;
2352                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353                        retry = 1;
2354                        break;
2355                default:
2356                        retry = 1;
2357                        break;
2358                }
2359                break;
2360        case IOACCEL2_SERV_RESPONSE_FAILURE:
2361                switch (c2->error_data.status) {
2362                case IOACCEL2_STATUS_SR_IO_ERROR:
2363                case IOACCEL2_STATUS_SR_IO_ABORTED:
2364                case IOACCEL2_STATUS_SR_OVERRUN:
2365                        retry = 1;
2366                        break;
2367                case IOACCEL2_STATUS_SR_UNDERRUN:
2368                        cmd->result = (DID_OK << 16);           /* host byte */
2369                        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370                        ioaccel2_resid = get_unaligned_le32(
2371                                                &c2->error_data.resid_cnt[0]);
2372                        scsi_set_resid(cmd, ioaccel2_resid);
2373                        break;
2374                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377                        /*
2378                         * Did an HBA disk disappear? We will eventually
2379                         * get a state change event from the controller but
2380                         * in the meantime, we need to tell the OS that the
2381                         * HBA disk is no longer there and stop I/O
2382                         * from going down. This allows the potential re-insert
2383                         * of the disk to get the same device node.
2384                         */
2385                        if (dev->physical_device && dev->expose_device) {
2386                                cmd->result = DID_NO_CONNECT << 16;
2387                                dev->removed = 1;
2388                                h->drv_req_rescan = 1;
2389                                dev_warn(&h->pdev->dev,
2390                                        "%s: device is gone!\n", __func__);
2391                        } else
2392                                /*
2393                                 * Retry by sending down the RAID path.
2394                                 * We will get an event from ctlr to
2395                                 * trigger rescan regardless.
2396                                 */
2397                                retry = 1;
2398                        break;
2399                default:
2400                        retry = 1;
2401                }
2402                break;
2403        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404                break;
2405        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406                break;
2407        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408                retry = 1;
2409                break;
2410        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411                break;
2412        default:
2413                retry = 1;
2414                break;
2415        }
2416
2417        return retry;   /* retry on raid path? */
2418}
2419
2420static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421                struct CommandList *c)
2422{
2423        bool do_wake = false;
2424
2425        /*
2426         * Reset c->scsi_cmd here so that the reset handler will know
2427         * this command has completed.  Then, check to see if the handler is
2428         * waiting for this command, and, if so, wake it.
2429         */
2430        c->scsi_cmd = SCSI_CMD_IDLE;
2431        mb();   /* Declare command idle before checking for pending events. */
2432        if (c->reset_pending) {
2433                unsigned long flags;
2434                struct hpsa_scsi_dev_t *dev;
2435
2436                /*
2437                 * There appears to be a reset pending; lock the lock and
2438                 * reconfirm.  If so, then decrement the count of outstanding
2439                 * commands and wake the reset command if this is the last one.
2440                 */
2441                spin_lock_irqsave(&h->lock, flags);
2442                dev = c->reset_pending;         /* Re-fetch under the lock. */
2443                if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444                        do_wake = true;
2445                c->reset_pending = NULL;
2446                spin_unlock_irqrestore(&h->lock, flags);
2447        }
2448
2449        if (do_wake)
2450                wake_up_all(&h->event_sync_wait_queue);
2451}
2452
2453static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454                                      struct CommandList *c)
2455{
2456        hpsa_cmd_resolve_events(h, c);
2457        cmd_tagged_free(h, c);
2458}
2459
2460static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461                struct CommandList *c, struct scsi_cmnd *cmd)
2462{
2463        hpsa_cmd_resolve_and_free(h, c);
2464        if (cmd && cmd->scsi_done)
2465                cmd->scsi_done(cmd);
2466}
2467
2468static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469{
2470        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472}
2473
2474static void process_ioaccel2_completion(struct ctlr_info *h,
2475                struct CommandList *c, struct scsi_cmnd *cmd,
2476                struct hpsa_scsi_dev_t *dev)
2477{
2478        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480        /* check for good status */
2481        if (likely(c2->error_data.serv_response == 0 &&
2482                        c2->error_data.status == 0))
2483                return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485        /*
2486         * Any RAID offload error results in retry which will use
2487         * the normal I/O path so the controller can handle whatever is
2488         * wrong.
2489         */
2490        if (is_logical_device(dev) &&
2491                c2->error_data.serv_response ==
2492                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2493                if (c2->error_data.status ==
2494                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495                        dev->offload_enabled = 0;
2496                        dev->offload_to_be_enabled = 0;
2497                }
2498
2499                return hpsa_retry_cmd(h, c);
2500        }
2501
2502        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503                return hpsa_retry_cmd(h, c);
2504
2505        return hpsa_cmd_free_and_done(h, c, cmd);
2506}
2507
2508/* Returns 0 on success, < 0 otherwise. */
2509static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510                                        struct CommandList *cp)
2511{
2512        u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514        switch (tmf_status) {
2515        case CISS_TMF_COMPLETE:
2516                /*
2517                 * CISS_TMF_COMPLETE never happens, instead,
2518                 * ei->CommandStatus == 0 for this case.
2519                 */
2520        case CISS_TMF_SUCCESS:
2521                return 0;
2522        case CISS_TMF_INVALID_FRAME:
2523        case CISS_TMF_NOT_SUPPORTED:
2524        case CISS_TMF_FAILED:
2525        case CISS_TMF_WRONG_LUN:
2526        case CISS_TMF_OVERLAPPED_TAG:
2527                break;
2528        default:
2529                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530                                tmf_status);
2531                break;
2532        }
2533        return -tmf_status;
2534}
2535
2536static void complete_scsi_command(struct CommandList *cp)
2537{
2538        struct scsi_cmnd *cmd;
2539        struct ctlr_info *h;
2540        struct ErrorInfo *ei;
2541        struct hpsa_scsi_dev_t *dev;
2542        struct io_accel2_cmd *c2;
2543
2544        u8 sense_key;
2545        u8 asc;      /* additional sense code */
2546        u8 ascq;     /* additional sense code qualifier */
2547        unsigned long sense_data_size;
2548
2549        ei = cp->err_info;
2550        cmd = cp->scsi_cmd;
2551        h = cp->h;
2552
2553        if (!cmd->device) {
2554                cmd->result = DID_NO_CONNECT << 16;
2555                return hpsa_cmd_free_and_done(h, cp, cmd);
2556        }
2557
2558        dev = cmd->device->hostdata;
2559        if (!dev) {
2560                cmd->result = DID_NO_CONNECT << 16;
2561                return hpsa_cmd_free_and_done(h, cp, cmd);
2562        }
2563        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566        if ((cp->cmd_type == CMD_SCSI) &&
2567                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568                hpsa_unmap_sg_chain_block(h, cp);
2569
2570        if ((cp->cmd_type == CMD_IOACCEL2) &&
2571                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574        cmd->result = (DID_OK << 16);           /* host byte */
2575        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578                if (dev->physical_device && dev->expose_device &&
2579                        dev->removed) {
2580                        cmd->result = DID_NO_CONNECT << 16;
2581                        return hpsa_cmd_free_and_done(h, cp, cmd);
2582                }
2583                if (likely(cp->phys_disk != NULL))
2584                        atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585        }
2586
2587        /*
2588         * We check for lockup status here as it may be set for
2589         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590         * fail_all_oustanding_cmds()
2591         */
2592        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593                /* DID_NO_CONNECT will prevent a retry */
2594                cmd->result = DID_NO_CONNECT << 16;
2595                return hpsa_cmd_free_and_done(h, cp, cmd);
2596        }
2597
2598        if ((unlikely(hpsa_is_pending_event(cp))))
2599                if (cp->reset_pending)
2600                        return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602        if (cp->cmd_type == CMD_IOACCEL2)
2603                return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605        scsi_set_resid(cmd, ei->ResidualCnt);
2606        if (ei->CommandStatus == 0)
2607                return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609        /* For I/O accelerator commands, copy over some fields to the normal
2610         * CISS header used below for error handling.
2611         */
2612        if (cp->cmd_type == CMD_IOACCEL1) {
2613                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614                cp->Header.SGList = scsi_sg_count(cmd);
2615                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618                cp->Header.tag = c->tag;
2619                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622                /* Any RAID offload error results in retry which will use
2623                 * the normal I/O path so the controller can handle whatever's
2624                 * wrong.
2625                 */
2626                if (is_logical_device(dev)) {
2627                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628                                dev->offload_enabled = 0;
2629                        return hpsa_retry_cmd(h, cp);
2630                }
2631        }
2632
2633        /* an error has occurred */
2634        switch (ei->CommandStatus) {
2635
2636        case CMD_TARGET_STATUS:
2637                cmd->result |= ei->ScsiStatus;
2638                /* copy the sense data */
2639                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641                else
2642                        sense_data_size = sizeof(ei->SenseInfo);
2643                if (ei->SenseLen < sense_data_size)
2644                        sense_data_size = ei->SenseLen;
2645                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646                if (ei->ScsiStatus)
2647                        decode_sense_data(ei->SenseInfo, sense_data_size,
2648                                &sense_key, &asc, &ascq);
2649                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650                        switch (sense_key) {
2651                        case ABORTED_COMMAND:
2652                                cmd->result |= DID_SOFT_ERROR << 16;
2653                                break;
2654                        case UNIT_ATTENTION:
2655                                if (asc == 0x3F && ascq == 0x0E)
2656                                        h->drv_req_rescan = 1;
2657                                break;
2658                        case ILLEGAL_REQUEST:
2659                                if (asc == 0x25 && ascq == 0x00) {
2660                                        dev->removed = 1;
2661                                        cmd->result = DID_NO_CONNECT << 16;
2662                                }
2663                                break;
2664                        }
2665                        break;
2666                }
2667                /* Problem was not a check condition
2668                 * Pass it up to the upper layers...
2669                 */
2670                if (ei->ScsiStatus) {
2671                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2672                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673                                "Returning result: 0x%x\n",
2674                                cp, ei->ScsiStatus,
2675                                sense_key, asc, ascq,
2676                                cmd->result);
2677                } else {  /* scsi status is zero??? How??? */
2678                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2679                                "Returning no connection.\n", cp),
2680
2681                        /* Ordinarily, this case should never happen,
2682                         * but there is a bug in some released firmware
2683                         * revisions that allows it to happen if, for
2684                         * example, a 4100 backplane loses power and
2685                         * the tape drive is in it.  We assume that
2686                         * it's a fatal error of some kind because we
2687                         * can't show that it wasn't. We will make it
2688                         * look like selection timeout since that is
2689                         * the most common reason for this to occur,
2690                         * and it's severe enough.
2691                         */
2692
2693                        cmd->result = DID_NO_CONNECT << 16;
2694                }
2695                break;
2696
2697        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2698                break;
2699        case CMD_DATA_OVERRUN:
2700                dev_warn(&h->pdev->dev,
2701                        "CDB %16phN data overrun\n", cp->Request.CDB);
2702                break;
2703        case CMD_INVALID: {
2704                /* print_bytes(cp, sizeof(*cp), 1, 0);
2705                print_cmd(cp); */
2706                /* We get CMD_INVALID if you address a non-existent device
2707                 * instead of a selection timeout (no response).  You will
2708                 * see this if you yank out a drive, then try to access it.
2709                 * This is kind of a shame because it means that any other
2710                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711                 * missing target. */
2712                cmd->result = DID_NO_CONNECT << 16;
2713        }
2714                break;
2715        case CMD_PROTOCOL_ERR:
2716                cmd->result = DID_ERROR << 16;
2717                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2718                                cp->Request.CDB);
2719                break;
2720        case CMD_HARDWARE_ERR:
2721                cmd->result = DID_ERROR << 16;
2722                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2723                        cp->Request.CDB);
2724                break;
2725        case CMD_CONNECTION_LOST:
2726                cmd->result = DID_ERROR << 16;
2727                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2728                        cp->Request.CDB);
2729                break;
2730        case CMD_ABORTED:
2731                cmd->result = DID_ABORT << 16;
2732                break;
2733        case CMD_ABORT_FAILED:
2734                cmd->result = DID_ERROR << 16;
2735                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2736                        cp->Request.CDB);
2737                break;
2738        case CMD_UNSOLICITED_ABORT:
2739                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2740                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2741                        cp->Request.CDB);
2742                break;
2743        case CMD_TIMEOUT:
2744                cmd->result = DID_TIME_OUT << 16;
2745                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2746                        cp->Request.CDB);
2747                break;
2748        case CMD_UNABORTABLE:
2749                cmd->result = DID_ERROR << 16;
2750                dev_warn(&h->pdev->dev, "Command unabortable\n");
2751                break;
2752        case CMD_TMF_STATUS:
2753                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2754                        cmd->result = DID_ERROR << 16;
2755                break;
2756        case CMD_IOACCEL_DISABLED:
2757                /* This only handles the direct pass-through case since RAID
2758                 * offload is handled above.  Just attempt a retry.
2759                 */
2760                cmd->result = DID_SOFT_ERROR << 16;
2761                dev_warn(&h->pdev->dev,
2762                                "cp %p had HP SSD Smart Path error\n", cp);
2763                break;
2764        default:
2765                cmd->result = DID_ERROR << 16;
2766                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2767                                cp, ei->CommandStatus);
2768        }
2769
2770        return hpsa_cmd_free_and_done(h, cp, cmd);
2771}
2772
2773static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2774                int sg_used, enum dma_data_direction data_direction)
2775{
2776        int i;
2777
2778        for (i = 0; i < sg_used; i++)
2779                dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2780                                le32_to_cpu(c->SG[i].Len),
2781                                data_direction);
2782}
2783
2784static int hpsa_map_one(struct pci_dev *pdev,
2785                struct CommandList *cp,
2786                unsigned char *buf,
2787                size_t buflen,
2788                enum dma_data_direction data_direction)
2789{
2790        u64 addr64;
2791
2792        if (buflen == 0 || data_direction == DMA_NONE) {
2793                cp->Header.SGList = 0;
2794                cp->Header.SGTotal = cpu_to_le16(0);
2795                return 0;
2796        }
2797
2798        addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2799        if (dma_mapping_error(&pdev->dev, addr64)) {
2800                /* Prevent subsequent unmap of something never mapped */
2801                cp->Header.SGList = 0;
2802                cp->Header.SGTotal = cpu_to_le16(0);
2803                return -1;
2804        }
2805        cp->SG[0].Addr = cpu_to_le64(addr64);
2806        cp->SG[0].Len = cpu_to_le32(buflen);
2807        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2808        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2809        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2810        return 0;
2811}
2812
2813#define NO_TIMEOUT ((unsigned long) -1)
2814#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2816        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2817{
2818        DECLARE_COMPLETION_ONSTACK(wait);
2819
2820        c->waiting = &wait;
2821        __enqueue_cmd_and_start_io(h, c, reply_queue);
2822        if (timeout_msecs == NO_TIMEOUT) {
2823                /* TODO: get rid of this no-timeout thing */
2824                wait_for_completion_io(&wait);
2825                return IO_OK;
2826        }
2827        if (!wait_for_completion_io_timeout(&wait,
2828                                        msecs_to_jiffies(timeout_msecs))) {
2829                dev_warn(&h->pdev->dev, "Command timed out.\n");
2830                return -ETIMEDOUT;
2831        }
2832        return IO_OK;
2833}
2834
2835static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2836                                   int reply_queue, unsigned long timeout_msecs)
2837{
2838        if (unlikely(lockup_detected(h))) {
2839                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2840                return IO_OK;
2841        }
2842        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843}
2844
2845static u32 lockup_detected(struct ctlr_info *h)
2846{
2847        int cpu;
2848        u32 rc, *lockup_detected;
2849
2850        cpu = get_cpu();
2851        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2852        rc = *lockup_detected;
2853        put_cpu();
2854        return rc;
2855}
2856
2857#define MAX_DRIVER_CMD_RETRIES 25
2858static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2859                struct CommandList *c, enum dma_data_direction data_direction,
2860                unsigned long timeout_msecs)
2861{
2862        int backoff_time = 10, retry_count = 0;
2863        int rc;
2864
2865        do {
2866                memset(c->err_info, 0, sizeof(*c->err_info));
2867                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2868                                                  timeout_msecs);
2869                if (rc)
2870                        break;
2871                retry_count++;
2872                if (retry_count > 3) {
2873                        msleep(backoff_time);
2874                        if (backoff_time < 1000)
2875                                backoff_time *= 2;
2876                }
2877        } while ((check_for_unit_attention(h, c) ||
2878                        check_for_busy(h, c)) &&
2879                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2880        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2881        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2882                rc = -EIO;
2883        return rc;
2884}
2885
2886static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2887                                struct CommandList *c)
2888{
2889        const u8 *cdb = c->Request.CDB;
2890        const u8 *lun = c->Header.LUN.LunAddrBytes;
2891
2892        dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2893                 txt, lun, cdb);
2894}
2895
2896static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2897                        struct CommandList *cp)
2898{
2899        const struct ErrorInfo *ei = cp->err_info;
2900        struct device *d = &cp->h->pdev->dev;
2901        u8 sense_key, asc, ascq;
2902        int sense_len;
2903
2904        switch (ei->CommandStatus) {
2905        case CMD_TARGET_STATUS:
2906                if (ei->SenseLen > sizeof(ei->SenseInfo))
2907                        sense_len = sizeof(ei->SenseInfo);
2908                else
2909                        sense_len = ei->SenseLen;
2910                decode_sense_data(ei->SenseInfo, sense_len,
2911                                        &sense_key, &asc, &ascq);
2912                hpsa_print_cmd(h, "SCSI status", cp);
2913                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2914                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915                                sense_key, asc, ascq);
2916                else
2917                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2918                if (ei->ScsiStatus == 0)
2919                        dev_warn(d, "SCSI status is abnormally zero.  "
2920                        "(probably indicates selection timeout "
2921                        "reported incorrectly due to a known "
2922                        "firmware bug, circa July, 2001.)\n");
2923                break;
2924        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2925                break;
2926        case CMD_DATA_OVERRUN:
2927                hpsa_print_cmd(h, "overrun condition", cp);
2928                break;
2929        case CMD_INVALID: {
2930                /* controller unfortunately reports SCSI passthru's
2931                 * to non-existent targets as invalid commands.
2932                 */
2933                hpsa_print_cmd(h, "invalid command", cp);
2934                dev_warn(d, "probably means device no longer present\n");
2935                }
2936                break;
2937        case CMD_PROTOCOL_ERR:
2938                hpsa_print_cmd(h, "protocol error", cp);
2939                break;
2940        case CMD_HARDWARE_ERR:
2941                hpsa_print_cmd(h, "hardware error", cp);
2942                break;
2943        case CMD_CONNECTION_LOST:
2944                hpsa_print_cmd(h, "connection lost", cp);
2945                break;
2946        case CMD_ABORTED:
2947                hpsa_print_cmd(h, "aborted", cp);
2948                break;
2949        case CMD_ABORT_FAILED:
2950                hpsa_print_cmd(h, "abort failed", cp);
2951                break;
2952        case CMD_UNSOLICITED_ABORT:
2953                hpsa_print_cmd(h, "unsolicited abort", cp);
2954                break;
2955        case CMD_TIMEOUT:
2956                hpsa_print_cmd(h, "timed out", cp);
2957                break;
2958        case CMD_UNABORTABLE:
2959                hpsa_print_cmd(h, "unabortable", cp);
2960                break;
2961        case CMD_CTLR_LOCKUP:
2962                hpsa_print_cmd(h, "controller lockup detected", cp);
2963                break;
2964        default:
2965                hpsa_print_cmd(h, "unknown status", cp);
2966                dev_warn(d, "Unknown command status %x\n",
2967                                ei->CommandStatus);
2968        }
2969}
2970
2971static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2972                                        u8 page, u8 *buf, size_t bufsize)
2973{
2974        int rc = IO_OK;
2975        struct CommandList *c;
2976        struct ErrorInfo *ei;
2977
2978        c = cmd_alloc(h);
2979        if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2980                        page, scsi3addr, TYPE_CMD)) {
2981                rc = -1;
2982                goto out;
2983        }
2984        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2985                        NO_TIMEOUT);
2986        if (rc)
2987                goto out;
2988        ei = c->err_info;
2989        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2990                hpsa_scsi_interpret_error(h, c);
2991                rc = -1;
2992        }
2993out:
2994        cmd_free(h, c);
2995        return rc;
2996}
2997
2998static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2999                                                u8 *scsi3addr)
3000{
3001        u8 *buf;
3002        u64 sa = 0;
3003        int rc = 0;
3004
3005        buf = kzalloc(1024, GFP_KERNEL);
3006        if (!buf)
3007                return 0;
3008
3009        rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3010                                        buf, 1024);
3011
3012        if (rc)
3013                goto out;
3014
3015        sa = get_unaligned_be64(buf+12);
3016
3017out:
3018        kfree(buf);
3019        return sa;
3020}
3021
3022static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3023                        u16 page, unsigned char *buf,
3024                        unsigned char bufsize)
3025{
3026        int rc = IO_OK;
3027        struct CommandList *c;
3028        struct ErrorInfo *ei;
3029
3030        c = cmd_alloc(h);
3031
3032        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3033                        page, scsi3addr, TYPE_CMD)) {
3034                rc = -1;
3035                goto out;
3036        }
3037        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3038                        NO_TIMEOUT);
3039        if (rc)
3040                goto out;
3041        ei = c->err_info;
3042        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3043                hpsa_scsi_interpret_error(h, c);
3044                rc = -1;
3045        }
3046out:
3047        cmd_free(h, c);
3048        return rc;
3049}
3050
3051static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3052        u8 reset_type, int reply_queue)
3053{
3054        int rc = IO_OK;
3055        struct CommandList *c;
3056        struct ErrorInfo *ei;
3057
3058        c = cmd_alloc(h);
3059
3060
3061        /* fill_cmd can't fail here, no data buffer to map. */
3062        (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3063                        scsi3addr, TYPE_MSG);
3064        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3065        if (rc) {
3066                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3067                goto out;
3068        }
3069        /* no unmap needed here because no data xfer. */
3070
3071        ei = c->err_info;
3072        if (ei->CommandStatus != 0) {
3073                hpsa_scsi_interpret_error(h, c);
3074                rc = -1;
3075        }
3076out:
3077        cmd_free(h, c);
3078        return rc;
3079}
3080
3081static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3082                               struct hpsa_scsi_dev_t *dev,
3083                               unsigned char *scsi3addr)
3084{
3085        int i;
3086        bool match = false;
3087        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3088        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3089
3090        if (hpsa_is_cmd_idle(c))
3091                return false;
3092
3093        switch (c->cmd_type) {
3094        case CMD_SCSI:
3095        case CMD_IOCTL_PEND:
3096                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3097                                sizeof(c->Header.LUN.LunAddrBytes));
3098                break;
3099
3100        case CMD_IOACCEL1:
3101        case CMD_IOACCEL2:
3102                if (c->phys_disk == dev) {
3103                        /* HBA mode match */
3104                        match = true;
3105                } else {
3106                        /* Possible RAID mode -- check each phys dev. */
3107                        /* FIXME:  Do we need to take out a lock here?  If
3108                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3109                         * instead. */
3110                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111                                /* FIXME: an alternate test might be
3112                                 *
3113                                 * match = dev->phys_disk[i]->ioaccel_handle
3114                                 *              == c2->scsi_nexus;      */
3115                                match = dev->phys_disk[i] == c->phys_disk;
3116                        }
3117                }
3118                break;
3119
3120        case IOACCEL2_TMF:
3121                for (i = 0; i < dev->nphysical_disks && !match; i++) {
3122                        match = dev->phys_disk[i]->ioaccel_handle ==
3123                                        le32_to_cpu(ac->it_nexus);
3124                }
3125                break;
3126
3127        case 0:         /* The command is in the middle of being initialized. */
3128                match = false;
3129                break;
3130
3131        default:
3132                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3133                        c->cmd_type);
3134                BUG();
3135        }
3136
3137        return match;
3138}
3139
3140static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3141        unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3142{
3143        int i;
3144        int rc = 0;
3145
3146        /* We can really only handle one reset at a time */
3147        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3148                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3149                return -EINTR;
3150        }
3151
3152        BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3153
3154        for (i = 0; i < h->nr_cmds; i++) {
3155                struct CommandList *c = h->cmd_pool + i;
3156                int refcount = atomic_inc_return(&c->refcount);
3157
3158                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3159                        unsigned long flags;
3160
3161                        /*
3162                         * Mark the target command as having a reset pending,
3163                         * then lock a lock so that the command cannot complete
3164                         * while we're considering it.  If the command is not
3165                         * idle then count it; otherwise revoke the event.
3166                         */
3167                        c->reset_pending = dev;
3168                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3169                        if (!hpsa_is_cmd_idle(c))
3170                                atomic_inc(&dev->reset_cmds_out);
3171                        else
3172                                c->reset_pending = NULL;
3173                        spin_unlock_irqrestore(&h->lock, flags);
3174                }
3175
3176                cmd_free(h, c);
3177        }
3178
3179        rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3180        if (!rc)
3181                wait_event(h->event_sync_wait_queue,
3182                        atomic_read(&dev->reset_cmds_out) == 0 ||
3183                        lockup_detected(h));
3184
3185        if (unlikely(lockup_detected(h))) {
3186                dev_warn(&h->pdev->dev,
3187                         "Controller lockup detected during reset wait\n");
3188                rc = -ENODEV;
3189        }
3190
3191        if (unlikely(rc))
3192                atomic_set(&dev->reset_cmds_out, 0);
3193        else
3194                rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3195
3196        mutex_unlock(&h->reset_mutex);
3197        return rc;
3198}
3199
3200static void hpsa_get_raid_level(struct ctlr_info *h,
3201        unsigned char *scsi3addr, unsigned char *raid_level)
3202{
3203        int rc;
3204        unsigned char *buf;
3205
3206        *raid_level = RAID_UNKNOWN;
3207        buf = kzalloc(64, GFP_KERNEL);
3208        if (!buf)
3209                return;
3210
3211        if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                goto exit;
3214
3215        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218        if (rc == 0)
3219                *raid_level = buf[8];
3220        if (*raid_level > RAID_UNKNOWN)
3221                *raid_level = RAID_UNKNOWN;
3222exit:
3223        kfree(buf);
3224        return;
3225}
3226
3227#define HPSA_MAP_DEBUG
3228#ifdef HPSA_MAP_DEBUG
3229static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                struct raid_map_data *map_buff)
3231{
3232        struct raid_map_disk_data *dd = &map_buff->data[0];
3233        int map, row, col;
3234        u16 map_cnt, row_cnt, disks_per_row;
3235
3236        if (rc != 0)
3237                return;
3238
3239        /* Show details only if debugging has been activated. */
3240        if (h->raid_offload_debug < 2)
3241                return;
3242
3243        dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                le32_to_cpu(map_buff->structure_size));
3245        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                        le32_to_cpu(map_buff->volume_blk_size));
3247        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                        le64_to_cpu(map_buff->volume_blk_cnt));
3249        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                        map_buff->phys_blk_shift);
3251        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                        map_buff->parity_rotation_shift);
3253        dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                        le16_to_cpu(map_buff->strip_size));
3255        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                        le64_to_cpu(map_buff->disk_starting_blk));
3257        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                        le64_to_cpu(map_buff->disk_blk_cnt));
3259        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                        le16_to_cpu(map_buff->data_disks_per_row));
3261        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                        le16_to_cpu(map_buff->metadata_disks_per_row));
3263        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                        le16_to_cpu(map_buff->row_cnt));
3265        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                        le16_to_cpu(map_buff->layout_map_count));
3267        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                        le16_to_cpu(map_buff->flags));
3269        dev_info(&h->pdev->dev, "encryption = %s\n",
3270                        le16_to_cpu(map_buff->flags) &
3271                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272        dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                        le16_to_cpu(map_buff->dekindex));
3274        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275        for (map = 0; map < map_cnt; map++) {
3276                dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                for (row = 0; row < row_cnt; row++) {
3279                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                        disks_per_row =
3281                                le16_to_cpu(map_buff->data_disks_per_row);
3282                        for (col = 0; col < disks_per_row; col++, dd++)
3283                                dev_info(&h->pdev->dev,
3284                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                        col, dd->ioaccel_handle,
3286                                        dd->xor_mult[0], dd->xor_mult[1]);
3287                        disks_per_row =
3288                                le16_to_cpu(map_buff->metadata_disks_per_row);
3289                        for (col = 0; col < disks_per_row; col++, dd++)
3290                                dev_info(&h->pdev->dev,
3291                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                        col, dd->ioaccel_handle,
3293                                        dd->xor_mult[0], dd->xor_mult[1]);
3294                }
3295        }
3296}
3297#else
3298static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                        __attribute__((unused)) int rc,
3300                        __attribute__((unused)) struct raid_map_data *map_buff)
3301{
3302}
3303#endif
3304
3305static int hpsa_get_raid_map(struct ctlr_info *h,
3306        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307{
3308        int rc = 0;
3309        struct CommandList *c;
3310        struct ErrorInfo *ei;
3311
3312        c = cmd_alloc(h);
3313
3314        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                        sizeof(this_device->raid_map), 0,
3316                        scsi3addr, TYPE_CMD)) {
3317                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                cmd_free(h, c);
3319                return -1;
3320        }
3321        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                        NO_TIMEOUT);
3323        if (rc)
3324                goto out;
3325        ei = c->err_info;
3326        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                hpsa_scsi_interpret_error(h, c);
3328                rc = -1;
3329                goto out;
3330        }
3331        cmd_free(h, c);
3332
3333        /* @todo in the future, dynamically allocate RAID map memory */
3334        if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                sizeof(this_device->raid_map)) {
3336                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                rc = -1;
3338        }
3339        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340        return rc;
3341out:
3342        cmd_free(h, c);
3343        return rc;
3344}
3345
3346static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                unsigned char scsi3addr[], u16 bmic_device_index,
3348                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349{
3350        int rc = IO_OK;
3351        struct CommandList *c;
3352        struct ErrorInfo *ei;
3353
3354        c = cmd_alloc(h);
3355
3356        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                0, RAID_CTLR_LUNID, TYPE_CMD);
3358        if (rc)
3359                goto out;
3360
3361        c->Request.CDB[2] = bmic_device_index & 0xff;
3362        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                        NO_TIMEOUT);
3366        if (rc)
3367                goto out;
3368        ei = c->err_info;
3369        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                hpsa_scsi_interpret_error(h, c);
3371                rc = -1;
3372        }
3373out:
3374        cmd_free(h, c);
3375        return rc;
3376}
3377
3378static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379        struct bmic_identify_controller *buf, size_t bufsize)
3380{
3381        int rc = IO_OK;
3382        struct CommandList *c;
3383        struct ErrorInfo *ei;
3384
3385        c = cmd_alloc(h);
3386
3387        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                0, RAID_CTLR_LUNID, TYPE_CMD);
3389        if (rc)
3390                goto out;
3391
3392        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                        NO_TIMEOUT);
3394        if (rc)
3395                goto out;
3396        ei = c->err_info;
3397        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                hpsa_scsi_interpret_error(h, c);
3399                rc = -1;
3400        }
3401out:
3402        cmd_free(h, c);
3403        return rc;
3404}
3405
3406static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                unsigned char scsi3addr[], u16 bmic_device_index,
3408                struct bmic_identify_physical_device *buf, size_t bufsize)
3409{
3410        int rc = IO_OK;
3411        struct CommandList *c;
3412        struct ErrorInfo *ei;
3413
3414        c = cmd_alloc(h);
3415        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                0, RAID_CTLR_LUNID, TYPE_CMD);
3417        if (rc)
3418                goto out;
3419
3420        c->Request.CDB[2] = bmic_device_index & 0xff;
3421        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423        hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                NO_TIMEOUT);
3425        ei = c->err_info;
3426        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                hpsa_scsi_interpret_error(h, c);
3428                rc = -1;
3429        }
3430out:
3431        cmd_free(h, c);
3432
3433        return rc;
3434}
3435
3436/*
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3441 */
3442static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                        unsigned char *scsi3addr,
3444                        struct ReportExtendedLUNdata *rlep, int rle_index,
3445                        struct hpsa_scsi_dev_t *encl_dev)
3446{
3447        int rc = -1;
3448        struct CommandList *c = NULL;
3449        struct ErrorInfo *ei = NULL;
3450        struct bmic_sense_storage_box_params *bssbp = NULL;
3451        struct bmic_identify_physical_device *id_phys = NULL;
3452        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3453        u16 bmic_device_index = 0;
3454
3455        encl_dev->eli =
3456                hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457
3458        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3459
3460        if (encl_dev->target == -1 || encl_dev->lun == -1) {
3461                rc = IO_OK;
3462                goto out;
3463        }
3464
3465        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3466                rc = IO_OK;
3467                goto out;
3468        }
3469
3470        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3471        if (!bssbp)
3472                goto out;
3473
3474        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3475        if (!id_phys)
3476                goto out;
3477
3478        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3479                                                id_phys, sizeof(*id_phys));
3480        if (rc) {
3481                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3482                        __func__, encl_dev->external, bmic_device_index);
3483                goto out;
3484        }
3485
3486        c = cmd_alloc(h);
3487
3488        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3489                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3490
3491        if (rc)
3492                goto out;
3493
3494        if (id_phys->phys_connector[1] == 'E')
3495                c->Request.CDB[5] = id_phys->box_index;
3496        else
3497                c->Request.CDB[5] = 0;
3498
3499        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3500                                                NO_TIMEOUT);
3501        if (rc)
3502                goto out;
3503
3504        ei = c->err_info;
3505        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3506                rc = -1;
3507                goto out;
3508        }
3509
3510        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3511        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3512                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3513
3514        rc = IO_OK;
3515out:
3516        kfree(bssbp);
3517        kfree(id_phys);
3518
3519        if (c)
3520                cmd_free(h, c);
3521
3522        if (rc != IO_OK)
3523                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3524                        "Error, could not get enclosure information");
3525}
3526
3527static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3528                                                unsigned char *scsi3addr)
3529{
3530        struct ReportExtendedLUNdata *physdev;
3531        u32 nphysicals;
3532        u64 sa = 0;
3533        int i;
3534
3535        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3536        if (!physdev)
3537                return 0;
3538
3539        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3540                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3541                kfree(physdev);
3542                return 0;
3543        }
3544        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3545
3546        for (i = 0; i < nphysicals; i++)
3547                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3548                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3549                        break;
3550                }
3551
3552        kfree(physdev);
3553
3554        return sa;
3555}
3556
3557static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3558                                        struct hpsa_scsi_dev_t *dev)
3559{
3560        int rc;
3561        u64 sa = 0;
3562
3563        if (is_hba_lunid(scsi3addr)) {
3564                struct bmic_sense_subsystem_info *ssi;
3565
3566                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3567                if (!ssi)
3568                        return;
3569
3570                rc = hpsa_bmic_sense_subsystem_information(h,
3571                                        scsi3addr, 0, ssi, sizeof(*ssi));
3572                if (rc == 0) {
3573                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3574                        h->sas_address = sa;
3575                }
3576
3577                kfree(ssi);
3578        } else
3579                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3580
3581        dev->sas_address = sa;
3582}
3583
3584static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3585        struct ReportExtendedLUNdata *physdev)
3586{
3587        u32 nphysicals;
3588        int i;
3589
3590        if (h->discovery_polling)
3591                return;
3592
3593        nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3594
3595        for (i = 0; i < nphysicals; i++) {
3596                if (physdev->LUN[i].device_type ==
3597                        BMIC_DEVICE_TYPE_CONTROLLER
3598                        && !is_hba_lunid(physdev->LUN[i].lunid)) {
3599                        dev_info(&h->pdev->dev,
3600                                "External controller present, activate discovery polling and disable rld caching\n");
3601                        hpsa_disable_rld_caching(h);
3602                        h->discovery_polling = 1;
3603                        break;
3604                }
3605        }
3606}
3607
3608/* Get a device id from inquiry page 0x83 */
3609static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3610        unsigned char scsi3addr[], u8 page)
3611{
3612        int rc;
3613        int i;
3614        int pages;
3615        unsigned char *buf, bufsize;
3616
3617        buf = kzalloc(256, GFP_KERNEL);
3618        if (!buf)
3619                return false;
3620
3621        /* Get the size of the page list first */
3622        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624                                buf, HPSA_VPD_HEADER_SZ);
3625        if (rc != 0)
3626                goto exit_unsupported;
3627        pages = buf[3];
3628        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3629                bufsize = pages + HPSA_VPD_HEADER_SZ;
3630        else
3631                bufsize = 255;
3632
3633        /* Get the whole VPD page list */
3634        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3635                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3636                                buf, bufsize);
3637        if (rc != 0)
3638                goto exit_unsupported;
3639
3640        pages = buf[3];
3641        for (i = 1; i <= pages; i++)
3642                if (buf[3 + i] == page)
3643                        goto exit_supported;
3644exit_unsupported:
3645        kfree(buf);
3646        return false;
3647exit_supported:
3648        kfree(buf);
3649        return true;
3650}
3651
3652/*
3653 * Called during a scan operation.
3654 * Sets ioaccel status on the new device list, not the existing device list
3655 *
3656 * The device list used during I/O will be updated later in
3657 * adjust_hpsa_scsi_table.
3658 */
3659static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3660        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3661{
3662        int rc;
3663        unsigned char *buf;
3664        u8 ioaccel_status;
3665
3666        this_device->offload_config = 0;
3667        this_device->offload_enabled = 0;
3668        this_device->offload_to_be_enabled = 0;
3669
3670        buf = kzalloc(64, GFP_KERNEL);
3671        if (!buf)
3672                return;
3673        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3674                goto out;
3675        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3676                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3677        if (rc != 0)
3678                goto out;
3679
3680#define IOACCEL_STATUS_BYTE 4
3681#define OFFLOAD_CONFIGURED_BIT 0x01
3682#define OFFLOAD_ENABLED_BIT 0x02
3683        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3684        this_device->offload_config =
3685                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3686        if (this_device->offload_config) {
3687                this_device->offload_to_be_enabled =
3688                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3689                if (hpsa_get_raid_map(h, scsi3addr, this_device))
3690                        this_device->offload_to_be_enabled = 0;
3691        }
3692
3693out:
3694        kfree(buf);
3695        return;
3696}
3697
3698/* Get the device id from inquiry page 0x83 */
3699static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3700        unsigned char *device_id, int index, int buflen)
3701{
3702        int rc;
3703        unsigned char *buf;
3704
3705        /* Does controller have VPD for device id? */
3706        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3707                return 1; /* not supported */
3708
3709        buf = kzalloc(64, GFP_KERNEL);
3710        if (!buf)
3711                return -ENOMEM;
3712
3713        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3714                                        HPSA_VPD_LV_DEVICE_ID, buf, 64);
3715        if (rc == 0) {
3716                if (buflen > 16)
3717                        buflen = 16;
3718                memcpy(device_id, &buf[8], buflen);
3719        }
3720
3721        kfree(buf);
3722
3723        return rc; /*0 - got id,  otherwise, didn't */
3724}
3725
3726static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3727                void *buf, int bufsize,
3728                int extended_response)
3729{
3730        int rc = IO_OK;
3731        struct CommandList *c;
3732        unsigned char scsi3addr[8];
3733        struct ErrorInfo *ei;
3734
3735        c = cmd_alloc(h);
3736
3737        /* address the controller */
3738        memset(scsi3addr, 0, sizeof(scsi3addr));
3739        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3740                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3741                rc = -EAGAIN;
3742                goto out;
3743        }
3744        if (extended_response)
3745                c->Request.CDB[1] = extended_response;
3746        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3747                        NO_TIMEOUT);
3748        if (rc)
3749                goto out;
3750        ei = c->err_info;
3751        if (ei->CommandStatus != 0 &&
3752            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3753                hpsa_scsi_interpret_error(h, c);
3754                rc = -EIO;
3755        } else {
3756                struct ReportLUNdata *rld = buf;
3757
3758                if (rld->extended_response_flag != extended_response) {
3759                        if (!h->legacy_board) {
3760                                dev_err(&h->pdev->dev,
3761                                        "report luns requested format %u, got %u\n",
3762                                        extended_response,
3763                                        rld->extended_response_flag);
3764                                rc = -EINVAL;
3765                        } else
3766                                rc = -EOPNOTSUPP;
3767                }
3768        }
3769out:
3770        cmd_free(h, c);
3771        return rc;
3772}
3773
3774static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3775                struct ReportExtendedLUNdata *buf, int bufsize)
3776{
3777        int rc;
3778        struct ReportLUNdata *lbuf;
3779
3780        rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3781                                      HPSA_REPORT_PHYS_EXTENDED);
3782        if (!rc || rc != -EOPNOTSUPP)
3783                return rc;
3784
3785        /* REPORT PHYS EXTENDED is not supported */
3786        lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3787        if (!lbuf)
3788                return -ENOMEM;
3789
3790        rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3791        if (!rc) {
3792                int i;
3793                u32 nphys;
3794
3795                /* Copy ReportLUNdata header */
3796                memcpy(buf, lbuf, 8);
3797                nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3798                for (i = 0; i < nphys; i++)
3799                        memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3800        }
3801        kfree(lbuf);
3802        return rc;
3803}
3804
3805static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3806                struct ReportLUNdata *buf, int bufsize)
3807{
3808        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3809}
3810
3811static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3812        int bus, int target, int lun)
3813{
3814        device->bus = bus;
3815        device->target = target;
3816        device->lun = lun;
3817}
3818
3819/* Use VPD inquiry to get details of volume status */
3820static int hpsa_get_volume_status(struct ctlr_info *h,
3821                                        unsigned char scsi3addr[])
3822{
3823        int rc;
3824        int status;
3825        int size;
3826        unsigned char *buf;
3827
3828        buf = kzalloc(64, GFP_KERNEL);
3829        if (!buf)
3830                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3831
3832        /* Does controller have VPD for logical volume status? */
3833        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3834                goto exit_failed;
3835
3836        /* Get the size of the VPD return buffer */
3837        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3838                                        buf, HPSA_VPD_HEADER_SZ);
3839        if (rc != 0)
3840                goto exit_failed;
3841        size = buf[3];
3842
3843        /* Now get the whole VPD buffer */
3844        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3845                                        buf, size + HPSA_VPD_HEADER_SZ);
3846        if (rc != 0)
3847                goto exit_failed;
3848        status = buf[4]; /* status byte */
3849
3850        kfree(buf);
3851        return status;
3852exit_failed:
3853        kfree(buf);
3854        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3855}
3856
3857/* Determine offline status of a volume.
3858 * Return either:
3859 *  0 (not offline)
3860 *  0xff (offline for unknown reasons)
3861 *  # (integer code indicating one of several NOT READY states
3862 *     describing why a volume is to be kept offline)
3863 */
3864static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3865                                        unsigned char scsi3addr[])
3866{
3867        struct CommandList *c;
3868        unsigned char *sense;
3869        u8 sense_key, asc, ascq;
3870        int sense_len;
3871        int rc, ldstat = 0;
3872        u16 cmd_status;
3873        u8 scsi_status;
3874#define ASC_LUN_NOT_READY 0x04
3875#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877
3878        c = cmd_alloc(h);
3879
3880        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3881        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3882                                        NO_TIMEOUT);
3883        if (rc) {
3884                cmd_free(h, c);
3885                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3886        }
3887        sense = c->err_info->SenseInfo;
3888        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3889                sense_len = sizeof(c->err_info->SenseInfo);
3890        else
3891                sense_len = c->err_info->SenseLen;
3892        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3893        cmd_status = c->err_info->CommandStatus;
3894        scsi_status = c->err_info->ScsiStatus;
3895        cmd_free(h, c);
3896
3897        /* Determine the reason for not ready state */
3898        ldstat = hpsa_get_volume_status(h, scsi3addr);
3899
3900        /* Keep volume offline in certain cases: */
3901        switch (ldstat) {
3902        case HPSA_LV_FAILED:
3903        case HPSA_LV_UNDERGOING_ERASE:
3904        case HPSA_LV_NOT_AVAILABLE:
3905        case HPSA_LV_UNDERGOING_RPI:
3906        case HPSA_LV_PENDING_RPI:
3907        case HPSA_LV_ENCRYPTED_NO_KEY:
3908        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3909        case HPSA_LV_UNDERGOING_ENCRYPTION:
3910        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3911        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3912                return ldstat;
3913        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3914                /* If VPD status page isn't available,
3915                 * use ASC/ASCQ to determine state
3916                 */
3917                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3918                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3919                        return ldstat;
3920                break;
3921        default:
3922                break;
3923        }
3924        return HPSA_LV_OK;
3925}
3926
3927static int hpsa_update_device_info(struct ctlr_info *h,
3928        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3929        unsigned char *is_OBDR_device)
3930{
3931
3932#define OBDR_SIG_OFFSET 43
3933#define OBDR_TAPE_SIG "$DR-10"
3934#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3936
3937        unsigned char *inq_buff;
3938        unsigned char *obdr_sig;
3939        int rc = 0;
3940
3941        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3942        if (!inq_buff) {
3943                rc = -ENOMEM;
3944                goto bail_out;
3945        }
3946
3947        /* Do an inquiry to the device to see what it is. */
3948        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3949                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3950                dev_err(&h->pdev->dev,
3951                        "%s: inquiry failed, device will be skipped.\n",
3952                        __func__);
3953                rc = HPSA_INQUIRY_FAILED;
3954                goto bail_out;
3955        }
3956
3957        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3958        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3959
3960        this_device->devtype = (inq_buff[0] & 0x1f);
3961        memcpy(this_device->scsi3addr, scsi3addr, 8);
3962        memcpy(this_device->vendor, &inq_buff[8],
3963                sizeof(this_device->vendor));
3964        memcpy(this_device->model, &inq_buff[16],
3965                sizeof(this_device->model));
3966        this_device->rev = inq_buff[2];
3967        memset(this_device->device_id, 0,
3968                sizeof(this_device->device_id));
3969        if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3970                sizeof(this_device->device_id)) < 0) {
3971                dev_err(&h->pdev->dev,
3972                        "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3973                        h->ctlr, __func__,
3974                        h->scsi_host->host_no,
3975                        this_device->bus, this_device->target,
3976                        this_device->lun,
3977                        scsi_device_type(this_device->devtype),
3978                        this_device->model);
3979                rc = HPSA_LV_FAILED;
3980                goto bail_out;
3981        }
3982
3983        if ((this_device->devtype == TYPE_DISK ||
3984                this_device->devtype == TYPE_ZBC) &&
3985                is_logical_dev_addr_mode(scsi3addr)) {
3986                unsigned char volume_offline;
3987
3988                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3989                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3990                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3991                volume_offline = hpsa_volume_offline(h, scsi3addr);
3992                if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3993                    h->legacy_board) {
3994                        /*
3995                         * Legacy boards might not support volume status
3996                         */
3997                        dev_info(&h->pdev->dev,
3998                                 "C0:T%d:L%d Volume status not available, assuming online.\n",
3999                                 this_device->target, this_device->lun);
4000                        volume_offline = 0;
4001                }
4002                this_device->volume_offline = volume_offline;
4003                if (volume_offline == HPSA_LV_FAILED) {
4004                        rc = HPSA_LV_FAILED;
4005                        dev_err(&h->pdev->dev,
4006                                "%s: LV failed, device will be skipped.\n",
4007                                __func__);
4008                        goto bail_out;
4009                }
4010        } else {
4011                this_device->raid_level = RAID_UNKNOWN;
4012                this_device->offload_config = 0;
4013                this_device->offload_enabled = 0;
4014                this_device->offload_to_be_enabled = 0;
4015                this_device->hba_ioaccel_enabled = 0;
4016                this_device->volume_offline = 0;
4017                this_device->queue_depth = h->nr_cmds;
4018        }
4019
4020        if (this_device->external)
4021                this_device->queue_depth = EXTERNAL_QD;
4022
4023        if (is_OBDR_device) {
4024                /* See if this is a One-Button-Disaster-Recovery device
4025                 * by looking for "$DR-10" at offset 43 in inquiry data.
4026                 */
4027                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
4030                                                OBDR_SIG_LEN) == 0);
4031        }
4032        kfree(inq_buff);
4033        return 0;
4034
4035bail_out:
4036        kfree(inq_buff);
4037        return rc;
4038}
4039
4040/*
4041 * Helper function to assign bus, target, lun mapping of devices.
4042 * Logical drive target and lun are assigned at this time, but
4043 * physical device lun and target assignment are deferred (assigned
4044 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045*/
4046static void figure_bus_target_lun(struct ctlr_info *h,
4047        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048{
4049        u32 lunid = get_unaligned_le32(lunaddrbytes);
4050
4051        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052                /* physical device, target and lun filled in later */
4053                if (is_hba_lunid(lunaddrbytes)) {
4054                        int bus = HPSA_HBA_BUS;
4055
4056                        if (!device->rev)
4057                                bus = HPSA_LEGACY_HBA_BUS;
4058                        hpsa_set_bus_target_lun(device,
4059                                        bus, 0, lunid & 0x3fff);
4060                } else
4061                        /* defer target, lun assignment for physical devices */
4062                        hpsa_set_bus_target_lun(device,
4063                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064                return;
4065        }
4066        /* It's a logical device */
4067        if (device->external) {
4068                hpsa_set_bus_target_lun(device,
4069                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070                        lunid & 0x00ff);
4071                return;
4072        }
4073        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074                                0, lunid & 0x3fff);
4075}
4076
4077static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078        int i, int nphysicals, int nlocal_logicals)
4079{
4080        /* In report logicals, local logicals are listed first,
4081        * then any externals.
4082        */
4083        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084
4085        if (i == raid_ctlr_position)
4086                return 0;
4087
4088        if (i < logicals_start)
4089                return 0;
4090
4091        /* i is in logicals range, but still within local logicals */
4092        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093                return 0;
4094
4095        return 1; /* it's an external lun */
4096}
4097
4098/*
4099 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100 * logdev.  The number of luns in physdev and logdev are returned in
4101 * *nphysicals and *nlogicals, respectively.
4102 * Returns 0 on success, -1 otherwise.
4103 */
4104static int hpsa_gather_lun_info(struct ctlr_info *h,
4105        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106        struct ReportLUNdata *logdev, u32 *nlogicals)
4107{
4108        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110                return -1;
4111        }
4112        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116                *nphysicals = HPSA_MAX_PHYS_LUN;
4117        }
4118        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120                return -1;
4121        }
4122        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123        /* Reject Logicals in excess of our max capability. */
4124        if (*nlogicals > HPSA_MAX_LUN) {
4125                dev_warn(&h->pdev->dev,
4126                        "maximum logical LUNs (%d) exceeded.  "
4127                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
4128                        *nlogicals - HPSA_MAX_LUN);
4129                *nlogicals = HPSA_MAX_LUN;
4130        }
4131        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132                dev_warn(&h->pdev->dev,
4133                        "maximum logical + physical LUNs (%d) exceeded. "
4134                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137        }
4138        return 0;
4139}
4140
4141static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142        int i, int nphysicals, int nlogicals,
4143        struct ReportExtendedLUNdata *physdev_list,
4144        struct ReportLUNdata *logdev_list)
4145{
4146        /* Helper function, figure out where the LUN ID info is coming from
4147         * given index i, lists of physical and logical devices, where in
4148         * the list the raid controller is supposed to appear (first or last)
4149         */
4150
4151        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153
4154        if (i == raid_ctlr_position)
4155                return RAID_CTLR_LUNID;
4156
4157        if (i < logicals_start)
4158                return &physdev_list->LUN[i -
4159                                (raid_ctlr_position == 0)].lunid[0];
4160
4161        if (i < last_device)
4162                return &logdev_list->LUN[i - nphysicals -
4163                        (raid_ctlr_position == 0)][0];
4164        BUG();
4165        return NULL;
4166}
4167
4168/* get physical drive ioaccel handle and queue depth */
4169static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170                struct hpsa_scsi_dev_t *dev,
4171                struct ReportExtendedLUNdata *rlep, int rle_index,
4172                struct bmic_identify_physical_device *id_phys)
4173{
4174        int rc;
4175        struct ext_report_lun_entry *rle;
4176
4177        rle = &rlep->LUN[rle_index];
4178
4179        dev->ioaccel_handle = rle->ioaccel_handle;
4180        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181                dev->hba_ioaccel_enabled = 1;
4182        memset(id_phys, 0, sizeof(*id_phys));
4183        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185                        sizeof(*id_phys));
4186        if (!rc)
4187                /* Reserve space for FW operations */
4188#define DRIVE_CMDS_RESERVED_FOR_FW 2
4189#define DRIVE_QUEUE_DEPTH 7
4190                dev->queue_depth =
4191                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4192                                DRIVE_CMDS_RESERVED_FOR_FW;
4193        else
4194                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195}
4196
4197static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198        struct ReportExtendedLUNdata *rlep, int rle_index,
4199        struct bmic_identify_physical_device *id_phys)
4200{
4201        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202
4203        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204                this_device->hba_ioaccel_enabled = 1;
4205
4206        memcpy(&this_device->active_path_index,
4207                &id_phys->active_path_number,
4208                sizeof(this_device->active_path_index));
4209        memcpy(&this_device->path_map,
4210                &id_phys->redundant_path_present_map,
4211                sizeof(this_device->path_map));
4212        memcpy(&this_device->box,
4213                &id_phys->alternate_paths_phys_box_on_port,
4214                sizeof(this_device->box));
4215        memcpy(&this_device->phys_connector,
4216                &id_phys->alternate_paths_phys_connector,
4217                sizeof(this_device->phys_connector));
4218        memcpy(&this_device->bay,
4219                &id_phys->phys_bay_in_box,
4220                sizeof(this_device->bay));
4221}
4222
4223/* get number of local logical disks. */
4224static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225        struct bmic_identify_controller *id_ctlr,
4226        u32 *nlocals)
4227{
4228        int rc;
4229
4230        if (!id_ctlr) {
4231                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232                        __func__);
4233                return -ENOMEM;
4234        }
4235        memset(id_ctlr, 0, sizeof(*id_ctlr));
4236        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237        if (!rc)
4238                if (id_ctlr->configured_logical_drive_count < 255)
4239                        *nlocals = id_ctlr->configured_logical_drive_count;
4240                else
4241                        *nlocals = le16_to_cpu(
4242                                        id_ctlr->extended_logical_unit_count);
4243        else
4244                *nlocals = -1;
4245        return rc;
4246}
4247
4248static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249{
4250        struct bmic_identify_physical_device *id_phys;
4251        bool is_spare = false;
4252        int rc;
4253
4254        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255        if (!id_phys)
4256                return false;
4257
4258        rc = hpsa_bmic_id_physical_device(h,
4259                                        lunaddrbytes,
4260                                        GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261                                        id_phys, sizeof(*id_phys));
4262        if (rc == 0)
4263                is_spare = (id_phys->more_flags >> 6) & 0x01;
4264
4265        kfree(id_phys);
4266        return is_spare;
4267}
4268
4269#define RPL_DEV_FLAG_NON_DISK                           0x1
4270#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272
4273#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274
4275static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276                                struct ext_report_lun_entry *rle)
4277{
4278        u8 device_flags;
4279        u8 device_type;
4280
4281        if (!MASKED_DEVICE(lunaddrbytes))
4282                return false;
4283
4284        device_flags = rle->device_flags;
4285        device_type = rle->device_type;
4286
4287        if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288                if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289                        return false;
4290                return true;
4291        }
4292
4293        if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294                return false;
4295
4296        if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297                return false;
4298
4299        /*
4300         * Spares may be spun down, we do not want to
4301         * do an Inquiry to a RAID set spare drive as
4302         * that would have them spun up, that is a
4303         * performance hit because I/O to the RAID device
4304         * stops while the spin up occurs which can take
4305         * over 50 seconds.
4306         */
4307        if (hpsa_is_disk_spare(h, lunaddrbytes))
4308                return true;
4309
4310        return false;
4311}
4312
4313static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314{
4315        /* the idea here is we could get notified
4316         * that some devices have changed, so we do a report
4317         * physical luns and report logical luns cmd, and adjust
4318         * our list of devices accordingly.
4319         *
4320         * The scsi3addr's of devices won't change so long as the
4321         * adapter is not reset.  That means we can rescan and
4322         * tell which devices we already know about, vs. new
4323         * devices, vs.  disappearing devices.
4324         */
4325        struct ReportExtendedLUNdata *physdev_list = NULL;
4326        struct ReportLUNdata *logdev_list = NULL;
4327        struct bmic_identify_physical_device *id_phys = NULL;
4328        struct bmic_identify_controller *id_ctlr = NULL;
4329        u32 nphysicals = 0;
4330        u32 nlogicals = 0;
4331        u32 nlocal_logicals = 0;
4332        u32 ndev_allocated = 0;
4333        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334        int ncurrent = 0;
4335        int i, n_ext_target_devs, ndevs_to_allocate;
4336        int raid_ctlr_position;
4337        bool physical_device;
4338        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339
4340        currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346
4347        if (!currentsd || !physdev_list || !logdev_list ||
4348                !tmpdevice || !id_phys || !id_ctlr) {
4349                dev_err(&h->pdev->dev, "out of memory\n");
4350                goto out;
4351        }
4352        memset(lunzerobits, 0, sizeof(lunzerobits));
4353
4354        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355
4356        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357                        logdev_list, &nlogicals)) {
4358                h->drv_req_rescan = 1;
4359                goto out;
4360        }
4361
4362        /* Set number of local logicals (non PTRAID) */
4363        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364                dev_warn(&h->pdev->dev,
4365                        "%s: Can't determine number of local logical devices.\n",
4366                        __func__);
4367        }
4368
4369        /* We might see up to the maximum number of logical and physical disks
4370         * plus external target devices, and a device for the local RAID
4371         * controller.
4372         */
4373        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374
4375        hpsa_ext_ctrl_present(h, physdev_list);
4376
4377        /* Allocate the per device structures */
4378        for (i = 0; i < ndevs_to_allocate; i++) {
4379                if (i >= HPSA_MAX_DEVICES) {
4380                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4383                        break;
4384                }
4385
4386                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387                if (!currentsd[i]) {
4388                        h->drv_req_rescan = 1;
4389                        goto out;
4390                }
4391                ndev_allocated++;
4392        }
4393
4394        if (is_scsi_rev_5(h))
4395                raid_ctlr_position = 0;
4396        else
4397                raid_ctlr_position = nphysicals + nlogicals;
4398
4399        /* adjust our table of devices */
4400        n_ext_target_devs = 0;
4401        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402                u8 *lunaddrbytes, is_OBDR = 0;
4403                int rc = 0;
4404                int phys_dev_index = i - (raid_ctlr_position == 0);
4405                bool skip_device = false;
4406
4407                memset(tmpdevice, 0, sizeof(*tmpdevice));
4408
4409                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410
4411                /* Figure out where the LUN ID info is coming from */
4412                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4414
4415                /* Determine if this is a lun from an external target array */
4416                tmpdevice->external =
4417                        figure_external_status(h, raid_ctlr_position, i,
4418                                                nphysicals, nlocal_logicals);
4419
4420                /*
4421                 * Skip over some devices such as a spare.
4422                 */
4423                if (!tmpdevice->external && physical_device) {
4424                        skip_device = hpsa_skip_device(h, lunaddrbytes,
4425                                        &physdev_list->LUN[phys_dev_index]);
4426                        if (skip_device)
4427                                continue;
4428                }
4429
4430                /* Get device type, vendor, model, device id, raid_map */
4431                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432                                                        &is_OBDR);
4433                if (rc == -ENOMEM) {
4434                        dev_warn(&h->pdev->dev,
4435                                "Out of memory, rescan deferred.\n");
4436                        h->drv_req_rescan = 1;
4437                        goto out;
4438                }
4439                if (rc) {
4440                        h->drv_req_rescan = 1;
4441                        continue;
4442                }
4443
4444                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445                this_device = currentsd[ncurrent];
4446
4447                *this_device = *tmpdevice;
4448                this_device->physical_device = physical_device;
4449
4450                /*
4451                 * Expose all devices except for physical devices that
4452                 * are masked.
4453                 */
4454                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455                        this_device->expose_device = 0;
4456                else
4457                        this_device->expose_device = 1;
4458
4459
4460                /*
4461                 * Get the SAS address for physical devices that are exposed.
4462                 */
4463                if (this_device->physical_device && this_device->expose_device)
4464                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465
4466                switch (this_device->devtype) {
4467                case TYPE_ROM:
4468                        /* We don't *really* support actual CD-ROM devices,
4469                         * just "One Button Disaster Recovery" tape drive
4470                         * which temporarily pretends to be a CD-ROM drive.
4471                         * So we check that the device is really an OBDR tape
4472                         * device by checking for "$DR-10" in bytes 43-48 of
4473                         * the inquiry data.
4474                         */
4475                        if (is_OBDR)
4476                                ncurrent++;
4477                        break;
4478                case TYPE_DISK:
4479                case TYPE_ZBC:
4480                        if (this_device->physical_device) {
4481                                /* The disk is in HBA mode. */
4482                                /* Never use RAID mapper in HBA mode. */
4483                                this_device->offload_enabled = 0;
4484                                hpsa_get_ioaccel_drive_info(h, this_device,
4485                                        physdev_list, phys_dev_index, id_phys);
4486                                hpsa_get_path_info(this_device,
4487                                        physdev_list, phys_dev_index, id_phys);
4488                        }
4489                        ncurrent++;
4490                        break;
4491                case TYPE_TAPE:
4492                case TYPE_MEDIUM_CHANGER:
4493                        ncurrent++;
4494                        break;
4495                case TYPE_ENCLOSURE:
4496                        if (!this_device->external)
4497                                hpsa_get_enclosure_info(h, lunaddrbytes,
4498                                                physdev_list, phys_dev_index,
4499                                                this_device);
4500                        ncurrent++;
4501                        break;
4502                case TYPE_RAID:
4503                        /* Only present the Smartarray HBA as a RAID controller.
4504                         * If it's a RAID controller other than the HBA itself
4505                         * (an external RAID controller, MSA500 or similar)
4506                         * don't present it.
4507                         */
4508                        if (!is_hba_lunid(lunaddrbytes))
4509                                break;
4510                        ncurrent++;
4511                        break;
4512                default:
4513                        break;
4514                }
4515                if (ncurrent >= HPSA_MAX_DEVICES)
4516                        break;
4517        }
4518
4519        if (h->sas_host == NULL) {
4520                int rc = 0;
4521
4522                rc = hpsa_add_sas_host(h);
4523                if (rc) {
4524                        dev_warn(&h->pdev->dev,
4525                                "Could not add sas host %d\n", rc);
4526                        goto out;
4527                }
4528        }
4529
4530        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531out:
4532        kfree(tmpdevice);
4533        for (i = 0; i < ndev_allocated; i++)
4534                kfree(currentsd[i]);
4535        kfree(currentsd);
4536        kfree(physdev_list);
4537        kfree(logdev_list);
4538        kfree(id_ctlr);
4539        kfree(id_phys);
4540}
4541
4542static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543                                   struct scatterlist *sg)
4544{
4545        u64 addr64 = (u64) sg_dma_address(sg);
4546        unsigned int len = sg_dma_len(sg);
4547
4548        desc->Addr = cpu_to_le64(addr64);
4549        desc->Len = cpu_to_le32(len);
4550        desc->Ext = 0;
4551}
4552
4553/*
4554 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555 * dma mapping  and fills in the scatter gather entries of the
4556 * hpsa command, cp.
4557 */
4558static int hpsa_scatter_gather(struct ctlr_info *h,
4559                struct CommandList *cp,
4560                struct scsi_cmnd *cmd)
4561{
4562        struct scatterlist *sg;
4563        int use_sg, i, sg_limit, chained, last_sg;
4564        struct SGDescriptor *curr_sg;
4565
4566        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567
4568        use_sg = scsi_dma_map(cmd);
4569        if (use_sg < 0)
4570                return use_sg;
4571
4572        if (!use_sg)
4573                goto sglist_finished;
4574
4575        /*
4576         * If the number of entries is greater than the max for a single list,
4577         * then we have a chained list; we will set up all but one entry in the
4578         * first list (the last entry is saved for link information);
4579         * otherwise, we don't have a chained list and we'll set up at each of
4580         * the entries in the one list.
4581         */
4582        curr_sg = cp->SG;
4583        chained = use_sg > h->max_cmd_sg_entries;
4584        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585        last_sg = scsi_sg_count(cmd) - 1;
4586        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587                hpsa_set_sg_descriptor(curr_sg, sg);
4588                curr_sg++;
4589        }
4590
4591        if (chained) {
4592                /*
4593                 * Continue with the chained list.  Set curr_sg to the chained
4594                 * list.  Modify the limit to the total count less the entries
4595                 * we've already set up.  Resume the scan at the list entry
4596                 * where the previous loop left off.
4597                 */
4598                curr_sg = h->cmd_sg_list[cp->cmdindex];
4599                sg_limit = use_sg - sg_limit;
4600                for_each_sg(sg, sg, sg_limit, i) {
4601                        hpsa_set_sg_descriptor(curr_sg, sg);
4602                        curr_sg++;
4603                }
4604        }
4605
4606        /* Back the pointer up to the last entry and mark it as "last". */
4607        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608
4609        if (use_sg + chained > h->maxSG)
4610                h->maxSG = use_sg + chained;
4611
4612        if (chained) {
4613                cp->Header.SGList = h->max_cmd_sg_entries;
4614                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615                if (hpsa_map_sg_chain_block(h, cp)) {
4616                        scsi_dma_unmap(cmd);
4617                        return -1;
4618                }
4619                return 0;
4620        }
4621
4622sglist_finished:
4623
4624        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626        return 0;
4627}
4628
4629static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630                                                u8 *cdb, int cdb_len,
4631                                                const char *func)
4632{
4633        dev_warn(&h->pdev->dev,
4634                 "%s: Blocking zero-length request: CDB:%*phN\n",
4635                 func, cdb_len, cdb);
4636}
4637
4638#define IO_ACCEL_INELIGIBLE 1
4639/* zero-length transfers trigger hardware errors. */
4640static bool is_zero_length_transfer(u8 *cdb)
4641{
4642        u32 block_cnt;
4643
4644        /* Block zero-length transfer sizes on certain commands. */
4645        switch (cdb[0]) {
4646        case READ_10:
4647        case WRITE_10:
4648        case VERIFY:            /* 0x2F */
4649        case WRITE_VERIFY:      /* 0x2E */
4650                block_cnt = get_unaligned_be16(&cdb[7]);
4651                break;
4652        case READ_12:
4653        case WRITE_12:
4654        case VERIFY_12: /* 0xAF */
4655        case WRITE_VERIFY_12:   /* 0xAE */
4656                block_cnt = get_unaligned_be32(&cdb[6]);
4657                break;
4658        case READ_16:
4659        case WRITE_16:
4660        case VERIFY_16:         /* 0x8F */
4661                block_cnt = get_unaligned_be32(&cdb[10]);
4662                break;
4663        default:
4664                return false;
4665        }
4666
4667        return block_cnt == 0;
4668}
4669
4670static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671{
4672        int is_write = 0;
4673        u32 block;
4674        u32 block_cnt;
4675
4676        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677        switch (cdb[0]) {
4678        case WRITE_6:
4679        case WRITE_12:
4680                is_write = 1;
4681                /* fall through */
4682        case READ_6:
4683        case READ_12:
4684                if (*cdb_len == 6) {
4685                        block = (((cdb[1] & 0x1F) << 16) |
4686                                (cdb[2] << 8) |
4687                                cdb[3]);
4688                        block_cnt = cdb[4];
4689                        if (block_cnt == 0)
4690                                block_cnt = 256;
4691                } else {
4692                        BUG_ON(*cdb_len != 12);
4693                        block = get_unaligned_be32(&cdb[2]);
4694                        block_cnt = get_unaligned_be32(&cdb[6]);
4695                }
4696                if (block_cnt > 0xffff)
4697                        return IO_ACCEL_INELIGIBLE;
4698
4699                cdb[0] = is_write ? WRITE_10 : READ_10;
4700                cdb[1] = 0;
4701                cdb[2] = (u8) (block >> 24);
4702                cdb[3] = (u8) (block >> 16);
4703                cdb[4] = (u8) (block >> 8);
4704                cdb[5] = (u8) (block);
4705                cdb[6] = 0;
4706                cdb[7] = (u8) (block_cnt >> 8);
4707                cdb[8] = (u8) (block_cnt);
4708                cdb[9] = 0;
4709                *cdb_len = 10;
4710                break;
4711        }
4712        return 0;
4713}
4714
4715static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718{
4719        struct scsi_cmnd *cmd = c->scsi_cmd;
4720        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721        unsigned int len;
4722        unsigned int total_len = 0;
4723        struct scatterlist *sg;
4724        u64 addr64;
4725        int use_sg, i;
4726        struct SGDescriptor *curr_sg;
4727        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729        /* TODO: implement chaining support */
4730        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731                atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                return IO_ACCEL_INELIGIBLE;
4733        }
4734
4735        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737        if (is_zero_length_transfer(cdb)) {
4738                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739                atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                return IO_ACCEL_INELIGIBLE;
4741        }
4742
4743        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744                atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                return IO_ACCEL_INELIGIBLE;
4746        }
4747
4748        c->cmd_type = CMD_IOACCEL1;
4749
4750        /* Adjust the DMA address to point to the accelerated command buffer */
4751        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752                                (c->cmdindex * sizeof(*cp));
4753        BUG_ON(c->busaddr & 0x0000007F);
4754
4755        use_sg = scsi_dma_map(cmd);
4756        if (use_sg < 0) {
4757                atomic_dec(&phys_disk->ioaccel_cmds_out);
4758                return use_sg;
4759        }
4760
4761        if (use_sg) {
4762                curr_sg = cp->SG;
4763                scsi_for_each_sg(cmd, sg, use_sg, i) {
4764                        addr64 = (u64) sg_dma_address(sg);
4765                        len  = sg_dma_len(sg);
4766                        total_len += len;
4767                        curr_sg->Addr = cpu_to_le64(addr64);
4768                        curr_sg->Len = cpu_to_le32(len);
4769                        curr_sg->Ext = cpu_to_le32(0);
4770                        curr_sg++;
4771                }
4772                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774                switch (cmd->sc_data_direction) {
4775                case DMA_TO_DEVICE:
4776                        control |= IOACCEL1_CONTROL_DATA_OUT;
4777                        break;
4778                case DMA_FROM_DEVICE:
4779                        control |= IOACCEL1_CONTROL_DATA_IN;
4780                        break;
4781                case DMA_NONE:
4782                        control |= IOACCEL1_CONTROL_NODATAXFER;
4783                        break;
4784                default:
4785                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786                        cmd->sc_data_direction);
4787                        BUG();
4788                        break;
4789                }
4790        } else {
4791                control |= IOACCEL1_CONTROL_NODATAXFER;
4792        }
4793
4794        c->Header.SGList = use_sg;
4795        /* Fill out the command structure to submit */
4796        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797        cp->transfer_len = cpu_to_le32(total_len);
4798        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800        cp->control = cpu_to_le32(control);
4801        memcpy(cp->CDB, cdb, cdb_len);
4802        memcpy(cp->CISS_LUN, scsi3addr, 8);
4803        /* Tag was already set at init time. */
4804        enqueue_cmd_and_start_io(h, c);
4805        return 0;
4806}
4807
4808/*
4809 * Queue a command directly to a device behind the controller using the
4810 * I/O accelerator path.
4811 */
4812static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813        struct CommandList *c)
4814{
4815        struct scsi_cmnd *cmd = c->scsi_cmd;
4816        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818        if (!dev)
4819                return -1;
4820
4821        c->phys_disk = dev;
4822
4823        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825}
4826
4827/*
4828 * Set encryption parameters for the ioaccel2 request
4829 */
4830static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831        struct CommandList *c, struct io_accel2_cmd *cp)
4832{
4833        struct scsi_cmnd *cmd = c->scsi_cmd;
4834        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835        struct raid_map_data *map = &dev->raid_map;
4836        u64 first_block;
4837
4838        /* Are we doing encryption on this device */
4839        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840                return;
4841        /* Set the data encryption key index. */
4842        cp->dekindex = map->dekindex;
4843
4844        /* Set the encryption enable flag, encoded into direction field. */
4845        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846
4847        /* Set encryption tweak values based on logical block address
4848         * If block size is 512, tweak value is LBA.
4849         * For other block sizes, tweak is (LBA * block size)/ 512)
4850         */
4851        switch (cmd->cmnd[0]) {
4852        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853        case READ_6:
4854        case WRITE_6:
4855                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856                                (cmd->cmnd[2] << 8) |
4857                                cmd->cmnd[3]);
4858                break;
4859        case WRITE_10:
4860        case READ_10:
4861        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862        case WRITE_12:
4863        case READ_12:
4864                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865                break;
4866        case WRITE_16:
4867        case READ_16:
4868                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869                break;
4870        default:
4871                dev_err(&h->pdev->dev,
4872                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4873                        __func__, cmd->cmnd[0]);
4874                BUG();
4875                break;
4876        }
4877
4878        if (le32_to_cpu(map->volume_blk_size) != 512)
4879                first_block = first_block *
4880                                le32_to_cpu(map->volume_blk_size)/512;
4881
4882        cp->tweak_lower = cpu_to_le32(first_block);
4883        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884}
4885
4886static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889{
4890        struct scsi_cmnd *cmd = c->scsi_cmd;
4891        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892        struct ioaccel2_sg_element *curr_sg;
4893        int use_sg, i;
4894        struct scatterlist *sg;
4895        u64 addr64;
4896        u32 len;
4897        u32 total_len = 0;
4898
4899        if (!cmd->device)
4900                return -1;
4901
4902        if (!cmd->device->hostdata)
4903                return -1;
4904
4905        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906
4907        if (is_zero_length_transfer(cdb)) {
4908                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909                atomic_dec(&phys_disk->ioaccel_cmds_out);
4910                return IO_ACCEL_INELIGIBLE;
4911        }
4912
4913        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914                atomic_dec(&phys_disk->ioaccel_cmds_out);
4915                return IO_ACCEL_INELIGIBLE;
4916        }
4917
4918        c->cmd_type = CMD_IOACCEL2;
4919        /* Adjust the DMA address to point to the accelerated command buffer */
4920        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921                                (c->cmdindex * sizeof(*cp));
4922        BUG_ON(c->busaddr & 0x0000007F);
4923
4924        memset(cp, 0, sizeof(*cp));
4925        cp->IU_type = IOACCEL2_IU_TYPE;
4926
4927        use_sg = scsi_dma_map(cmd);
4928        if (use_sg < 0) {
4929                atomic_dec(&phys_disk->ioaccel_cmds_out);
4930                return use_sg;
4931        }
4932
4933        if (use_sg) {
4934                curr_sg = cp->sg;
4935                if (use_sg > h->ioaccel_maxsg) {
4936                        addr64 = le64_to_cpu(
4937                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938                        curr_sg->address = cpu_to_le64(addr64);
4939                        curr_sg->length = 0;
4940                        curr_sg->reserved[0] = 0;
4941                        curr_sg->reserved[1] = 0;
4942                        curr_sg->reserved[2] = 0;
4943                        curr_sg->chain_indicator = IOACCEL2_CHAIN;
4944
4945                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946                }
4947                scsi_for_each_sg(cmd, sg, use_sg, i) {
4948                        addr64 = (u64) sg_dma_address(sg);
4949                        len  = sg_dma_len(sg);
4950                        total_len += len;
4951                        curr_sg->address = cpu_to_le64(addr64);
4952                        curr_sg->length = cpu_to_le32(len);
4953                        curr_sg->reserved[0] = 0;
4954                        curr_sg->reserved[1] = 0;
4955                        curr_sg->reserved[2] = 0;
4956                        curr_sg->chain_indicator = 0;
4957                        curr_sg++;
4958                }
4959
4960                /*
4961                 * Set the last s/g element bit
4962                 */
4963                (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4964
4965                switch (cmd->sc_data_direction) {
4966                case DMA_TO_DEVICE:
4967                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4968                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4969                        break;
4970                case DMA_FROM_DEVICE:
4971                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4973                        break;
4974                case DMA_NONE:
4975                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976                        cp->direction |= IOACCEL2_DIR_NO_DATA;
4977                        break;
4978                default:
4979                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4980                                cmd->sc_data_direction);
4981                        BUG();
4982                        break;
4983                }
4984        } else {
4985                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986                cp->direction |= IOACCEL2_DIR_NO_DATA;
4987        }
4988
4989        /* Set encryption parameters, if necessary */
4990        set_encrypt_ioaccel2(h, c, cp);
4991
4992        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4993        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4994        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4995
4996        cp->data_len = cpu_to_le32(total_len);
4997        cp->err_ptr = cpu_to_le64(c->busaddr +
4998                        offsetof(struct io_accel2_cmd, error_data));
4999        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5000
5001        /* fill in sg elements */
5002        if (use_sg > h->ioaccel_maxsg) {
5003                cp->sg_count = 1;
5004                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5005                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5006                        atomic_dec(&phys_disk->ioaccel_cmds_out);
5007                        scsi_dma_unmap(cmd);
5008                        return -1;
5009                }
5010        } else
5011                cp->sg_count = (u8) use_sg;
5012
5013        enqueue_cmd_and_start_io(h, c);
5014        return 0;
5015}
5016
5017/*
5018 * Queue a command to the correct I/O accelerator path.
5019 */
5020static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5021        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5022        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5023{
5024        if (!c->scsi_cmd->device)
5025                return -1;
5026
5027        if (!c->scsi_cmd->device->hostdata)
5028                return -1;
5029
5030        /* Try to honor the device's queue depth */
5031        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5032                                        phys_disk->queue_depth) {
5033                atomic_dec(&phys_disk->ioaccel_cmds_out);
5034                return IO_ACCEL_INELIGIBLE;
5035        }
5036        if (h->transMethod & CFGTBL_Trans_io_accel1)
5037                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5038                                                cdb, cdb_len, scsi3addr,
5039                                                phys_disk);
5040        else
5041                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5042                                                cdb, cdb_len, scsi3addr,
5043                                                phys_disk);
5044}
5045
5046static void raid_map_helper(struct raid_map_data *map,
5047                int offload_to_mirror, u32 *map_index, u32 *current_group)
5048{
5049        if (offload_to_mirror == 0)  {
5050                /* use physical disk in the first mirrored group. */
5051                *map_index %= le16_to_cpu(map->data_disks_per_row);
5052                return;
5053        }
5054        do {
5055                /* determine mirror group that *map_index indicates */
5056                *current_group = *map_index /
5057                        le16_to_cpu(map->data_disks_per_row);
5058                if (offload_to_mirror == *current_group)
5059                        continue;
5060                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5061                        /* select map index from next group */
5062                        *map_index += le16_to_cpu(map->data_disks_per_row);
5063                        (*current_group)++;
5064                } else {
5065                        /* select map index from first group */
5066                        *map_index %= le16_to_cpu(map->data_disks_per_row);
5067                        *current_group = 0;
5068                }
5069        } while (offload_to_mirror != *current_group);
5070}
5071
5072/*
5073 * Attempt to perform offload RAID mapping for a logical volume I/O.
5074 */
5075static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5076        struct CommandList *c)
5077{
5078        struct scsi_cmnd *cmd = c->scsi_cmd;
5079        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5080        struct raid_map_data *map = &dev->raid_map;
5081        struct raid_map_disk_data *dd = &map->data[0];
5082        int is_write = 0;
5083        u32 map_index;
5084        u64 first_block, last_block;
5085        u32 block_cnt;
5086        u32 blocks_per_row;
5087        u64 first_row, last_row;
5088        u32 first_row_offset, last_row_offset;
5089        u32 first_column, last_column;
5090        u64 r0_first_row, r0_last_row;
5091        u32 r5or6_blocks_per_row;
5092        u64 r5or6_first_row, r5or6_last_row;
5093        u32 r5or6_first_row_offset, r5or6_last_row_offset;
5094        u32 r5or6_first_column, r5or6_last_column;
5095        u32 total_disks_per_row;
5096        u32 stripesize;
5097        u32 first_group, last_group, current_group;
5098        u32 map_row;
5099        u32 disk_handle;
5100        u64 disk_block;
5101        u32 disk_block_cnt;
5102        u8 cdb[16];
5103        u8 cdb_len;
5104        u16 strip_size;
5105#if BITS_PER_LONG == 32
5106        u64 tmpdiv;
5107#endif
5108        int offload_to_mirror;
5109
5110        if (!dev)
5111                return -1;
5112
5113        /* check for valid opcode, get LBA and block count */
5114        switch (cmd->cmnd[0]) {
5115        case WRITE_6:
5116                is_write = 1;
5117                /* fall through */
5118        case READ_6:
5119                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120                                (cmd->cmnd[2] << 8) |
5121                                cmd->cmnd[3]);
5122                block_cnt = cmd->cmnd[4];
5123                if (block_cnt == 0)
5124                        block_cnt = 256;
5125                break;
5126        case WRITE_10:
5127                is_write = 1;
5128                /* fall through */
5129        case READ_10:
5130                first_block =
5131                        (((u64) cmd->cmnd[2]) << 24) |
5132                        (((u64) cmd->cmnd[3]) << 16) |
5133                        (((u64) cmd->cmnd[4]) << 8) |
5134                        cmd->cmnd[5];
5135                block_cnt =
5136                        (((u32) cmd->cmnd[7]) << 8) |
5137                        cmd->cmnd[8];
5138                break;
5139        case WRITE_12:
5140                is_write = 1;
5141                /* fall through */
5142        case READ_12:
5143                first_block =
5144                        (((u64) cmd->cmnd[2]) << 24) |
5145                        (((u64) cmd->cmnd[3]) << 16) |
5146                        (((u64) cmd->cmnd[4]) << 8) |
5147                        cmd->cmnd[5];
5148                block_cnt =
5149                        (((u32) cmd->cmnd[6]) << 24) |
5150                        (((u32) cmd->cmnd[7]) << 16) |
5151                        (((u32) cmd->cmnd[8]) << 8) |
5152                cmd->cmnd[9];
5153                break;
5154        case WRITE_16:
5155                is_write = 1;
5156                /* fall through */
5157        case READ_16:
5158                first_block =
5159                        (((u64) cmd->cmnd[2]) << 56) |
5160                        (((u64) cmd->cmnd[3]) << 48) |
5161                        (((u64) cmd->cmnd[4]) << 40) |
5162                        (((u64) cmd->cmnd[5]) << 32) |
5163                        (((u64) cmd->cmnd[6]) << 24) |
5164                        (((u64) cmd->cmnd[7]) << 16) |
5165                        (((u64) cmd->cmnd[8]) << 8) |
5166                        cmd->cmnd[9];
5167                block_cnt =
5168                        (((u32) cmd->cmnd[10]) << 24) |
5169                        (((u32) cmd->cmnd[11]) << 16) |
5170                        (((u32) cmd->cmnd[12]) << 8) |
5171                        cmd->cmnd[13];
5172                break;
5173        default:
5174                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175        }
5176        last_block = first_block + block_cnt - 1;
5177
5178        /* check for write to non-RAID-0 */
5179        if (is_write && dev->raid_level != 0)
5180                return IO_ACCEL_INELIGIBLE;
5181
5182        /* check for invalid block or wraparound */
5183        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184                last_block < first_block)
5185                return IO_ACCEL_INELIGIBLE;
5186
5187        /* calculate stripe information for the request */
5188        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189                                le16_to_cpu(map->strip_size);
5190        strip_size = le16_to_cpu(map->strip_size);
5191#if BITS_PER_LONG == 32
5192        tmpdiv = first_block;
5193        (void) do_div(tmpdiv, blocks_per_row);
5194        first_row = tmpdiv;
5195        tmpdiv = last_block;
5196        (void) do_div(tmpdiv, blocks_per_row);
5197        last_row = tmpdiv;
5198        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200        tmpdiv = first_row_offset;
5201        (void) do_div(tmpdiv, strip_size);
5202        first_column = tmpdiv;
5203        tmpdiv = last_row_offset;
5204        (void) do_div(tmpdiv, strip_size);
5205        last_column = tmpdiv;
5206#else
5207        first_row = first_block / blocks_per_row;
5208        last_row = last_block / blocks_per_row;
5209        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211        first_column = first_row_offset / strip_size;
5212        last_column = last_row_offset / strip_size;
5213#endif
5214
5215        /* if this isn't a single row/column then give to the controller */
5216        if ((first_row != last_row) || (first_column != last_column))
5217                return IO_ACCEL_INELIGIBLE;
5218
5219        /* proceeding with driver mapping */
5220        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221                                le16_to_cpu(map->metadata_disks_per_row);
5222        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223                                le16_to_cpu(map->row_cnt);
5224        map_index = (map_row * total_disks_per_row) + first_column;
5225
5226        switch (dev->raid_level) {
5227        case HPSA_RAID_0:
5228                break; /* nothing special to do */
5229        case HPSA_RAID_1:
5230                /* Handles load balance across RAID 1 members.
5231                 * (2-drive R1 and R10 with even # of drives.)
5232                 * Appropriate for SSDs, not optimal for HDDs
5233                 */
5234                BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235                if (dev->offload_to_mirror)
5236                        map_index += le16_to_cpu(map->data_disks_per_row);
5237                dev->offload_to_mirror = !dev->offload_to_mirror;
5238                break;
5239        case HPSA_RAID_ADM:
5240                /* Handles N-way mirrors  (R1-ADM)
5241                 * and R10 with # of drives divisible by 3.)
5242                 */
5243                BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244
5245                offload_to_mirror = dev->offload_to_mirror;
5246                raid_map_helper(map, offload_to_mirror,
5247                                &map_index, &current_group);
5248                /* set mirror group to use next time */
5249                offload_to_mirror =
5250                        (offload_to_mirror >=
5251                        le16_to_cpu(map->layout_map_count) - 1)
5252                        ? 0 : offload_to_mirror + 1;
5253                dev->offload_to_mirror = offload_to_mirror;
5254                /* Avoid direct use of dev->offload_to_mirror within this
5255                 * function since multiple threads might simultaneously
5256                 * increment it beyond the range of dev->layout_map_count -1.
5257                 */
5258                break;
5259        case HPSA_RAID_5:
5260        case HPSA_RAID_6:
5261                if (le16_to_cpu(map->layout_map_count) <= 1)
5262                        break;
5263
5264                /* Verify first and last block are in same RAID group */
5265                r5or6_blocks_per_row =
5266                        le16_to_cpu(map->strip_size) *
5267                        le16_to_cpu(map->data_disks_per_row);
5268                BUG_ON(r5or6_blocks_per_row == 0);
5269                stripesize = r5or6_blocks_per_row *
5270                        le16_to_cpu(map->layout_map_count);
5271#if BITS_PER_LONG == 32
5272                tmpdiv = first_block;
5273                first_group = do_div(tmpdiv, stripesize);
5274                tmpdiv = first_group;
5275                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276                first_group = tmpdiv;
5277                tmpdiv = last_block;
5278                last_group = do_div(tmpdiv, stripesize);
5279                tmpdiv = last_group;
5280                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281                last_group = tmpdiv;
5282#else
5283                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285#endif
5286                if (first_group != last_group)
5287                        return IO_ACCEL_INELIGIBLE;
5288
5289                /* Verify request is in a single row of RAID 5/6 */
5290#if BITS_PER_LONG == 32
5291                tmpdiv = first_block;
5292                (void) do_div(tmpdiv, stripesize);
5293                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294                tmpdiv = last_block;
5295                (void) do_div(tmpdiv, stripesize);
5296                r5or6_last_row = r0_last_row = tmpdiv;
5297#else
5298                first_row = r5or6_first_row = r0_first_row =
5299                                                first_block / stripesize;
5300                r5or6_last_row = r0_last_row = last_block / stripesize;
5301#endif
5302                if (r5or6_first_row != r5or6_last_row)
5303                        return IO_ACCEL_INELIGIBLE;
5304
5305
5306                /* Verify request is in a single column */
5307#if BITS_PER_LONG == 32
5308                tmpdiv = first_block;
5309                first_row_offset = do_div(tmpdiv, stripesize);
5310                tmpdiv = first_row_offset;
5311                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312                r5or6_first_row_offset = first_row_offset;
5313                tmpdiv = last_block;
5314                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315                tmpdiv = r5or6_last_row_offset;
5316                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317                tmpdiv = r5or6_first_row_offset;
5318                (void) do_div(tmpdiv, map->strip_size);
5319                first_column = r5or6_first_column = tmpdiv;
5320                tmpdiv = r5or6_last_row_offset;
5321                (void) do_div(tmpdiv, map->strip_size);
5322                r5or6_last_column = tmpdiv;
5323#else
5324                first_row_offset = r5or6_first_row_offset =
5325                        (u32)((first_block % stripesize) %
5326                                                r5or6_blocks_per_row);
5327
5328                r5or6_last_row_offset =
5329                        (u32)((last_block % stripesize) %
5330                                                r5or6_blocks_per_row);
5331
5332                first_column = r5or6_first_column =
5333                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334                r5or6_last_column =
5335                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336#endif
5337                if (r5or6_first_column != r5or6_last_column)
5338                        return IO_ACCEL_INELIGIBLE;
5339
5340                /* Request is eligible */
5341                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342                        le16_to_cpu(map->row_cnt);
5343
5344                map_index = (first_group *
5345                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346                        (map_row * total_disks_per_row) + first_column;
5347                break;
5348        default:
5349                return IO_ACCEL_INELIGIBLE;
5350        }
5351
5352        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353                return IO_ACCEL_INELIGIBLE;
5354
5355        c->phys_disk = dev->phys_disk[map_index];
5356        if (!c->phys_disk)
5357                return IO_ACCEL_INELIGIBLE;
5358
5359        disk_handle = dd[map_index].ioaccel_handle;
5360        disk_block = le64_to_cpu(map->disk_starting_blk) +
5361                        first_row * le16_to_cpu(map->strip_size) +
5362                        (first_row_offset - first_column *
5363                        le16_to_cpu(map->strip_size));
5364        disk_block_cnt = block_cnt;
5365
5366        /* handle differing logical/physical block sizes */
5367        if (map->phys_blk_shift) {
5368                disk_block <<= map->phys_blk_shift;
5369                disk_block_cnt <<= map->phys_blk_shift;
5370        }
5371        BUG_ON(disk_block_cnt > 0xffff);
5372
5373        /* build the new CDB for the physical disk I/O */
5374        if (disk_block > 0xffffffff) {
5375                cdb[0] = is_write ? WRITE_16 : READ_16;
5376                cdb[1] = 0;
5377                cdb[2] = (u8) (disk_block >> 56);
5378                cdb[3] = (u8) (disk_block >> 48);
5379                cdb[4] = (u8) (disk_block >> 40);
5380                cdb[5] = (u8) (disk_block >> 32);
5381                cdb[6] = (u8) (disk_block >> 24);
5382                cdb[7] = (u8) (disk_block >> 16);
5383                cdb[8] = (u8) (disk_block >> 8);
5384                cdb[9] = (u8) (disk_block);
5385                cdb[10] = (u8) (disk_block_cnt >> 24);
5386                cdb[11] = (u8) (disk_block_cnt >> 16);
5387                cdb[12] = (u8) (disk_block_cnt >> 8);
5388                cdb[13] = (u8) (disk_block_cnt);
5389                cdb[14] = 0;
5390                cdb[15] = 0;
5391                cdb_len = 16;
5392        } else {
5393                cdb[0] = is_write ? WRITE_10 : READ_10;
5394                cdb[1] = 0;
5395                cdb[2] = (u8) (disk_block >> 24);
5396                cdb[3] = (u8) (disk_block >> 16);
5397                cdb[4] = (u8) (disk_block >> 8);
5398                cdb[5] = (u8) (disk_block);
5399                cdb[6] = 0;
5400                cdb[7] = (u8) (disk_block_cnt >> 8);
5401                cdb[8] = (u8) (disk_block_cnt);
5402                cdb[9] = 0;
5403                cdb_len = 10;
5404        }
5405        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406                                                dev->scsi3addr,
5407                                                dev->phys_disk[map_index]);
5408}
5409
5410/*
5411 * Submit commands down the "normal" RAID stack path
5412 * All callers to hpsa_ciss_submit must check lockup_detected
5413 * beforehand, before (opt.) and after calling cmd_alloc
5414 */
5415static int hpsa_ciss_submit(struct ctlr_info *h,
5416        struct CommandList *c, struct scsi_cmnd *cmd,
5417        unsigned char scsi3addr[])
5418{
5419        cmd->host_scribble = (unsigned char *) c;
5420        c->cmd_type = CMD_SCSI;
5421        c->scsi_cmd = cmd;
5422        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423        memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5424        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425
5426        /* Fill in the request block... */
5427
5428        c->Request.Timeout = 0;
5429        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430        c->Request.CDBLen = cmd->cmd_len;
5431        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432        switch (cmd->sc_data_direction) {
5433        case DMA_TO_DEVICE:
5434                c->Request.type_attr_dir =
5435                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436                break;
5437        case DMA_FROM_DEVICE:
5438                c->Request.type_attr_dir =
5439                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440                break;
5441        case DMA_NONE:
5442                c->Request.type_attr_dir =
5443                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444                break;
5445        case DMA_BIDIRECTIONAL:
5446                /* This can happen if a buggy application does a scsi passthru
5447                 * and sets both inlen and outlen to non-zero. ( see
5448                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449                 */
5450
5451                c->Request.type_attr_dir =
5452                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453                /* This is technically wrong, and hpsa controllers should
5454                 * reject it with CMD_INVALID, which is the most correct
5455                 * response, but non-fibre backends appear to let it
5456                 * slide by, and give the same results as if this field
5457                 * were set correctly.  Either way is acceptable for
5458                 * our purposes here.
5459                 */
5460
5461                break;
5462
5463        default:
5464                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465                        cmd->sc_data_direction);
5466                BUG();
5467                break;
5468        }
5469
5470        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471                hpsa_cmd_resolve_and_free(h, c);
5472                return SCSI_MLQUEUE_HOST_BUSY;
5473        }
5474        enqueue_cmd_and_start_io(h, c);
5475        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5476        return 0;
5477}
5478
5479static void hpsa_cmd_init(struct ctlr_info *h, int index,
5480                                struct CommandList *c)
5481{
5482        dma_addr_t cmd_dma_handle, err_dma_handle;
5483
5484        /* Zero out all of commandlist except the last field, refcount */
5485        memset(c, 0, offsetof(struct CommandList, refcount));
5486        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5487        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488        c->err_info = h->errinfo_pool + index;
5489        memset(c->err_info, 0, sizeof(*c->err_info));
5490        err_dma_handle = h->errinfo_pool_dhandle
5491            + index * sizeof(*c->err_info);
5492        c->cmdindex = index;
5493        c->busaddr = (u32) cmd_dma_handle;
5494        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5495        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5496        c->h = h;
5497        c->scsi_cmd = SCSI_CMD_IDLE;
5498}
5499
5500static void hpsa_preinitialize_commands(struct ctlr_info *h)
5501{
5502        int i;
5503
5504        for (i = 0; i < h->nr_cmds; i++) {
5505                struct CommandList *c = h->cmd_pool + i;
5506
5507                hpsa_cmd_init(h, i, c);
5508                atomic_set(&c->refcount, 0);
5509        }
5510}
5511
5512static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5513                                struct CommandList *c)
5514{
5515        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5516
5517        BUG_ON(c->cmdindex != index);
5518
5519        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5520        memset(c->err_info, 0, sizeof(*c->err_info));
5521        c->busaddr = (u32) cmd_dma_handle;
5522}
5523
5524static int hpsa_ioaccel_submit(struct ctlr_info *h,
5525                struct CommandList *c, struct scsi_cmnd *cmd,
5526                unsigned char *scsi3addr)
5527{
5528        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5529        int rc = IO_ACCEL_INELIGIBLE;
5530
5531        if (!dev)
5532                return SCSI_MLQUEUE_HOST_BUSY;
5533
5534        cmd->host_scribble = (unsigned char *) c;
5535
5536        if (dev->offload_enabled) {
5537                hpsa_cmd_init(h, c->cmdindex, c);
5538                c->cmd_type = CMD_SCSI;
5539                c->scsi_cmd = cmd;
5540                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5541                if (rc < 0)     /* scsi_dma_map failed. */
5542                        rc = SCSI_MLQUEUE_HOST_BUSY;
5543        } else if (dev->hba_ioaccel_enabled) {
5544                hpsa_cmd_init(h, c->cmdindex, c);
5545                c->cmd_type = CMD_SCSI;
5546                c->scsi_cmd = cmd;
5547                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5548                if (rc < 0)     /* scsi_dma_map failed. */
5549                        rc = SCSI_MLQUEUE_HOST_BUSY;
5550        }
5551        return rc;
5552}
5553
5554static void hpsa_command_resubmit_worker(struct work_struct *work)
5555{
5556        struct scsi_cmnd *cmd;
5557        struct hpsa_scsi_dev_t *dev;
5558        struct CommandList *c = container_of(work, struct CommandList, work);
5559
5560        cmd = c->scsi_cmd;
5561        dev = cmd->device->hostdata;
5562        if (!dev) {
5563                cmd->result = DID_NO_CONNECT << 16;
5564                return hpsa_cmd_free_and_done(c->h, c, cmd);
5565        }
5566        if (c->reset_pending)
5567                return hpsa_cmd_free_and_done(c->h, c, cmd);
5568        if (c->cmd_type == CMD_IOACCEL2) {
5569                struct ctlr_info *h = c->h;
5570                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5571                int rc;
5572
5573                if (c2->error_data.serv_response ==
5574                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5575                        rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5576                        if (rc == 0)
5577                                return;
5578                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5579                                /*
5580                                 * If we get here, it means dma mapping failed.
5581                                 * Try again via scsi mid layer, which will
5582                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5583                                 */
5584                                cmd->result = DID_IMM_RETRY << 16;
5585                                return hpsa_cmd_free_and_done(h, c, cmd);
5586                        }
5587                        /* else, fall thru and resubmit down CISS path */
5588                }
5589        }
5590        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5591        if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5592                /*
5593                 * If we get here, it means dma mapping failed. Try
5594                 * again via scsi mid layer, which will then get
5595                 * SCSI_MLQUEUE_HOST_BUSY.
5596                 *
5597                 * hpsa_ciss_submit will have already freed c
5598                 * if it encountered a dma mapping failure.
5599                 */
5600                cmd->result = DID_IMM_RETRY << 16;
5601                cmd->scsi_done(cmd);
5602        }
5603}
5604
5605/* Running in struct Scsi_Host->host_lock less mode */
5606static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5607{
5608        struct ctlr_info *h;
5609        struct hpsa_scsi_dev_t *dev;
5610        unsigned char scsi3addr[8];
5611        struct CommandList *c;
5612        int rc = 0;
5613
5614        /* Get the ptr to our adapter structure out of cmd->host. */
5615        h = sdev_to_hba(cmd->device);
5616
5617        BUG_ON(cmd->request->tag < 0);
5618
5619        dev = cmd->device->hostdata;
5620        if (!dev) {
5621                cmd->result = DID_NO_CONNECT << 16;
5622                cmd->scsi_done(cmd);
5623                return 0;
5624        }
5625
5626        if (dev->removed) {
5627                cmd->result = DID_NO_CONNECT << 16;
5628                cmd->scsi_done(cmd);
5629                return 0;
5630        }
5631
5632        memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5633
5634        if (unlikely(lockup_detected(h))) {
5635                cmd->result = DID_NO_CONNECT << 16;
5636                cmd->scsi_done(cmd);
5637                return 0;
5638        }
5639        c = cmd_tagged_alloc(h, cmd);
5640
5641        /*
5642         * Call alternate submit routine for I/O accelerated commands.
5643         * Retries always go down the normal I/O path.
5644         */
5645        if (likely(cmd->retries == 0 &&
5646                        !blk_rq_is_passthrough(cmd->request) &&
5647                        h->acciopath_status)) {
5648                rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5649                if (rc == 0)
5650                        return 0;
5651                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5652                        hpsa_cmd_resolve_and_free(h, c);
5653                        return SCSI_MLQUEUE_HOST_BUSY;
5654                }
5655        }
5656        return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5657}
5658
5659static void hpsa_scan_complete(struct ctlr_info *h)
5660{
5661        unsigned long flags;
5662
5663        spin_lock_irqsave(&h->scan_lock, flags);
5664        h->scan_finished = 1;
5665        wake_up(&h->scan_wait_queue);
5666        spin_unlock_irqrestore(&h->scan_lock, flags);
5667}
5668
5669static void hpsa_scan_start(struct Scsi_Host *sh)
5670{
5671        struct ctlr_info *h = shost_to_hba(sh);
5672        unsigned long flags;
5673
5674        /*
5675         * Don't let rescans be initiated on a controller known to be locked
5676         * up.  If the controller locks up *during* a rescan, that thread is
5677         * probably hosed, but at least we can prevent new rescan threads from
5678         * piling up on a locked up controller.
5679         */
5680        if (unlikely(lockup_detected(h)))
5681                return hpsa_scan_complete(h);
5682
5683        /*
5684         * If a scan is already waiting to run, no need to add another
5685         */
5686        spin_lock_irqsave(&h->scan_lock, flags);
5687        if (h->scan_waiting) {
5688                spin_unlock_irqrestore(&h->scan_lock, flags);
5689                return;
5690        }
5691
5692        spin_unlock_irqrestore(&h->scan_lock, flags);
5693
5694        /* wait until any scan already in progress is finished. */
5695        while (1) {
5696                spin_lock_irqsave(&h->scan_lock, flags);
5697                if (h->scan_finished)
5698                        break;
5699                h->scan_waiting = 1;
5700                spin_unlock_irqrestore(&h->scan_lock, flags);
5701                wait_event(h->scan_wait_queue, h->scan_finished);
5702                /* Note: We don't need to worry about a race between this
5703                 * thread and driver unload because the midlayer will
5704                 * have incremented the reference count, so unload won't
5705                 * happen if we're in here.
5706                 */
5707        }
5708        h->scan_finished = 0; /* mark scan as in progress */
5709        h->scan_waiting = 0;
5710        spin_unlock_irqrestore(&h->scan_lock, flags);
5711
5712        if (unlikely(lockup_detected(h)))
5713                return hpsa_scan_complete(h);
5714
5715        /*
5716         * Do the scan after a reset completion
5717         */
5718        spin_lock_irqsave(&h->reset_lock, flags);
5719        if (h->reset_in_progress) {
5720                h->drv_req_rescan = 1;
5721                spin_unlock_irqrestore(&h->reset_lock, flags);
5722                hpsa_scan_complete(h);
5723                return;
5724        }
5725        spin_unlock_irqrestore(&h->reset_lock, flags);
5726
5727        hpsa_update_scsi_devices(h);
5728
5729        hpsa_scan_complete(h);
5730}
5731
5732static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5733{
5734        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5735
5736        if (!logical_drive)
5737                return -ENODEV;
5738
5739        if (qdepth < 1)
5740                qdepth = 1;
5741        else if (qdepth > logical_drive->queue_depth)
5742                qdepth = logical_drive->queue_depth;
5743
5744        return scsi_change_queue_depth(sdev, qdepth);
5745}
5746
5747static int hpsa_scan_finished(struct Scsi_Host *sh,
5748        unsigned long elapsed_time)
5749{
5750        struct ctlr_info *h = shost_to_hba(sh);
5751        unsigned long flags;
5752        int finished;
5753
5754        spin_lock_irqsave(&h->scan_lock, flags);
5755        finished = h->scan_finished;
5756        spin_unlock_irqrestore(&h->scan_lock, flags);
5757        return finished;
5758}
5759
5760static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5761{
5762        struct Scsi_Host *sh;
5763
5764        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5765        if (sh == NULL) {
5766                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5767                return -ENOMEM;
5768        }
5769
5770        sh->io_port = 0;
5771        sh->n_io_port = 0;
5772        sh->this_id = -1;
5773        sh->max_channel = 3;
5774        sh->max_cmd_len = MAX_COMMAND_SIZE;
5775        sh->max_lun = HPSA_MAX_LUN;
5776        sh->max_id = HPSA_MAX_LUN;
5777        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5778        sh->cmd_per_lun = sh->can_queue;
5779        sh->sg_tablesize = h->maxsgentries;
5780        sh->transportt = hpsa_sas_transport_template;
5781        sh->hostdata[0] = (unsigned long) h;
5782        sh->irq = pci_irq_vector(h->pdev, 0);
5783        sh->unique_id = sh->irq;
5784
5785        h->scsi_host = sh;
5786        return 0;
5787}
5788
5789static int hpsa_scsi_add_host(struct ctlr_info *h)
5790{
5791        int rv;
5792
5793        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5794        if (rv) {
5795                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5796                return rv;
5797        }
5798        scsi_scan_host(h->scsi_host);
5799        return 0;
5800}
5801
5802/*
5803 * The block layer has already gone to the trouble of picking out a unique,
5804 * small-integer tag for this request.  We use an offset from that value as
5805 * an index to select our command block.  (The offset allows us to reserve the
5806 * low-numbered entries for our own uses.)
5807 */
5808static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5809{
5810        int idx = scmd->request->tag;
5811
5812        if (idx < 0)
5813                return idx;
5814
5815        /* Offset to leave space for internal cmds. */
5816        return idx += HPSA_NRESERVED_CMDS;
5817}
5818
5819/*
5820 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5821 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5822 */
5823static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5824                                struct CommandList *c, unsigned char lunaddr[],
5825                                int reply_queue)
5826{
5827        int rc;
5828
5829        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5830        (void) fill_cmd(c, TEST_UNIT_READY, h,
5831                        NULL, 0, 0, lunaddr, TYPE_CMD);
5832        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5833        if (rc)
5834                return rc;
5835        /* no unmap needed here because no data xfer. */
5836
5837        /* Check if the unit is already ready. */
5838        if (c->err_info->CommandStatus == CMD_SUCCESS)
5839                return 0;
5840
5841        /*
5842         * The first command sent after reset will receive "unit attention" to
5843         * indicate that the LUN has been reset...this is actually what we're
5844         * looking for (but, success is good too).
5845         */
5846        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5847                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5848                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5849                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5850                return 0;
5851
5852        return 1;
5853}
5854
5855/*
5856 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5857 * returns zero when the unit is ready, and non-zero when giving up.
5858 */
5859static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5860                                struct CommandList *c,
5861                                unsigned char lunaddr[], int reply_queue)
5862{
5863        int rc;
5864        int count = 0;
5865        int waittime = 1; /* seconds */
5866
5867        /* Send test unit ready until device ready, or give up. */
5868        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5869
5870                /*
5871                 * Wait for a bit.  do this first, because if we send
5872                 * the TUR right away, the reset will just abort it.
5873                 */
5874                msleep(1000 * waittime);
5875
5876                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5877                if (!rc)
5878                        break;
5879
5880                /* Increase wait time with each try, up to a point. */
5881                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5882                        waittime *= 2;
5883
5884                dev_warn(&h->pdev->dev,
5885                         "waiting %d secs for device to become ready.\n",
5886                         waittime);
5887        }
5888
5889        return rc;
5890}
5891
5892static int wait_for_device_to_become_ready(struct ctlr_info *h,
5893                                           unsigned char lunaddr[],
5894                                           int reply_queue)
5895{
5896        int first_queue;
5897        int last_queue;
5898        int rq;
5899        int rc = 0;
5900        struct CommandList *c;
5901
5902        c = cmd_alloc(h);
5903
5904        /*
5905         * If no specific reply queue was requested, then send the TUR
5906         * repeatedly, requesting a reply on each reply queue; otherwise execute
5907         * the loop exactly once using only the specified queue.
5908         */
5909        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5910                first_queue = 0;
5911                last_queue = h->nreply_queues - 1;
5912        } else {
5913                first_queue = reply_queue;
5914                last_queue = reply_queue;
5915        }
5916
5917        for (rq = first_queue; rq <= last_queue; rq++) {
5918                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5919                if (rc)
5920                        break;
5921        }
5922
5923        if (rc)
5924                dev_warn(&h->pdev->dev, "giving up on device.\n");
5925        else
5926                dev_warn(&h->pdev->dev, "device is ready.\n");
5927
5928        cmd_free(h, c);
5929        return rc;
5930}
5931
5932/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5933 * complaining.  Doing a host- or bus-reset can't do anything good here.
5934 */
5935static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5936{
5937        int rc = SUCCESS;
5938        struct ctlr_info *h;
5939        struct hpsa_scsi_dev_t *dev;
5940        u8 reset_type;
5941        char msg[48];
5942        unsigned long flags;
5943
5944        /* find the controller to which the command to be aborted was sent */
5945        h = sdev_to_hba(scsicmd->device);
5946        if (h == NULL) /* paranoia */
5947                return FAILED;
5948
5949        spin_lock_irqsave(&h->reset_lock, flags);
5950        h->reset_in_progress = 1;
5951        spin_unlock_irqrestore(&h->reset_lock, flags);
5952
5953        if (lockup_detected(h)) {
5954                rc = FAILED;
5955                goto return_reset_status;
5956        }
5957
5958        dev = scsicmd->device->hostdata;
5959        if (!dev) {
5960                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5961                rc = FAILED;
5962                goto return_reset_status;
5963        }
5964
5965        if (dev->devtype == TYPE_ENCLOSURE) {
5966                rc = SUCCESS;
5967                goto return_reset_status;
5968        }
5969
5970        /* if controller locked up, we can guarantee command won't complete */
5971        if (lockup_detected(h)) {
5972                snprintf(msg, sizeof(msg),
5973                         "cmd %d RESET FAILED, lockup detected",
5974                         hpsa_get_cmd_index(scsicmd));
5975                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976                rc = FAILED;
5977                goto return_reset_status;
5978        }
5979
5980        /* this reset request might be the result of a lockup; check */
5981        if (detect_controller_lockup(h)) {
5982                snprintf(msg, sizeof(msg),
5983                         "cmd %d RESET FAILED, new lockup detected",
5984                         hpsa_get_cmd_index(scsicmd));
5985                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5986                rc = FAILED;
5987                goto return_reset_status;
5988        }
5989
5990        /* Do not attempt on controller */
5991        if (is_hba_lunid(dev->scsi3addr)) {
5992                rc = SUCCESS;
5993                goto return_reset_status;
5994        }
5995
5996        if (is_logical_dev_addr_mode(dev->scsi3addr))
5997                reset_type = HPSA_DEVICE_RESET_MSG;
5998        else
5999                reset_type = HPSA_PHYS_TARGET_RESET;
6000
6001        sprintf(msg, "resetting %s",
6002                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6003        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6004
6005        /* send a reset to the SCSI LUN which the command was sent to */
6006        rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6007                           DEFAULT_REPLY_QUEUE);
6008        if (rc == 0)
6009                rc = SUCCESS;
6010        else
6011                rc = FAILED;
6012
6013        sprintf(msg, "reset %s %s",
6014                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6015                rc == SUCCESS ? "completed successfully" : "failed");
6016        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6017
6018return_reset_status:
6019        spin_lock_irqsave(&h->reset_lock, flags);
6020        h->reset_in_progress = 0;
6021        spin_unlock_irqrestore(&h->reset_lock, flags);
6022        return rc;
6023}
6024
6025/*
6026 * For operations with an associated SCSI command, a command block is allocated
6027 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6028 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6029 * the complement, although cmd_free() may be called instead.
6030 */
6031static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6032                                            struct scsi_cmnd *scmd)
6033{
6034        int idx = hpsa_get_cmd_index(scmd);
6035        struct CommandList *c = h->cmd_pool + idx;
6036
6037        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6038                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6039                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6040                /* The index value comes from the block layer, so if it's out of
6041                 * bounds, it's probably not our bug.
6042                 */
6043                BUG();
6044        }
6045
6046        atomic_inc(&c->refcount);
6047        if (unlikely(!hpsa_is_cmd_idle(c))) {
6048                /*
6049                 * We expect that the SCSI layer will hand us a unique tag
6050                 * value.  Thus, there should never be a collision here between
6051                 * two requests...because if the selected command isn't idle
6052                 * then someone is going to be very disappointed.
6053                 */
6054                dev_err(&h->pdev->dev,
6055                        "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6056                        idx);
6057                if (c->scsi_cmd != NULL)
6058                        scsi_print_command(c->scsi_cmd);
6059                scsi_print_command(scmd);
6060        }
6061
6062        hpsa_cmd_partial_init(h, idx, c);
6063        return c;
6064}
6065
6066static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6067{
6068        /*
6069         * Release our reference to the block.  We don't need to do anything
6070         * else to free it, because it is accessed by index.
6071         */
6072        (void)atomic_dec(&c->refcount);
6073}
6074
6075/*
6076 * For operations that cannot sleep, a command block is allocated at init,
6077 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6078 * which ones are free or in use.  Lock must be held when calling this.
6079 * cmd_free() is the complement.
6080 * This function never gives up and returns NULL.  If it hangs,
6081 * another thread must call cmd_free() to free some tags.
6082 */
6083
6084static struct CommandList *cmd_alloc(struct ctlr_info *h)
6085{
6086        struct CommandList *c;
6087        int refcount, i;
6088        int offset = 0;
6089
6090        /*
6091         * There is some *extremely* small but non-zero chance that that
6092         * multiple threads could get in here, and one thread could
6093         * be scanning through the list of bits looking for a free
6094         * one, but the free ones are always behind him, and other
6095         * threads sneak in behind him and eat them before he can
6096         * get to them, so that while there is always a free one, a
6097         * very unlucky thread might be starved anyway, never able to
6098         * beat the other threads.  In reality, this happens so
6099         * infrequently as to be indistinguishable from never.
6100         *
6101         * Note that we start allocating commands before the SCSI host structure
6102         * is initialized.  Since the search starts at bit zero, this
6103         * all works, since we have at least one command structure available;
6104         * however, it means that the structures with the low indexes have to be
6105         * reserved for driver-initiated requests, while requests from the block
6106         * layer will use the higher indexes.
6107         */
6108
6109        for (;;) {
6110                i = find_next_zero_bit(h->cmd_pool_bits,
6111                                        HPSA_NRESERVED_CMDS,
6112                                        offset);
6113                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6114                        offset = 0;
6115                        continue;
6116                }
6117                c = h->cmd_pool + i;
6118                refcount = atomic_inc_return(&c->refcount);
6119                if (unlikely(refcount > 1)) {
6120                        cmd_free(h, c); /* already in use */
6121                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6122                        continue;
6123                }
6124                set_bit(i & (BITS_PER_LONG - 1),
6125                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6126                break; /* it's ours now. */
6127        }
6128        hpsa_cmd_partial_init(h, i, c);
6129        return c;
6130}
6131
6132/*
6133 * This is the complementary operation to cmd_alloc().  Note, however, in some
6134 * corner cases it may also be used to free blocks allocated by
6135 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6136 * the clear-bit is harmless.
6137 */
6138static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6139{
6140        if (atomic_dec_and_test(&c->refcount)) {
6141                int i;
6142
6143                i = c - h->cmd_pool;
6144                clear_bit(i & (BITS_PER_LONG - 1),
6145                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6146        }
6147}
6148
6149#ifdef CONFIG_COMPAT
6150
6151static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6152        void __user *arg)
6153{
6154        IOCTL32_Command_struct __user *arg32 =
6155            (IOCTL32_Command_struct __user *) arg;
6156        IOCTL_Command_struct arg64;
6157        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6158        int err;
6159        u32 cp;
6160
6161        memset(&arg64, 0, sizeof(arg64));
6162        err = 0;
6163        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6164                           sizeof(arg64.LUN_info));
6165        err |= copy_from_user(&arg64.Request, &arg32->Request,
6166                           sizeof(arg64.Request));
6167        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6168                           sizeof(arg64.error_info));
6169        err |= get_user(arg64.buf_size, &arg32->buf_size);
6170        err |= get_user(cp, &arg32->buf);
6171        arg64.buf = compat_ptr(cp);
6172        err |= copy_to_user(p, &arg64, sizeof(arg64));
6173
6174        if (err)
6175                return -EFAULT;
6176
6177        err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6178        if (err)
6179                return err;
6180        err |= copy_in_user(&arg32->error_info, &p->error_info,
6181                         sizeof(arg32->error_info));
6182        if (err)
6183                return -EFAULT;
6184        return err;
6185}
6186
6187static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6188        unsigned int cmd, void __user *arg)
6189{
6190        BIG_IOCTL32_Command_struct __user *arg32 =
6191            (BIG_IOCTL32_Command_struct __user *) arg;
6192        BIG_IOCTL_Command_struct arg64;
6193        BIG_IOCTL_Command_struct __user *p =
6194            compat_alloc_user_space(sizeof(arg64));
6195        int err;
6196        u32 cp;
6197
6198        memset(&arg64, 0, sizeof(arg64));
6199        err = 0;
6200        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6201                           sizeof(arg64.LUN_info));
6202        err |= copy_from_user(&arg64.Request, &arg32->Request,
6203                           sizeof(arg64.Request));
6204        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6205                           sizeof(arg64.error_info));
6206        err |= get_user(arg64.buf_size, &arg32->buf_size);
6207        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6208        err |= get_user(cp, &arg32->buf);
6209        arg64.buf = compat_ptr(cp);
6210        err |= copy_to_user(p, &arg64, sizeof(arg64));
6211
6212        if (err)
6213                return -EFAULT;
6214
6215        err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6216        if (err)
6217                return err;
6218        err |= copy_in_user(&arg32->error_info, &p->error_info,
6219                         sizeof(arg32->error_info));
6220        if (err)
6221                return -EFAULT;
6222        return err;
6223}
6224
6225static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6226                             void __user *arg)
6227{
6228        switch (cmd) {
6229        case CCISS_GETPCIINFO:
6230        case CCISS_GETINTINFO:
6231        case CCISS_SETINTINFO:
6232        case CCISS_GETNODENAME:
6233        case CCISS_SETNODENAME:
6234        case CCISS_GETHEARTBEAT:
6235        case CCISS_GETBUSTYPES:
6236        case CCISS_GETFIRMVER:
6237        case CCISS_GETDRIVVER:
6238        case CCISS_REVALIDVOLS:
6239        case CCISS_DEREGDISK:
6240        case CCISS_REGNEWDISK:
6241        case CCISS_REGNEWD:
6242        case CCISS_RESCANDISK:
6243        case CCISS_GETLUNINFO:
6244                return hpsa_ioctl(dev, cmd, arg);
6245
6246        case CCISS_PASSTHRU32:
6247                return hpsa_ioctl32_passthru(dev, cmd, arg);
6248        case CCISS_BIG_PASSTHRU32:
6249                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6250
6251        default:
6252                return -ENOIOCTLCMD;
6253        }
6254}
6255#endif
6256
6257static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6258{
6259        struct hpsa_pci_info pciinfo;
6260
6261        if (!argp)
6262                return -EINVAL;
6263        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6264        pciinfo.bus = h->pdev->bus->number;
6265        pciinfo.dev_fn = h->pdev->devfn;
6266        pciinfo.board_id = h->board_id;
6267        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6268                return -EFAULT;
6269        return 0;
6270}
6271
6272static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6273{
6274        DriverVer_type DriverVer;
6275        unsigned char vmaj, vmin, vsubmin;
6276        int rc;
6277
6278        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6279                &vmaj, &vmin, &vsubmin);
6280        if (rc != 3) {
6281                dev_info(&h->pdev->dev, "driver version string '%s' "
6282                        "unrecognized.", HPSA_DRIVER_VERSION);
6283                vmaj = 0;
6284                vmin = 0;
6285                vsubmin = 0;
6286        }
6287        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6288        if (!argp)
6289                return -EINVAL;
6290        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6291                return -EFAULT;
6292        return 0;
6293}
6294
6295static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296{
6297        IOCTL_Command_struct iocommand;
6298        struct CommandList *c;
6299        char *buff = NULL;
6300        u64 temp64;
6301        int rc = 0;
6302
6303        if (!argp)
6304                return -EINVAL;
6305        if (!capable(CAP_SYS_RAWIO))
6306                return -EPERM;
6307        if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6308                return -EFAULT;
6309        if ((iocommand.buf_size < 1) &&
6310            (iocommand.Request.Type.Direction != XFER_NONE)) {
6311                return -EINVAL;
6312        }
6313        if (iocommand.buf_size > 0) {
6314                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6315                if (buff == NULL)
6316                        return -ENOMEM;
6317                if (iocommand.Request.Type.Direction & XFER_WRITE) {
6318                        /* Copy the data into the buffer we created */
6319                        if (copy_from_user(buff, iocommand.buf,
6320                                iocommand.buf_size)) {
6321                                rc = -EFAULT;
6322                                goto out_kfree;
6323                        }
6324                } else {
6325                        memset(buff, 0, iocommand.buf_size);
6326                }
6327        }
6328        c = cmd_alloc(h);
6329
6330        /* Fill in the command type */
6331        c->cmd_type = CMD_IOCTL_PEND;
6332        c->scsi_cmd = SCSI_CMD_BUSY;
6333        /* Fill in Command Header */
6334        c->Header.ReplyQueue = 0; /* unused in simple mode */
6335        if (iocommand.buf_size > 0) {   /* buffer to fill */
6336                c->Header.SGList = 1;
6337                c->Header.SGTotal = cpu_to_le16(1);
6338        } else  { /* no buffers to fill */
6339                c->Header.SGList = 0;
6340                c->Header.SGTotal = cpu_to_le16(0);
6341        }
6342        memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6343
6344        /* Fill in Request block */
6345        memcpy(&c->Request, &iocommand.Request,
6346                sizeof(c->Request));
6347
6348        /* Fill in the scatter gather information */
6349        if (iocommand.buf_size > 0) {
6350                temp64 = dma_map_single(&h->pdev->dev, buff,
6351                        iocommand.buf_size, DMA_BIDIRECTIONAL);
6352                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6353                        c->SG[0].Addr = cpu_to_le64(0);
6354                        c->SG[0].Len = cpu_to_le32(0);
6355                        rc = -ENOMEM;
6356                        goto out;
6357                }
6358                c->SG[0].Addr = cpu_to_le64(temp64);
6359                c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6360                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6361        }
6362        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6363                                        NO_TIMEOUT);
6364        if (iocommand.buf_size > 0)
6365                hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6366        check_ioctl_unit_attention(h, c);
6367        if (rc) {
6368                rc = -EIO;
6369                goto out;
6370        }
6371
6372        /* Copy the error information out */
6373        memcpy(&iocommand.error_info, c->err_info,
6374                sizeof(iocommand.error_info));
6375        if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6376                rc = -EFAULT;
6377                goto out;
6378        }
6379        if ((iocommand.Request.Type.Direction & XFER_READ) &&
6380                iocommand.buf_size > 0) {
6381                /* Copy the data out of the buffer we created */
6382                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6383                        rc = -EFAULT;
6384                        goto out;
6385                }
6386        }
6387out:
6388        cmd_free(h, c);
6389out_kfree:
6390        kfree(buff);
6391        return rc;
6392}
6393
6394static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6395{
6396        BIG_IOCTL_Command_struct *ioc;
6397        struct CommandList *c;
6398        unsigned char **buff = NULL;
6399        int *buff_size = NULL;
6400        u64 temp64;
6401        BYTE sg_used = 0;
6402        int status = 0;
6403        u32 left;
6404        u32 sz;
6405        BYTE __user *data_ptr;
6406
6407        if (!argp)
6408                return -EINVAL;
6409        if (!capable(CAP_SYS_RAWIO))
6410                return -EPERM;
6411        ioc = vmemdup_user(argp, sizeof(*ioc));
6412        if (IS_ERR(ioc)) {
6413                status = PTR_ERR(ioc);
6414                goto cleanup1;
6415        }
6416        if ((ioc->buf_size < 1) &&
6417            (ioc->Request.Type.Direction != XFER_NONE)) {
6418                status = -EINVAL;
6419                goto cleanup1;
6420        }
6421        /* Check kmalloc limits  using all SGs */
6422        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6423                status = -EINVAL;
6424                goto cleanup1;
6425        }
6426        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6427                status = -EINVAL;
6428                goto cleanup1;
6429        }
6430        buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6431        if (!buff) {
6432                status = -ENOMEM;
6433                goto cleanup1;
6434        }
6435        buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6436        if (!buff_size) {
6437                status = -ENOMEM;
6438                goto cleanup1;
6439        }
6440        left = ioc->buf_size;
6441        data_ptr = ioc->buf;
6442        while (left) {
6443                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6444                buff_size[sg_used] = sz;
6445                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6446                if (buff[sg_used] == NULL) {
6447                        status = -ENOMEM;
6448                        goto cleanup1;
6449                }
6450                if (ioc->Request.Type.Direction & XFER_WRITE) {
6451                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6452                                status = -EFAULT;
6453                                goto cleanup1;
6454                        }
6455                } else
6456                        memset(buff[sg_used], 0, sz);
6457                left -= sz;
6458                data_ptr += sz;
6459                sg_used++;
6460        }
6461        c = cmd_alloc(h);
6462
6463        c->cmd_type = CMD_IOCTL_PEND;
6464        c->scsi_cmd = SCSI_CMD_BUSY;
6465        c->Header.ReplyQueue = 0;
6466        c->Header.SGList = (u8) sg_used;
6467        c->Header.SGTotal = cpu_to_le16(sg_used);
6468        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6469        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6470        if (ioc->buf_size > 0) {
6471                int i;
6472                for (i = 0; i < sg_used; i++) {
6473                        temp64 = dma_map_single(&h->pdev->dev, buff[i],
6474                                    buff_size[i], DMA_BIDIRECTIONAL);
6475                        if (dma_mapping_error(&h->pdev->dev,
6476                                                        (dma_addr_t) temp64)) {
6477                                c->SG[i].Addr = cpu_to_le64(0);
6478                                c->SG[i].Len = cpu_to_le32(0);
6479                                hpsa_pci_unmap(h->pdev, c, i,
6480                                        DMA_BIDIRECTIONAL);
6481                                status = -ENOMEM;
6482                                goto cleanup0;
6483                        }
6484                        c->SG[i].Addr = cpu_to_le64(temp64);
6485                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6486                        c->SG[i].Ext = cpu_to_le32(0);
6487                }
6488                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6489        }
6490        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6491                                                NO_TIMEOUT);
6492        if (sg_used)
6493                hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6494        check_ioctl_unit_attention(h, c);
6495        if (status) {
6496                status = -EIO;
6497                goto cleanup0;
6498        }
6499
6500        /* Copy the error information out */
6501        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6502        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6503                status = -EFAULT;
6504                goto cleanup0;
6505        }
6506        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6507                int i;
6508
6509                /* Copy the data out of the buffer we created */
6510                BYTE __user *ptr = ioc->buf;
6511                for (i = 0; i < sg_used; i++) {
6512                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6513                                status = -EFAULT;
6514                                goto cleanup0;
6515                        }
6516                        ptr += buff_size[i];
6517                }
6518        }
6519        status = 0;
6520cleanup0:
6521        cmd_free(h, c);
6522cleanup1:
6523        if (buff) {
6524                int i;
6525
6526                for (i = 0; i < sg_used; i++)
6527                        kfree(buff[i]);
6528                kfree(buff);
6529        }
6530        kfree(buff_size);
6531        kvfree(ioc);
6532        return status;
6533}
6534
6535static void check_ioctl_unit_attention(struct ctlr_info *h,
6536        struct CommandList *c)
6537{
6538        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6539                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6540                (void) check_for_unit_attention(h, c);
6541}
6542
6543/*
6544 * ioctl
6545 */
6546static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6547                      void __user *arg)
6548{
6549        struct ctlr_info *h;
6550        void __user *argp = (void __user *)arg;
6551        int rc;
6552
6553        h = sdev_to_hba(dev);
6554
6555        switch (cmd) {
6556        case CCISS_DEREGDISK:
6557        case CCISS_REGNEWDISK:
6558        case CCISS_REGNEWD:
6559                hpsa_scan_start(h->scsi_host);
6560                return 0;
6561        case CCISS_GETPCIINFO:
6562                return hpsa_getpciinfo_ioctl(h, argp);
6563        case CCISS_GETDRIVVER:
6564                return hpsa_getdrivver_ioctl(h, argp);
6565        case CCISS_PASSTHRU:
6566                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567                        return -EAGAIN;
6568                rc = hpsa_passthru_ioctl(h, argp);
6569                atomic_inc(&h->passthru_cmds_avail);
6570                return rc;
6571        case CCISS_BIG_PASSTHRU:
6572                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573                        return -EAGAIN;
6574                rc = hpsa_big_passthru_ioctl(h, argp);
6575                atomic_inc(&h->passthru_cmds_avail);
6576                return rc;
6577        default:
6578                return -ENOTTY;
6579        }
6580}
6581
6582static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583                                u8 reset_type)
6584{
6585        struct CommandList *c;
6586
6587        c = cmd_alloc(h);
6588
6589        /* fill_cmd can't fail here, no data buffer to map */
6590        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591                RAID_CTLR_LUNID, TYPE_MSG);
6592        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593        c->waiting = NULL;
6594        enqueue_cmd_and_start_io(h, c);
6595        /* Don't wait for completion, the reset won't complete.  Don't free
6596         * the command either.  This is the last command we will send before
6597         * re-initializing everything, so it doesn't matter and won't leak.
6598         */
6599        return;
6600}
6601
6602static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604        int cmd_type)
6605{
6606        enum dma_data_direction dir = DMA_NONE;
6607
6608        c->cmd_type = CMD_IOCTL_PEND;
6609        c->scsi_cmd = SCSI_CMD_BUSY;
6610        c->Header.ReplyQueue = 0;
6611        if (buff != NULL && size > 0) {
6612                c->Header.SGList = 1;
6613                c->Header.SGTotal = cpu_to_le16(1);
6614        } else {
6615                c->Header.SGList = 0;
6616                c->Header.SGTotal = cpu_to_le16(0);
6617        }
6618        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6619
6620        if (cmd_type == TYPE_CMD) {
6621                switch (cmd) {
6622                case HPSA_INQUIRY:
6623                        /* are we trying to read a vital product page */
6624                        if (page_code & VPD_PAGE) {
6625                                c->Request.CDB[1] = 0x01;
6626                                c->Request.CDB[2] = (page_code & 0xff);
6627                        }
6628                        c->Request.CDBLen = 6;
6629                        c->Request.type_attr_dir =
6630                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631                        c->Request.Timeout = 0;
6632                        c->Request.CDB[0] = HPSA_INQUIRY;
6633                        c->Request.CDB[4] = size & 0xFF;
6634                        break;
6635                case RECEIVE_DIAGNOSTIC:
6636                        c->Request.CDBLen = 6;
6637                        c->Request.type_attr_dir =
6638                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639                        c->Request.Timeout = 0;
6640                        c->Request.CDB[0] = cmd;
6641                        c->Request.CDB[1] = 1;
6642                        c->Request.CDB[2] = 1;
6643                        c->Request.CDB[3] = (size >> 8) & 0xFF;
6644                        c->Request.CDB[4] = size & 0xFF;
6645                        break;
6646                case HPSA_REPORT_LOG:
6647                case HPSA_REPORT_PHYS:
6648                        /* Talking to controller so It's a physical command
6649                           mode = 00 target = 0.  Nothing to write.
6650                         */
6651                        c->Request.CDBLen = 12;
6652                        c->Request.type_attr_dir =
6653                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6654                        c->Request.Timeout = 0;
6655                        c->Request.CDB[0] = cmd;
6656                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6657                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6658                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6659                        c->Request.CDB[9] = size & 0xFF;
6660                        break;
6661                case BMIC_SENSE_DIAG_OPTIONS:
6662                        c->Request.CDBLen = 16;
6663                        c->Request.type_attr_dir =
6664                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6665                        c->Request.Timeout = 0;
6666                        /* Spec says this should be BMIC_WRITE */
6667                        c->Request.CDB[0] = BMIC_READ;
6668                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6669                        break;
6670                case BMIC_SET_DIAG_OPTIONS:
6671                        c->Request.CDBLen = 16;
6672                        c->Request.type_attr_dir =
6673                                        TYPE_ATTR_DIR(cmd_type,
6674                                                ATTR_SIMPLE, XFER_WRITE);
6675                        c->Request.Timeout = 0;
6676                        c->Request.CDB[0] = BMIC_WRITE;
6677                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6678                        break;
6679                case HPSA_CACHE_FLUSH:
6680                        c->Request.CDBLen = 12;
6681                        c->Request.type_attr_dir =
6682                                        TYPE_ATTR_DIR(cmd_type,
6683                                                ATTR_SIMPLE, XFER_WRITE);
6684                        c->Request.Timeout = 0;
6685                        c->Request.CDB[0] = BMIC_WRITE;
6686                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6687                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6688                        c->Request.CDB[8] = size & 0xFF;
6689                        break;
6690                case TEST_UNIT_READY:
6691                        c->Request.CDBLen = 6;
6692                        c->Request.type_attr_dir =
6693                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6694                        c->Request.Timeout = 0;
6695                        break;
6696                case HPSA_GET_RAID_MAP:
6697                        c->Request.CDBLen = 12;
6698                        c->Request.type_attr_dir =
6699                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700                        c->Request.Timeout = 0;
6701                        c->Request.CDB[0] = HPSA_CISS_READ;
6702                        c->Request.CDB[1] = cmd;
6703                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6704                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6705                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6706                        c->Request.CDB[9] = size & 0xFF;
6707                        break;
6708                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6709                        c->Request.CDBLen = 10;
6710                        c->Request.type_attr_dir =
6711                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712                        c->Request.Timeout = 0;
6713                        c->Request.CDB[0] = BMIC_READ;
6714                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6715                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6716                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6717                        break;
6718                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6719                        c->Request.CDBLen = 10;
6720                        c->Request.type_attr_dir =
6721                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722                        c->Request.Timeout = 0;
6723                        c->Request.CDB[0] = BMIC_READ;
6724                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6725                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6726                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6727                        break;
6728                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6729                        c->Request.CDBLen = 10;
6730                        c->Request.type_attr_dir =
6731                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732                        c->Request.Timeout = 0;
6733                        c->Request.CDB[0] = BMIC_READ;
6734                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6735                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6736                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6737                        break;
6738                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6739                        c->Request.CDBLen = 10;
6740                        c->Request.type_attr_dir =
6741                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6742                        c->Request.Timeout = 0;
6743                        c->Request.CDB[0] = BMIC_READ;
6744                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6745                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6746                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6747                        break;
6748                case BMIC_IDENTIFY_CONTROLLER:
6749                        c->Request.CDBLen = 10;
6750                        c->Request.type_attr_dir =
6751                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752                        c->Request.Timeout = 0;
6753                        c->Request.CDB[0] = BMIC_READ;
6754                        c->Request.CDB[1] = 0;
6755                        c->Request.CDB[2] = 0;
6756                        c->Request.CDB[3] = 0;
6757                        c->Request.CDB[4] = 0;
6758                        c->Request.CDB[5] = 0;
6759                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6760                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6761                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6762                        c->Request.CDB[9] = 0;
6763                        break;
6764                default:
6765                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6766                        BUG();
6767                }
6768        } else if (cmd_type == TYPE_MSG) {
6769                switch (cmd) {
6770
6771                case  HPSA_PHYS_TARGET_RESET:
6772                        c->Request.CDBLen = 16;
6773                        c->Request.type_attr_dir =
6774                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6775                        c->Request.Timeout = 0; /* Don't time out */
6776                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6777                        c->Request.CDB[0] = HPSA_RESET;
6778                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6779                        /* Physical target reset needs no control bytes 4-7*/
6780                        c->Request.CDB[4] = 0x00;
6781                        c->Request.CDB[5] = 0x00;
6782                        c->Request.CDB[6] = 0x00;
6783                        c->Request.CDB[7] = 0x00;
6784                        break;
6785                case  HPSA_DEVICE_RESET_MSG:
6786                        c->Request.CDBLen = 16;
6787                        c->Request.type_attr_dir =
6788                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789                        c->Request.Timeout = 0; /* Don't time out */
6790                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6791                        c->Request.CDB[0] =  cmd;
6792                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6793                        /* If bytes 4-7 are zero, it means reset the */
6794                        /* LunID device */
6795                        c->Request.CDB[4] = 0x00;
6796                        c->Request.CDB[5] = 0x00;
6797                        c->Request.CDB[6] = 0x00;
6798                        c->Request.CDB[7] = 0x00;
6799                        break;
6800                default:
6801                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6802                                cmd);
6803                        BUG();
6804                }
6805        } else {
6806                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6807                BUG();
6808        }
6809
6810        switch (GET_DIR(c->Request.type_attr_dir)) {
6811        case XFER_READ:
6812                dir = DMA_FROM_DEVICE;
6813                break;
6814        case XFER_WRITE:
6815                dir = DMA_TO_DEVICE;
6816                break;
6817        case XFER_NONE:
6818                dir = DMA_NONE;
6819                break;
6820        default:
6821                dir = DMA_BIDIRECTIONAL;
6822        }
6823        if (hpsa_map_one(h->pdev, c, buff, size, dir))
6824                return -1;
6825        return 0;
6826}
6827
6828/*
6829 * Map (physical) PCI mem into (virtual) kernel space
6830 */
6831static void __iomem *remap_pci_mem(ulong base, ulong size)
6832{
6833        ulong page_base = ((ulong) base) & PAGE_MASK;
6834        ulong page_offs = ((ulong) base) - page_base;
6835        void __iomem *page_remapped = ioremap_nocache(page_base,
6836                page_offs + size);
6837
6838        return page_remapped ? (page_remapped + page_offs) : NULL;
6839}
6840
6841static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6842{
6843        return h->access.command_completed(h, q);
6844}
6845
6846static inline bool interrupt_pending(struct ctlr_info *h)
6847{
6848        return h->access.intr_pending(h);
6849}
6850
6851static inline long interrupt_not_for_us(struct ctlr_info *h)
6852{
6853        return (h->access.intr_pending(h) == 0) ||
6854                (h->interrupts_enabled == 0);
6855}
6856
6857static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6858        u32 raw_tag)
6859{
6860        if (unlikely(tag_index >= h->nr_cmds)) {
6861                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6862                return 1;
6863        }
6864        return 0;
6865}
6866
6867static inline void finish_cmd(struct CommandList *c)
6868{
6869        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6870        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6871                        || c->cmd_type == CMD_IOACCEL2))
6872                complete_scsi_command(c);
6873        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6874                complete(c->waiting);
6875}
6876
6877/* process completion of an indexed ("direct lookup") command */
6878static inline void process_indexed_cmd(struct ctlr_info *h,
6879        u32 raw_tag)
6880{
6881        u32 tag_index;
6882        struct CommandList *c;
6883
6884        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6885        if (!bad_tag(h, tag_index, raw_tag)) {
6886                c = h->cmd_pool + tag_index;
6887                finish_cmd(c);
6888        }
6889}
6890
6891/* Some controllers, like p400, will give us one interrupt
6892 * after a soft reset, even if we turned interrupts off.
6893 * Only need to check for this in the hpsa_xxx_discard_completions
6894 * functions.
6895 */
6896static int ignore_bogus_interrupt(struct ctlr_info *h)
6897{
6898        if (likely(!reset_devices))
6899                return 0;
6900
6901        if (likely(h->interrupts_enabled))
6902                return 0;
6903
6904        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6905                "(known firmware bug.)  Ignoring.\n");
6906
6907        return 1;
6908}
6909
6910/*
6911 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6912 * Relies on (h-q[x] == x) being true for x such that
6913 * 0 <= x < MAX_REPLY_QUEUES.
6914 */
6915static struct ctlr_info *queue_to_hba(u8 *queue)
6916{
6917        return container_of((queue - *queue), struct ctlr_info, q[0]);
6918}
6919
6920static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6921{
6922        struct ctlr_info *h = queue_to_hba(queue);
6923        u8 q = *(u8 *) queue;
6924        u32 raw_tag;
6925
6926        if (ignore_bogus_interrupt(h))
6927                return IRQ_NONE;
6928
6929        if (interrupt_not_for_us(h))
6930                return IRQ_NONE;
6931        h->last_intr_timestamp = get_jiffies_64();
6932        while (interrupt_pending(h)) {
6933                raw_tag = get_next_completion(h, q);
6934                while (raw_tag != FIFO_EMPTY)
6935                        raw_tag = next_command(h, q);
6936        }
6937        return IRQ_HANDLED;
6938}
6939
6940static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6941{
6942        struct ctlr_info *h = queue_to_hba(queue);
6943        u32 raw_tag;
6944        u8 q = *(u8 *) queue;
6945
6946        if (ignore_bogus_interrupt(h))
6947                return IRQ_NONE;
6948
6949        h->last_intr_timestamp = get_jiffies_64();
6950        raw_tag = get_next_completion(h, q);
6951        while (raw_tag != FIFO_EMPTY)
6952                raw_tag = next_command(h, q);
6953        return IRQ_HANDLED;
6954}
6955
6956static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6957{
6958        struct ctlr_info *h = queue_to_hba((u8 *) queue);
6959        u32 raw_tag;
6960        u8 q = *(u8 *) queue;
6961
6962        if (interrupt_not_for_us(h))
6963                return IRQ_NONE;
6964        h->last_intr_timestamp = get_jiffies_64();
6965        while (interrupt_pending(h)) {
6966                raw_tag = get_next_completion(h, q);
6967                while (raw_tag != FIFO_EMPTY) {
6968                        process_indexed_cmd(h, raw_tag);
6969                        raw_tag = next_command(h, q);
6970                }
6971        }
6972        return IRQ_HANDLED;
6973}
6974
6975static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6976{
6977        struct ctlr_info *h = queue_to_hba(queue);
6978        u32 raw_tag;
6979        u8 q = *(u8 *) queue;
6980
6981        h->last_intr_timestamp = get_jiffies_64();
6982        raw_tag = get_next_completion(h, q);
6983        while (raw_tag != FIFO_EMPTY) {
6984                process_indexed_cmd(h, raw_tag);
6985                raw_tag = next_command(h, q);
6986        }
6987        return IRQ_HANDLED;
6988}
6989
6990/* Send a message CDB to the firmware. Careful, this only works
6991 * in simple mode, not performant mode due to the tag lookup.
6992 * We only ever use this immediately after a controller reset.
6993 */
6994static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6995                        unsigned char type)
6996{
6997        struct Command {
6998                struct CommandListHeader CommandHeader;
6999                struct RequestBlock Request;
7000                struct ErrDescriptor ErrorDescriptor;
7001        };
7002        struct Command *cmd;
7003        static const size_t cmd_sz = sizeof(*cmd) +
7004                                        sizeof(cmd->ErrorDescriptor);
7005        dma_addr_t paddr64;
7006        __le32 paddr32;
7007        u32 tag;
7008        void __iomem *vaddr;
7009        int i, err;
7010
7011        vaddr = pci_ioremap_bar(pdev, 0);
7012        if (vaddr == NULL)
7013                return -ENOMEM;
7014
7015        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7016         * CCISS commands, so they must be allocated from the lower 4GiB of
7017         * memory.
7018         */
7019        err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7020        if (err) {
7021                iounmap(vaddr);
7022                return err;
7023        }
7024
7025        cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7026        if (cmd == NULL) {
7027                iounmap(vaddr);
7028                return -ENOMEM;
7029        }
7030
7031        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7032         * although there's no guarantee, we assume that the address is at
7033         * least 4-byte aligned (most likely, it's page-aligned).
7034         */
7035        paddr32 = cpu_to_le32(paddr64);
7036
7037        cmd->CommandHeader.ReplyQueue = 0;
7038        cmd->CommandHeader.SGList = 0;
7039        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7040        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7041        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7042
7043        cmd->Request.CDBLen = 16;
7044        cmd->Request.type_attr_dir =
7045                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7046        cmd->Request.Timeout = 0; /* Don't time out */
7047        cmd->Request.CDB[0] = opcode;
7048        cmd->Request.CDB[1] = type;
7049        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7050        cmd->ErrorDescriptor.Addr =
7051                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7052        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7053
7054        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7055
7056        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7057                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7058                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7059                        break;
7060                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7061        }
7062
7063        iounmap(vaddr);
7064
7065        /* we leak the DMA buffer here ... no choice since the controller could
7066         *  still complete the command.
7067         */
7068        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7069                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7070                        opcode, type);
7071                return -ETIMEDOUT;
7072        }
7073
7074        dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7075
7076        if (tag & HPSA_ERROR_BIT) {
7077                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7078                        opcode, type);
7079                return -EIO;
7080        }
7081
7082        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7083                opcode, type);
7084        return 0;
7085}
7086
7087#define hpsa_noop(p) hpsa_message(p, 3, 0)
7088
7089static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7090        void __iomem *vaddr, u32 use_doorbell)
7091{
7092
7093        if (use_doorbell) {
7094                /* For everything after the P600, the PCI power state method
7095                 * of resetting the controller doesn't work, so we have this
7096                 * other way using the doorbell register.
7097                 */
7098                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7099                writel(use_doorbell, vaddr + SA5_DOORBELL);
7100
7101                /* PMC hardware guys tell us we need a 10 second delay after
7102                 * doorbell reset and before any attempt to talk to the board
7103                 * at all to ensure that this actually works and doesn't fall
7104                 * over in some weird corner cases.
7105                 */
7106                msleep(10000);
7107        } else { /* Try to do it the PCI power state way */
7108
7109                /* Quoting from the Open CISS Specification: "The Power
7110                 * Management Control/Status Register (CSR) controls the power
7111                 * state of the device.  The normal operating state is D0,
7112                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7113                 * the controller, place the interface device in D3 then to D0,
7114                 * this causes a secondary PCI reset which will reset the
7115                 * controller." */
7116
7117                int rc = 0;
7118
7119                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7120
7121                /* enter the D3hot power management state */
7122                rc = pci_set_power_state(pdev, PCI_D3hot);
7123                if (rc)
7124                        return rc;
7125
7126                msleep(500);
7127
7128                /* enter the D0 power management state */
7129                rc = pci_set_power_state(pdev, PCI_D0);
7130                if (rc)
7131                        return rc;
7132
7133                /*
7134                 * The P600 requires a small delay when changing states.
7135                 * Otherwise we may think the board did not reset and we bail.
7136                 * This for kdump only and is particular to the P600.
7137                 */
7138                msleep(500);
7139        }
7140        return 0;
7141}
7142
7143static void init_driver_version(char *driver_version, int len)
7144{
7145        memset(driver_version, 0, len);
7146        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7147}
7148
7149static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7150{
7151        char *driver_version;
7152        int i, size = sizeof(cfgtable->driver_version);
7153
7154        driver_version = kmalloc(size, GFP_KERNEL);
7155        if (!driver_version)
7156                return -ENOMEM;
7157
7158        init_driver_version(driver_version, size);
7159        for (i = 0; i < size; i++)
7160                writeb(driver_version[i], &cfgtable->driver_version[i]);
7161        kfree(driver_version);
7162        return 0;
7163}
7164
7165static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7166                                          unsigned char *driver_ver)
7167{
7168        int i;
7169
7170        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7171                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7172}
7173
7174static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7175{
7176
7177        char *driver_ver, *old_driver_ver;
7178        int rc, size = sizeof(cfgtable->driver_version);
7179
7180        old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7181        if (!old_driver_ver)
7182                return -ENOMEM;
7183        driver_ver = old_driver_ver + size;
7184
7185        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7186         * should have been changed, otherwise we know the reset failed.
7187         */
7188        init_driver_version(old_driver_ver, size);
7189        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7190        rc = !memcmp(driver_ver, old_driver_ver, size);
7191        kfree(old_driver_ver);
7192        return rc;
7193}
7194/* This does a hard reset of the controller using PCI power management
7195 * states or the using the doorbell register.
7196 */
7197static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7198{
7199        u64 cfg_offset;
7200        u32 cfg_base_addr;
7201        u64 cfg_base_addr_index;
7202        void __iomem *vaddr;
7203        unsigned long paddr;
7204        u32 misc_fw_support;
7205        int rc;
7206        struct CfgTable __iomem *cfgtable;
7207        u32 use_doorbell;
7208        u16 command_register;
7209
7210        /* For controllers as old as the P600, this is very nearly
7211         * the same thing as
7212         *
7213         * pci_save_state(pci_dev);
7214         * pci_set_power_state(pci_dev, PCI_D3hot);
7215         * pci_set_power_state(pci_dev, PCI_D0);
7216         * pci_restore_state(pci_dev);
7217         *
7218         * For controllers newer than the P600, the pci power state
7219         * method of resetting doesn't work so we have another way
7220         * using the doorbell register.
7221         */
7222
7223        if (!ctlr_is_resettable(board_id)) {
7224                dev_warn(&pdev->dev, "Controller not resettable\n");
7225                return -ENODEV;
7226        }
7227
7228        /* if controller is soft- but not hard resettable... */
7229        if (!ctlr_is_hard_resettable(board_id))
7230                return -ENOTSUPP; /* try soft reset later. */
7231
7232        /* Save the PCI command register */
7233        pci_read_config_word(pdev, 4, &command_register);
7234        pci_save_state(pdev);
7235
7236        /* find the first memory BAR, so we can find the cfg table */
7237        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7238        if (rc)
7239                return rc;
7240        vaddr = remap_pci_mem(paddr, 0x250);
7241        if (!vaddr)
7242                return -ENOMEM;
7243
7244        /* find cfgtable in order to check if reset via doorbell is supported */
7245        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7246                                        &cfg_base_addr_index, &cfg_offset);
7247        if (rc)
7248                goto unmap_vaddr;
7249        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7250                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7251        if (!cfgtable) {
7252                rc = -ENOMEM;
7253                goto unmap_vaddr;
7254        }
7255        rc = write_driver_ver_to_cfgtable(cfgtable);
7256        if (rc)
7257                goto unmap_cfgtable;
7258
7259        /* If reset via doorbell register is supported, use that.
7260         * There are two such methods.  Favor the newest method.
7261         */
7262        misc_fw_support = readl(&cfgtable->misc_fw_support);
7263        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7264        if (use_doorbell) {
7265                use_doorbell = DOORBELL_CTLR_RESET2;
7266        } else {
7267                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7268                if (use_doorbell) {
7269                        dev_warn(&pdev->dev,
7270                                "Soft reset not supported. Firmware update is required.\n");
7271                        rc = -ENOTSUPP; /* try soft reset */
7272                        goto unmap_cfgtable;
7273                }
7274        }
7275
7276        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7277        if (rc)
7278                goto unmap_cfgtable;
7279
7280        pci_restore_state(pdev);
7281        pci_write_config_word(pdev, 4, command_register);
7282
7283        /* Some devices (notably the HP Smart Array 5i Controller)
7284           need a little pause here */
7285        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7286
7287        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7288        if (rc) {
7289                dev_warn(&pdev->dev,
7290                        "Failed waiting for board to become ready after hard reset\n");
7291                goto unmap_cfgtable;
7292        }
7293
7294        rc = controller_reset_failed(vaddr);
7295        if (rc < 0)
7296                goto unmap_cfgtable;
7297        if (rc) {
7298                dev_warn(&pdev->dev, "Unable to successfully reset "
7299                        "controller. Will try soft reset.\n");
7300                rc = -ENOTSUPP;
7301        } else {
7302                dev_info(&pdev->dev, "board ready after hard reset.\n");
7303        }
7304
7305unmap_cfgtable:
7306        iounmap(cfgtable);
7307
7308unmap_vaddr:
7309        iounmap(vaddr);
7310        return rc;
7311}
7312
7313/*
7314 *  We cannot read the structure directly, for portability we must use
7315 *   the io functions.
7316 *   This is for debug only.
7317 */
7318static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7319{
7320#ifdef HPSA_DEBUG
7321        int i;
7322        char temp_name[17];
7323
7324        dev_info(dev, "Controller Configuration information\n");
7325        dev_info(dev, "------------------------------------\n");
7326        for (i = 0; i < 4; i++)
7327                temp_name[i] = readb(&(tb->Signature[i]));
7328        temp_name[4] = '\0';
7329        dev_info(dev, "   Signature = %s\n", temp_name);
7330        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7331        dev_info(dev, "   Transport methods supported = 0x%x\n",
7332               readl(&(tb->TransportSupport)));
7333        dev_info(dev, "   Transport methods active = 0x%x\n",
7334               readl(&(tb->TransportActive)));
7335        dev_info(dev, "   Requested transport Method = 0x%x\n",
7336               readl(&(tb->HostWrite.TransportRequest)));
7337        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7338               readl(&(tb->HostWrite.CoalIntDelay)));
7339        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7340               readl(&(tb->HostWrite.CoalIntCount)));
7341        dev_info(dev, "   Max outstanding commands = %d\n",
7342               readl(&(tb->CmdsOutMax)));
7343        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7344        for (i = 0; i < 16; i++)
7345                temp_name[i] = readb(&(tb->ServerName[i]));
7346        temp_name[16] = '\0';
7347        dev_info(dev, "   Server Name = %s\n", temp_name);
7348        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7349                readl(&(tb->HeartBeat)));
7350#endif                          /* HPSA_DEBUG */
7351}
7352
7353static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7354{
7355        int i, offset, mem_type, bar_type;
7356
7357        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7358                return 0;
7359        offset = 0;
7360        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7361                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7362                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7363                        offset += 4;
7364                else {
7365                        mem_type = pci_resource_flags(pdev, i) &
7366                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7367                        switch (mem_type) {
7368                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7369                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7370                                offset += 4;    /* 32 bit */
7371                                break;
7372                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7373                                offset += 8;
7374                                break;
7375                        default:        /* reserved in PCI 2.2 */
7376                                dev_warn(&pdev->dev,
7377                                       "base address is invalid\n");
7378                                return -1;
7379                                break;
7380                        }
7381                }
7382                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7383                        return i + 1;
7384        }
7385        return -1;
7386}
7387
7388static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7389{
7390        pci_free_irq_vectors(h->pdev);
7391        h->msix_vectors = 0;
7392}
7393
7394static void hpsa_setup_reply_map(struct ctlr_info *h)
7395{
7396        const struct cpumask *mask;
7397        unsigned int queue, cpu;
7398
7399        for (queue = 0; queue < h->msix_vectors; queue++) {
7400                mask = pci_irq_get_affinity(h->pdev, queue);
7401                if (!mask)
7402                        goto fallback;
7403
7404                for_each_cpu(cpu, mask)
7405                        h->reply_map[cpu] = queue;
7406        }
7407        return;
7408
7409fallback:
7410        for_each_possible_cpu(cpu)
7411                h->reply_map[cpu] = 0;
7412}
7413
7414/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7415 * controllers that are capable. If not, we use legacy INTx mode.
7416 */
7417static int hpsa_interrupt_mode(struct ctlr_info *h)
7418{
7419        unsigned int flags = PCI_IRQ_LEGACY;
7420        int ret;
7421
7422        /* Some boards advertise MSI but don't really support it */
7423        switch (h->board_id) {
7424        case 0x40700E11:
7425        case 0x40800E11:
7426        case 0x40820E11:
7427        case 0x40830E11:
7428                break;
7429        default:
7430                ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7431                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7432                if (ret > 0) {
7433                        h->msix_vectors = ret;
7434                        return 0;
7435                }
7436
7437                flags |= PCI_IRQ_MSI;
7438                break;
7439        }
7440
7441        ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7442        if (ret < 0)
7443                return ret;
7444        return 0;
7445}
7446
7447static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7448                                bool *legacy_board)
7449{
7450        int i;
7451        u32 subsystem_vendor_id, subsystem_device_id;
7452
7453        subsystem_vendor_id = pdev->subsystem_vendor;
7454        subsystem_device_id = pdev->subsystem_device;
7455        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7456                    subsystem_vendor_id;
7457
7458        if (legacy_board)
7459                *legacy_board = false;
7460        for (i = 0; i < ARRAY_SIZE(products); i++)
7461                if (*board_id == products[i].board_id) {
7462                        if (products[i].access != &SA5A_access &&
7463                            products[i].access != &SA5B_access)
7464                                return i;
7465                        dev_warn(&pdev->dev,
7466                                 "legacy board ID: 0x%08x\n",
7467                                 *board_id);
7468                        if (legacy_board)
7469                            *legacy_board = true;
7470                        return i;
7471                }
7472
7473        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7474        if (legacy_board)
7475                *legacy_board = true;
7476        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7477}
7478
7479static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480                                    unsigned long *memory_bar)
7481{
7482        int i;
7483
7484        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486                        /* addressing mode bits already removed */
7487                        *memory_bar = pci_resource_start(pdev, i);
7488                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489                                *memory_bar);
7490                        return 0;
7491                }
7492        dev_warn(&pdev->dev, "no memory BAR found\n");
7493        return -ENODEV;
7494}
7495
7496static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497                                     int wait_for_ready)
7498{
7499        int i, iterations;
7500        u32 scratchpad;
7501        if (wait_for_ready)
7502                iterations = HPSA_BOARD_READY_ITERATIONS;
7503        else
7504                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7505
7506        for (i = 0; i < iterations; i++) {
7507                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508                if (wait_for_ready) {
7509                        if (scratchpad == HPSA_FIRMWARE_READY)
7510                                return 0;
7511                } else {
7512                        if (scratchpad != HPSA_FIRMWARE_READY)
7513                                return 0;
7514                }
7515                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7516        }
7517        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518        return -ENODEV;
7519}
7520
7521static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523                               u64 *cfg_offset)
7524{
7525        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527        *cfg_base_addr &= (u32) 0x0000ffff;
7528        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529        if (*cfg_base_addr_index == -1) {
7530                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531                return -ENODEV;
7532        }
7533        return 0;
7534}
7535
7536static void hpsa_free_cfgtables(struct ctlr_info *h)
7537{
7538        if (h->transtable) {
7539                iounmap(h->transtable);
7540                h->transtable = NULL;
7541        }
7542        if (h->cfgtable) {
7543                iounmap(h->cfgtable);
7544                h->cfgtable = NULL;
7545        }
7546}
7547
7548/* Find and map CISS config table and transfer table
7549+ * several items must be unmapped (freed) later
7550+ * */
7551static int hpsa_find_cfgtables(struct ctlr_info *h)
7552{
7553        u64 cfg_offset;
7554        u32 cfg_base_addr;
7555        u64 cfg_base_addr_index;
7556        u32 trans_offset;
7557        int rc;
7558
7559        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560                &cfg_base_addr_index, &cfg_offset);
7561        if (rc)
7562                return rc;
7563        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565        if (!h->cfgtable) {
7566                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567                return -ENOMEM;
7568        }
7569        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570        if (rc)
7571                return rc;
7572        /* Find performant mode table. */
7573        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575                                cfg_base_addr_index)+cfg_offset+trans_offset,
7576                                sizeof(*h->transtable));
7577        if (!h->transtable) {
7578                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579                hpsa_free_cfgtables(h);
7580                return -ENOMEM;
7581        }
7582        return 0;
7583}
7584
7585static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7586{
7587#define MIN_MAX_COMMANDS 16
7588        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7589
7590        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7591
7592        /* Limit commands in memory limited kdump scenario. */
7593        if (reset_devices && h->max_commands > 32)
7594                h->max_commands = 32;
7595
7596        if (h->max_commands < MIN_MAX_COMMANDS) {
7597                dev_warn(&h->pdev->dev,
7598                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599                        h->max_commands,
7600                        MIN_MAX_COMMANDS);
7601                h->max_commands = MIN_MAX_COMMANDS;
7602        }
7603}
7604
7605/* If the controller reports that the total max sg entries is greater than 512,
7606 * then we know that chained SG blocks work.  (Original smart arrays did not
7607 * support chained SG blocks and would return zero for max sg entries.)
7608 */
7609static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7610{
7611        return h->maxsgentries > 512;
7612}
7613
7614/* Interrogate the hardware for some limits:
7615 * max commands, max SG elements without chaining, and with chaining,
7616 * SG chain block size, etc.
7617 */
7618static void hpsa_find_board_params(struct ctlr_info *h)
7619{
7620        hpsa_get_max_perf_mode_cmds(h);
7621        h->nr_cmds = h->max_commands;
7622        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624        if (hpsa_supports_chained_sg_blocks(h)) {
7625                /* Limit in-command s/g elements to 32 save dma'able memory. */
7626                h->max_cmd_sg_entries = 32;
7627                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628                h->maxsgentries--; /* save one for chain pointer */
7629        } else {
7630                /*
7631                 * Original smart arrays supported at most 31 s/g entries
7632                 * embedded inline in the command (trying to use more
7633                 * would lock up the controller)
7634                 */
7635                h->max_cmd_sg_entries = 31;
7636                h->maxsgentries = 31; /* default to traditional values */
7637                h->chainsize = 0;
7638        }
7639
7640        /* Find out what task management functions are supported and cache */
7641        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7648}
7649
7650static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7651{
7652        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654                return false;
7655        }
7656        return true;
7657}
7658
7659static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7660{
7661        u32 driver_support;
7662
7663        driver_support = readl(&(h->cfgtable->driver_support));
7664        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665#ifdef CONFIG_X86
7666        driver_support |= ENABLE_SCSI_PREFETCH;
7667#endif
7668        driver_support |= ENABLE_UNIT_ATTN;
7669        writel(driver_support, &(h->cfgtable->driver_support));
7670}
7671
7672/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7673 * in a prefetch beyond physical memory.
7674 */
7675static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7676{
7677        u32 dma_prefetch;
7678
7679        if (h->board_id != 0x3225103C)
7680                return;
7681        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682        dma_prefetch |= 0x8000;
7683        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7684}
7685
7686static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7687{
7688        int i;
7689        u32 doorbell_value;
7690        unsigned long flags;
7691        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693                spin_lock_irqsave(&h->lock, flags);
7694                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                spin_unlock_irqrestore(&h->lock, flags);
7696                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697                        goto done;
7698                /* delay and try again */
7699                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7700        }
7701        return -ENODEV;
7702done:
7703        return 0;
7704}
7705
7706static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7707{
7708        int i;
7709        u32 doorbell_value;
7710        unsigned long flags;
7711
7712        /* under certain very rare conditions, this can take awhile.
7713         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714         * as we enter this code.)
7715         */
7716        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717                if (h->remove_in_progress)
7718                        goto done;
7719                spin_lock_irqsave(&h->lock, flags);
7720                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721                spin_unlock_irqrestore(&h->lock, flags);
7722                if (!(doorbell_value & CFGTBL_ChangeReq))
7723                        goto done;
7724                /* delay and try again */
7725                msleep(MODE_CHANGE_WAIT_INTERVAL);
7726        }
7727        return -ENODEV;
7728done:
7729        return 0;
7730}
7731
7732/* return -ENODEV or other reason on error, 0 on success */
7733static int hpsa_enter_simple_mode(struct ctlr_info *h)
7734{
7735        u32 trans_support;
7736
7737        trans_support = readl(&(h->cfgtable->TransportSupport));
7738        if (!(trans_support & SIMPLE_MODE))
7739                return -ENOTSUPP;
7740
7741        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7742
7743        /* Update the field, and then ring the doorbell */
7744        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747        if (hpsa_wait_for_mode_change_ack(h))
7748                goto error;
7749        print_cfg_table(&h->pdev->dev, h->cfgtable);
7750        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751                goto error;
7752        h->transMethod = CFGTBL_Trans_Simple;
7753        return 0;
7754error:
7755        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756        return -ENODEV;
7757}
7758
7759/* free items allocated or mapped by hpsa_pci_init */
7760static void hpsa_free_pci_init(struct ctlr_info *h)
7761{
7762        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7763        iounmap(h->vaddr);                      /* pci_init 3 */
7764        h->vaddr = NULL;
7765        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7766        /*
7767         * call pci_disable_device before pci_release_regions per
7768         * Documentation/PCI/pci.txt
7769         */
7770        pci_disable_device(h->pdev);            /* pci_init 1 */
7771        pci_release_regions(h->pdev);           /* pci_init 2 */
7772}
7773
7774/* several items must be freed later */
7775static int hpsa_pci_init(struct ctlr_info *h)
7776{
7777        int prod_index, err;
7778        bool legacy_board;
7779
7780        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7781        if (prod_index < 0)
7782                return prod_index;
7783        h->product_name = products[prod_index].product_name;
7784        h->access = *(products[prod_index].access);
7785        h->legacy_board = legacy_board;
7786        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7787                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7788
7789        err = pci_enable_device(h->pdev);
7790        if (err) {
7791                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7792                pci_disable_device(h->pdev);
7793                return err;
7794        }
7795
7796        err = pci_request_regions(h->pdev, HPSA);
7797        if (err) {
7798                dev_err(&h->pdev->dev,
7799                        "failed to obtain PCI resources\n");
7800                pci_disable_device(h->pdev);
7801                return err;
7802        }
7803
7804        pci_set_master(h->pdev);
7805
7806        err = hpsa_interrupt_mode(h);
7807        if (err)
7808                goto clean1;
7809
7810        /* setup mapping between CPU and reply queue */
7811        hpsa_setup_reply_map(h);
7812
7813        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7814        if (err)
7815                goto clean2;    /* intmode+region, pci */
7816        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7817        if (!h->vaddr) {
7818                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7819                err = -ENOMEM;
7820                goto clean2;    /* intmode+region, pci */
7821        }
7822        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7823        if (err)
7824                goto clean3;    /* vaddr, intmode+region, pci */
7825        err = hpsa_find_cfgtables(h);
7826        if (err)
7827                goto clean3;    /* vaddr, intmode+region, pci */
7828        hpsa_find_board_params(h);
7829
7830        if (!hpsa_CISS_signature_present(h)) {
7831                err = -ENODEV;
7832                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7833        }
7834        hpsa_set_driver_support_bits(h);
7835        hpsa_p600_dma_prefetch_quirk(h);
7836        err = hpsa_enter_simple_mode(h);
7837        if (err)
7838                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7839        return 0;
7840
7841clean4: /* cfgtables, vaddr, intmode+region, pci */
7842        hpsa_free_cfgtables(h);
7843clean3: /* vaddr, intmode+region, pci */
7844        iounmap(h->vaddr);
7845        h->vaddr = NULL;
7846clean2: /* intmode+region, pci */
7847        hpsa_disable_interrupt_mode(h);
7848clean1:
7849        /*
7850         * call pci_disable_device before pci_release_regions per
7851         * Documentation/PCI/pci.txt
7852         */
7853        pci_disable_device(h->pdev);
7854        pci_release_regions(h->pdev);
7855        return err;
7856}
7857
7858static void hpsa_hba_inquiry(struct ctlr_info *h)
7859{
7860        int rc;
7861
7862#define HBA_INQUIRY_BYTE_COUNT 64
7863        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7864        if (!h->hba_inquiry_data)
7865                return;
7866        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7867                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7868        if (rc != 0) {
7869                kfree(h->hba_inquiry_data);
7870                h->hba_inquiry_data = NULL;
7871        }
7872}
7873
7874static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7875{
7876        int rc, i;
7877        void __iomem *vaddr;
7878
7879        if (!reset_devices)
7880                return 0;
7881
7882        /* kdump kernel is loading, we don't know in which state is
7883         * the pci interface. The dev->enable_cnt is equal zero
7884         * so we call enable+disable, wait a while and switch it on.
7885         */
7886        rc = pci_enable_device(pdev);
7887        if (rc) {
7888                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7889                return -ENODEV;
7890        }
7891        pci_disable_device(pdev);
7892        msleep(260);                    /* a randomly chosen number */
7893        rc = pci_enable_device(pdev);
7894        if (rc) {
7895                dev_warn(&pdev->dev, "failed to enable device.\n");
7896                return -ENODEV;
7897        }
7898
7899        pci_set_master(pdev);
7900
7901        vaddr = pci_ioremap_bar(pdev, 0);
7902        if (vaddr == NULL) {
7903                rc = -ENOMEM;
7904                goto out_disable;
7905        }
7906        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7907        iounmap(vaddr);
7908
7909        /* Reset the controller with a PCI power-cycle or via doorbell */
7910        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7911
7912        /* -ENOTSUPP here means we cannot reset the controller
7913         * but it's already (and still) up and running in
7914         * "performant mode".  Or, it might be 640x, which can't reset
7915         * due to concerns about shared bbwc between 6402/6404 pair.
7916         */
7917        if (rc)
7918                goto out_disable;
7919
7920        /* Now try to get the controller to respond to a no-op */
7921        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7922        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7923                if (hpsa_noop(pdev) == 0)
7924                        break;
7925                else
7926                        dev_warn(&pdev->dev, "no-op failed%s\n",
7927                                        (i < 11 ? "; re-trying" : ""));
7928        }
7929
7930out_disable:
7931
7932        pci_disable_device(pdev);
7933        return rc;
7934}
7935
7936static void hpsa_free_cmd_pool(struct ctlr_info *h)
7937{
7938        kfree(h->cmd_pool_bits);
7939        h->cmd_pool_bits = NULL;
7940        if (h->cmd_pool) {
7941                dma_free_coherent(&h->pdev->dev,
7942                                h->nr_cmds * sizeof(struct CommandList),
7943                                h->cmd_pool,
7944                                h->cmd_pool_dhandle);
7945                h->cmd_pool = NULL;
7946                h->cmd_pool_dhandle = 0;
7947        }
7948        if (h->errinfo_pool) {
7949                dma_free_coherent(&h->pdev->dev,
7950                                h->nr_cmds * sizeof(struct ErrorInfo),
7951                                h->errinfo_pool,
7952                                h->errinfo_pool_dhandle);
7953                h->errinfo_pool = NULL;
7954                h->errinfo_pool_dhandle = 0;
7955        }
7956}
7957
7958static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7959{
7960        h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7961                                   sizeof(unsigned long),
7962                                   GFP_KERNEL);
7963        h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7964                    h->nr_cmds * sizeof(*h->cmd_pool),
7965                    &h->cmd_pool_dhandle, GFP_KERNEL);
7966        h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7967                    h->nr_cmds * sizeof(*h->errinfo_pool),
7968                    &h->errinfo_pool_dhandle, GFP_KERNEL);
7969        if ((h->cmd_pool_bits == NULL)
7970            || (h->cmd_pool == NULL)
7971            || (h->errinfo_pool == NULL)) {
7972                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7973                goto clean_up;
7974        }
7975        hpsa_preinitialize_commands(h);
7976        return 0;
7977clean_up:
7978        hpsa_free_cmd_pool(h);
7979        return -ENOMEM;
7980}
7981
7982/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7983static void hpsa_free_irqs(struct ctlr_info *h)
7984{
7985        int i;
7986
7987        if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7988                /* Single reply queue, only one irq to free */
7989                free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7990                h->q[h->intr_mode] = 0;
7991                return;
7992        }
7993
7994        for (i = 0; i < h->msix_vectors; i++) {
7995                free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7996                h->q[i] = 0;
7997        }
7998        for (; i < MAX_REPLY_QUEUES; i++)
7999                h->q[i] = 0;
8000}
8001
8002/* returns 0 on success; cleans up and returns -Enn on error */
8003static int hpsa_request_irqs(struct ctlr_info *h,
8004        irqreturn_t (*msixhandler)(int, void *),
8005        irqreturn_t (*intxhandler)(int, void *))
8006{
8007        int rc, i;
8008
8009        /*
8010         * initialize h->q[x] = x so that interrupt handlers know which
8011         * queue to process.
8012         */
8013        for (i = 0; i < MAX_REPLY_QUEUES; i++)
8014                h->q[i] = (u8) i;
8015
8016        if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8017                /* If performant mode and MSI-X, use multiple reply queues */
8018                for (i = 0; i < h->msix_vectors; i++) {
8019                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8020                        rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8021                                        0, h->intrname[i],
8022                                        &h->q[i]);
8023                        if (rc) {
8024                                int j;
8025
8026                                dev_err(&h->pdev->dev,
8027                                        "failed to get irq %d for %s\n",
8028                                       pci_irq_vector(h->pdev, i), h->devname);
8029                                for (j = 0; j < i; j++) {
8030                                        free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8031                                        h->q[j] = 0;
8032                                }
8033                                for (; j < MAX_REPLY_QUEUES; j++)
8034                                        h->q[j] = 0;
8035                                return rc;
8036                        }
8037                }
8038        } else {
8039                /* Use single reply pool */
8040                if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8041                        sprintf(h->intrname[0], "%s-msi%s", h->devname,
8042                                h->msix_vectors ? "x" : "");
8043                        rc = request_irq(pci_irq_vector(h->pdev, 0),
8044                                msixhandler, 0,
8045                                h->intrname[0],
8046                                &h->q[h->intr_mode]);
8047                } else {
8048                        sprintf(h->intrname[h->intr_mode],
8049                                "%s-intx", h->devname);
8050                        rc = request_irq(pci_irq_vector(h->pdev, 0),
8051                                intxhandler, IRQF_SHARED,
8052                                h->intrname[0],
8053                                &h->q[h->intr_mode]);
8054                }
8055        }
8056        if (rc) {
8057                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8058                       pci_irq_vector(h->pdev, 0), h->devname);
8059                hpsa_free_irqs(h);
8060                return -ENODEV;
8061        }
8062        return 0;
8063}
8064
8065static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8066{
8067        int rc;
8068        hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8069
8070        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8071        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8072        if (rc) {
8073                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8074                return rc;
8075        }
8076
8077        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8078        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8079        if (rc) {
8080                dev_warn(&h->pdev->dev, "Board failed to become ready "
8081                        "after soft reset.\n");
8082                return rc;
8083        }
8084
8085        return 0;
8086}
8087
8088static void hpsa_free_reply_queues(struct ctlr_info *h)
8089{
8090        int i;
8091
8092        for (i = 0; i < h->nreply_queues; i++) {
8093                if (!h->reply_queue[i].head)
8094                        continue;
8095                dma_free_coherent(&h->pdev->dev,
8096                                        h->reply_queue_size,
8097                                        h->reply_queue[i].head,
8098                                        h->reply_queue[i].busaddr);
8099                h->reply_queue[i].head = NULL;
8100                h->reply_queue[i].busaddr = 0;
8101        }
8102        h->reply_queue_size = 0;
8103}
8104
8105static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8106{
8107        hpsa_free_performant_mode(h);           /* init_one 7 */
8108        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8109        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8110        hpsa_free_irqs(h);                      /* init_one 4 */
8111        scsi_host_put(h->scsi_host);            /* init_one 3 */
8112        h->scsi_host = NULL;                    /* init_one 3 */
8113        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8114        free_percpu(h->lockup_detected);        /* init_one 2 */
8115        h->lockup_detected = NULL;              /* init_one 2 */
8116        if (h->resubmit_wq) {
8117                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8118                h->resubmit_wq = NULL;
8119        }
8120        if (h->rescan_ctlr_wq) {
8121                destroy_workqueue(h->rescan_ctlr_wq);
8122                h->rescan_ctlr_wq = NULL;
8123        }
8124        kfree(h);                               /* init_one 1 */
8125}
8126
8127/* Called when controller lockup detected. */
8128static void fail_all_outstanding_cmds(struct ctlr_info *h)
8129{
8130        int i, refcount;
8131        struct CommandList *c;
8132        int failcount = 0;
8133
8134        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8135        for (i = 0; i < h->nr_cmds; i++) {
8136                c = h->cmd_pool + i;
8137                refcount = atomic_inc_return(&c->refcount);
8138                if (refcount > 1) {
8139                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8140                        finish_cmd(c);
8141                        atomic_dec(&h->commands_outstanding);
8142                        failcount++;
8143                }
8144                cmd_free(h, c);
8145        }
8146        dev_warn(&h->pdev->dev,
8147                "failed %d commands in fail_all\n", failcount);
8148}
8149
8150static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8151{
8152        int cpu;
8153
8154        for_each_online_cpu(cpu) {
8155                u32 *lockup_detected;
8156                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8157                *lockup_detected = value;
8158        }
8159        wmb(); /* be sure the per-cpu variables are out to memory */
8160}
8161
8162static void controller_lockup_detected(struct ctlr_info *h)
8163{
8164        unsigned long flags;
8165        u32 lockup_detected;
8166
8167        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8168        spin_lock_irqsave(&h->lock, flags);
8169        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8170        if (!lockup_detected) {
8171                /* no heartbeat, but controller gave us a zero. */
8172                dev_warn(&h->pdev->dev,
8173                        "lockup detected after %d but scratchpad register is zero\n",
8174                        h->heartbeat_sample_interval / HZ);
8175                lockup_detected = 0xffffffff;
8176        }
8177        set_lockup_detected_for_all_cpus(h, lockup_detected);
8178        spin_unlock_irqrestore(&h->lock, flags);
8179        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8180                        lockup_detected, h->heartbeat_sample_interval / HZ);
8181        if (lockup_detected == 0xffff0000) {
8182                dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8183                writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8184        }
8185        pci_disable_device(h->pdev);
8186        fail_all_outstanding_cmds(h);
8187}
8188
8189static int detect_controller_lockup(struct ctlr_info *h)
8190{
8191        u64 now;
8192        u32 heartbeat;
8193        unsigned long flags;
8194
8195        now = get_jiffies_64();
8196        /* If we've received an interrupt recently, we're ok. */
8197        if (time_after64(h->last_intr_timestamp +
8198                                (h->heartbeat_sample_interval), now))
8199                return false;
8200
8201        /*
8202         * If we've already checked the heartbeat recently, we're ok.
8203         * This could happen if someone sends us a signal. We
8204         * otherwise don't care about signals in this thread.
8205         */
8206        if (time_after64(h->last_heartbeat_timestamp +
8207                                (h->heartbeat_sample_interval), now))
8208                return false;
8209
8210        /* If heartbeat has not changed since we last looked, we're not ok. */
8211        spin_lock_irqsave(&h->lock, flags);
8212        heartbeat = readl(&h->cfgtable->HeartBeat);
8213        spin_unlock_irqrestore(&h->lock, flags);
8214        if (h->last_heartbeat == heartbeat) {
8215                controller_lockup_detected(h);
8216                return true;
8217        }
8218
8219        /* We're ok. */
8220        h->last_heartbeat = heartbeat;
8221        h->last_heartbeat_timestamp = now;
8222        return false;
8223}
8224
8225/*
8226 * Set ioaccel status for all ioaccel volumes.
8227 *
8228 * Called from monitor controller worker (hpsa_event_monitor_worker)
8229 *
8230 * A Volume (or Volumes that comprise an Array set may be undergoing a
8231 * transformation, so we will be turning off ioaccel for all volumes that
8232 * make up the Array.
8233 */
8234static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8235{
8236        int rc;
8237        int i;
8238        u8 ioaccel_status;
8239        unsigned char *buf;
8240        struct hpsa_scsi_dev_t *device;
8241
8242        if (!h)
8243                return;
8244
8245        buf = kmalloc(64, GFP_KERNEL);
8246        if (!buf)
8247                return;
8248
8249        /*
8250         * Run through current device list used during I/O requests.
8251         */
8252        for (i = 0; i < h->ndevices; i++) {
8253                device = h->dev[i];
8254
8255                if (!device)
8256                        continue;
8257                if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8258                                                HPSA_VPD_LV_IOACCEL_STATUS))
8259                        continue;
8260
8261                memset(buf, 0, 64);
8262
8263                rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8264                                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8265                                        buf, 64);
8266                if (rc != 0)
8267                        continue;
8268
8269                ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8270                device->offload_config =
8271                                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8272                if (device->offload_config)
8273                        device->offload_to_be_enabled =
8274                                !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8275
8276                /*
8277                 * Immediately turn off ioaccel for any volume the
8278                 * controller tells us to. Some of the reasons could be:
8279                 *    transformation - change to the LVs of an Array.
8280                 *    degraded volume - component failure
8281                 *
8282                 * If ioaccel is to be re-enabled, re-enable later during the
8283                 * scan operation so the driver can get a fresh raidmap
8284                 * before turning ioaccel back on.
8285                 *
8286                 */
8287                if (!device->offload_to_be_enabled)
8288                        device->offload_enabled = 0;
8289        }
8290
8291        kfree(buf);
8292}
8293
8294static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8295{
8296        char *event_type;
8297
8298        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8299                return;
8300
8301        /* Ask the controller to clear the events we're handling. */
8302        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8303                        | CFGTBL_Trans_io_accel2)) &&
8304                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8305                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8306
8307                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8308                        event_type = "state change";
8309                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8310                        event_type = "configuration change";
8311                /* Stop sending new RAID offload reqs via the IO accelerator */
8312                scsi_block_requests(h->scsi_host);
8313                hpsa_set_ioaccel_status(h);
8314                hpsa_drain_accel_commands(h);
8315                /* Set 'accelerator path config change' bit */
8316                dev_warn(&h->pdev->dev,
8317                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8318                        h->events, event_type);
8319                writel(h->events, &(h->cfgtable->clear_event_notify));
8320                /* Set the "clear event notify field update" bit 6 */
8321                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8322                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8323                hpsa_wait_for_clear_event_notify_ack(h);
8324                scsi_unblock_requests(h->scsi_host);
8325        } else {
8326                /* Acknowledge controller notification events. */
8327                writel(h->events, &(h->cfgtable->clear_event_notify));
8328                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8329                hpsa_wait_for_clear_event_notify_ack(h);
8330        }
8331        return;
8332}
8333
8334/* Check a register on the controller to see if there are configuration
8335 * changes (added/changed/removed logical drives, etc.) which mean that
8336 * we should rescan the controller for devices.
8337 * Also check flag for driver-initiated rescan.
8338 */
8339static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8340{
8341        if (h->drv_req_rescan) {
8342                h->drv_req_rescan = 0;
8343                return 1;
8344        }
8345
8346        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8347                return 0;
8348
8349        h->events = readl(&(h->cfgtable->event_notify));
8350        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8351}
8352
8353/*
8354 * Check if any of the offline devices have become ready
8355 */
8356static int hpsa_offline_devices_ready(struct ctlr_info *h)
8357{
8358        unsigned long flags;
8359        struct offline_device_entry *d;
8360        struct list_head *this, *tmp;
8361
8362        spin_lock_irqsave(&h->offline_device_lock, flags);
8363        list_for_each_safe(this, tmp, &h->offline_device_list) {
8364                d = list_entry(this, struct offline_device_entry,
8365                                offline_list);
8366                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8367                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8368                        spin_lock_irqsave(&h->offline_device_lock, flags);
8369                        list_del(&d->offline_list);
8370                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8371                        return 1;
8372                }
8373                spin_lock_irqsave(&h->offline_device_lock, flags);
8374        }
8375        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8376        return 0;
8377}
8378
8379static int hpsa_luns_changed(struct ctlr_info *h)
8380{
8381        int rc = 1; /* assume there are changes */
8382        struct ReportLUNdata *logdev = NULL;
8383
8384        /* if we can't find out if lun data has changed,
8385         * assume that it has.
8386         */
8387
8388        if (!h->lastlogicals)
8389                return rc;
8390
8391        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8392        if (!logdev)
8393                return rc;
8394
8395        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8396                dev_warn(&h->pdev->dev,
8397                        "report luns failed, can't track lun changes.\n");
8398                goto out;
8399        }
8400        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8401                dev_info(&h->pdev->dev,
8402                        "Lun changes detected.\n");
8403                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8404                goto out;
8405        } else
8406                rc = 0; /* no changes detected. */
8407out:
8408        kfree(logdev);
8409        return rc;
8410}
8411
8412static void hpsa_perform_rescan(struct ctlr_info *h)
8413{
8414        struct Scsi_Host *sh = NULL;
8415        unsigned long flags;
8416
8417        /*
8418         * Do the scan after the reset
8419         */
8420        spin_lock_irqsave(&h->reset_lock, flags);
8421        if (h->reset_in_progress) {
8422                h->drv_req_rescan = 1;
8423                spin_unlock_irqrestore(&h->reset_lock, flags);
8424                return;
8425        }
8426        spin_unlock_irqrestore(&h->reset_lock, flags);
8427
8428        sh = scsi_host_get(h->scsi_host);
8429        if (sh != NULL) {
8430                hpsa_scan_start(sh);
8431                scsi_host_put(sh);
8432                h->drv_req_rescan = 0;
8433        }
8434}
8435
8436/*
8437 * watch for controller events
8438 */
8439static void hpsa_event_monitor_worker(struct work_struct *work)
8440{
8441        struct ctlr_info *h = container_of(to_delayed_work(work),
8442                                        struct ctlr_info, event_monitor_work);
8443        unsigned long flags;
8444
8445        spin_lock_irqsave(&h->lock, flags);
8446        if (h->remove_in_progress) {
8447                spin_unlock_irqrestore(&h->lock, flags);
8448                return;
8449        }
8450        spin_unlock_irqrestore(&h->lock, flags);
8451
8452        if (hpsa_ctlr_needs_rescan(h)) {
8453                hpsa_ack_ctlr_events(h);
8454                hpsa_perform_rescan(h);
8455        }
8456
8457        spin_lock_irqsave(&h->lock, flags);
8458        if (!h->remove_in_progress)
8459                schedule_delayed_work(&h->event_monitor_work,
8460                                        HPSA_EVENT_MONITOR_INTERVAL);
8461        spin_unlock_irqrestore(&h->lock, flags);
8462}
8463
8464static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8465{
8466        unsigned long flags;
8467        struct ctlr_info *h = container_of(to_delayed_work(work),
8468                                        struct ctlr_info, rescan_ctlr_work);
8469
8470        spin_lock_irqsave(&h->lock, flags);
8471        if (h->remove_in_progress) {
8472                spin_unlock_irqrestore(&h->lock, flags);
8473                return;
8474        }
8475        spin_unlock_irqrestore(&h->lock, flags);
8476
8477        if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8478                hpsa_perform_rescan(h);
8479        } else if (h->discovery_polling) {
8480                if (hpsa_luns_changed(h)) {
8481                        dev_info(&h->pdev->dev,
8482                                "driver discovery polling rescan.\n");
8483                        hpsa_perform_rescan(h);
8484                }
8485        }
8486        spin_lock_irqsave(&h->lock, flags);
8487        if (!h->remove_in_progress)
8488                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8489                                h->heartbeat_sample_interval);
8490        spin_unlock_irqrestore(&h->lock, flags);
8491}
8492
8493static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8494{
8495        unsigned long flags;
8496        struct ctlr_info *h = container_of(to_delayed_work(work),
8497                                        struct ctlr_info, monitor_ctlr_work);
8498
8499        detect_controller_lockup(h);
8500        if (lockup_detected(h))
8501                return;
8502
8503        spin_lock_irqsave(&h->lock, flags);
8504        if (!h->remove_in_progress)
8505                schedule_delayed_work(&h->monitor_ctlr_work,
8506                                h->heartbeat_sample_interval);
8507        spin_unlock_irqrestore(&h->lock, flags);
8508}
8509
8510static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8511                                                char *name)
8512{
8513        struct workqueue_struct *wq = NULL;
8514
8515        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8516        if (!wq)
8517                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8518
8519        return wq;
8520}
8521
8522static void hpda_free_ctlr_info(struct ctlr_info *h)
8523{
8524        kfree(h->reply_map);
8525        kfree(h);
8526}
8527
8528static struct ctlr_info *hpda_alloc_ctlr_info(void)
8529{
8530        struct ctlr_info *h;
8531
8532        h = kzalloc(sizeof(*h), GFP_KERNEL);
8533        if (!h)
8534                return NULL;
8535
8536        h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8537        if (!h->reply_map) {
8538                kfree(h);
8539                return NULL;
8540        }
8541        return h;
8542}
8543
8544static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8545{
8546        int dac, rc;
8547        struct ctlr_info *h;
8548        int try_soft_reset = 0;
8549        unsigned long flags;
8550        u32 board_id;
8551
8552        if (number_of_controllers == 0)
8553                printk(KERN_INFO DRIVER_NAME "\n");
8554
8555        rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8556        if (rc < 0) {
8557                dev_warn(&pdev->dev, "Board ID not found\n");
8558                return rc;
8559        }
8560
8561        rc = hpsa_init_reset_devices(pdev, board_id);
8562        if (rc) {
8563                if (rc != -ENOTSUPP)
8564                        return rc;
8565                /* If the reset fails in a particular way (it has no way to do
8566                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8567                 * a soft reset once we get the controller configured up to the
8568                 * point that it can accept a command.
8569                 */
8570                try_soft_reset = 1;
8571                rc = 0;
8572        }
8573
8574reinit_after_soft_reset:
8575
8576        /* Command structures must be aligned on a 32-byte boundary because
8577         * the 5 lower bits of the address are used by the hardware. and by
8578         * the driver.  See comments in hpsa.h for more info.
8579         */
8580        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8581        h = hpda_alloc_ctlr_info();
8582        if (!h) {
8583                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8584                return -ENOMEM;
8585        }
8586
8587        h->pdev = pdev;
8588
8589        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8590        INIT_LIST_HEAD(&h->offline_device_list);
8591        spin_lock_init(&h->lock);
8592        spin_lock_init(&h->offline_device_lock);
8593        spin_lock_init(&h->scan_lock);
8594        spin_lock_init(&h->reset_lock);
8595        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8596
8597        /* Allocate and clear per-cpu variable lockup_detected */
8598        h->lockup_detected = alloc_percpu(u32);
8599        if (!h->lockup_detected) {
8600                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8601                rc = -ENOMEM;
8602                goto clean1;    /* aer/h */
8603        }
8604        set_lockup_detected_for_all_cpus(h, 0);
8605
8606        rc = hpsa_pci_init(h);
8607        if (rc)
8608                goto clean2;    /* lu, aer/h */
8609
8610        /* relies on h-> settings made by hpsa_pci_init, including
8611         * interrupt_mode h->intr */
8612        rc = hpsa_scsi_host_alloc(h);
8613        if (rc)
8614                goto clean2_5;  /* pci, lu, aer/h */
8615
8616        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8617        h->ctlr = number_of_controllers;
8618        number_of_controllers++;
8619
8620        /* configure PCI DMA stuff */
8621        rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8622        if (rc == 0) {
8623                dac = 1;
8624        } else {
8625                rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8626                if (rc == 0) {
8627                        dac = 0;
8628                } else {
8629                        dev_err(&pdev->dev, "no suitable DMA available\n");
8630                        goto clean3;    /* shost, pci, lu, aer/h */
8631                }
8632        }
8633
8634        /* make sure the board interrupts are off */
8635        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8636
8637        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8638        if (rc)
8639                goto clean3;    /* shost, pci, lu, aer/h */
8640        rc = hpsa_alloc_cmd_pool(h);
8641        if (rc)
8642                goto clean4;    /* irq, shost, pci, lu, aer/h */
8643        rc = hpsa_alloc_sg_chain_blocks(h);
8644        if (rc)
8645                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8646        init_waitqueue_head(&h->scan_wait_queue);
8647        init_waitqueue_head(&h->event_sync_wait_queue);
8648        mutex_init(&h->reset_mutex);
8649        h->scan_finished = 1; /* no scan currently in progress */
8650        h->scan_waiting = 0;
8651
8652        pci_set_drvdata(pdev, h);
8653        h->ndevices = 0;
8654
8655        spin_lock_init(&h->devlock);
8656        rc = hpsa_put_ctlr_into_performant_mode(h);
8657        if (rc)
8658                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8659
8660        /* create the resubmit workqueue */
8661        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8662        if (!h->rescan_ctlr_wq) {
8663                rc = -ENOMEM;
8664                goto clean7;
8665        }
8666
8667        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8668        if (!h->resubmit_wq) {
8669                rc = -ENOMEM;
8670                goto clean7;    /* aer/h */
8671        }
8672
8673        /*
8674         * At this point, the controller is ready to take commands.
8675         * Now, if reset_devices and the hard reset didn't work, try
8676         * the soft reset and see if that works.
8677         */
8678        if (try_soft_reset) {
8679
8680                /* This is kind of gross.  We may or may not get a completion
8681                 * from the soft reset command, and if we do, then the value
8682                 * from the fifo may or may not be valid.  So, we wait 10 secs
8683                 * after the reset throwing away any completions we get during
8684                 * that time.  Unregister the interrupt handler and register
8685                 * fake ones to scoop up any residual completions.
8686                 */
8687                spin_lock_irqsave(&h->lock, flags);
8688                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8689                spin_unlock_irqrestore(&h->lock, flags);
8690                hpsa_free_irqs(h);
8691                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8692                                        hpsa_intx_discard_completions);
8693                if (rc) {
8694                        dev_warn(&h->pdev->dev,
8695                                "Failed to request_irq after soft reset.\n");
8696                        /*
8697                         * cannot goto clean7 or free_irqs will be called
8698                         * again. Instead, do its work
8699                         */
8700                        hpsa_free_performant_mode(h);   /* clean7 */
8701                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8702                        hpsa_free_cmd_pool(h);          /* clean5 */
8703                        /*
8704                         * skip hpsa_free_irqs(h) clean4 since that
8705                         * was just called before request_irqs failed
8706                         */
8707                        goto clean3;
8708                }
8709
8710                rc = hpsa_kdump_soft_reset(h);
8711                if (rc)
8712                        /* Neither hard nor soft reset worked, we're hosed. */
8713                        goto clean7;
8714
8715                dev_info(&h->pdev->dev, "Board READY.\n");
8716                dev_info(&h->pdev->dev,
8717                        "Waiting for stale completions to drain.\n");
8718                h->access.set_intr_mask(h, HPSA_INTR_ON);
8719                msleep(10000);
8720                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8721
8722                rc = controller_reset_failed(h->cfgtable);
8723                if (rc)
8724                        dev_info(&h->pdev->dev,
8725                                "Soft reset appears to have failed.\n");
8726
8727                /* since the controller's reset, we have to go back and re-init
8728                 * everything.  Easiest to just forget what we've done and do it
8729                 * all over again.
8730                 */
8731                hpsa_undo_allocations_after_kdump_soft_reset(h);
8732                try_soft_reset = 0;
8733                if (rc)
8734                        /* don't goto clean, we already unallocated */
8735                        return -ENODEV;
8736
8737                goto reinit_after_soft_reset;
8738        }
8739
8740        /* Enable Accelerated IO path at driver layer */
8741        h->acciopath_status = 1;
8742        /* Disable discovery polling.*/
8743        h->discovery_polling = 0;
8744
8745
8746        /* Turn the interrupts on so we can service requests */
8747        h->access.set_intr_mask(h, HPSA_INTR_ON);
8748
8749        hpsa_hba_inquiry(h);
8750
8751        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8752        if (!h->lastlogicals)
8753                dev_info(&h->pdev->dev,
8754                        "Can't track change to report lun data\n");
8755
8756        /* hook into SCSI subsystem */
8757        rc = hpsa_scsi_add_host(h);
8758        if (rc)
8759                goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8760
8761        /* Monitor the controller for firmware lockups */
8762        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8763        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8764        schedule_delayed_work(&h->monitor_ctlr_work,
8765                                h->heartbeat_sample_interval);
8766        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8767        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8768                                h->heartbeat_sample_interval);
8769        INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8770        schedule_delayed_work(&h->event_monitor_work,
8771                                HPSA_EVENT_MONITOR_INTERVAL);
8772        return 0;
8773
8774clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8775        hpsa_free_performant_mode(h);
8776        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8778        hpsa_free_sg_chain_blocks(h);
8779clean5: /* cmd, irq, shost, pci, lu, aer/h */
8780        hpsa_free_cmd_pool(h);
8781clean4: /* irq, shost, pci, lu, aer/h */
8782        hpsa_free_irqs(h);
8783clean3: /* shost, pci, lu, aer/h */
8784        scsi_host_put(h->scsi_host);
8785        h->scsi_host = NULL;
8786clean2_5: /* pci, lu, aer/h */
8787        hpsa_free_pci_init(h);
8788clean2: /* lu, aer/h */
8789        if (h->lockup_detected) {
8790                free_percpu(h->lockup_detected);
8791                h->lockup_detected = NULL;
8792        }
8793clean1: /* wq/aer/h */
8794        if (h->resubmit_wq) {
8795                destroy_workqueue(h->resubmit_wq);
8796                h->resubmit_wq = NULL;
8797        }
8798        if (h->rescan_ctlr_wq) {
8799                destroy_workqueue(h->rescan_ctlr_wq);
8800                h->rescan_ctlr_wq = NULL;
8801        }
8802        kfree(h);
8803        return rc;
8804}
8805
8806static void hpsa_flush_cache(struct ctlr_info *h)
8807{
8808        char *flush_buf;
8809        struct CommandList *c;
8810        int rc;
8811
8812        if (unlikely(lockup_detected(h)))
8813                return;
8814        flush_buf = kzalloc(4, GFP_KERNEL);
8815        if (!flush_buf)
8816                return;
8817
8818        c = cmd_alloc(h);
8819
8820        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8821                RAID_CTLR_LUNID, TYPE_CMD)) {
8822                goto out;
8823        }
8824        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8825                        DEFAULT_TIMEOUT);
8826        if (rc)
8827                goto out;
8828        if (c->err_info->CommandStatus != 0)
8829out:
8830                dev_warn(&h->pdev->dev,
8831                        "error flushing cache on controller\n");
8832        cmd_free(h, c);
8833        kfree(flush_buf);
8834}
8835
8836/* Make controller gather fresh report lun data each time we
8837 * send down a report luns request
8838 */
8839static void hpsa_disable_rld_caching(struct ctlr_info *h)
8840{
8841        u32 *options;
8842        struct CommandList *c;
8843        int rc;
8844
8845        /* Don't bother trying to set diag options if locked up */
8846        if (unlikely(h->lockup_detected))
8847                return;
8848
8849        options = kzalloc(sizeof(*options), GFP_KERNEL);
8850        if (!options)
8851                return;
8852
8853        c = cmd_alloc(h);
8854
8855        /* first, get the current diag options settings */
8856        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8857                RAID_CTLR_LUNID, TYPE_CMD))
8858                goto errout;
8859
8860        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8861                        NO_TIMEOUT);
8862        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8863                goto errout;
8864
8865        /* Now, set the bit for disabling the RLD caching */
8866        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8867
8868        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8869                RAID_CTLR_LUNID, TYPE_CMD))
8870                goto errout;
8871
8872        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8873                        NO_TIMEOUT);
8874        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8875                goto errout;
8876
8877        /* Now verify that it got set: */
8878        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8879                RAID_CTLR_LUNID, TYPE_CMD))
8880                goto errout;
8881
8882        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8883                        NO_TIMEOUT);
8884        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8885                goto errout;
8886
8887        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8888                goto out;
8889
8890errout:
8891        dev_err(&h->pdev->dev,
8892                        "Error: failed to disable report lun data caching.\n");
8893out:
8894        cmd_free(h, c);
8895        kfree(options);
8896}
8897
8898static void __hpsa_shutdown(struct pci_dev *pdev)
8899{
8900        struct ctlr_info *h;
8901
8902        h = pci_get_drvdata(pdev);
8903        /* Turn board interrupts off  and send the flush cache command
8904         * sendcmd will turn off interrupt, and send the flush...
8905         * To write all data in the battery backed cache to disks
8906         */
8907        hpsa_flush_cache(h);
8908        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8909        hpsa_free_irqs(h);                      /* init_one 4 */
8910        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8911}
8912
8913static void hpsa_shutdown(struct pci_dev *pdev)
8914{
8915        __hpsa_shutdown(pdev);
8916        pci_disable_device(pdev);
8917}
8918
8919static void hpsa_free_device_info(struct ctlr_info *h)
8920{
8921        int i;
8922
8923        for (i = 0; i < h->ndevices; i++) {
8924                kfree(h->dev[i]);
8925                h->dev[i] = NULL;
8926        }
8927}
8928
8929static void hpsa_remove_one(struct pci_dev *pdev)
8930{
8931        struct ctlr_info *h;
8932        unsigned long flags;
8933
8934        if (pci_get_drvdata(pdev) == NULL) {
8935                dev_err(&pdev->dev, "unable to remove device\n");
8936                return;
8937        }
8938        h = pci_get_drvdata(pdev);
8939
8940        /* Get rid of any controller monitoring work items */
8941        spin_lock_irqsave(&h->lock, flags);
8942        h->remove_in_progress = 1;
8943        spin_unlock_irqrestore(&h->lock, flags);
8944        cancel_delayed_work_sync(&h->monitor_ctlr_work);
8945        cancel_delayed_work_sync(&h->rescan_ctlr_work);
8946        cancel_delayed_work_sync(&h->event_monitor_work);
8947        destroy_workqueue(h->rescan_ctlr_wq);
8948        destroy_workqueue(h->resubmit_wq);
8949
8950        hpsa_delete_sas_host(h);
8951
8952        /*
8953         * Call before disabling interrupts.
8954         * scsi_remove_host can trigger I/O operations especially
8955         * when multipath is enabled. There can be SYNCHRONIZE CACHE
8956         * operations which cannot complete and will hang the system.
8957         */
8958        if (h->scsi_host)
8959                scsi_remove_host(h->scsi_host);         /* init_one 8 */
8960        /* includes hpsa_free_irqs - init_one 4 */
8961        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8962        __hpsa_shutdown(pdev);
8963
8964        hpsa_free_device_info(h);               /* scan */
8965
8966        kfree(h->hba_inquiry_data);                     /* init_one 10 */
8967        h->hba_inquiry_data = NULL;                     /* init_one 10 */
8968        hpsa_free_ioaccel2_sg_chain_blocks(h);
8969        hpsa_free_performant_mode(h);                   /* init_one 7 */
8970        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8971        hpsa_free_cmd_pool(h);                          /* init_one 5 */
8972        kfree(h->lastlogicals);
8973
8974        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8975
8976        scsi_host_put(h->scsi_host);                    /* init_one 3 */
8977        h->scsi_host = NULL;                            /* init_one 3 */
8978
8979        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8980        hpsa_free_pci_init(h);                          /* init_one 2.5 */
8981
8982        free_percpu(h->lockup_detected);                /* init_one 2 */
8983        h->lockup_detected = NULL;                      /* init_one 2 */
8984        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8985
8986        hpda_free_ctlr_info(h);                         /* init_one 1 */
8987}
8988
8989static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8990        __attribute__((unused)) pm_message_t state)
8991{
8992        return -ENOSYS;
8993}
8994
8995static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8996{
8997        return -ENOSYS;
8998}
8999
9000static struct pci_driver hpsa_pci_driver = {
9001        .name = HPSA,
9002        .probe = hpsa_init_one,
9003        .remove = hpsa_remove_one,
9004        .id_table = hpsa_pci_device_id, /* id_table */
9005        .shutdown = hpsa_shutdown,
9006        .suspend = hpsa_suspend,
9007        .resume = hpsa_resume,
9008};
9009
9010/* Fill in bucket_map[], given nsgs (the max number of
9011 * scatter gather elements supported) and bucket[],
9012 * which is an array of 8 integers.  The bucket[] array
9013 * contains 8 different DMA transfer sizes (in 16
9014 * byte increments) which the controller uses to fetch
9015 * commands.  This function fills in bucket_map[], which
9016 * maps a given number of scatter gather elements to one of
9017 * the 8 DMA transfer sizes.  The point of it is to allow the
9018 * controller to only do as much DMA as needed to fetch the
9019 * command, with the DMA transfer size encoded in the lower
9020 * bits of the command address.
9021 */
9022static void  calc_bucket_map(int bucket[], int num_buckets,
9023        int nsgs, int min_blocks, u32 *bucket_map)
9024{
9025        int i, j, b, size;
9026
9027        /* Note, bucket_map must have nsgs+1 entries. */
9028        for (i = 0; i <= nsgs; i++) {
9029                /* Compute size of a command with i SG entries */
9030                size = i + min_blocks;
9031                b = num_buckets; /* Assume the biggest bucket */
9032                /* Find the bucket that is just big enough */
9033                for (j = 0; j < num_buckets; j++) {
9034                        if (bucket[j] >= size) {
9035                                b = j;
9036                                break;
9037                        }
9038                }
9039                /* for a command with i SG entries, use bucket b. */
9040                bucket_map[i] = b;
9041        }
9042}
9043
9044/*
9045 * return -ENODEV on err, 0 on success (or no action)
9046 * allocates numerous items that must be freed later
9047 */
9048static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9049{
9050        int i;
9051        unsigned long register_value;
9052        unsigned long transMethod = CFGTBL_Trans_Performant |
9053                        (trans_support & CFGTBL_Trans_use_short_tags) |
9054                                CFGTBL_Trans_enable_directed_msix |
9055                        (trans_support & (CFGTBL_Trans_io_accel1 |
9056                                CFGTBL_Trans_io_accel2));
9057        struct access_method access = SA5_performant_access;
9058
9059        /* This is a bit complicated.  There are 8 registers on
9060         * the controller which we write to to tell it 8 different
9061         * sizes of commands which there may be.  It's a way of
9062         * reducing the DMA done to fetch each command.  Encoded into
9063         * each command's tag are 3 bits which communicate to the controller
9064         * which of the eight sizes that command fits within.  The size of
9065         * each command depends on how many scatter gather entries there are.
9066         * Each SG entry requires 16 bytes.  The eight registers are programmed
9067         * with the number of 16-byte blocks a command of that size requires.
9068         * The smallest command possible requires 5 such 16 byte blocks.
9069         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9070         * blocks.  Note, this only extends to the SG entries contained
9071         * within the command block, and does not extend to chained blocks
9072         * of SG elements.   bft[] contains the eight values we write to
9073         * the registers.  They are not evenly distributed, but have more
9074         * sizes for small commands, and fewer sizes for larger commands.
9075         */
9076        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9077#define MIN_IOACCEL2_BFT_ENTRY 5
9078#define HPSA_IOACCEL2_HEADER_SZ 4
9079        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9080                        13, 14, 15, 16, 17, 18, 19,
9081                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9082        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9083        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9084        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9085                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9086        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9087        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9088        /*  5 = 1 s/g entry or 4k
9089         *  6 = 2 s/g entry or 8k
9090         *  8 = 4 s/g entry or 16k
9091         * 10 = 6 s/g entry or 24k
9092         */
9093
9094        /* If the controller supports either ioaccel method then
9095         * we can also use the RAID stack submit path that does not
9096         * perform the superfluous readl() after each command submission.
9097         */
9098        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9099                access = SA5_performant_access_no_read;
9100
9101        /* Controller spec: zero out this buffer. */
9102        for (i = 0; i < h->nreply_queues; i++)
9103                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9104
9105        bft[7] = SG_ENTRIES_IN_CMD + 4;
9106        calc_bucket_map(bft, ARRAY_SIZE(bft),
9107                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9108        for (i = 0; i < 8; i++)
9109                writel(bft[i], &h->transtable->BlockFetch[i]);
9110
9111        /* size of controller ring buffer */
9112        writel(h->max_commands, &h->transtable->RepQSize);
9113        writel(h->nreply_queues, &h->transtable->RepQCount);
9114        writel(0, &h->transtable->RepQCtrAddrLow32);
9115        writel(0, &h->transtable->RepQCtrAddrHigh32);
9116
9117        for (i = 0; i < h->nreply_queues; i++) {
9118                writel(0, &h->transtable->RepQAddr[i].upper);
9119                writel(h->reply_queue[i].busaddr,
9120                        &h->transtable->RepQAddr[i].lower);
9121        }
9122
9123        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9124        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9125        /*
9126         * enable outbound interrupt coalescing in accelerator mode;
9127         */
9128        if (trans_support & CFGTBL_Trans_io_accel1) {
9129                access = SA5_ioaccel_mode1_access;
9130                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9131                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9132        } else
9133                if (trans_support & CFGTBL_Trans_io_accel2)
9134                        access = SA5_ioaccel_mode2_access;
9135        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9136        if (hpsa_wait_for_mode_change_ack(h)) {
9137                dev_err(&h->pdev->dev,
9138                        "performant mode problem - doorbell timeout\n");
9139                return -ENODEV;
9140        }
9141        register_value = readl(&(h->cfgtable->TransportActive));
9142        if (!(register_value & CFGTBL_Trans_Performant)) {
9143                dev_err(&h->pdev->dev,
9144                        "performant mode problem - transport not active\n");
9145                return -ENODEV;
9146        }
9147        /* Change the access methods to the performant access methods */
9148        h->access = access;
9149        h->transMethod = transMethod;
9150
9151        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9152                (trans_support & CFGTBL_Trans_io_accel2)))
9153                return 0;
9154
9155        if (trans_support & CFGTBL_Trans_io_accel1) {
9156                /* Set up I/O accelerator mode */
9157                for (i = 0; i < h->nreply_queues; i++) {
9158                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9159                        h->reply_queue[i].current_entry =
9160                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9161                }
9162                bft[7] = h->ioaccel_maxsg + 8;
9163                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9164                                h->ioaccel1_blockFetchTable);
9165
9166                /* initialize all reply queue entries to unused */
9167                for (i = 0; i < h->nreply_queues; i++)
9168                        memset(h->reply_queue[i].head,
9169                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9170                                h->reply_queue_size);
9171
9172                /* set all the constant fields in the accelerator command
9173                 * frames once at init time to save CPU cycles later.
9174                 */
9175                for (i = 0; i < h->nr_cmds; i++) {
9176                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9177
9178                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9179                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9180                                        (i * sizeof(struct ErrorInfo)));
9181                        cp->err_info_len = sizeof(struct ErrorInfo);
9182                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9183                        cp->host_context_flags =
9184                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9185                        cp->timeout_sec = 0;
9186                        cp->ReplyQueue = 0;
9187                        cp->tag =
9188                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9189                        cp->host_addr =
9190                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9191                                        (i * sizeof(struct io_accel1_cmd)));
9192                }
9193        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9194                u64 cfg_offset, cfg_base_addr_index;
9195                u32 bft2_offset, cfg_base_addr;
9196                int rc;
9197
9198                rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9199                        &cfg_base_addr_index, &cfg_offset);
9200                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9201                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9202                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9203                                4, h->ioaccel2_blockFetchTable);
9204                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9205                BUILD_BUG_ON(offsetof(struct CfgTable,
9206                                io_accel_request_size_offset) != 0xb8);
9207                h->ioaccel2_bft2_regs =
9208                        remap_pci_mem(pci_resource_start(h->pdev,
9209                                        cfg_base_addr_index) +
9210                                        cfg_offset + bft2_offset,
9211                                        ARRAY_SIZE(bft2) *
9212                                        sizeof(*h->ioaccel2_bft2_regs));
9213                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9214                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9215        }
9216        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9217        if (hpsa_wait_for_mode_change_ack(h)) {
9218                dev_err(&h->pdev->dev,
9219                        "performant mode problem - enabling ioaccel mode\n");
9220                return -ENODEV;
9221        }
9222        return 0;
9223}
9224
9225/* Free ioaccel1 mode command blocks and block fetch table */
9226static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9227{
9228        if (h->ioaccel_cmd_pool) {
9229                pci_free_consistent(h->pdev,
9230                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9231                        h->ioaccel_cmd_pool,
9232                        h->ioaccel_cmd_pool_dhandle);
9233                h->ioaccel_cmd_pool = NULL;
9234                h->ioaccel_cmd_pool_dhandle = 0;
9235        }
9236        kfree(h->ioaccel1_blockFetchTable);
9237        h->ioaccel1_blockFetchTable = NULL;
9238}
9239
9240/* Allocate ioaccel1 mode command blocks and block fetch table */
9241static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9242{
9243        h->ioaccel_maxsg =
9244                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9246                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9247
9248        /* Command structures must be aligned on a 128-byte boundary
9249         * because the 7 lower bits of the address are used by the
9250         * hardware.
9251         */
9252        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9253                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9254        h->ioaccel_cmd_pool =
9255                dma_alloc_coherent(&h->pdev->dev,
9256                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9257                        &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9258
9259        h->ioaccel1_blockFetchTable =
9260                kmalloc(((h->ioaccel_maxsg + 1) *
9261                                sizeof(u32)), GFP_KERNEL);
9262
9263        if ((h->ioaccel_cmd_pool == NULL) ||
9264                (h->ioaccel1_blockFetchTable == NULL))
9265                goto clean_up;
9266
9267        memset(h->ioaccel_cmd_pool, 0,
9268                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9269        return 0;
9270
9271clean_up:
9272        hpsa_free_ioaccel1_cmd_and_bft(h);
9273        return -ENOMEM;
9274}
9275
9276/* Free ioaccel2 mode command blocks and block fetch table */
9277static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9278{
9279        hpsa_free_ioaccel2_sg_chain_blocks(h);
9280
9281        if (h->ioaccel2_cmd_pool) {
9282                pci_free_consistent(h->pdev,
9283                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9284                        h->ioaccel2_cmd_pool,
9285                        h->ioaccel2_cmd_pool_dhandle);
9286                h->ioaccel2_cmd_pool = NULL;
9287                h->ioaccel2_cmd_pool_dhandle = 0;
9288        }
9289        kfree(h->ioaccel2_blockFetchTable);
9290        h->ioaccel2_blockFetchTable = NULL;
9291}
9292
9293/* Allocate ioaccel2 mode command blocks and block fetch table */
9294static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9295{
9296        int rc;
9297
9298        /* Allocate ioaccel2 mode command blocks and block fetch table */
9299
9300        h->ioaccel_maxsg =
9301                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9302        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9303                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9304
9305        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9306                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9307        h->ioaccel2_cmd_pool =
9308                dma_alloc_coherent(&h->pdev->dev,
9309                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9310                        &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9311
9312        h->ioaccel2_blockFetchTable =
9313                kmalloc(((h->ioaccel_maxsg + 1) *
9314                                sizeof(u32)), GFP_KERNEL);
9315
9316        if ((h->ioaccel2_cmd_pool == NULL) ||
9317                (h->ioaccel2_blockFetchTable == NULL)) {
9318                rc = -ENOMEM;
9319                goto clean_up;
9320        }
9321
9322        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9323        if (rc)
9324                goto clean_up;
9325
9326        memset(h->ioaccel2_cmd_pool, 0,
9327                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9328        return 0;
9329
9330clean_up:
9331        hpsa_free_ioaccel2_cmd_and_bft(h);
9332        return rc;
9333}
9334
9335/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9336static void hpsa_free_performant_mode(struct ctlr_info *h)
9337{
9338        kfree(h->blockFetchTable);
9339        h->blockFetchTable = NULL;
9340        hpsa_free_reply_queues(h);
9341        hpsa_free_ioaccel1_cmd_and_bft(h);
9342        hpsa_free_ioaccel2_cmd_and_bft(h);
9343}
9344
9345/* return -ENODEV on error, 0 on success (or no action)
9346 * allocates numerous items that must be freed later
9347 */
9348static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9349{
9350        u32 trans_support;
9351        unsigned long transMethod = CFGTBL_Trans_Performant |
9352                                        CFGTBL_Trans_use_short_tags;
9353        int i, rc;
9354
9355        if (hpsa_simple_mode)
9356                return 0;
9357
9358        trans_support = readl(&(h->cfgtable->TransportSupport));
9359        if (!(trans_support & PERFORMANT_MODE))
9360                return 0;
9361
9362        /* Check for I/O accelerator mode support */
9363        if (trans_support & CFGTBL_Trans_io_accel1) {
9364                transMethod |= CFGTBL_Trans_io_accel1 |
9365                                CFGTBL_Trans_enable_directed_msix;
9366                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9367                if (rc)
9368                        return rc;
9369        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9370                transMethod |= CFGTBL_Trans_io_accel2 |
9371                                CFGTBL_Trans_enable_directed_msix;
9372                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9373                if (rc)
9374                        return rc;
9375        }
9376
9377        h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9378        hpsa_get_max_perf_mode_cmds(h);
9379        /* Performant mode ring buffer and supporting data structures */
9380        h->reply_queue_size = h->max_commands * sizeof(u64);
9381
9382        for (i = 0; i < h->nreply_queues; i++) {
9383                h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9384                                                h->reply_queue_size,
9385                                                &h->reply_queue[i].busaddr,
9386                                                GFP_KERNEL);
9387                if (!h->reply_queue[i].head) {
9388                        rc = -ENOMEM;
9389                        goto clean1;    /* rq, ioaccel */
9390                }
9391                h->reply_queue[i].size = h->max_commands;
9392                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9393                h->reply_queue[i].current_entry = 0;
9394        }
9395
9396        /* Need a block fetch table for performant mode */
9397        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9398                                sizeof(u32)), GFP_KERNEL);
9399        if (!h->blockFetchTable) {
9400                rc = -ENOMEM;
9401                goto clean1;    /* rq, ioaccel */
9402        }
9403
9404        rc = hpsa_enter_performant_mode(h, trans_support);
9405        if (rc)
9406                goto clean2;    /* bft, rq, ioaccel */
9407        return 0;
9408
9409clean2: /* bft, rq, ioaccel */
9410        kfree(h->blockFetchTable);
9411        h->blockFetchTable = NULL;
9412clean1: /* rq, ioaccel */
9413        hpsa_free_reply_queues(h);
9414        hpsa_free_ioaccel1_cmd_and_bft(h);
9415        hpsa_free_ioaccel2_cmd_and_bft(h);
9416        return rc;
9417}
9418
9419static int is_accelerated_cmd(struct CommandList *c)
9420{
9421        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9422}
9423
9424static void hpsa_drain_accel_commands(struct ctlr_info *h)
9425{
9426        struct CommandList *c = NULL;
9427        int i, accel_cmds_out;
9428        int refcount;
9429
9430        do { /* wait for all outstanding ioaccel commands to drain out */
9431                accel_cmds_out = 0;
9432                for (i = 0; i < h->nr_cmds; i++) {
9433                        c = h->cmd_pool + i;
9434                        refcount = atomic_inc_return(&c->refcount);
9435                        if (refcount > 1) /* Command is allocated */
9436                                accel_cmds_out += is_accelerated_cmd(c);
9437                        cmd_free(h, c);
9438                }
9439                if (accel_cmds_out <= 0)
9440                        break;
9441                msleep(100);
9442        } while (1);
9443}
9444
9445static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9446                                struct hpsa_sas_port *hpsa_sas_port)
9447{
9448        struct hpsa_sas_phy *hpsa_sas_phy;
9449        struct sas_phy *phy;
9450
9451        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9452        if (!hpsa_sas_phy)
9453                return NULL;
9454
9455        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9456                hpsa_sas_port->next_phy_index);
9457        if (!phy) {
9458                kfree(hpsa_sas_phy);
9459                return NULL;
9460        }
9461
9462        hpsa_sas_port->next_phy_index++;
9463        hpsa_sas_phy->phy = phy;
9464        hpsa_sas_phy->parent_port = hpsa_sas_port;
9465
9466        return hpsa_sas_phy;
9467}
9468
9469static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9470{
9471        struct sas_phy *phy = hpsa_sas_phy->phy;
9472
9473        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9474        if (hpsa_sas_phy->added_to_port)
9475                list_del(&hpsa_sas_phy->phy_list_entry);
9476        sas_phy_delete(phy);
9477        kfree(hpsa_sas_phy);
9478}
9479
9480static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9481{
9482        int rc;
9483        struct hpsa_sas_port *hpsa_sas_port;
9484        struct sas_phy *phy;
9485        struct sas_identify *identify;
9486
9487        hpsa_sas_port = hpsa_sas_phy->parent_port;
9488        phy = hpsa_sas_phy->phy;
9489
9490        identify = &phy->identify;
9491        memset(identify, 0, sizeof(*identify));
9492        identify->sas_address = hpsa_sas_port->sas_address;
9493        identify->device_type = SAS_END_DEVICE;
9494        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9495        identify->target_port_protocols = SAS_PROTOCOL_STP;
9496        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9497        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9498        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9499        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9500        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9501
9502        rc = sas_phy_add(hpsa_sas_phy->phy);
9503        if (rc)
9504                return rc;
9505
9506        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9507        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9508                        &hpsa_sas_port->phy_list_head);
9509        hpsa_sas_phy->added_to_port = true;
9510
9511        return 0;
9512}
9513
9514static int
9515        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9516                                struct sas_rphy *rphy)
9517{
9518        struct sas_identify *identify;
9519
9520        identify = &rphy->identify;
9521        identify->sas_address = hpsa_sas_port->sas_address;
9522        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9523        identify->target_port_protocols = SAS_PROTOCOL_STP;
9524
9525        return sas_rphy_add(rphy);
9526}
9527
9528static struct hpsa_sas_port
9529        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9530                                u64 sas_address)
9531{
9532        int rc;
9533        struct hpsa_sas_port *hpsa_sas_port;
9534        struct sas_port *port;
9535
9536        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9537        if (!hpsa_sas_port)
9538                return NULL;
9539
9540        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9541        hpsa_sas_port->parent_node = hpsa_sas_node;
9542
9543        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9544        if (!port)
9545                goto free_hpsa_port;
9546
9547        rc = sas_port_add(port);
9548        if (rc)
9549                goto free_sas_port;
9550
9551        hpsa_sas_port->port = port;
9552        hpsa_sas_port->sas_address = sas_address;
9553        list_add_tail(&hpsa_sas_port->port_list_entry,
9554                        &hpsa_sas_node->port_list_head);
9555
9556        return hpsa_sas_port;
9557
9558free_sas_port:
9559        sas_port_free(port);
9560free_hpsa_port:
9561        kfree(hpsa_sas_port);
9562
9563        return NULL;
9564}
9565
9566static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9567{
9568        struct hpsa_sas_phy *hpsa_sas_phy;
9569        struct hpsa_sas_phy *next;
9570
9571        list_for_each_entry_safe(hpsa_sas_phy, next,
9572                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9573                hpsa_free_sas_phy(hpsa_sas_phy);
9574
9575        sas_port_delete(hpsa_sas_port->port);
9576        list_del(&hpsa_sas_port->port_list_entry);
9577        kfree(hpsa_sas_port);
9578}
9579
9580static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9581{
9582        struct hpsa_sas_node *hpsa_sas_node;
9583
9584        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9585        if (hpsa_sas_node) {
9586                hpsa_sas_node->parent_dev = parent_dev;
9587                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9588        }
9589
9590        return hpsa_sas_node;
9591}
9592
9593static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9594{
9595        struct hpsa_sas_port *hpsa_sas_port;
9596        struct hpsa_sas_port *next;
9597
9598        if (!hpsa_sas_node)
9599                return;
9600
9601        list_for_each_entry_safe(hpsa_sas_port, next,
9602                        &hpsa_sas_node->port_list_head, port_list_entry)
9603                hpsa_free_sas_port(hpsa_sas_port);
9604
9605        kfree(hpsa_sas_node);
9606}
9607
9608static struct hpsa_scsi_dev_t
9609        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9610                                        struct sas_rphy *rphy)
9611{
9612        int i;
9613        struct hpsa_scsi_dev_t *device;
9614
9615        for (i = 0; i < h->ndevices; i++) {
9616                device = h->dev[i];
9617                if (!device->sas_port)
9618                        continue;
9619                if (device->sas_port->rphy == rphy)
9620                        return device;
9621        }
9622
9623        return NULL;
9624}
9625
9626static int hpsa_add_sas_host(struct ctlr_info *h)
9627{
9628        int rc;
9629        struct device *parent_dev;
9630        struct hpsa_sas_node *hpsa_sas_node;
9631        struct hpsa_sas_port *hpsa_sas_port;
9632        struct hpsa_sas_phy *hpsa_sas_phy;
9633
9634        parent_dev = &h->scsi_host->shost_dev;
9635
9636        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9637        if (!hpsa_sas_node)
9638                return -ENOMEM;
9639
9640        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9641        if (!hpsa_sas_port) {
9642                rc = -ENODEV;
9643                goto free_sas_node;
9644        }
9645
9646        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9647        if (!hpsa_sas_phy) {
9648                rc = -ENODEV;
9649                goto free_sas_port;
9650        }
9651
9652        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9653        if (rc)
9654                goto free_sas_phy;
9655
9656        h->sas_host = hpsa_sas_node;
9657
9658        return 0;
9659
9660free_sas_phy:
9661        hpsa_free_sas_phy(hpsa_sas_phy);
9662free_sas_port:
9663        hpsa_free_sas_port(hpsa_sas_port);
9664free_sas_node:
9665        hpsa_free_sas_node(hpsa_sas_node);
9666
9667        return rc;
9668}
9669
9670static void hpsa_delete_sas_host(struct ctlr_info *h)
9671{
9672        hpsa_free_sas_node(h->sas_host);
9673}
9674
9675static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9676                                struct hpsa_scsi_dev_t *device)
9677{
9678        int rc;
9679        struct hpsa_sas_port *hpsa_sas_port;
9680        struct sas_rphy *rphy;
9681
9682        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9683        if (!hpsa_sas_port)
9684                return -ENOMEM;
9685
9686        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9687        if (!rphy) {
9688                rc = -ENODEV;
9689                goto free_sas_port;
9690        }
9691
9692        hpsa_sas_port->rphy = rphy;
9693        device->sas_port = hpsa_sas_port;
9694
9695        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9696        if (rc)
9697                goto free_sas_port;
9698
9699        return 0;
9700
9701free_sas_port:
9702        hpsa_free_sas_port(hpsa_sas_port);
9703        device->sas_port = NULL;
9704
9705        return rc;
9706}
9707
9708static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9709{
9710        if (device->sas_port) {
9711                hpsa_free_sas_port(device->sas_port);
9712                device->sas_port = NULL;
9713        }
9714}
9715
9716static int
9717hpsa_sas_get_linkerrors(struct sas_phy *phy)
9718{
9719        return 0;
9720}
9721
9722static int
9723hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9724{
9725        struct Scsi_Host *shost = phy_to_shost(rphy);
9726        struct ctlr_info *h;
9727        struct hpsa_scsi_dev_t *sd;
9728
9729        if (!shost)
9730                return -ENXIO;
9731
9732        h = shost_to_hba(shost);
9733
9734        if (!h)
9735                return -ENXIO;
9736
9737        sd = hpsa_find_device_by_sas_rphy(h, rphy);
9738        if (!sd)
9739                return -ENXIO;
9740
9741        *identifier = sd->eli;
9742
9743        return 0;
9744}
9745
9746static int
9747hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9748{
9749        return -ENXIO;
9750}
9751
9752static int
9753hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9754{
9755        return 0;
9756}
9757
9758static int
9759hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9760{
9761        return 0;
9762}
9763
9764static int
9765hpsa_sas_phy_setup(struct sas_phy *phy)
9766{
9767        return 0;
9768}
9769
9770static void
9771hpsa_sas_phy_release(struct sas_phy *phy)
9772{
9773}
9774
9775static int
9776hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9777{
9778        return -EINVAL;
9779}
9780
9781static struct sas_function_template hpsa_sas_transport_functions = {
9782        .get_linkerrors = hpsa_sas_get_linkerrors,
9783        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9784        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9785        .phy_reset = hpsa_sas_phy_reset,
9786        .phy_enable = hpsa_sas_phy_enable,
9787        .phy_setup = hpsa_sas_phy_setup,
9788        .phy_release = hpsa_sas_phy_release,
9789        .set_phy_speed = hpsa_sas_phy_speed,
9790};
9791
9792/*
9793 *  This is it.  Register the PCI driver information for the cards we control
9794 *  the OS will call our registered routines when it finds one of our cards.
9795 */
9796static int __init hpsa_init(void)
9797{
9798        int rc;
9799
9800        hpsa_sas_transport_template =
9801                sas_attach_transport(&hpsa_sas_transport_functions);
9802        if (!hpsa_sas_transport_template)
9803                return -ENODEV;
9804
9805        rc = pci_register_driver(&hpsa_pci_driver);
9806
9807        if (rc)
9808                sas_release_transport(hpsa_sas_transport_template);
9809
9810        return rc;
9811}
9812
9813static void __exit hpsa_cleanup(void)
9814{
9815        pci_unregister_driver(&hpsa_pci_driver);
9816        sas_release_transport(hpsa_sas_transport_template);
9817}
9818
9819static void __attribute__((unused)) verify_offsets(void)
9820{
9821#define VERIFY_OFFSET(member, offset) \
9822        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9823
9824        VERIFY_OFFSET(structure_size, 0);
9825        VERIFY_OFFSET(volume_blk_size, 4);
9826        VERIFY_OFFSET(volume_blk_cnt, 8);
9827        VERIFY_OFFSET(phys_blk_shift, 16);
9828        VERIFY_OFFSET(parity_rotation_shift, 17);
9829        VERIFY_OFFSET(strip_size, 18);
9830        VERIFY_OFFSET(disk_starting_blk, 20);
9831        VERIFY_OFFSET(disk_blk_cnt, 28);
9832        VERIFY_OFFSET(data_disks_per_row, 36);
9833        VERIFY_OFFSET(metadata_disks_per_row, 38);
9834        VERIFY_OFFSET(row_cnt, 40);
9835        VERIFY_OFFSET(layout_map_count, 42);
9836        VERIFY_OFFSET(flags, 44);
9837        VERIFY_OFFSET(dekindex, 46);
9838        /* VERIFY_OFFSET(reserved, 48 */
9839        VERIFY_OFFSET(data, 64);
9840
9841#undef VERIFY_OFFSET
9842
9843#define VERIFY_OFFSET(member, offset) \
9844        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9845
9846        VERIFY_OFFSET(IU_type, 0);
9847        VERIFY_OFFSET(direction, 1);
9848        VERIFY_OFFSET(reply_queue, 2);
9849        /* VERIFY_OFFSET(reserved1, 3);  */
9850        VERIFY_OFFSET(scsi_nexus, 4);
9851        VERIFY_OFFSET(Tag, 8);
9852        VERIFY_OFFSET(cdb, 16);
9853        VERIFY_OFFSET(cciss_lun, 32);
9854        VERIFY_OFFSET(data_len, 40);
9855        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9856        VERIFY_OFFSET(sg_count, 45);
9857        /* VERIFY_OFFSET(reserved3 */
9858        VERIFY_OFFSET(err_ptr, 48);
9859        VERIFY_OFFSET(err_len, 56);
9860        /* VERIFY_OFFSET(reserved4  */
9861        VERIFY_OFFSET(sg, 64);
9862
9863#undef VERIFY_OFFSET
9864
9865#define VERIFY_OFFSET(member, offset) \
9866        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9867
9868        VERIFY_OFFSET(dev_handle, 0x00);
9869        VERIFY_OFFSET(reserved1, 0x02);
9870        VERIFY_OFFSET(function, 0x03);
9871        VERIFY_OFFSET(reserved2, 0x04);
9872        VERIFY_OFFSET(err_info, 0x0C);
9873        VERIFY_OFFSET(reserved3, 0x10);
9874        VERIFY_OFFSET(err_info_len, 0x12);
9875        VERIFY_OFFSET(reserved4, 0x13);
9876        VERIFY_OFFSET(sgl_offset, 0x14);
9877        VERIFY_OFFSET(reserved5, 0x15);
9878        VERIFY_OFFSET(transfer_len, 0x1C);
9879        VERIFY_OFFSET(reserved6, 0x20);
9880        VERIFY_OFFSET(io_flags, 0x24);
9881        VERIFY_OFFSET(reserved7, 0x26);
9882        VERIFY_OFFSET(LUN, 0x34);
9883        VERIFY_OFFSET(control, 0x3C);
9884        VERIFY_OFFSET(CDB, 0x40);
9885        VERIFY_OFFSET(reserved8, 0x50);
9886        VERIFY_OFFSET(host_context_flags, 0x60);
9887        VERIFY_OFFSET(timeout_sec, 0x62);
9888        VERIFY_OFFSET(ReplyQueue, 0x64);
9889        VERIFY_OFFSET(reserved9, 0x65);
9890        VERIFY_OFFSET(tag, 0x68);
9891        VERIFY_OFFSET(host_addr, 0x70);
9892        VERIFY_OFFSET(CISS_LUN, 0x78);
9893        VERIFY_OFFSET(SG, 0x78 + 8);
9894#undef VERIFY_OFFSET
9895}
9896
9897module_init(hpsa_init);
9898module_exit(hpsa_cleanup);
9899