linux/drivers/scsi/libsas/sas_expander.c
<<
>>
Prefs
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28#include <asm/unaligned.h>
  29
  30#include "sas_internal.h"
  31
  32#include <scsi/sas_ata.h>
  33#include <scsi/scsi_transport.h>
  34#include <scsi/scsi_transport_sas.h>
  35#include "../scsi_sas_internal.h"
  36
  37static int sas_discover_expander(struct domain_device *dev);
  38static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  39static int sas_configure_phy(struct domain_device *dev, int phy_id,
  40                             u8 *sas_addr, int include);
  41static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  42
  43/* ---------- SMP task management ---------- */
  44
  45static void smp_task_timedout(struct timer_list *t)
  46{
  47        struct sas_task_slow *slow = from_timer(slow, t, timer);
  48        struct sas_task *task = slow->task;
  49        unsigned long flags;
  50
  51        spin_lock_irqsave(&task->task_state_lock, flags);
  52        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  53                task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  54                complete(&task->slow_task->completion);
  55        }
  56        spin_unlock_irqrestore(&task->task_state_lock, flags);
  57}
  58
  59static void smp_task_done(struct sas_task *task)
  60{
  61        del_timer(&task->slow_task->timer);
  62        complete(&task->slow_task->completion);
  63}
  64
  65/* Give it some long enough timeout. In seconds. */
  66#define SMP_TIMEOUT 10
  67
  68static int smp_execute_task_sg(struct domain_device *dev,
  69                struct scatterlist *req, struct scatterlist *resp)
  70{
  71        int res, retry;
  72        struct sas_task *task = NULL;
  73        struct sas_internal *i =
  74                to_sas_internal(dev->port->ha->core.shost->transportt);
  75
  76        mutex_lock(&dev->ex_dev.cmd_mutex);
  77        for (retry = 0; retry < 3; retry++) {
  78                if (test_bit(SAS_DEV_GONE, &dev->state)) {
  79                        res = -ECOMM;
  80                        break;
  81                }
  82
  83                task = sas_alloc_slow_task(GFP_KERNEL);
  84                if (!task) {
  85                        res = -ENOMEM;
  86                        break;
  87                }
  88                task->dev = dev;
  89                task->task_proto = dev->tproto;
  90                task->smp_task.smp_req = *req;
  91                task->smp_task.smp_resp = *resp;
  92
  93                task->task_done = smp_task_done;
  94
  95                task->slow_task->timer.function = smp_task_timedout;
  96                task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97                add_timer(&task->slow_task->timer);
  98
  99                res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101                if (res) {
 102                        del_timer(&task->slow_task->timer);
 103                        pr_notice("executing SMP task failed:%d\n", res);
 104                        break;
 105                }
 106
 107                wait_for_completion(&task->slow_task->completion);
 108                res = -ECOMM;
 109                if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110                        pr_notice("smp task timed out or aborted\n");
 111                        i->dft->lldd_abort_task(task);
 112                        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113                                pr_notice("SMP task aborted and not done\n");
 114                                break;
 115                        }
 116                }
 117                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118                    task->task_status.stat == SAM_STAT_GOOD) {
 119                        res = 0;
 120                        break;
 121                }
 122                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123                    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124                        /* no error, but return the number of bytes of
 125                         * underrun */
 126                        res = task->task_status.residual;
 127                        break;
 128                }
 129                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130                    task->task_status.stat == SAS_DATA_OVERRUN) {
 131                        res = -EMSGSIZE;
 132                        break;
 133                }
 134                if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135                    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136                        break;
 137                else {
 138                        pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 139                                  __func__,
 140                                  SAS_ADDR(dev->sas_addr),
 141                                  task->task_status.resp,
 142                                  task->task_status.stat);
 143                        sas_free_task(task);
 144                        task = NULL;
 145                }
 146        }
 147        mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149        BUG_ON(retry == 3 && task != NULL);
 150        sas_free_task(task);
 151        return res;
 152}
 153
 154static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 155                            void *resp, int resp_size)
 156{
 157        struct scatterlist req_sg;
 158        struct scatterlist resp_sg;
 159
 160        sg_init_one(&req_sg, req, req_size);
 161        sg_init_one(&resp_sg, resp, resp_size);
 162        return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 163}
 164
 165/* ---------- Allocations ---------- */
 166
 167static inline void *alloc_smp_req(int size)
 168{
 169        u8 *p = kzalloc(size, GFP_KERNEL);
 170        if (p)
 171                p[0] = SMP_REQUEST;
 172        return p;
 173}
 174
 175static inline void *alloc_smp_resp(int size)
 176{
 177        return kzalloc(size, GFP_KERNEL);
 178}
 179
 180static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 181{
 182        switch (phy->routing_attr) {
 183        case TABLE_ROUTING:
 184                if (dev->ex_dev.t2t_supp)
 185                        return 'U';
 186                else
 187                        return 'T';
 188        case DIRECT_ROUTING:
 189                return 'D';
 190        case SUBTRACTIVE_ROUTING:
 191                return 'S';
 192        default:
 193                return '?';
 194        }
 195}
 196
 197static enum sas_device_type to_dev_type(struct discover_resp *dr)
 198{
 199        /* This is detecting a failure to transmit initial dev to host
 200         * FIS as described in section J.5 of sas-2 r16
 201         */
 202        if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 203            dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 204                return SAS_SATA_PENDING;
 205        else
 206                return dr->attached_dev_type;
 207}
 208
 209static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 210{
 211        enum sas_device_type dev_type;
 212        enum sas_linkrate linkrate;
 213        u8 sas_addr[SAS_ADDR_SIZE];
 214        struct smp_resp *resp = rsp;
 215        struct discover_resp *dr = &resp->disc;
 216        struct sas_ha_struct *ha = dev->port->ha;
 217        struct expander_device *ex = &dev->ex_dev;
 218        struct ex_phy *phy = &ex->ex_phy[phy_id];
 219        struct sas_rphy *rphy = dev->rphy;
 220        bool new_phy = !phy->phy;
 221        char *type;
 222
 223        if (new_phy) {
 224                if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 225                        return;
 226                phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 227
 228                /* FIXME: error_handling */
 229                BUG_ON(!phy->phy);
 230        }
 231
 232        switch (resp->result) {
 233        case SMP_RESP_PHY_VACANT:
 234                phy->phy_state = PHY_VACANT;
 235                break;
 236        default:
 237                phy->phy_state = PHY_NOT_PRESENT;
 238                break;
 239        case SMP_RESP_FUNC_ACC:
 240                phy->phy_state = PHY_EMPTY; /* do not know yet */
 241                break;
 242        }
 243
 244        /* check if anything important changed to squelch debug */
 245        dev_type = phy->attached_dev_type;
 246        linkrate  = phy->linkrate;
 247        memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 248
 249        /* Handle vacant phy - rest of dr data is not valid so skip it */
 250        if (phy->phy_state == PHY_VACANT) {
 251                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 252                phy->attached_dev_type = SAS_PHY_UNUSED;
 253                if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 254                        phy->phy_id = phy_id;
 255                        goto skip;
 256                } else
 257                        goto out;
 258        }
 259
 260        phy->attached_dev_type = to_dev_type(dr);
 261        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 262                goto out;
 263        phy->phy_id = phy_id;
 264        phy->linkrate = dr->linkrate;
 265        phy->attached_sata_host = dr->attached_sata_host;
 266        phy->attached_sata_dev  = dr->attached_sata_dev;
 267        phy->attached_sata_ps   = dr->attached_sata_ps;
 268        phy->attached_iproto = dr->iproto << 1;
 269        phy->attached_tproto = dr->tproto << 1;
 270        /* help some expanders that fail to zero sas_address in the 'no
 271         * device' case
 272         */
 273        if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 274            phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 275                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 276        else
 277                memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 278        phy->attached_phy_id = dr->attached_phy_id;
 279        phy->phy_change_count = dr->change_count;
 280        phy->routing_attr = dr->routing_attr;
 281        phy->virtual = dr->virtual;
 282        phy->last_da_index = -1;
 283
 284        phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 285        phy->phy->identify.device_type = dr->attached_dev_type;
 286        phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 287        phy->phy->identify.target_port_protocols = phy->attached_tproto;
 288        if (!phy->attached_tproto && dr->attached_sata_dev)
 289                phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 290        phy->phy->identify.phy_identifier = phy_id;
 291        phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 292        phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 293        phy->phy->minimum_linkrate = dr->pmin_linkrate;
 294        phy->phy->maximum_linkrate = dr->pmax_linkrate;
 295        phy->phy->negotiated_linkrate = phy->linkrate;
 296        phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 297
 298 skip:
 299        if (new_phy)
 300                if (sas_phy_add(phy->phy)) {
 301                        sas_phy_free(phy->phy);
 302                        return;
 303                }
 304
 305 out:
 306        switch (phy->attached_dev_type) {
 307        case SAS_SATA_PENDING:
 308                type = "stp pending";
 309                break;
 310        case SAS_PHY_UNUSED:
 311                type = "no device";
 312                break;
 313        case SAS_END_DEVICE:
 314                if (phy->attached_iproto) {
 315                        if (phy->attached_tproto)
 316                                type = "host+target";
 317                        else
 318                                type = "host";
 319                } else {
 320                        if (dr->attached_sata_dev)
 321                                type = "stp";
 322                        else
 323                                type = "ssp";
 324                }
 325                break;
 326        case SAS_EDGE_EXPANDER_DEVICE:
 327        case SAS_FANOUT_EXPANDER_DEVICE:
 328                type = "smp";
 329                break;
 330        default:
 331                type = "unknown";
 332        }
 333
 334        /* this routine is polled by libata error recovery so filter
 335         * unimportant messages
 336         */
 337        if (new_phy || phy->attached_dev_type != dev_type ||
 338            phy->linkrate != linkrate ||
 339            SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 340                /* pass */;
 341        else
 342                return;
 343
 344        /* if the attached device type changed and ata_eh is active,
 345         * make sure we run revalidation when eh completes (see:
 346         * sas_enable_revalidation)
 347         */
 348        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 349                set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 350
 351        pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 352                 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 353                 SAS_ADDR(dev->sas_addr), phy->phy_id,
 354                 sas_route_char(dev, phy), phy->linkrate,
 355                 SAS_ADDR(phy->attached_sas_addr), type);
 356}
 357
 358/* check if we have an existing attached ata device on this expander phy */
 359struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 360{
 361        struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 362        struct domain_device *dev;
 363        struct sas_rphy *rphy;
 364
 365        if (!ex_phy->port)
 366                return NULL;
 367
 368        rphy = ex_phy->port->rphy;
 369        if (!rphy)
 370                return NULL;
 371
 372        dev = sas_find_dev_by_rphy(rphy);
 373
 374        if (dev && dev_is_sata(dev))
 375                return dev;
 376
 377        return NULL;
 378}
 379
 380#define DISCOVER_REQ_SIZE  16
 381#define DISCOVER_RESP_SIZE 56
 382
 383static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 384                                      u8 *disc_resp, int single)
 385{
 386        struct discover_resp *dr;
 387        int res;
 388
 389        disc_req[9] = single;
 390
 391        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 392                               disc_resp, DISCOVER_RESP_SIZE);
 393        if (res)
 394                return res;
 395        dr = &((struct smp_resp *)disc_resp)->disc;
 396        if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 397                pr_notice("Found loopback topology, just ignore it!\n");
 398                return 0;
 399        }
 400        sas_set_ex_phy(dev, single, disc_resp);
 401        return 0;
 402}
 403
 404int sas_ex_phy_discover(struct domain_device *dev, int single)
 405{
 406        struct expander_device *ex = &dev->ex_dev;
 407        int  res = 0;
 408        u8   *disc_req;
 409        u8   *disc_resp;
 410
 411        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 412        if (!disc_req)
 413                return -ENOMEM;
 414
 415        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 416        if (!disc_resp) {
 417                kfree(disc_req);
 418                return -ENOMEM;
 419        }
 420
 421        disc_req[1] = SMP_DISCOVER;
 422
 423        if (0 <= single && single < ex->num_phys) {
 424                res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 425        } else {
 426                int i;
 427
 428                for (i = 0; i < ex->num_phys; i++) {
 429                        res = sas_ex_phy_discover_helper(dev, disc_req,
 430                                                         disc_resp, i);
 431                        if (res)
 432                                goto out_err;
 433                }
 434        }
 435out_err:
 436        kfree(disc_resp);
 437        kfree(disc_req);
 438        return res;
 439}
 440
 441static int sas_expander_discover(struct domain_device *dev)
 442{
 443        struct expander_device *ex = &dev->ex_dev;
 444        int res = -ENOMEM;
 445
 446        ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 447        if (!ex->ex_phy)
 448                return -ENOMEM;
 449
 450        res = sas_ex_phy_discover(dev, -1);
 451        if (res)
 452                goto out_err;
 453
 454        return 0;
 455 out_err:
 456        kfree(ex->ex_phy);
 457        ex->ex_phy = NULL;
 458        return res;
 459}
 460
 461#define MAX_EXPANDER_PHYS 128
 462
 463static void ex_assign_report_general(struct domain_device *dev,
 464                                            struct smp_resp *resp)
 465{
 466        struct report_general_resp *rg = &resp->rg;
 467
 468        dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 469        dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 470        dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 471        dev->ex_dev.t2t_supp = rg->t2t_supp;
 472        dev->ex_dev.conf_route_table = rg->conf_route_table;
 473        dev->ex_dev.configuring = rg->configuring;
 474        memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 475}
 476
 477#define RG_REQ_SIZE   8
 478#define RG_RESP_SIZE 32
 479
 480static int sas_ex_general(struct domain_device *dev)
 481{
 482        u8 *rg_req;
 483        struct smp_resp *rg_resp;
 484        int res;
 485        int i;
 486
 487        rg_req = alloc_smp_req(RG_REQ_SIZE);
 488        if (!rg_req)
 489                return -ENOMEM;
 490
 491        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 492        if (!rg_resp) {
 493                kfree(rg_req);
 494                return -ENOMEM;
 495        }
 496
 497        rg_req[1] = SMP_REPORT_GENERAL;
 498
 499        for (i = 0; i < 5; i++) {
 500                res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 501                                       RG_RESP_SIZE);
 502
 503                if (res) {
 504                        pr_notice("RG to ex %016llx failed:0x%x\n",
 505                                  SAS_ADDR(dev->sas_addr), res);
 506                        goto out;
 507                } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 508                        pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 509                                 SAS_ADDR(dev->sas_addr), rg_resp->result);
 510                        res = rg_resp->result;
 511                        goto out;
 512                }
 513
 514                ex_assign_report_general(dev, rg_resp);
 515
 516                if (dev->ex_dev.configuring) {
 517                        pr_debug("RG: ex %llx self-configuring...\n",
 518                                 SAS_ADDR(dev->sas_addr));
 519                        schedule_timeout_interruptible(5*HZ);
 520                } else
 521                        break;
 522        }
 523out:
 524        kfree(rg_req);
 525        kfree(rg_resp);
 526        return res;
 527}
 528
 529static void ex_assign_manuf_info(struct domain_device *dev, void
 530                                        *_mi_resp)
 531{
 532        u8 *mi_resp = _mi_resp;
 533        struct sas_rphy *rphy = dev->rphy;
 534        struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 535
 536        memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 537        memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 538        memcpy(edev->product_rev, mi_resp + 36,
 539               SAS_EXPANDER_PRODUCT_REV_LEN);
 540
 541        if (mi_resp[8] & 1) {
 542                memcpy(edev->component_vendor_id, mi_resp + 40,
 543                       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 544                edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 545                edev->component_revision_id = mi_resp[50];
 546        }
 547}
 548
 549#define MI_REQ_SIZE   8
 550#define MI_RESP_SIZE 64
 551
 552static int sas_ex_manuf_info(struct domain_device *dev)
 553{
 554        u8 *mi_req;
 555        u8 *mi_resp;
 556        int res;
 557
 558        mi_req = alloc_smp_req(MI_REQ_SIZE);
 559        if (!mi_req)
 560                return -ENOMEM;
 561
 562        mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 563        if (!mi_resp) {
 564                kfree(mi_req);
 565                return -ENOMEM;
 566        }
 567
 568        mi_req[1] = SMP_REPORT_MANUF_INFO;
 569
 570        res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 571        if (res) {
 572                pr_notice("MI: ex %016llx failed:0x%x\n",
 573                          SAS_ADDR(dev->sas_addr), res);
 574                goto out;
 575        } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 576                pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 577                         SAS_ADDR(dev->sas_addr), mi_resp[2]);
 578                goto out;
 579        }
 580
 581        ex_assign_manuf_info(dev, mi_resp);
 582out:
 583        kfree(mi_req);
 584        kfree(mi_resp);
 585        return res;
 586}
 587
 588#define PC_REQ_SIZE  44
 589#define PC_RESP_SIZE 8
 590
 591int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 592                        enum phy_func phy_func,
 593                        struct sas_phy_linkrates *rates)
 594{
 595        u8 *pc_req;
 596        u8 *pc_resp;
 597        int res;
 598
 599        pc_req = alloc_smp_req(PC_REQ_SIZE);
 600        if (!pc_req)
 601                return -ENOMEM;
 602
 603        pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 604        if (!pc_resp) {
 605                kfree(pc_req);
 606                return -ENOMEM;
 607        }
 608
 609        pc_req[1] = SMP_PHY_CONTROL;
 610        pc_req[9] = phy_id;
 611        pc_req[10]= phy_func;
 612        if (rates) {
 613                pc_req[32] = rates->minimum_linkrate << 4;
 614                pc_req[33] = rates->maximum_linkrate << 4;
 615        }
 616
 617        res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 618        if (res) {
 619                pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 620                       SAS_ADDR(dev->sas_addr), phy_id, res);
 621        } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 622                pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 623                       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 624                res = pc_resp[2];
 625        }
 626        kfree(pc_resp);
 627        kfree(pc_req);
 628        return res;
 629}
 630
 631static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 632{
 633        struct expander_device *ex = &dev->ex_dev;
 634        struct ex_phy *phy = &ex->ex_phy[phy_id];
 635
 636        sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 637        phy->linkrate = SAS_PHY_DISABLED;
 638}
 639
 640static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 641{
 642        struct expander_device *ex = &dev->ex_dev;
 643        int i;
 644
 645        for (i = 0; i < ex->num_phys; i++) {
 646                struct ex_phy *phy = &ex->ex_phy[i];
 647
 648                if (phy->phy_state == PHY_VACANT ||
 649                    phy->phy_state == PHY_NOT_PRESENT)
 650                        continue;
 651
 652                if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 653                        sas_ex_disable_phy(dev, i);
 654        }
 655}
 656
 657static int sas_dev_present_in_domain(struct asd_sas_port *port,
 658                                            u8 *sas_addr)
 659{
 660        struct domain_device *dev;
 661
 662        if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 663                return 1;
 664        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 665                if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 666                        return 1;
 667        }
 668        return 0;
 669}
 670
 671#define RPEL_REQ_SIZE   16
 672#define RPEL_RESP_SIZE  32
 673int sas_smp_get_phy_events(struct sas_phy *phy)
 674{
 675        int res;
 676        u8 *req;
 677        u8 *resp;
 678        struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 679        struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 680
 681        req = alloc_smp_req(RPEL_REQ_SIZE);
 682        if (!req)
 683                return -ENOMEM;
 684
 685        resp = alloc_smp_resp(RPEL_RESP_SIZE);
 686        if (!resp) {
 687                kfree(req);
 688                return -ENOMEM;
 689        }
 690
 691        req[1] = SMP_REPORT_PHY_ERR_LOG;
 692        req[9] = phy->number;
 693
 694        res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 695                                    resp, RPEL_RESP_SIZE);
 696
 697        if (res)
 698                goto out;
 699
 700        phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 701        phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 702        phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 703        phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 704
 705 out:
 706        kfree(req);
 707        kfree(resp);
 708        return res;
 709
 710}
 711
 712#ifdef CONFIG_SCSI_SAS_ATA
 713
 714#define RPS_REQ_SIZE  16
 715#define RPS_RESP_SIZE 60
 716
 717int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 718                            struct smp_resp *rps_resp)
 719{
 720        int res;
 721        u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 722        u8 *resp = (u8 *)rps_resp;
 723
 724        if (!rps_req)
 725                return -ENOMEM;
 726
 727        rps_req[1] = SMP_REPORT_PHY_SATA;
 728        rps_req[9] = phy_id;
 729
 730        res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 731                                    rps_resp, RPS_RESP_SIZE);
 732
 733        /* 0x34 is the FIS type for the D2H fis.  There's a potential
 734         * standards cockup here.  sas-2 explicitly specifies the FIS
 735         * should be encoded so that FIS type is in resp[24].
 736         * However, some expanders endian reverse this.  Undo the
 737         * reversal here */
 738        if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 739                int i;
 740
 741                for (i = 0; i < 5; i++) {
 742                        int j = 24 + (i*4);
 743                        u8 a, b;
 744                        a = resp[j + 0];
 745                        b = resp[j + 1];
 746                        resp[j + 0] = resp[j + 3];
 747                        resp[j + 1] = resp[j + 2];
 748                        resp[j + 2] = b;
 749                        resp[j + 3] = a;
 750                }
 751        }
 752
 753        kfree(rps_req);
 754        return res;
 755}
 756#endif
 757
 758static void sas_ex_get_linkrate(struct domain_device *parent,
 759                                       struct domain_device *child,
 760                                       struct ex_phy *parent_phy)
 761{
 762        struct expander_device *parent_ex = &parent->ex_dev;
 763        struct sas_port *port;
 764        int i;
 765
 766        child->pathways = 0;
 767
 768        port = parent_phy->port;
 769
 770        for (i = 0; i < parent_ex->num_phys; i++) {
 771                struct ex_phy *phy = &parent_ex->ex_phy[i];
 772
 773                if (phy->phy_state == PHY_VACANT ||
 774                    phy->phy_state == PHY_NOT_PRESENT)
 775                        continue;
 776
 777                if (SAS_ADDR(phy->attached_sas_addr) ==
 778                    SAS_ADDR(child->sas_addr)) {
 779
 780                        child->min_linkrate = min(parent->min_linkrate,
 781                                                  phy->linkrate);
 782                        child->max_linkrate = max(parent->max_linkrate,
 783                                                  phy->linkrate);
 784                        child->pathways++;
 785                        sas_port_add_phy(port, phy->phy);
 786                }
 787        }
 788        child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 789        child->pathways = min(child->pathways, parent->pathways);
 790}
 791
 792static struct domain_device *sas_ex_discover_end_dev(
 793        struct domain_device *parent, int phy_id)
 794{
 795        struct expander_device *parent_ex = &parent->ex_dev;
 796        struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 797        struct domain_device *child = NULL;
 798        struct sas_rphy *rphy;
 799        int res;
 800
 801        if (phy->attached_sata_host || phy->attached_sata_ps)
 802                return NULL;
 803
 804        child = sas_alloc_device();
 805        if (!child)
 806                return NULL;
 807
 808        kref_get(&parent->kref);
 809        child->parent = parent;
 810        child->port   = parent->port;
 811        child->iproto = phy->attached_iproto;
 812        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 813        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 814        if (!phy->port) {
 815                phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 816                if (unlikely(!phy->port))
 817                        goto out_err;
 818                if (unlikely(sas_port_add(phy->port) != 0)) {
 819                        sas_port_free(phy->port);
 820                        goto out_err;
 821                }
 822        }
 823        sas_ex_get_linkrate(parent, child, phy);
 824        sas_device_set_phy(child, phy->port);
 825
 826#ifdef CONFIG_SCSI_SAS_ATA
 827        if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 828                if (child->linkrate > parent->min_linkrate) {
 829                        struct sas_phy *cphy = child->phy;
 830                        enum sas_linkrate min_prate = cphy->minimum_linkrate,
 831                                parent_min_lrate = parent->min_linkrate,
 832                                min_linkrate = (min_prate > parent_min_lrate) ?
 833                                               parent_min_lrate : 0;
 834                        struct sas_phy_linkrates rates = {
 835                                .maximum_linkrate = parent->min_linkrate,
 836                                .minimum_linkrate = min_linkrate,
 837                        };
 838                        int ret;
 839
 840                        pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 841                                   SAS_ADDR(child->sas_addr), phy_id);
 842                        ret = sas_smp_phy_control(parent, phy_id,
 843                                                  PHY_FUNC_LINK_RESET, &rates);
 844                        if (ret) {
 845                                pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 846                                       SAS_ADDR(child->sas_addr), phy_id, ret);
 847                                goto out_free;
 848                        }
 849                        pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 850                                  SAS_ADDR(child->sas_addr), phy_id);
 851                        child->linkrate = child->min_linkrate;
 852                }
 853                res = sas_get_ata_info(child, phy);
 854                if (res)
 855                        goto out_free;
 856
 857                sas_init_dev(child);
 858                res = sas_ata_init(child);
 859                if (res)
 860                        goto out_free;
 861                rphy = sas_end_device_alloc(phy->port);
 862                if (!rphy)
 863                        goto out_free;
 864                rphy->identify.phy_identifier = phy_id;
 865
 866                child->rphy = rphy;
 867                get_device(&rphy->dev);
 868
 869                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 870
 871                res = sas_discover_sata(child);
 872                if (res) {
 873                        pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 874                                  SAS_ADDR(child->sas_addr),
 875                                  SAS_ADDR(parent->sas_addr), phy_id, res);
 876                        goto out_list_del;
 877                }
 878        } else
 879#endif
 880          if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 881                child->dev_type = SAS_END_DEVICE;
 882                rphy = sas_end_device_alloc(phy->port);
 883                /* FIXME: error handling */
 884                if (unlikely(!rphy))
 885                        goto out_free;
 886                child->tproto = phy->attached_tproto;
 887                sas_init_dev(child);
 888
 889                child->rphy = rphy;
 890                get_device(&rphy->dev);
 891                rphy->identify.phy_identifier = phy_id;
 892                sas_fill_in_rphy(child, rphy);
 893
 894                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 895
 896                res = sas_discover_end_dev(child);
 897                if (res) {
 898                        pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
 899                                  SAS_ADDR(child->sas_addr),
 900                                  SAS_ADDR(parent->sas_addr), phy_id, res);
 901                        goto out_list_del;
 902                }
 903        } else {
 904                pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 905                          phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 906                          phy_id);
 907                goto out_free;
 908        }
 909
 910        list_add_tail(&child->siblings, &parent_ex->children);
 911        return child;
 912
 913 out_list_del:
 914        sas_rphy_free(child->rphy);
 915        list_del(&child->disco_list_node);
 916        spin_lock_irq(&parent->port->dev_list_lock);
 917        list_del(&child->dev_list_node);
 918        spin_unlock_irq(&parent->port->dev_list_lock);
 919 out_free:
 920        sas_port_delete(phy->port);
 921 out_err:
 922        phy->port = NULL;
 923        sas_put_device(child);
 924        return NULL;
 925}
 926
 927/* See if this phy is part of a wide port */
 928static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 929{
 930        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 931        int i;
 932
 933        for (i = 0; i < parent->ex_dev.num_phys; i++) {
 934                struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 935
 936                if (ephy == phy)
 937                        continue;
 938
 939                if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 940                            SAS_ADDR_SIZE) && ephy->port) {
 941                        sas_port_add_phy(ephy->port, phy->phy);
 942                        phy->port = ephy->port;
 943                        phy->phy_state = PHY_DEVICE_DISCOVERED;
 944                        return true;
 945                }
 946        }
 947
 948        return false;
 949}
 950
 951static struct domain_device *sas_ex_discover_expander(
 952        struct domain_device *parent, int phy_id)
 953{
 954        struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 955        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 956        struct domain_device *child = NULL;
 957        struct sas_rphy *rphy;
 958        struct sas_expander_device *edev;
 959        struct asd_sas_port *port;
 960        int res;
 961
 962        if (phy->routing_attr == DIRECT_ROUTING) {
 963                pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 964                        SAS_ADDR(parent->sas_addr), phy_id,
 965                        SAS_ADDR(phy->attached_sas_addr),
 966                        phy->attached_phy_id);
 967                return NULL;
 968        }
 969        child = sas_alloc_device();
 970        if (!child)
 971                return NULL;
 972
 973        phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 974        /* FIXME: better error handling */
 975        BUG_ON(sas_port_add(phy->port) != 0);
 976
 977
 978        switch (phy->attached_dev_type) {
 979        case SAS_EDGE_EXPANDER_DEVICE:
 980                rphy = sas_expander_alloc(phy->port,
 981                                          SAS_EDGE_EXPANDER_DEVICE);
 982                break;
 983        case SAS_FANOUT_EXPANDER_DEVICE:
 984                rphy = sas_expander_alloc(phy->port,
 985                                          SAS_FANOUT_EXPANDER_DEVICE);
 986                break;
 987        default:
 988                rphy = NULL;    /* shut gcc up */
 989                BUG();
 990        }
 991        port = parent->port;
 992        child->rphy = rphy;
 993        get_device(&rphy->dev);
 994        edev = rphy_to_expander_device(rphy);
 995        child->dev_type = phy->attached_dev_type;
 996        kref_get(&parent->kref);
 997        child->parent = parent;
 998        child->port = port;
 999        child->iproto = phy->attached_iproto;
1000        child->tproto = phy->attached_tproto;
1001        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1002        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1003        sas_ex_get_linkrate(parent, child, phy);
1004        edev->level = parent_ex->level + 1;
1005        parent->port->disc.max_level = max(parent->port->disc.max_level,
1006                                           edev->level);
1007        sas_init_dev(child);
1008        sas_fill_in_rphy(child, rphy);
1009        sas_rphy_add(rphy);
1010
1011        spin_lock_irq(&parent->port->dev_list_lock);
1012        list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1013        spin_unlock_irq(&parent->port->dev_list_lock);
1014
1015        res = sas_discover_expander(child);
1016        if (res) {
1017                sas_rphy_delete(rphy);
1018                spin_lock_irq(&parent->port->dev_list_lock);
1019                list_del(&child->dev_list_node);
1020                spin_unlock_irq(&parent->port->dev_list_lock);
1021                sas_put_device(child);
1022                sas_port_delete(phy->port);
1023                phy->port = NULL;
1024                return NULL;
1025        }
1026        list_add_tail(&child->siblings, &parent->ex_dev.children);
1027        return child;
1028}
1029
1030static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1031{
1032        struct expander_device *ex = &dev->ex_dev;
1033        struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1034        struct domain_device *child = NULL;
1035        int res = 0;
1036
1037        /* Phy state */
1038        if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1039                if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1040                        res = sas_ex_phy_discover(dev, phy_id);
1041                if (res)
1042                        return res;
1043        }
1044
1045        /* Parent and domain coherency */
1046        if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1047                             SAS_ADDR(dev->port->sas_addr))) {
1048                sas_add_parent_port(dev, phy_id);
1049                return 0;
1050        }
1051        if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1052                            SAS_ADDR(dev->parent->sas_addr))) {
1053                sas_add_parent_port(dev, phy_id);
1054                if (ex_phy->routing_attr == TABLE_ROUTING)
1055                        sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1056                return 0;
1057        }
1058
1059        if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1060                sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1061
1062        if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1063                if (ex_phy->routing_attr == DIRECT_ROUTING) {
1064                        memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1065                        sas_configure_routing(dev, ex_phy->attached_sas_addr);
1066                }
1067                return 0;
1068        } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1069                return 0;
1070
1071        if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1072            ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1073            ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1074            ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1075                pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1076                        ex_phy->attached_dev_type,
1077                        SAS_ADDR(dev->sas_addr),
1078                        phy_id);
1079                return 0;
1080        }
1081
1082        res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1083        if (res) {
1084                pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1085                          SAS_ADDR(ex_phy->attached_sas_addr), res);
1086                sas_disable_routing(dev, ex_phy->attached_sas_addr);
1087                return res;
1088        }
1089
1090        if (sas_ex_join_wide_port(dev, phy_id)) {
1091                pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1092                         phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1093                return res;
1094        }
1095
1096        switch (ex_phy->attached_dev_type) {
1097        case SAS_END_DEVICE:
1098        case SAS_SATA_PENDING:
1099                child = sas_ex_discover_end_dev(dev, phy_id);
1100                break;
1101        case SAS_FANOUT_EXPANDER_DEVICE:
1102                if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1103                        pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1104                                 SAS_ADDR(ex_phy->attached_sas_addr),
1105                                 ex_phy->attached_phy_id,
1106                                 SAS_ADDR(dev->sas_addr),
1107                                 phy_id);
1108                        sas_ex_disable_phy(dev, phy_id);
1109                        break;
1110                } else
1111                        memcpy(dev->port->disc.fanout_sas_addr,
1112                               ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1113                /* fallthrough */
1114        case SAS_EDGE_EXPANDER_DEVICE:
1115                child = sas_ex_discover_expander(dev, phy_id);
1116                break;
1117        default:
1118                break;
1119        }
1120
1121        if (child) {
1122                int i;
1123
1124                for (i = 0; i < ex->num_phys; i++) {
1125                        if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1126                            ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1127                                continue;
1128                        /*
1129                         * Due to races, the phy might not get added to the
1130                         * wide port, so we add the phy to the wide port here.
1131                         */
1132                        if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1133                            SAS_ADDR(child->sas_addr)) {
1134                                ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1135                                if (sas_ex_join_wide_port(dev, i))
1136                                        pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1137                                                 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1138                        }
1139                }
1140        }
1141
1142        return res;
1143}
1144
1145static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1146{
1147        struct expander_device *ex = &dev->ex_dev;
1148        int i;
1149
1150        for (i = 0; i < ex->num_phys; i++) {
1151                struct ex_phy *phy = &ex->ex_phy[i];
1152
1153                if (phy->phy_state == PHY_VACANT ||
1154                    phy->phy_state == PHY_NOT_PRESENT)
1155                        continue;
1156
1157                if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1158                     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1159                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160
1161                        memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1162
1163                        return 1;
1164                }
1165        }
1166        return 0;
1167}
1168
1169static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1170{
1171        struct expander_device *ex = &dev->ex_dev;
1172        struct domain_device *child;
1173        u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1174
1175        list_for_each_entry(child, &ex->children, siblings) {
1176                if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1177                    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1178                        continue;
1179                if (sub_addr[0] == 0) {
1180                        sas_find_sub_addr(child, sub_addr);
1181                        continue;
1182                } else {
1183                        u8 s2[SAS_ADDR_SIZE];
1184
1185                        if (sas_find_sub_addr(child, s2) &&
1186                            (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1187
1188                                pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1189                                          SAS_ADDR(dev->sas_addr),
1190                                          SAS_ADDR(child->sas_addr),
1191                                          SAS_ADDR(s2),
1192                                          SAS_ADDR(sub_addr));
1193
1194                                sas_ex_disable_port(child, s2);
1195                        }
1196                }
1197        }
1198        return 0;
1199}
1200/**
1201 * sas_ex_discover_devices - discover devices attached to this expander
1202 * @dev: pointer to the expander domain device
1203 * @single: if you want to do a single phy, else set to -1;
1204 *
1205 * Configure this expander for use with its devices and register the
1206 * devices of this expander.
1207 */
1208static int sas_ex_discover_devices(struct domain_device *dev, int single)
1209{
1210        struct expander_device *ex = &dev->ex_dev;
1211        int i = 0, end = ex->num_phys;
1212        int res = 0;
1213
1214        if (0 <= single && single < end) {
1215                i = single;
1216                end = i+1;
1217        }
1218
1219        for ( ; i < end; i++) {
1220                struct ex_phy *ex_phy = &ex->ex_phy[i];
1221
1222                if (ex_phy->phy_state == PHY_VACANT ||
1223                    ex_phy->phy_state == PHY_NOT_PRESENT ||
1224                    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1225                        continue;
1226
1227                switch (ex_phy->linkrate) {
1228                case SAS_PHY_DISABLED:
1229                case SAS_PHY_RESET_PROBLEM:
1230                case SAS_SATA_PORT_SELECTOR:
1231                        continue;
1232                default:
1233                        res = sas_ex_discover_dev(dev, i);
1234                        if (res)
1235                                break;
1236                        continue;
1237                }
1238        }
1239
1240        if (!res)
1241                sas_check_level_subtractive_boundary(dev);
1242
1243        return res;
1244}
1245
1246static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1247{
1248        struct expander_device *ex = &dev->ex_dev;
1249        int i;
1250        u8  *sub_sas_addr = NULL;
1251
1252        if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1253                return 0;
1254
1255        for (i = 0; i < ex->num_phys; i++) {
1256                struct ex_phy *phy = &ex->ex_phy[i];
1257
1258                if (phy->phy_state == PHY_VACANT ||
1259                    phy->phy_state == PHY_NOT_PRESENT)
1260                        continue;
1261
1262                if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1263                     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1264                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1265
1266                        if (!sub_sas_addr)
1267                                sub_sas_addr = &phy->attached_sas_addr[0];
1268                        else if (SAS_ADDR(sub_sas_addr) !=
1269                                 SAS_ADDR(phy->attached_sas_addr)) {
1270
1271                                pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1272                                          SAS_ADDR(dev->sas_addr), i,
1273                                          SAS_ADDR(phy->attached_sas_addr),
1274                                          SAS_ADDR(sub_sas_addr));
1275                                sas_ex_disable_phy(dev, i);
1276                        }
1277                }
1278        }
1279        return 0;
1280}
1281
1282static void sas_print_parent_topology_bug(struct domain_device *child,
1283                                                 struct ex_phy *parent_phy,
1284                                                 struct ex_phy *child_phy)
1285{
1286        static const char *ex_type[] = {
1287                [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1288                [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1289        };
1290        struct domain_device *parent = child->parent;
1291
1292        pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1293                  ex_type[parent->dev_type],
1294                  SAS_ADDR(parent->sas_addr),
1295                  parent_phy->phy_id,
1296
1297                  ex_type[child->dev_type],
1298                  SAS_ADDR(child->sas_addr),
1299                  child_phy->phy_id,
1300
1301                  sas_route_char(parent, parent_phy),
1302                  sas_route_char(child, child_phy));
1303}
1304
1305static int sas_check_eeds(struct domain_device *child,
1306                                 struct ex_phy *parent_phy,
1307                                 struct ex_phy *child_phy)
1308{
1309        int res = 0;
1310        struct domain_device *parent = child->parent;
1311
1312        if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1313                res = -ENODEV;
1314                pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1315                        SAS_ADDR(parent->sas_addr),
1316                        parent_phy->phy_id,
1317                        SAS_ADDR(child->sas_addr),
1318                        child_phy->phy_id,
1319                        SAS_ADDR(parent->port->disc.fanout_sas_addr));
1320        } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1321                memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1322                       SAS_ADDR_SIZE);
1323                memcpy(parent->port->disc.eeds_b, child->sas_addr,
1324                       SAS_ADDR_SIZE);
1325        } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1326                    SAS_ADDR(parent->sas_addr)) ||
1327                   (SAS_ADDR(parent->port->disc.eeds_a) ==
1328                    SAS_ADDR(child->sas_addr)))
1329                   &&
1330                   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1331                     SAS_ADDR(parent->sas_addr)) ||
1332                    (SAS_ADDR(parent->port->disc.eeds_b) ==
1333                     SAS_ADDR(child->sas_addr))))
1334                ;
1335        else {
1336                res = -ENODEV;
1337                pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1338                        SAS_ADDR(parent->sas_addr),
1339                        parent_phy->phy_id,
1340                        SAS_ADDR(child->sas_addr),
1341                        child_phy->phy_id);
1342        }
1343
1344        return res;
1345}
1346
1347/* Here we spill over 80 columns.  It is intentional.
1348 */
1349static int sas_check_parent_topology(struct domain_device *child)
1350{
1351        struct expander_device *child_ex = &child->ex_dev;
1352        struct expander_device *parent_ex;
1353        int i;
1354        int res = 0;
1355
1356        if (!child->parent)
1357                return 0;
1358
1359        if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1360            child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1361                return 0;
1362
1363        parent_ex = &child->parent->ex_dev;
1364
1365        for (i = 0; i < parent_ex->num_phys; i++) {
1366                struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1367                struct ex_phy *child_phy;
1368
1369                if (parent_phy->phy_state == PHY_VACANT ||
1370                    parent_phy->phy_state == PHY_NOT_PRESENT)
1371                        continue;
1372
1373                if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1374                        continue;
1375
1376                child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1377
1378                switch (child->parent->dev_type) {
1379                case SAS_EDGE_EXPANDER_DEVICE:
1380                        if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1381                                if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1382                                    child_phy->routing_attr != TABLE_ROUTING) {
1383                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1384                                        res = -ENODEV;
1385                                }
1386                        } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1387                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1388                                        res = sas_check_eeds(child, parent_phy, child_phy);
1389                                } else if (child_phy->routing_attr != TABLE_ROUTING) {
1390                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1391                                        res = -ENODEV;
1392                                }
1393                        } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1394                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1395                                    (child_phy->routing_attr == TABLE_ROUTING &&
1396                                     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1397                                        /* All good */;
1398                                } else {
1399                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1400                                        res = -ENODEV;
1401                                }
1402                        }
1403                        break;
1404                case SAS_FANOUT_EXPANDER_DEVICE:
1405                        if (parent_phy->routing_attr != TABLE_ROUTING ||
1406                            child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1407                                sas_print_parent_topology_bug(child, parent_phy, child_phy);
1408                                res = -ENODEV;
1409                        }
1410                        break;
1411                default:
1412                        break;
1413                }
1414        }
1415
1416        return res;
1417}
1418
1419#define RRI_REQ_SIZE  16
1420#define RRI_RESP_SIZE 44
1421
1422static int sas_configure_present(struct domain_device *dev, int phy_id,
1423                                 u8 *sas_addr, int *index, int *present)
1424{
1425        int i, res = 0;
1426        struct expander_device *ex = &dev->ex_dev;
1427        struct ex_phy *phy = &ex->ex_phy[phy_id];
1428        u8 *rri_req;
1429        u8 *rri_resp;
1430
1431        *present = 0;
1432        *index = 0;
1433
1434        rri_req = alloc_smp_req(RRI_REQ_SIZE);
1435        if (!rri_req)
1436                return -ENOMEM;
1437
1438        rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1439        if (!rri_resp) {
1440                kfree(rri_req);
1441                return -ENOMEM;
1442        }
1443
1444        rri_req[1] = SMP_REPORT_ROUTE_INFO;
1445        rri_req[9] = phy_id;
1446
1447        for (i = 0; i < ex->max_route_indexes ; i++) {
1448                *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1449                res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1450                                       RRI_RESP_SIZE);
1451                if (res)
1452                        goto out;
1453                res = rri_resp[2];
1454                if (res == SMP_RESP_NO_INDEX) {
1455                        pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1456                                SAS_ADDR(dev->sas_addr), phy_id, i);
1457                        goto out;
1458                } else if (res != SMP_RESP_FUNC_ACC) {
1459                        pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1460                                  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1461                                  i, res);
1462                        goto out;
1463                }
1464                if (SAS_ADDR(sas_addr) != 0) {
1465                        if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1466                                *index = i;
1467                                if ((rri_resp[12] & 0x80) == 0x80)
1468                                        *present = 0;
1469                                else
1470                                        *present = 1;
1471                                goto out;
1472                        } else if (SAS_ADDR(rri_resp+16) == 0) {
1473                                *index = i;
1474                                *present = 0;
1475                                goto out;
1476                        }
1477                } else if (SAS_ADDR(rri_resp+16) == 0 &&
1478                           phy->last_da_index < i) {
1479                        phy->last_da_index = i;
1480                        *index = i;
1481                        *present = 0;
1482                        goto out;
1483                }
1484        }
1485        res = -1;
1486out:
1487        kfree(rri_req);
1488        kfree(rri_resp);
1489        return res;
1490}
1491
1492#define CRI_REQ_SIZE  44
1493#define CRI_RESP_SIZE  8
1494
1495static int sas_configure_set(struct domain_device *dev, int phy_id,
1496                             u8 *sas_addr, int index, int include)
1497{
1498        int res;
1499        u8 *cri_req;
1500        u8 *cri_resp;
1501
1502        cri_req = alloc_smp_req(CRI_REQ_SIZE);
1503        if (!cri_req)
1504                return -ENOMEM;
1505
1506        cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1507        if (!cri_resp) {
1508                kfree(cri_req);
1509                return -ENOMEM;
1510        }
1511
1512        cri_req[1] = SMP_CONF_ROUTE_INFO;
1513        *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1514        cri_req[9] = phy_id;
1515        if (SAS_ADDR(sas_addr) == 0 || !include)
1516                cri_req[12] |= 0x80;
1517        memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1518
1519        res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1520                               CRI_RESP_SIZE);
1521        if (res)
1522                goto out;
1523        res = cri_resp[2];
1524        if (res == SMP_RESP_NO_INDEX) {
1525                pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1526                        SAS_ADDR(dev->sas_addr), phy_id, index);
1527        }
1528out:
1529        kfree(cri_req);
1530        kfree(cri_resp);
1531        return res;
1532}
1533
1534static int sas_configure_phy(struct domain_device *dev, int phy_id,
1535                                    u8 *sas_addr, int include)
1536{
1537        int index;
1538        int present;
1539        int res;
1540
1541        res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1542        if (res)
1543                return res;
1544        if (include ^ present)
1545                return sas_configure_set(dev, phy_id, sas_addr, index,include);
1546
1547        return res;
1548}
1549
1550/**
1551 * sas_configure_parent - configure routing table of parent
1552 * @parent: parent expander
1553 * @child: child expander
1554 * @sas_addr: SAS port identifier of device directly attached to child
1555 * @include: whether or not to include @child in the expander routing table
1556 */
1557static int sas_configure_parent(struct domain_device *parent,
1558                                struct domain_device *child,
1559                                u8 *sas_addr, int include)
1560{
1561        struct expander_device *ex_parent = &parent->ex_dev;
1562        int res = 0;
1563        int i;
1564
1565        if (parent->parent) {
1566                res = sas_configure_parent(parent->parent, parent, sas_addr,
1567                                           include);
1568                if (res)
1569                        return res;
1570        }
1571
1572        if (ex_parent->conf_route_table == 0) {
1573                pr_debug("ex %016llx has self-configuring routing table\n",
1574                         SAS_ADDR(parent->sas_addr));
1575                return 0;
1576        }
1577
1578        for (i = 0; i < ex_parent->num_phys; i++) {
1579                struct ex_phy *phy = &ex_parent->ex_phy[i];
1580
1581                if ((phy->routing_attr == TABLE_ROUTING) &&
1582                    (SAS_ADDR(phy->attached_sas_addr) ==
1583                     SAS_ADDR(child->sas_addr))) {
1584                        res = sas_configure_phy(parent, i, sas_addr, include);
1585                        if (res)
1586                                return res;
1587                }
1588        }
1589
1590        return res;
1591}
1592
1593/**
1594 * sas_configure_routing - configure routing
1595 * @dev: expander device
1596 * @sas_addr: port identifier of device directly attached to the expander device
1597 */
1598static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1599{
1600        if (dev->parent)
1601                return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1602        return 0;
1603}
1604
1605static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1606{
1607        if (dev->parent)
1608                return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1609        return 0;
1610}
1611
1612/**
1613 * sas_discover_expander - expander discovery
1614 * @dev: pointer to expander domain device
1615 *
1616 * See comment in sas_discover_sata().
1617 */
1618static int sas_discover_expander(struct domain_device *dev)
1619{
1620        int res;
1621
1622        res = sas_notify_lldd_dev_found(dev);
1623        if (res)
1624                return res;
1625
1626        res = sas_ex_general(dev);
1627        if (res)
1628                goto out_err;
1629        res = sas_ex_manuf_info(dev);
1630        if (res)
1631                goto out_err;
1632
1633        res = sas_expander_discover(dev);
1634        if (res) {
1635                pr_warn("expander %016llx discovery failed(0x%x)\n",
1636                        SAS_ADDR(dev->sas_addr), res);
1637                goto out_err;
1638        }
1639
1640        sas_check_ex_subtractive_boundary(dev);
1641        res = sas_check_parent_topology(dev);
1642        if (res)
1643                goto out_err;
1644        return 0;
1645out_err:
1646        sas_notify_lldd_dev_gone(dev);
1647        return res;
1648}
1649
1650static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1651{
1652        int res = 0;
1653        struct domain_device *dev;
1654
1655        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1656                if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1657                    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1658                        struct sas_expander_device *ex =
1659                                rphy_to_expander_device(dev->rphy);
1660
1661                        if (level == ex->level)
1662                                res = sas_ex_discover_devices(dev, -1);
1663                        else if (level > 0)
1664                                res = sas_ex_discover_devices(port->port_dev, -1);
1665
1666                }
1667        }
1668
1669        return res;
1670}
1671
1672static int sas_ex_bfs_disc(struct asd_sas_port *port)
1673{
1674        int res;
1675        int level;
1676
1677        do {
1678                level = port->disc.max_level;
1679                res = sas_ex_level_discovery(port, level);
1680                mb();
1681        } while (level < port->disc.max_level);
1682
1683        return res;
1684}
1685
1686int sas_discover_root_expander(struct domain_device *dev)
1687{
1688        int res;
1689        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1690
1691        res = sas_rphy_add(dev->rphy);
1692        if (res)
1693                goto out_err;
1694
1695        ex->level = dev->port->disc.max_level; /* 0 */
1696        res = sas_discover_expander(dev);
1697        if (res)
1698                goto out_err2;
1699
1700        sas_ex_bfs_disc(dev->port);
1701
1702        return res;
1703
1704out_err2:
1705        sas_rphy_remove(dev->rphy);
1706out_err:
1707        return res;
1708}
1709
1710/* ---------- Domain revalidation ---------- */
1711
1712static int sas_get_phy_discover(struct domain_device *dev,
1713                                int phy_id, struct smp_resp *disc_resp)
1714{
1715        int res;
1716        u8 *disc_req;
1717
1718        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1719        if (!disc_req)
1720                return -ENOMEM;
1721
1722        disc_req[1] = SMP_DISCOVER;
1723        disc_req[9] = phy_id;
1724
1725        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1726                               disc_resp, DISCOVER_RESP_SIZE);
1727        if (res)
1728                goto out;
1729        else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1730                res = disc_resp->result;
1731                goto out;
1732        }
1733out:
1734        kfree(disc_req);
1735        return res;
1736}
1737
1738static int sas_get_phy_change_count(struct domain_device *dev,
1739                                    int phy_id, int *pcc)
1740{
1741        int res;
1742        struct smp_resp *disc_resp;
1743
1744        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1745        if (!disc_resp)
1746                return -ENOMEM;
1747
1748        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749        if (!res)
1750                *pcc = disc_resp->disc.change_count;
1751
1752        kfree(disc_resp);
1753        return res;
1754}
1755
1756static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1757                                    u8 *sas_addr, enum sas_device_type *type)
1758{
1759        int res;
1760        struct smp_resp *disc_resp;
1761        struct discover_resp *dr;
1762
1763        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1764        if (!disc_resp)
1765                return -ENOMEM;
1766        dr = &disc_resp->disc;
1767
1768        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1769        if (res == 0) {
1770                memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1771                       SAS_ADDR_SIZE);
1772                *type = to_dev_type(dr);
1773                if (*type == 0)
1774                        memset(sas_addr, 0, SAS_ADDR_SIZE);
1775        }
1776        kfree(disc_resp);
1777        return res;
1778}
1779
1780static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1781                              int from_phy, bool update)
1782{
1783        struct expander_device *ex = &dev->ex_dev;
1784        int res = 0;
1785        int i;
1786
1787        for (i = from_phy; i < ex->num_phys; i++) {
1788                int phy_change_count = 0;
1789
1790                res = sas_get_phy_change_count(dev, i, &phy_change_count);
1791                switch (res) {
1792                case SMP_RESP_PHY_VACANT:
1793                case SMP_RESP_NO_PHY:
1794                        continue;
1795                case SMP_RESP_FUNC_ACC:
1796                        break;
1797                default:
1798                        return res;
1799                }
1800
1801                if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1802                        if (update)
1803                                ex->ex_phy[i].phy_change_count =
1804                                        phy_change_count;
1805                        *phy_id = i;
1806                        return 0;
1807                }
1808        }
1809        return 0;
1810}
1811
1812static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1813{
1814        int res;
1815        u8  *rg_req;
1816        struct smp_resp  *rg_resp;
1817
1818        rg_req = alloc_smp_req(RG_REQ_SIZE);
1819        if (!rg_req)
1820                return -ENOMEM;
1821
1822        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1823        if (!rg_resp) {
1824                kfree(rg_req);
1825                return -ENOMEM;
1826        }
1827
1828        rg_req[1] = SMP_REPORT_GENERAL;
1829
1830        res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1831                               RG_RESP_SIZE);
1832        if (res)
1833                goto out;
1834        if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1835                res = rg_resp->result;
1836                goto out;
1837        }
1838
1839        *ecc = be16_to_cpu(rg_resp->rg.change_count);
1840out:
1841        kfree(rg_resp);
1842        kfree(rg_req);
1843        return res;
1844}
1845/**
1846 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1847 * @dev:domain device to be detect.
1848 * @src_dev: the device which originated BROADCAST(CHANGE).
1849 *
1850 * Add self-configuration expander support. Suppose two expander cascading,
1851 * when the first level expander is self-configuring, hotplug the disks in
1852 * second level expander, BROADCAST(CHANGE) will not only be originated
1853 * in the second level expander, but also be originated in the first level
1854 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1855 * expander changed count in two level expanders will all increment at least
1856 * once, but the phy which chang count has changed is the source device which
1857 * we concerned.
1858 */
1859
1860static int sas_find_bcast_dev(struct domain_device *dev,
1861                              struct domain_device **src_dev)
1862{
1863        struct expander_device *ex = &dev->ex_dev;
1864        int ex_change_count = -1;
1865        int phy_id = -1;
1866        int res;
1867        struct domain_device *ch;
1868
1869        res = sas_get_ex_change_count(dev, &ex_change_count);
1870        if (res)
1871                goto out;
1872        if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1873                /* Just detect if this expander phys phy change count changed,
1874                * in order to determine if this expander originate BROADCAST,
1875                * and do not update phy change count field in our structure.
1876                */
1877                res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1878                if (phy_id != -1) {
1879                        *src_dev = dev;
1880                        ex->ex_change_count = ex_change_count;
1881                        pr_info("ex %016llx phy%02d change count has changed\n",
1882                                SAS_ADDR(dev->sas_addr), phy_id);
1883                        return res;
1884                } else
1885                        pr_info("ex %016llx phys DID NOT change\n",
1886                                SAS_ADDR(dev->sas_addr));
1887        }
1888        list_for_each_entry(ch, &ex->children, siblings) {
1889                if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1890                        res = sas_find_bcast_dev(ch, src_dev);
1891                        if (*src_dev)
1892                                return res;
1893                }
1894        }
1895out:
1896        return res;
1897}
1898
1899static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1900{
1901        struct expander_device *ex = &dev->ex_dev;
1902        struct domain_device *child, *n;
1903
1904        list_for_each_entry_safe(child, n, &ex->children, siblings) {
1905                set_bit(SAS_DEV_GONE, &child->state);
1906                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1907                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1908                        sas_unregister_ex_tree(port, child);
1909                else
1910                        sas_unregister_dev(port, child);
1911        }
1912        sas_unregister_dev(port, dev);
1913}
1914
1915static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1916                                         int phy_id, bool last)
1917{
1918        struct expander_device *ex_dev = &parent->ex_dev;
1919        struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1920        struct domain_device *child, *n, *found = NULL;
1921        if (last) {
1922                list_for_each_entry_safe(child, n,
1923                        &ex_dev->children, siblings) {
1924                        if (SAS_ADDR(child->sas_addr) ==
1925                            SAS_ADDR(phy->attached_sas_addr)) {
1926                                set_bit(SAS_DEV_GONE, &child->state);
1927                                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1928                                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1929                                        sas_unregister_ex_tree(parent->port, child);
1930                                else
1931                                        sas_unregister_dev(parent->port, child);
1932                                found = child;
1933                                break;
1934                        }
1935                }
1936                sas_disable_routing(parent, phy->attached_sas_addr);
1937        }
1938        memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1939        if (phy->port) {
1940                sas_port_delete_phy(phy->port, phy->phy);
1941                sas_device_set_phy(found, phy->port);
1942                if (phy->port->num_phys == 0)
1943                        list_add_tail(&phy->port->del_list,
1944                                &parent->port->sas_port_del_list);
1945                phy->port = NULL;
1946        }
1947}
1948
1949static int sas_discover_bfs_by_root_level(struct domain_device *root,
1950                                          const int level)
1951{
1952        struct expander_device *ex_root = &root->ex_dev;
1953        struct domain_device *child;
1954        int res = 0;
1955
1956        list_for_each_entry(child, &ex_root->children, siblings) {
1957                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1958                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1959                        struct sas_expander_device *ex =
1960                                rphy_to_expander_device(child->rphy);
1961
1962                        if (level > ex->level)
1963                                res = sas_discover_bfs_by_root_level(child,
1964                                                                     level);
1965                        else if (level == ex->level)
1966                                res = sas_ex_discover_devices(child, -1);
1967                }
1968        }
1969        return res;
1970}
1971
1972static int sas_discover_bfs_by_root(struct domain_device *dev)
1973{
1974        int res;
1975        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1976        int level = ex->level+1;
1977
1978        res = sas_ex_discover_devices(dev, -1);
1979        if (res)
1980                goto out;
1981        do {
1982                res = sas_discover_bfs_by_root_level(dev, level);
1983                mb();
1984                level += 1;
1985        } while (level <= dev->port->disc.max_level);
1986out:
1987        return res;
1988}
1989
1990static int sas_discover_new(struct domain_device *dev, int phy_id)
1991{
1992        struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1993        struct domain_device *child;
1994        int res;
1995
1996        pr_debug("ex %016llx phy%02d new device attached\n",
1997                 SAS_ADDR(dev->sas_addr), phy_id);
1998        res = sas_ex_phy_discover(dev, phy_id);
1999        if (res)
2000                return res;
2001
2002        if (sas_ex_join_wide_port(dev, phy_id))
2003                return 0;
2004
2005        res = sas_ex_discover_devices(dev, phy_id);
2006        if (res)
2007                return res;
2008        list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2009                if (SAS_ADDR(child->sas_addr) ==
2010                    SAS_ADDR(ex_phy->attached_sas_addr)) {
2011                        if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2012                            child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2013                                res = sas_discover_bfs_by_root(child);
2014                        break;
2015                }
2016        }
2017        return res;
2018}
2019
2020static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2021{
2022        if (old == new)
2023                return true;
2024
2025        /* treat device directed resets as flutter, if we went
2026         * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2027         */
2028        if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2029            (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2030                return true;
2031
2032        return false;
2033}
2034
2035static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
2036                              bool last, int sibling)
2037{
2038        struct expander_device *ex = &dev->ex_dev;
2039        struct ex_phy *phy = &ex->ex_phy[phy_id];
2040        enum sas_device_type type = SAS_PHY_UNUSED;
2041        u8 sas_addr[SAS_ADDR_SIZE];
2042        char msg[80] = "";
2043        int res;
2044
2045        if (!last)
2046                sprintf(msg, ", part of a wide port with phy%02d", sibling);
2047
2048        pr_debug("ex %016llx rediscovering phy%02d%s\n",
2049                 SAS_ADDR(dev->sas_addr), phy_id, msg);
2050
2051        memset(sas_addr, 0, SAS_ADDR_SIZE);
2052        res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2053        switch (res) {
2054        case SMP_RESP_NO_PHY:
2055                phy->phy_state = PHY_NOT_PRESENT;
2056                sas_unregister_devs_sas_addr(dev, phy_id, last);
2057                return res;
2058        case SMP_RESP_PHY_VACANT:
2059                phy->phy_state = PHY_VACANT;
2060                sas_unregister_devs_sas_addr(dev, phy_id, last);
2061                return res;
2062        case SMP_RESP_FUNC_ACC:
2063                break;
2064        case -ECOMM:
2065                break;
2066        default:
2067                return res;
2068        }
2069
2070        if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2071                phy->phy_state = PHY_EMPTY;
2072                sas_unregister_devs_sas_addr(dev, phy_id, last);
2073                /*
2074                 * Even though the PHY is empty, for convenience we discover
2075                 * the PHY to update the PHY info, like negotiated linkrate.
2076                 */
2077                sas_ex_phy_discover(dev, phy_id);
2078                return res;
2079        } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2080                   dev_type_flutter(type, phy->attached_dev_type)) {
2081                struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2082                char *action = "";
2083
2084                sas_ex_phy_discover(dev, phy_id);
2085
2086                if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2087                        action = ", needs recovery";
2088                pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2089                         SAS_ADDR(dev->sas_addr), phy_id, action);
2090                return res;
2091        }
2092
2093        /* we always have to delete the old device when we went here */
2094        pr_info("ex %016llx phy%02d replace %016llx\n",
2095                SAS_ADDR(dev->sas_addr), phy_id,
2096                SAS_ADDR(phy->attached_sas_addr));
2097        sas_unregister_devs_sas_addr(dev, phy_id, last);
2098
2099        return sas_discover_new(dev, phy_id);
2100}
2101
2102/**
2103 * sas_rediscover - revalidate the domain.
2104 * @dev:domain device to be detect.
2105 * @phy_id: the phy id will be detected.
2106 *
2107 * NOTE: this process _must_ quit (return) as soon as any connection
2108 * errors are encountered.  Connection recovery is done elsewhere.
2109 * Discover process only interrogates devices in order to discover the
2110 * domain.For plugging out, we un-register the device only when it is
2111 * the last phy in the port, for other phys in this port, we just delete it
2112 * from the port.For inserting, we do discovery when it is the
2113 * first phy,for other phys in this port, we add it to the port to
2114 * forming the wide-port.
2115 */
2116static int sas_rediscover(struct domain_device *dev, const int phy_id)
2117{
2118        struct expander_device *ex = &dev->ex_dev;
2119        struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2120        int res = 0;
2121        int i;
2122        bool last = true;       /* is this the last phy of the port */
2123
2124        pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2125                 SAS_ADDR(dev->sas_addr), phy_id);
2126
2127        if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2128                for (i = 0; i < ex->num_phys; i++) {
2129                        struct ex_phy *phy = &ex->ex_phy[i];
2130
2131                        if (i == phy_id)
2132                                continue;
2133                        if (SAS_ADDR(phy->attached_sas_addr) ==
2134                            SAS_ADDR(changed_phy->attached_sas_addr)) {
2135                                last = false;
2136                                break;
2137                        }
2138                }
2139                res = sas_rediscover_dev(dev, phy_id, last, i);
2140        } else
2141                res = sas_discover_new(dev, phy_id);
2142        return res;
2143}
2144
2145/**
2146 * sas_ex_revalidate_domain - revalidate the domain
2147 * @port_dev: port domain device.
2148 *
2149 * NOTE: this process _must_ quit (return) as soon as any connection
2150 * errors are encountered.  Connection recovery is done elsewhere.
2151 * Discover process only interrogates devices in order to discover the
2152 * domain.
2153 */
2154int sas_ex_revalidate_domain(struct domain_device *port_dev)
2155{
2156        int res;
2157        struct domain_device *dev = NULL;
2158
2159        res = sas_find_bcast_dev(port_dev, &dev);
2160        if (res == 0 && dev) {
2161                struct expander_device *ex = &dev->ex_dev;
2162                int i = 0, phy_id;
2163
2164                do {
2165                        phy_id = -1;
2166                        res = sas_find_bcast_phy(dev, &phy_id, i, true);
2167                        if (phy_id == -1)
2168                                break;
2169                        res = sas_rediscover(dev, phy_id);
2170                        i = phy_id + 1;
2171                } while (i < ex->num_phys);
2172        }
2173        return res;
2174}
2175
2176void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2177                struct sas_rphy *rphy)
2178{
2179        struct domain_device *dev;
2180        unsigned int rcvlen = 0;
2181        int ret = -EINVAL;
2182
2183        /* no rphy means no smp target support (ie aic94xx host) */
2184        if (!rphy)
2185                return sas_smp_host_handler(job, shost);
2186
2187        switch (rphy->identify.device_type) {
2188        case SAS_EDGE_EXPANDER_DEVICE:
2189        case SAS_FANOUT_EXPANDER_DEVICE:
2190                break;
2191        default:
2192                pr_err("%s: can we send a smp request to a device?\n",
2193                       __func__);
2194                goto out;
2195        }
2196
2197        dev = sas_find_dev_by_rphy(rphy);
2198        if (!dev) {
2199                pr_err("%s: fail to find a domain_device?\n", __func__);
2200                goto out;
2201        }
2202
2203        /* do we need to support multiple segments? */
2204        if (job->request_payload.sg_cnt > 1 ||
2205            job->reply_payload.sg_cnt > 1) {
2206                pr_info("%s: multiple segments req %u, rsp %u\n",
2207                        __func__, job->request_payload.payload_len,
2208                        job->reply_payload.payload_len);
2209                goto out;
2210        }
2211
2212        ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2213                        job->reply_payload.sg_list);
2214        if (ret >= 0) {
2215                /* bsg_job_done() requires the length received  */
2216                rcvlen = job->reply_payload.payload_len - ret;
2217                ret = 0;
2218        }
2219
2220out:
2221        bsg_job_done(job, ret, rcvlen);
2222}
2223