linux/drivers/spi/spi-mxic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Copyright (C) 2018 Macronix International Co., Ltd.
   4//
   5// Authors:
   6//      Mason Yang <masonccyang@mxic.com.tw>
   7//      zhengxunli <zhengxunli@mxic.com.tw>
   8//      Boris Brezillon <boris.brezillon@bootlin.com>
   9//
  10
  11#include <linux/clk.h>
  12#include <linux/io.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/spi/spi.h>
  18#include <linux/spi/spi-mem.h>
  19
  20#define HC_CFG                  0x0
  21#define HC_CFG_IF_CFG(x)        ((x) << 27)
  22#define HC_CFG_DUAL_SLAVE       BIT(31)
  23#define HC_CFG_INDIVIDUAL       BIT(30)
  24#define HC_CFG_NIO(x)           (((x) / 4) << 27)
  25#define HC_CFG_TYPE(s, t)       ((t) << (23 + ((s) * 2)))
  26#define HC_CFG_TYPE_SPI_NOR     0
  27#define HC_CFG_TYPE_SPI_NAND    1
  28#define HC_CFG_TYPE_SPI_RAM     2
  29#define HC_CFG_TYPE_RAW_NAND    3
  30#define HC_CFG_SLV_ACT(x)       ((x) << 21)
  31#define HC_CFG_CLK_PH_EN        BIT(20)
  32#define HC_CFG_CLK_POL_INV      BIT(19)
  33#define HC_CFG_BIG_ENDIAN       BIT(18)
  34#define HC_CFG_DATA_PASS        BIT(17)
  35#define HC_CFG_IDLE_SIO_LVL(x)  ((x) << 16)
  36#define HC_CFG_MAN_START_EN     BIT(3)
  37#define HC_CFG_MAN_START        BIT(2)
  38#define HC_CFG_MAN_CS_EN        BIT(1)
  39#define HC_CFG_MAN_CS_ASSERT    BIT(0)
  40
  41#define INT_STS                 0x4
  42#define INT_STS_EN              0x8
  43#define INT_SIG_EN              0xc
  44#define INT_STS_ALL             GENMASK(31, 0)
  45#define INT_RDY_PIN             BIT(26)
  46#define INT_RDY_SR              BIT(25)
  47#define INT_LNR_SUSP            BIT(24)
  48#define INT_ECC_ERR             BIT(17)
  49#define INT_CRC_ERR             BIT(16)
  50#define INT_LWR_DIS             BIT(12)
  51#define INT_LRD_DIS             BIT(11)
  52#define INT_SDMA_INT            BIT(10)
  53#define INT_DMA_FINISH          BIT(9)
  54#define INT_RX_NOT_FULL         BIT(3)
  55#define INT_RX_NOT_EMPTY        BIT(2)
  56#define INT_TX_NOT_FULL         BIT(1)
  57#define INT_TX_EMPTY            BIT(0)
  58
  59#define HC_EN                   0x10
  60#define HC_EN_BIT               BIT(0)
  61
  62#define TXD(x)                  (0x14 + ((x) * 4))
  63#define RXD                     0x24
  64
  65#define SS_CTRL(s)              (0x30 + ((s) * 4))
  66#define LRD_CFG                 0x44
  67#define LWR_CFG                 0x80
  68#define RWW_CFG                 0x70
  69#define OP_READ                 BIT(23)
  70#define OP_DUMMY_CYC(x)         ((x) << 17)
  71#define OP_ADDR_BYTES(x)        ((x) << 14)
  72#define OP_CMD_BYTES(x)         (((x) - 1) << 13)
  73#define OP_OCTA_CRC_EN          BIT(12)
  74#define OP_DQS_EN               BIT(11)
  75#define OP_ENHC_EN              BIT(10)
  76#define OP_PREAMBLE_EN          BIT(9)
  77#define OP_DATA_DDR             BIT(8)
  78#define OP_DATA_BUSW(x)         ((x) << 6)
  79#define OP_ADDR_DDR             BIT(5)
  80#define OP_ADDR_BUSW(x)         ((x) << 3)
  81#define OP_CMD_DDR              BIT(2)
  82#define OP_CMD_BUSW(x)          (x)
  83#define OP_BUSW_1               0
  84#define OP_BUSW_2               1
  85#define OP_BUSW_4               2
  86#define OP_BUSW_8               3
  87
  88#define OCTA_CRC                0x38
  89#define OCTA_CRC_IN_EN(s)       BIT(3 + ((s) * 16))
  90#define OCTA_CRC_CHUNK(s, x)    ((fls((x) / 32)) << (1 + ((s) * 16)))
  91#define OCTA_CRC_OUT_EN(s)      BIT(0 + ((s) * 16))
  92
  93#define ONFI_DIN_CNT(s)         (0x3c + (s))
  94
  95#define LRD_CTRL                0x48
  96#define RWW_CTRL                0x74
  97#define LWR_CTRL                0x84
  98#define LMODE_EN                BIT(31)
  99#define LMODE_SLV_ACT(x)        ((x) << 21)
 100#define LMODE_CMD1(x)           ((x) << 8)
 101#define LMODE_CMD0(x)           (x)
 102
 103#define LRD_ADDR                0x4c
 104#define LWR_ADDR                0x88
 105#define LRD_RANGE               0x50
 106#define LWR_RANGE               0x8c
 107
 108#define AXI_SLV_ADDR            0x54
 109
 110#define DMAC_RD_CFG             0x58
 111#define DMAC_WR_CFG             0x94
 112#define DMAC_CFG_PERIPH_EN      BIT(31)
 113#define DMAC_CFG_ALLFLUSH_EN    BIT(30)
 114#define DMAC_CFG_LASTFLUSH_EN   BIT(29)
 115#define DMAC_CFG_QE(x)          (((x) + 1) << 16)
 116#define DMAC_CFG_BURST_LEN(x)   (((x) + 1) << 12)
 117#define DMAC_CFG_BURST_SZ(x)    ((x) << 8)
 118#define DMAC_CFG_DIR_READ       BIT(1)
 119#define DMAC_CFG_START          BIT(0)
 120
 121#define DMAC_RD_CNT             0x5c
 122#define DMAC_WR_CNT             0x98
 123
 124#define SDMA_ADDR               0x60
 125
 126#define DMAM_CFG                0x64
 127#define DMAM_CFG_START          BIT(31)
 128#define DMAM_CFG_CONT           BIT(30)
 129#define DMAM_CFG_SDMA_GAP(x)    (fls((x) / 8192) << 2)
 130#define DMAM_CFG_DIR_READ       BIT(1)
 131#define DMAM_CFG_EN             BIT(0)
 132
 133#define DMAM_CNT                0x68
 134
 135#define LNR_TIMER_TH            0x6c
 136
 137#define RDM_CFG0                0x78
 138#define RDM_CFG0_POLY(x)        (x)
 139
 140#define RDM_CFG1                0x7c
 141#define RDM_CFG1_RDM_EN         BIT(31)
 142#define RDM_CFG1_SEED(x)        (x)
 143
 144#define LWR_SUSP_CTRL           0x90
 145#define LWR_SUSP_CTRL_EN        BIT(31)
 146
 147#define DMAS_CTRL               0x9c
 148#define DMAS_CTRL_DIR_READ      BIT(31)
 149#define DMAS_CTRL_EN            BIT(30)
 150
 151#define DATA_STROB              0xa0
 152#define DATA_STROB_EDO_EN       BIT(2)
 153#define DATA_STROB_INV_POL      BIT(1)
 154#define DATA_STROB_DELAY_2CYC   BIT(0)
 155
 156#define IDLY_CODE(x)            (0xa4 + ((x) * 4))
 157#define IDLY_CODE_VAL(x, v)     ((v) << (((x) % 4) * 8))
 158
 159#define GPIO                    0xc4
 160#define GPIO_PT(x)              BIT(3 + ((x) * 16))
 161#define GPIO_RESET(x)           BIT(2 + ((x) * 16))
 162#define GPIO_HOLDB(x)           BIT(1 + ((x) * 16))
 163#define GPIO_WPB(x)             BIT((x) * 16)
 164
 165#define HC_VER                  0xd0
 166
 167#define HW_TEST(x)              (0xe0 + ((x) * 4))
 168
 169struct mxic_spi {
 170        struct clk *ps_clk;
 171        struct clk *send_clk;
 172        struct clk *send_dly_clk;
 173        void __iomem *regs;
 174        u32 cur_speed_hz;
 175};
 176
 177static int mxic_spi_clk_enable(struct mxic_spi *mxic)
 178{
 179        int ret;
 180
 181        ret = clk_prepare_enable(mxic->send_clk);
 182        if (ret)
 183                return ret;
 184
 185        ret = clk_prepare_enable(mxic->send_dly_clk);
 186        if (ret)
 187                goto err_send_dly_clk;
 188
 189        return ret;
 190
 191err_send_dly_clk:
 192        clk_disable_unprepare(mxic->send_clk);
 193
 194        return ret;
 195}
 196
 197static void mxic_spi_clk_disable(struct mxic_spi *mxic)
 198{
 199        clk_disable_unprepare(mxic->send_clk);
 200        clk_disable_unprepare(mxic->send_dly_clk);
 201}
 202
 203static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
 204{
 205        writel(IDLY_CODE_VAL(0, idly_code) |
 206               IDLY_CODE_VAL(1, idly_code) |
 207               IDLY_CODE_VAL(2, idly_code) |
 208               IDLY_CODE_VAL(3, idly_code),
 209               mxic->regs + IDLY_CODE(0));
 210        writel(IDLY_CODE_VAL(4, idly_code) |
 211               IDLY_CODE_VAL(5, idly_code) |
 212               IDLY_CODE_VAL(6, idly_code) |
 213               IDLY_CODE_VAL(7, idly_code),
 214               mxic->regs + IDLY_CODE(1));
 215}
 216
 217static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
 218{
 219        int ret;
 220
 221        ret = clk_set_rate(mxic->send_clk, freq);
 222        if (ret)
 223                return ret;
 224
 225        ret = clk_set_rate(mxic->send_dly_clk, freq);
 226        if (ret)
 227                return ret;
 228
 229        /*
 230         * A constant delay range from 0x0 ~ 0x1F for input delay,
 231         * the unit is 78 ps, the max input delay is 2.418 ns.
 232         */
 233        mxic_spi_set_input_delay_dqs(mxic, 0xf);
 234
 235        /*
 236         * Phase degree = 360 * freq * output-delay
 237         * where output-delay is a constant value 1 ns in FPGA.
 238         *
 239         * Get Phase degree = 360 * freq * 1 ns
 240         *                  = 360 * freq * 1 sec / 1000000000
 241         *                  = 9 * freq / 25000000
 242         */
 243        ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
 244        if (ret)
 245                return ret;
 246
 247        return 0;
 248}
 249
 250static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
 251{
 252        int ret;
 253
 254        if (mxic->cur_speed_hz == freq)
 255                return 0;
 256
 257        mxic_spi_clk_disable(mxic);
 258        ret = mxic_spi_clk_setup(mxic, freq);
 259        if (ret)
 260                return ret;
 261
 262        ret = mxic_spi_clk_enable(mxic);
 263        if (ret)
 264                return ret;
 265
 266        mxic->cur_speed_hz = freq;
 267
 268        return 0;
 269}
 270
 271static void mxic_spi_hw_init(struct mxic_spi *mxic)
 272{
 273        writel(0, mxic->regs + DATA_STROB);
 274        writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
 275        writel(0, mxic->regs + HC_EN);
 276        writel(0, mxic->regs + LRD_CFG);
 277        writel(0, mxic->regs + LRD_CTRL);
 278        writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NAND) |
 279               HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
 280               mxic->regs + HC_CFG);
 281}
 282
 283static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
 284                              void *rxbuf, unsigned int len)
 285{
 286        unsigned int pos = 0;
 287
 288        while (pos < len) {
 289                unsigned int nbytes = len - pos;
 290                u32 data = 0xffffffff;
 291                u32 sts;
 292                int ret;
 293
 294                if (nbytes > 4)
 295                        nbytes = 4;
 296
 297                if (txbuf)
 298                        memcpy(&data, txbuf + pos, nbytes);
 299
 300                ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
 301                                         sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
 302                if (ret)
 303                        return ret;
 304
 305                writel(data, mxic->regs + TXD(nbytes % 4));
 306
 307                if (rxbuf) {
 308                        ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
 309                                                 sts & INT_TX_EMPTY, 0,
 310                                                 USEC_PER_SEC);
 311                        if (ret)
 312                                return ret;
 313
 314                        ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
 315                                                 sts & INT_RX_NOT_EMPTY, 0,
 316                                                 USEC_PER_SEC);
 317                        if (ret)
 318                                return ret;
 319
 320                        data = readl(mxic->regs + RXD);
 321                        data >>= (8 * (4 - nbytes));
 322                        memcpy(rxbuf + pos, &data, nbytes);
 323                        WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
 324                } else {
 325                        readl(mxic->regs + RXD);
 326                }
 327                WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
 328
 329                pos += nbytes;
 330        }
 331
 332        return 0;
 333}
 334
 335static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
 336                                     const struct spi_mem_op *op)
 337{
 338        if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
 339            op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
 340                return false;
 341
 342        if (op->data.nbytes && op->dummy.nbytes &&
 343            op->data.buswidth != op->dummy.buswidth)
 344                return false;
 345
 346        if (op->addr.nbytes > 7)
 347                return false;
 348
 349        return true;
 350}
 351
 352static int mxic_spi_mem_exec_op(struct spi_mem *mem,
 353                                const struct spi_mem_op *op)
 354{
 355        struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
 356        int nio = 1, i, ret;
 357        u32 ss_ctrl;
 358        u8 addr[8];
 359
 360        ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
 361        if (ret)
 362                return ret;
 363
 364        if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
 365                nio = 4;
 366        else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
 367                nio = 2;
 368
 369        writel(HC_CFG_NIO(nio) |
 370               HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
 371               HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
 372               HC_CFG_MAN_CS_EN,
 373               mxic->regs + HC_CFG);
 374        writel(HC_EN_BIT, mxic->regs + HC_EN);
 375
 376        ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
 377
 378        if (op->addr.nbytes)
 379                ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
 380                           OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
 381
 382        if (op->dummy.nbytes)
 383                ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
 384
 385        if (op->data.nbytes) {
 386                ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
 387                if (op->data.dir == SPI_MEM_DATA_IN)
 388                        ss_ctrl |= OP_READ;
 389        }
 390
 391        writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
 392
 393        writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
 394               mxic->regs + HC_CFG);
 395
 396        ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1);
 397        if (ret)
 398                goto out;
 399
 400        for (i = 0; i < op->addr.nbytes; i++)
 401                addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
 402
 403        ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
 404        if (ret)
 405                goto out;
 406
 407        ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
 408        if (ret)
 409                goto out;
 410
 411        ret = mxic_spi_data_xfer(mxic,
 412                                 op->data.dir == SPI_MEM_DATA_OUT ?
 413                                 op->data.buf.out : NULL,
 414                                 op->data.dir == SPI_MEM_DATA_IN ?
 415                                 op->data.buf.in : NULL,
 416                                 op->data.nbytes);
 417
 418out:
 419        writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
 420               mxic->regs + HC_CFG);
 421        writel(0, mxic->regs + HC_EN);
 422
 423        return ret;
 424}
 425
 426static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
 427        .supports_op = mxic_spi_mem_supports_op,
 428        .exec_op = mxic_spi_mem_exec_op,
 429};
 430
 431static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
 432{
 433        struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
 434
 435        if (!lvl) {
 436                writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
 437                       mxic->regs + HC_CFG);
 438                writel(HC_EN_BIT, mxic->regs + HC_EN);
 439                writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
 440                       mxic->regs + HC_CFG);
 441        } else {
 442                writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
 443                       mxic->regs + HC_CFG);
 444                writel(0, mxic->regs + HC_EN);
 445        }
 446}
 447
 448static int mxic_spi_transfer_one(struct spi_master *master,
 449                                 struct spi_device *spi,
 450                                 struct spi_transfer *t)
 451{
 452        struct mxic_spi *mxic = spi_master_get_devdata(master);
 453        unsigned int busw = OP_BUSW_1;
 454        int ret;
 455
 456        if (t->rx_buf && t->tx_buf) {
 457                if (((spi->mode & SPI_TX_QUAD) &&
 458                     !(spi->mode & SPI_RX_QUAD)) ||
 459                    ((spi->mode & SPI_TX_DUAL) &&
 460                     !(spi->mode & SPI_RX_DUAL)))
 461                        return -ENOTSUPP;
 462        }
 463
 464        ret = mxic_spi_set_freq(mxic, t->speed_hz);
 465        if (ret)
 466                return ret;
 467
 468        if (t->tx_buf) {
 469                if (spi->mode & SPI_TX_QUAD)
 470                        busw = OP_BUSW_4;
 471                else if (spi->mode & SPI_TX_DUAL)
 472                        busw = OP_BUSW_2;
 473        } else if (t->rx_buf) {
 474                if (spi->mode & SPI_RX_QUAD)
 475                        busw = OP_BUSW_4;
 476                else if (spi->mode & SPI_RX_DUAL)
 477                        busw = OP_BUSW_2;
 478        }
 479
 480        writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
 481               OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
 482               mxic->regs + SS_CTRL(0));
 483
 484        ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
 485        if (ret)
 486                return ret;
 487
 488        spi_finalize_current_transfer(master);
 489
 490        return 0;
 491}
 492
 493static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
 494{
 495        struct spi_master *master = dev_get_drvdata(dev);
 496        struct mxic_spi *mxic = spi_master_get_devdata(master);
 497
 498        mxic_spi_clk_disable(mxic);
 499        clk_disable_unprepare(mxic->ps_clk);
 500
 501        return 0;
 502}
 503
 504static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
 505{
 506        struct spi_master *master = dev_get_drvdata(dev);
 507        struct mxic_spi *mxic = spi_master_get_devdata(master);
 508        int ret;
 509
 510        ret = clk_prepare_enable(mxic->ps_clk);
 511        if (ret) {
 512                dev_err(dev, "Cannot enable ps_clock.\n");
 513                return ret;
 514        }
 515
 516        return mxic_spi_clk_enable(mxic);
 517}
 518
 519static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
 520        SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
 521                           mxic_spi_runtime_resume, NULL)
 522};
 523
 524static int mxic_spi_probe(struct platform_device *pdev)
 525{
 526        struct spi_master *master;
 527        struct resource *res;
 528        struct mxic_spi *mxic;
 529        int ret;
 530
 531        master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
 532        if (!master)
 533                return -ENOMEM;
 534
 535        platform_set_drvdata(pdev, master);
 536
 537        mxic = spi_master_get_devdata(master);
 538
 539        master->dev.of_node = pdev->dev.of_node;
 540
 541        mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
 542        if (IS_ERR(mxic->ps_clk))
 543                return PTR_ERR(mxic->ps_clk);
 544
 545        mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
 546        if (IS_ERR(mxic->send_clk))
 547                return PTR_ERR(mxic->send_clk);
 548
 549        mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
 550        if (IS_ERR(mxic->send_dly_clk))
 551                return PTR_ERR(mxic->send_dly_clk);
 552
 553        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
 554        mxic->regs = devm_ioremap_resource(&pdev->dev, res);
 555        if (IS_ERR(mxic->regs))
 556                return PTR_ERR(mxic->regs);
 557
 558        pm_runtime_enable(&pdev->dev);
 559        master->auto_runtime_pm = true;
 560
 561        master->num_chipselect = 1;
 562        master->mem_ops = &mxic_spi_mem_ops;
 563
 564        master->set_cs = mxic_spi_set_cs;
 565        master->transfer_one = mxic_spi_transfer_one;
 566        master->bits_per_word_mask = SPI_BPW_MASK(8);
 567        master->mode_bits = SPI_CPOL | SPI_CPHA |
 568                        SPI_RX_DUAL | SPI_TX_DUAL |
 569                        SPI_RX_QUAD | SPI_TX_QUAD;
 570
 571        mxic_spi_hw_init(mxic);
 572
 573        ret = spi_register_master(master);
 574        if (ret) {
 575                dev_err(&pdev->dev, "spi_register_master failed\n");
 576                goto err_put_master;
 577        }
 578
 579        return 0;
 580
 581err_put_master:
 582        spi_master_put(master);
 583        pm_runtime_disable(&pdev->dev);
 584
 585        return ret;
 586}
 587
 588static int mxic_spi_remove(struct platform_device *pdev)
 589{
 590        struct spi_master *master = platform_get_drvdata(pdev);
 591
 592        pm_runtime_disable(&pdev->dev);
 593        spi_unregister_master(master);
 594
 595        return 0;
 596}
 597
 598static const struct of_device_id mxic_spi_of_ids[] = {
 599        { .compatible = "mxicy,mx25f0a-spi", },
 600        { /* sentinel */ }
 601};
 602MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
 603
 604static struct platform_driver mxic_spi_driver = {
 605        .probe = mxic_spi_probe,
 606        .remove = mxic_spi_remove,
 607        .driver = {
 608                .name = "mxic-spi",
 609                .of_match_table = mxic_spi_of_ids,
 610                .pm = &mxic_spi_dev_pm_ops,
 611        },
 612};
 613module_platform_driver(mxic_spi_driver);
 614
 615MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
 616MODULE_DESCRIPTION("MX25F0A SPI controller driver");
 617MODULE_LICENSE("GPL v2");
 618