linux/drivers/thermal/tegra/soctherm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * Author:
   6 *      Mikko Perttunen <mperttunen@nvidia.com>
   7 *
   8 * This software is licensed under the terms of the GNU General Public
   9 * License version 2, as published by the Free Software Foundation, and
  10 * may be copied, distributed, and modified under those terms.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 */
  18
  19#include <linux/debugfs.h>
  20#include <linux/bitops.h>
  21#include <linux/clk.h>
  22#include <linux/delay.h>
  23#include <linux/err.h>
  24#include <linux/interrupt.h>
  25#include <linux/io.h>
  26#include <linux/irq.h>
  27#include <linux/irqdomain.h>
  28#include <linux/module.h>
  29#include <linux/of.h>
  30#include <linux/platform_device.h>
  31#include <linux/reset.h>
  32#include <linux/thermal.h>
  33
  34#include <dt-bindings/thermal/tegra124-soctherm.h>
  35
  36#include "../thermal_core.h"
  37#include "soctherm.h"
  38
  39#define SENSOR_CONFIG0                          0
  40#define SENSOR_CONFIG0_STOP                     BIT(0)
  41#define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
  42#define SENSOR_CONFIG0_OVER                     BIT(3)
  43#define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
  44#define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
  45#define SENSOR_CONFIG0_TALL_SHIFT               8
  46
  47#define SENSOR_CONFIG1                          4
  48#define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
  49#define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
  50#define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
  51#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
  52#define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
  53#define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
  54#define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
  55
  56/*
  57 * SENSOR_CONFIG2 is defined in soctherm.h
  58 * because, it will be used by tegra_soctherm_fuse.c
  59 */
  60
  61#define SENSOR_STATUS0                          0xc
  62#define SENSOR_STATUS0_VALID_MASK               BIT(31)
  63#define SENSOR_STATUS0_CAPTURE_MASK             0xffff
  64
  65#define SENSOR_STATUS1                          0x10
  66#define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
  67#define SENSOR_STATUS1_TEMP_MASK                0xffff
  68
  69#define READBACK_VALUE_MASK                     0xff00
  70#define READBACK_VALUE_SHIFT                    8
  71#define READBACK_ADD_HALF                       BIT(7)
  72#define READBACK_NEGATE                         BIT(0)
  73
  74/*
  75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
  76 * because it will be used by tegraxxx_soctherm.c
  77 */
  78#define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
  79#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
  80#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
  81#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
  82#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
  83#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
  84#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
  85#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
  86#define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
  87
  88#define THERMCTL_LVL0_UP_STATS                  0x10
  89#define THERMCTL_LVL0_DN_STATS                  0x14
  90
  91#define THERMCTL_INTR_STATUS                    0x84
  92
  93#define TH_INTR_MD0_MASK                        BIT(25)
  94#define TH_INTR_MU0_MASK                        BIT(24)
  95#define TH_INTR_GD0_MASK                        BIT(17)
  96#define TH_INTR_GU0_MASK                        BIT(16)
  97#define TH_INTR_CD0_MASK                        BIT(9)
  98#define TH_INTR_CU0_MASK                        BIT(8)
  99#define TH_INTR_PD0_MASK                        BIT(1)
 100#define TH_INTR_PU0_MASK                        BIT(0)
 101#define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
 102
 103#define THERMCTL_STATS_CTL                      0x94
 104#define STATS_CTL_CLR_DN                        0x8
 105#define STATS_CTL_EN_DN                         0x4
 106#define STATS_CTL_CLR_UP                        0x2
 107#define STATS_CTL_EN_UP                         0x1
 108
 109#define OC1_CFG                                 0x310
 110#define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
 111#define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
 112#define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
 113#define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
 114#define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
 115#define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
 116
 117#define OC1_CNT_THRESHOLD                       0x314
 118#define OC1_THROTTLE_PERIOD                     0x318
 119#define OC1_ALARM_COUNT                         0x31c
 120#define OC1_FILTER                              0x320
 121#define OC1_STATS                               0x3a8
 122
 123#define OC_INTR_STATUS                          0x39c
 124#define OC_INTR_ENABLE                          0x3a0
 125#define OC_INTR_DISABLE                         0x3a4
 126#define OC_STATS_CTL                            0x3c4
 127#define OC_STATS_CTL_CLR_ALL                    0x2
 128#define OC_STATS_CTL_EN_ALL                     0x1
 129
 130#define OC_INTR_OC1_MASK                        BIT(0)
 131#define OC_INTR_OC2_MASK                        BIT(1)
 132#define OC_INTR_OC3_MASK                        BIT(2)
 133#define OC_INTR_OC4_MASK                        BIT(3)
 134#define OC_INTR_OC5_MASK                        BIT(4)
 135
 136#define THROT_GLOBAL_CFG                        0x400
 137#define THROT_GLOBAL_ENB_MASK                   BIT(0)
 138
 139#define CPU_PSKIP_STATUS                        0x418
 140#define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
 141#define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
 142#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
 143#define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
 144
 145#define THROT_PRIORITY_LOCK                     0x424
 146#define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
 147
 148#define THROT_STATUS                            0x428
 149#define THROT_STATUS_BREACH_MASK                BIT(12)
 150#define THROT_STATUS_STATE_MASK                 (0xff << 4)
 151#define THROT_STATUS_ENABLED_MASK               BIT(0)
 152
 153#define THROT_PSKIP_CTRL_LITE_CPU               0x430
 154#define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
 155#define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
 156#define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
 157#define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
 158#define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
 159#define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
 160
 161#define THROT_VECT_NONE                         0x0 /* 3'b000 */
 162#define THROT_VECT_LOW                          0x1 /* 3'b001 */
 163#define THROT_VECT_MED                          0x3 /* 3'b011 */
 164#define THROT_VECT_HIGH                         0x7 /* 3'b111 */
 165
 166#define THROT_PSKIP_RAMP_LITE_CPU               0x434
 167#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
 168#define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
 169#define THROT_PSKIP_RAMP_STEP_MASK              0xff
 170
 171#define THROT_PRIORITY_LITE                     0x444
 172#define THROT_PRIORITY_LITE_PRIO_MASK           0xff
 173
 174#define THROT_DELAY_LITE                        0x448
 175#define THROT_DELAY_LITE_DELAY_MASK             0xff
 176
 177/* car register offsets needed for enabling HW throttling */
 178#define CAR_SUPER_CCLKG_DIVIDER                 0x36c
 179#define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
 180
 181/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
 182#define CCROC_SUPER_CCLKG_DIVIDER               0x024
 183
 184#define CCROC_GLOBAL_CFG                        0x148
 185
 186#define CCROC_THROT_PSKIP_RAMP_CPU              0x150
 187#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
 188#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
 189#define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
 190
 191#define CCROC_THROT_PSKIP_CTRL_CPU              0x154
 192#define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
 193#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
 194#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
 195
 196/* get val from register(r) mask bits(m) */
 197#define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
 198/* set val(v) to mask bits(m) of register(r) */
 199#define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
 200                                 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
 201
 202/* get dividend from the depth */
 203#define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
 204
 205/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-sochterm.h
 206 * level        vector
 207 * NONE         3'b000
 208 * LOW          3'b001
 209 * MED          3'b011
 210 * HIGH         3'b111
 211 */
 212#define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
 213
 214/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
 215#define THROT_OFFSET                    0x30
 216#define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
 217                                        (THROT_OFFSET * throt) + (8 * dev))
 218#define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
 219                                        (THROT_OFFSET * throt) + (8 * dev))
 220
 221/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
 222#define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
 223                                        (THROT_OFFSET * throt))
 224#define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
 225                                        (THROT_OFFSET * throt))
 226
 227#define ALARM_OFFSET                    0x14
 228#define ALARM_CFG(throt)                (OC1_CFG + \
 229                                        (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 230
 231#define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
 232                                        (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 233
 234#define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
 235                                        (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 236
 237#define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
 238                                        (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 239
 240#define ALARM_FILTER(throt)             (OC1_FILTER + \
 241                                        (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 242
 243#define ALARM_STATS(throt)              (OC1_STATS + \
 244                                        (4 * (throt - THROTTLE_OC1)))
 245
 246/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
 247#define CCROC_THROT_OFFSET                      0x0c
 248#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
 249                                                (CCROC_THROT_OFFSET * vect))
 250#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
 251                                                (CCROC_THROT_OFFSET * vect))
 252
 253/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
 254#define THERMCTL_LVL_REGS_SIZE          0x20
 255#define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
 256
 257#define OC_THROTTLE_MODE_DISABLED       0
 258#define OC_THROTTLE_MODE_BRIEF          2
 259
 260static const int min_low_temp = -127000;
 261static const int max_high_temp = 127000;
 262
 263enum soctherm_throttle_id {
 264        THROTTLE_LIGHT = 0,
 265        THROTTLE_HEAVY,
 266        THROTTLE_OC1,
 267        THROTTLE_OC2,
 268        THROTTLE_OC3,
 269        THROTTLE_OC4,
 270        THROTTLE_OC5, /* OC5 is reserved */
 271        THROTTLE_SIZE,
 272};
 273
 274enum soctherm_oc_irq_id {
 275        TEGRA_SOC_OC_IRQ_1,
 276        TEGRA_SOC_OC_IRQ_2,
 277        TEGRA_SOC_OC_IRQ_3,
 278        TEGRA_SOC_OC_IRQ_4,
 279        TEGRA_SOC_OC_IRQ_5,
 280        TEGRA_SOC_OC_IRQ_MAX,
 281};
 282
 283enum soctherm_throttle_dev_id {
 284        THROTTLE_DEV_CPU = 0,
 285        THROTTLE_DEV_GPU,
 286        THROTTLE_DEV_SIZE,
 287};
 288
 289static const char *const throt_names[] = {
 290        [THROTTLE_LIGHT] = "light",
 291        [THROTTLE_HEAVY] = "heavy",
 292        [THROTTLE_OC1]   = "oc1",
 293        [THROTTLE_OC2]   = "oc2",
 294        [THROTTLE_OC3]   = "oc3",
 295        [THROTTLE_OC4]   = "oc4",
 296        [THROTTLE_OC5]   = "oc5",
 297};
 298
 299struct tegra_soctherm;
 300struct tegra_thermctl_zone {
 301        void __iomem *reg;
 302        struct device *dev;
 303        struct tegra_soctherm *ts;
 304        struct thermal_zone_device *tz;
 305        const struct tegra_tsensor_group *sg;
 306};
 307
 308struct soctherm_oc_cfg {
 309        u32 active_low;
 310        u32 throt_period;
 311        u32 alarm_cnt_thresh;
 312        u32 alarm_filter;
 313        u32 mode;
 314        bool intr_en;
 315};
 316
 317struct soctherm_throt_cfg {
 318        const char *name;
 319        unsigned int id;
 320        u8 priority;
 321        u8 cpu_throt_level;
 322        u32 cpu_throt_depth;
 323        u32 gpu_throt_level;
 324        struct soctherm_oc_cfg oc_cfg;
 325        struct thermal_cooling_device *cdev;
 326        bool init;
 327};
 328
 329struct tegra_soctherm {
 330        struct reset_control *reset;
 331        struct clk *clock_tsensor;
 332        struct clk *clock_soctherm;
 333        void __iomem *regs;
 334        void __iomem *clk_regs;
 335        void __iomem *ccroc_regs;
 336
 337        int thermal_irq;
 338        int edp_irq;
 339
 340        u32 *calib;
 341        struct thermal_zone_device **thermctl_tzs;
 342        struct tegra_soctherm_soc *soc;
 343
 344        struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
 345
 346        struct dentry *debugfs_dir;
 347
 348        struct mutex thermctl_lock;
 349};
 350
 351struct soctherm_oc_irq_chip_data {
 352        struct mutex            irq_lock; /* serialize OC IRQs */
 353        struct irq_chip         irq_chip;
 354        struct irq_domain       *domain;
 355        int                     irq_enable;
 356};
 357
 358static struct soctherm_oc_irq_chip_data soc_irq_cdata;
 359
 360/**
 361 * ccroc_writel() - writes a value to a CCROC register
 362 * @ts: pointer to a struct tegra_soctherm
 363 * @v: the value to write
 364 * @reg: the register offset
 365 *
 366 * Writes @v to @reg.  No return value.
 367 */
 368static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
 369{
 370        writel(value, (ts->ccroc_regs + reg));
 371}
 372
 373/**
 374 * ccroc_readl() - reads specified register from CCROC IP block
 375 * @ts: pointer to a struct tegra_soctherm
 376 * @reg: register address to be read
 377 *
 378 * Return: the value of the register
 379 */
 380static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
 381{
 382        return readl(ts->ccroc_regs + reg);
 383}
 384
 385static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
 386{
 387        const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
 388        void __iomem *base = tegra->regs + sensor->base;
 389        unsigned int val;
 390
 391        val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
 392        writel(val, base + SENSOR_CONFIG0);
 393
 394        val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
 395        val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
 396        val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
 397        val |= SENSOR_CONFIG1_TEMP_ENABLE;
 398        writel(val, base + SENSOR_CONFIG1);
 399
 400        writel(tegra->calib[i], base + SENSOR_CONFIG2);
 401}
 402
 403/*
 404 * Translate from soctherm readback format to millicelsius.
 405 * The soctherm readback format in bits is as follows:
 406 *   TTTTTTTT H______N
 407 * where T's contain the temperature in Celsius,
 408 * H denotes an addition of 0.5 Celsius and N denotes negation
 409 * of the final value.
 410 */
 411static int translate_temp(u16 val)
 412{
 413        int t;
 414
 415        t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
 416        if (val & READBACK_ADD_HALF)
 417                t += 500;
 418        if (val & READBACK_NEGATE)
 419                t *= -1;
 420
 421        return t;
 422}
 423
 424static int tegra_thermctl_get_temp(void *data, int *out_temp)
 425{
 426        struct tegra_thermctl_zone *zone = data;
 427        u32 val;
 428
 429        val = readl(zone->reg);
 430        val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
 431        *out_temp = translate_temp(val);
 432
 433        return 0;
 434}
 435
 436/**
 437 * enforce_temp_range() - check and enforce temperature range [min, max]
 438 * @trip_temp: the trip temperature to check
 439 *
 440 * Checks and enforces the permitted temperature range that SOC_THERM
 441 * HW can support This is
 442 * done while taking care of precision.
 443 *
 444 * Return: The precision adjusted capped temperature in millicelsius.
 445 */
 446static int enforce_temp_range(struct device *dev, int trip_temp)
 447{
 448        int temp;
 449
 450        temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
 451        if (temp != trip_temp)
 452                dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
 453                         trip_temp, temp);
 454        return temp;
 455}
 456
 457/**
 458 * thermtrip_program() - Configures the hardware to shut down the
 459 * system if a given sensor group reaches a given temperature
 460 * @dev: ptr to the struct device for the SOC_THERM IP block
 461 * @sg: pointer to the sensor group to set the thermtrip temperature for
 462 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
 463 *
 464 * Sets the thermal trip threshold of the given sensor group to be the
 465 * @trip_temp.  If this threshold is crossed, the hardware will shut
 466 * down.
 467 *
 468 * Note that, although @trip_temp is specified in millicelsius, the
 469 * hardware is programmed in degrees Celsius.
 470 *
 471 * Return: 0 upon success, or %-EINVAL upon failure.
 472 */
 473static int thermtrip_program(struct device *dev,
 474                             const struct tegra_tsensor_group *sg,
 475                             int trip_temp)
 476{
 477        struct tegra_soctherm *ts = dev_get_drvdata(dev);
 478        int temp;
 479        u32 r;
 480
 481        if (!sg || !sg->thermtrip_threshold_mask)
 482                return -EINVAL;
 483
 484        temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
 485
 486        r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
 487        r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
 488        r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
 489        r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
 490        writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
 491
 492        return 0;
 493}
 494
 495/**
 496 * throttrip_program() - Configures the hardware to throttle the
 497 * pulse if a given sensor group reaches a given temperature
 498 * @dev: ptr to the struct device for the SOC_THERM IP block
 499 * @sg: pointer to the sensor group to set the thermtrip temperature for
 500 * @stc: pointer to the throttle need to be triggered
 501 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
 502 *
 503 * Sets the thermal trip threshold and throttle event of the given sensor
 504 * group. If this threshold is crossed, the hardware will trigger the
 505 * throttle.
 506 *
 507 * Note that, although @trip_temp is specified in millicelsius, the
 508 * hardware is programmed in degrees Celsius.
 509 *
 510 * Return: 0 upon success, or %-EINVAL upon failure.
 511 */
 512static int throttrip_program(struct device *dev,
 513                             const struct tegra_tsensor_group *sg,
 514                             struct soctherm_throt_cfg *stc,
 515                             int trip_temp)
 516{
 517        struct tegra_soctherm *ts = dev_get_drvdata(dev);
 518        int temp, cpu_throt, gpu_throt;
 519        unsigned int throt;
 520        u32 r, reg_off;
 521
 522        if (!sg || !stc || !stc->init)
 523                return -EINVAL;
 524
 525        temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
 526
 527        /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
 528        throt = stc->id;
 529        reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
 530
 531        if (throt == THROTTLE_LIGHT) {
 532                cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
 533                gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
 534        } else {
 535                cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
 536                gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
 537                if (throt != THROTTLE_HEAVY)
 538                        dev_warn(dev,
 539                                 "invalid throt id %d - assuming HEAVY",
 540                                 throt);
 541        }
 542
 543        r = readl(ts->regs + reg_off);
 544        r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
 545        r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
 546        r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
 547        r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
 548        r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
 549        writel(r, ts->regs + reg_off);
 550
 551        return 0;
 552}
 553
 554static struct soctherm_throt_cfg *
 555find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
 556{
 557        unsigned int i;
 558
 559        for (i = 0; ts->throt_cfgs[i].name; i++)
 560                if (!strcmp(ts->throt_cfgs[i].name, name))
 561                        return &ts->throt_cfgs[i];
 562
 563        return NULL;
 564}
 565
 566static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
 567{
 568        int i, temp = min_low_temp;
 569        struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
 570
 571        if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
 572                return temp;
 573
 574        if (tt) {
 575                for (i = 0; i < ts->soc->num_ttgs; i++) {
 576                        if (tt[i].id == id)
 577                                return tt[i].temp;
 578                }
 579        }
 580
 581        return temp;
 582}
 583
 584static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
 585{
 586        struct tegra_thermctl_zone *zone = data;
 587        struct thermal_zone_device *tz = zone->tz;
 588        struct tegra_soctherm *ts = zone->ts;
 589        const struct tegra_tsensor_group *sg = zone->sg;
 590        struct device *dev = zone->dev;
 591        enum thermal_trip_type type;
 592        int ret;
 593
 594        if (!tz)
 595                return -EINVAL;
 596
 597        ret = tz->ops->get_trip_type(tz, trip, &type);
 598        if (ret)
 599                return ret;
 600
 601        if (type == THERMAL_TRIP_CRITICAL) {
 602                /*
 603                 * If thermtrips property is set in DT,
 604                 * doesn't need to program critical type trip to HW,
 605                 * if not, program critical trip to HW.
 606                 */
 607                if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
 608                        return thermtrip_program(dev, sg, temp);
 609                else
 610                        return 0;
 611
 612        } else if (type == THERMAL_TRIP_HOT) {
 613                int i;
 614
 615                for (i = 0; i < THROTTLE_SIZE; i++) {
 616                        struct thermal_cooling_device *cdev;
 617                        struct soctherm_throt_cfg *stc;
 618
 619                        if (!ts->throt_cfgs[i].init)
 620                                continue;
 621
 622                        cdev = ts->throt_cfgs[i].cdev;
 623                        if (get_thermal_instance(tz, cdev, trip))
 624                                stc = find_throttle_cfg_by_name(ts, cdev->type);
 625                        else
 626                                continue;
 627
 628                        return throttrip_program(dev, sg, stc, temp);
 629                }
 630        }
 631
 632        return 0;
 633}
 634
 635static int tegra_thermctl_get_trend(void *data, int trip,
 636                                    enum thermal_trend *trend)
 637{
 638        struct tegra_thermctl_zone *zone = data;
 639        struct thermal_zone_device *tz = zone->tz;
 640        int trip_temp, temp, last_temp, ret;
 641
 642        if (!tz)
 643                return -EINVAL;
 644
 645        ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
 646        if (ret)
 647                return ret;
 648
 649        temp = READ_ONCE(tz->temperature);
 650        last_temp = READ_ONCE(tz->last_temperature);
 651
 652        if (temp > trip_temp) {
 653                if (temp >= last_temp)
 654                        *trend = THERMAL_TREND_RAISING;
 655                else
 656                        *trend = THERMAL_TREND_STABLE;
 657        } else if (temp < trip_temp) {
 658                *trend = THERMAL_TREND_DROPPING;
 659        } else {
 660                *trend = THERMAL_TREND_STABLE;
 661        }
 662
 663        return 0;
 664}
 665
 666static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
 667{
 668        u32 r;
 669
 670        /* multiple zones could be handling and setting trips at once */
 671        mutex_lock(&zn->ts->thermctl_lock);
 672        r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
 673        r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
 674        writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
 675        mutex_unlock(&zn->ts->thermctl_lock);
 676}
 677
 678static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
 679{
 680        u32 r;
 681
 682        /* multiple zones could be handling and setting trips at once */
 683        mutex_lock(&zn->ts->thermctl_lock);
 684        r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
 685        r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
 686        writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
 687        mutex_unlock(&zn->ts->thermctl_lock);
 688}
 689
 690static int tegra_thermctl_set_trips(void *data, int lo, int hi)
 691{
 692        struct tegra_thermctl_zone *zone = data;
 693        u32 r;
 694
 695        thermal_irq_disable(zone);
 696
 697        r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 698        r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
 699        writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 700
 701        lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
 702        hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
 703        dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
 704
 705        r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
 706        r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
 707        r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
 708        writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 709
 710        thermal_irq_enable(zone);
 711
 712        return 0;
 713}
 714
 715static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
 716        .get_temp = tegra_thermctl_get_temp,
 717        .set_trip_temp = tegra_thermctl_set_trip_temp,
 718        .get_trend = tegra_thermctl_get_trend,
 719        .set_trips = tegra_thermctl_set_trips,
 720};
 721
 722static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
 723{
 724        int ntrips, i, ret;
 725        enum thermal_trip_type type;
 726
 727        ntrips = of_thermal_get_ntrips(tz);
 728        if (ntrips <= 0)
 729                return -EINVAL;
 730
 731        for (i = 0; i < ntrips; i++) {
 732                ret = tz->ops->get_trip_type(tz, i, &type);
 733                if (ret)
 734                        return -EINVAL;
 735                if (type == THERMAL_TRIP_HOT) {
 736                        ret = tz->ops->get_trip_temp(tz, i, temp);
 737                        if (!ret)
 738                                *trip = i;
 739
 740                        return ret;
 741                }
 742        }
 743
 744        return -EINVAL;
 745}
 746
 747/**
 748 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
 749 * @dev: struct device * of the SOC_THERM instance
 750 *
 751 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
 752 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
 753 * type trip_temp
 754 * from thermal zone.
 755 * After they have been configured, THERMTRIP or THROTTLE will take
 756 * action when the configured SoC thermal sensor group reaches a
 757 * certain temperature.
 758 *
 759 * Return: 0 upon success, or a negative error code on failure.
 760 * "Success" does not mean that trips was enabled; it could also
 761 * mean that no node was found in DT.
 762 * THERMTRIP has been enabled successfully when a message similar to
 763 * this one appears on the serial console:
 764 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
 765 * THROTTLE has been enabled successfully when a message similar to
 766 * this one appears on the serial console:
 767 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
 768 */
 769static int tegra_soctherm_set_hwtrips(struct device *dev,
 770                                      const struct tegra_tsensor_group *sg,
 771                                      struct thermal_zone_device *tz)
 772{
 773        struct tegra_soctherm *ts = dev_get_drvdata(dev);
 774        struct soctherm_throt_cfg *stc;
 775        int i, trip, temperature, ret;
 776
 777        /* Get thermtrips. If missing, try to get critical trips. */
 778        temperature = tsensor_group_thermtrip_get(ts, sg->id);
 779        if (min_low_temp == temperature)
 780                if (tz->ops->get_crit_temp(tz, &temperature))
 781                        temperature = max_high_temp;
 782
 783        ret = thermtrip_program(dev, sg, temperature);
 784        if (ret) {
 785                dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
 786                return ret;
 787        }
 788
 789        dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
 790                 sg->name, temperature);
 791
 792        ret = get_hot_temp(tz, &trip, &temperature);
 793        if (ret) {
 794                dev_info(dev, "throttrip: %s: missing hot temperature\n",
 795                         sg->name);
 796                return 0;
 797        }
 798
 799        for (i = 0; i < THROTTLE_OC1; i++) {
 800                struct thermal_cooling_device *cdev;
 801
 802                if (!ts->throt_cfgs[i].init)
 803                        continue;
 804
 805                cdev = ts->throt_cfgs[i].cdev;
 806                if (get_thermal_instance(tz, cdev, trip))
 807                        stc = find_throttle_cfg_by_name(ts, cdev->type);
 808                else
 809                        continue;
 810
 811                ret = throttrip_program(dev, sg, stc, temperature);
 812                if (ret) {
 813                        dev_err(dev, "throttrip: %s: error during enable\n",
 814                                sg->name);
 815                        return ret;
 816                }
 817
 818                dev_info(dev,
 819                         "throttrip: will throttle when %s reaches %d mC\n",
 820                         sg->name, temperature);
 821                break;
 822        }
 823
 824        if (i == THROTTLE_SIZE)
 825                dev_info(dev, "throttrip: %s: missing throttle cdev\n",
 826                         sg->name);
 827
 828        return 0;
 829}
 830
 831static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
 832{
 833        struct tegra_soctherm *ts = dev_id;
 834        u32 r;
 835
 836        /* Case for no lock:
 837         * Although interrupts are enabled in set_trips, there is still no need
 838         * to lock here because the interrupts are disabled before programming
 839         * new trip points. Hence there cant be a interrupt on the same sensor.
 840         * An interrupt can however occur on a sensor while trips are being
 841         * programmed on a different one. This beign a LEVEL interrupt won't
 842         * cause a new interrupt but this is taken care of by the re-reading of
 843         * the STATUS register in the thread function.
 844         */
 845        r = readl(ts->regs + THERMCTL_INTR_STATUS);
 846        writel(r, ts->regs + THERMCTL_INTR_DISABLE);
 847
 848        return IRQ_WAKE_THREAD;
 849}
 850
 851/**
 852 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
 853 * @irq:       The interrupt number being requested; not used
 854 * @dev_id:    Opaque pointer to tegra_soctherm;
 855 *
 856 * Clears the interrupt status register if there are expected
 857 * interrupt bits set.
 858 * The interrupt(s) are then handled by updating the corresponding
 859 * thermal zones.
 860 *
 861 * An error is logged if any unexpected interrupt bits are set.
 862 *
 863 * Disabled interrupts are re-enabled.
 864 *
 865 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
 866 * is needed.
 867 */
 868static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
 869{
 870        struct tegra_soctherm *ts = dev_id;
 871        struct thermal_zone_device *tz;
 872        u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
 873
 874        st = readl(ts->regs + THERMCTL_INTR_STATUS);
 875
 876        /* deliberately clear expected interrupts handled in SW */
 877        cp |= st & TH_INTR_CD0_MASK;
 878        cp |= st & TH_INTR_CU0_MASK;
 879
 880        gp |= st & TH_INTR_GD0_MASK;
 881        gp |= st & TH_INTR_GU0_MASK;
 882
 883        pl |= st & TH_INTR_PD0_MASK;
 884        pl |= st & TH_INTR_PU0_MASK;
 885
 886        me |= st & TH_INTR_MD0_MASK;
 887        me |= st & TH_INTR_MU0_MASK;
 888
 889        ex |= cp | gp | pl | me;
 890        if (ex) {
 891                writel(ex, ts->regs + THERMCTL_INTR_STATUS);
 892                st &= ~ex;
 893
 894                if (cp) {
 895                        tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
 896                        thermal_zone_device_update(tz,
 897                                                   THERMAL_EVENT_UNSPECIFIED);
 898                }
 899
 900                if (gp) {
 901                        tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
 902                        thermal_zone_device_update(tz,
 903                                                   THERMAL_EVENT_UNSPECIFIED);
 904                }
 905
 906                if (pl) {
 907                        tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
 908                        thermal_zone_device_update(tz,
 909                                                   THERMAL_EVENT_UNSPECIFIED);
 910                }
 911
 912                if (me) {
 913                        tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
 914                        thermal_zone_device_update(tz,
 915                                                   THERMAL_EVENT_UNSPECIFIED);
 916                }
 917        }
 918
 919        /* deliberately ignore expected interrupts NOT handled in SW */
 920        ex |= TH_INTR_IGNORE_MASK;
 921        st &= ~ex;
 922
 923        if (st) {
 924                /* Whine about any other unexpected INTR bits still set */
 925                pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
 926                writel(st, ts->regs + THERMCTL_INTR_STATUS);
 927        }
 928
 929        return IRQ_HANDLED;
 930}
 931
 932/**
 933 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
 934 * @alarm:              The soctherm throttle id
 935 * @enable:             Flag indicating enable the soctherm over-current
 936 *                      interrupt or disable it
 937 *
 938 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
 939 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
 940 */
 941static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
 942                                    enum soctherm_throttle_id alarm,
 943                                    bool enable)
 944{
 945        u32 r;
 946
 947        if (!enable)
 948                return;
 949
 950        r = readl(ts->regs + OC_INTR_ENABLE);
 951        switch (alarm) {
 952        case THROTTLE_OC1:
 953                r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
 954                break;
 955        case THROTTLE_OC2:
 956                r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
 957                break;
 958        case THROTTLE_OC3:
 959                r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
 960                break;
 961        case THROTTLE_OC4:
 962                r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
 963                break;
 964        default:
 965                r = 0;
 966                break;
 967        }
 968        writel(r, ts->regs + OC_INTR_ENABLE);
 969}
 970
 971/**
 972 * soctherm_handle_alarm() - Handles soctherm alarms
 973 * @alarm:              The soctherm throttle id
 974 *
 975 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
 976 * a warning or informative message.
 977 *
 978 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
 979 */
 980static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
 981{
 982        int rv = -EINVAL;
 983
 984        switch (alarm) {
 985        case THROTTLE_OC1:
 986                pr_debug("soctherm: Successfully handled OC1 alarm\n");
 987                rv = 0;
 988                break;
 989
 990        case THROTTLE_OC2:
 991                pr_debug("soctherm: Successfully handled OC2 alarm\n");
 992                rv = 0;
 993                break;
 994
 995        case THROTTLE_OC3:
 996                pr_debug("soctherm: Successfully handled OC3 alarm\n");
 997                rv = 0;
 998                break;
 999
1000        case THROTTLE_OC4:
1001                pr_debug("soctherm: Successfully handled OC4 alarm\n");
1002                rv = 0;
1003                break;
1004
1005        default:
1006                break;
1007        }
1008
1009        if (rv)
1010                pr_err("soctherm: ERROR in handling %s alarm\n",
1011                       throt_names[alarm]);
1012
1013        return rv;
1014}
1015
1016/**
1017 * soctherm_edp_isr_thread() - log an over-current interrupt request
1018 * @irq:        OC irq number. Currently not being used. See description
1019 * @arg:        a void pointer for callback, currently not being used
1020 *
1021 * Over-current events are handled in hardware. This function is called to log
1022 * and handle any OC events that happened. Additionally, it checks every
1023 * over-current interrupt registers for registers are set but
1024 * was not expected (i.e. any discrepancy in interrupt status) by the function,
1025 * the discrepancy will logged.
1026 *
1027 * Return: %IRQ_HANDLED
1028 */
1029static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1030{
1031        struct tegra_soctherm *ts = arg;
1032        u32 st, ex, oc1, oc2, oc3, oc4;
1033
1034        st = readl(ts->regs + OC_INTR_STATUS);
1035
1036        /* deliberately clear expected interrupts handled in SW */
1037        oc1 = st & OC_INTR_OC1_MASK;
1038        oc2 = st & OC_INTR_OC2_MASK;
1039        oc3 = st & OC_INTR_OC3_MASK;
1040        oc4 = st & OC_INTR_OC4_MASK;
1041        ex = oc1 | oc2 | oc3 | oc4;
1042
1043        pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1044        if (ex) {
1045                writel(st, ts->regs + OC_INTR_STATUS);
1046                st &= ~ex;
1047
1048                if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1049                        soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1050
1051                if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1052                        soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1053
1054                if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1055                        soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1056
1057                if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1058                        soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1059
1060                if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1061                        handle_nested_irq(
1062                                irq_find_mapping(soc_irq_cdata.domain, 0));
1063
1064                if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1065                        handle_nested_irq(
1066                                irq_find_mapping(soc_irq_cdata.domain, 1));
1067
1068                if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1069                        handle_nested_irq(
1070                                irq_find_mapping(soc_irq_cdata.domain, 2));
1071
1072                if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1073                        handle_nested_irq(
1074                                irq_find_mapping(soc_irq_cdata.domain, 3));
1075        }
1076
1077        if (st) {
1078                pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1079                writel(st, ts->regs + OC_INTR_STATUS);
1080        }
1081
1082        return IRQ_HANDLED;
1083}
1084
1085/**
1086 * soctherm_edp_isr() - Disables any active interrupts
1087 * @irq:        The interrupt request number
1088 * @arg:        Opaque pointer to an argument
1089 *
1090 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1091 * masking any asserted interrupts. Doing this prevents the same interrupts
1092 * from triggering this isr repeatedly. The thread woken by this isr will
1093 * handle asserted interrupts and subsequently unmask/re-enable them.
1094 *
1095 * The OC_INTR_DISABLE register indicates which OC interrupts
1096 * have been disabled.
1097 *
1098 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1099 */
1100static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1101{
1102        struct tegra_soctherm *ts = arg;
1103        u32 r;
1104
1105        if (!ts)
1106                return IRQ_NONE;
1107
1108        r = readl(ts->regs + OC_INTR_STATUS);
1109        writel(r, ts->regs + OC_INTR_DISABLE);
1110
1111        return IRQ_WAKE_THREAD;
1112}
1113
1114/**
1115 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1116 * @data:       Interrupt request data
1117 *
1118 * Looks up the chip data from @data and locks the mutex associated with
1119 * a particular over-current interrupt request.
1120 */
1121static void soctherm_oc_irq_lock(struct irq_data *data)
1122{
1123        struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1124
1125        mutex_lock(&d->irq_lock);
1126}
1127
1128/**
1129 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1130 * @data:               Interrupt request data
1131 *
1132 * Looks up the interrupt request data @data and unlocks the mutex associated
1133 * with a particular over-current interrupt request.
1134 */
1135static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1136{
1137        struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1138
1139        mutex_unlock(&d->irq_lock);
1140}
1141
1142/**
1143 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1144 * @data:       irq_data structure of the chip
1145 *
1146 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1147 * to respond to over-current interrupts.
1148 *
1149 */
1150static void soctherm_oc_irq_enable(struct irq_data *data)
1151{
1152        struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1153
1154        d->irq_enable |= BIT(data->hwirq);
1155}
1156
1157/**
1158 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1159 * @irq_data:   The interrupt request information
1160 *
1161 * Clears the interrupt request enable bit of the overcurrent
1162 * interrupt request chip data.
1163 *
1164 * Return: Nothing is returned (void)
1165 */
1166static void soctherm_oc_irq_disable(struct irq_data *data)
1167{
1168        struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1169
1170        d->irq_enable &= ~BIT(data->hwirq);
1171}
1172
1173static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1174{
1175        return 0;
1176}
1177
1178/**
1179 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1180 * @h:          Interrupt request domain
1181 * @virq:       Virtual interrupt request number
1182 * @hw:         Hardware interrupt request number
1183 *
1184 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1185 * interrupt request is called, the irq_domain takes the request's virtual
1186 * request number (much like a virtual memory address) and maps it to a
1187 * physical hardware request number.
1188 *
1189 * When a mapping doesn't already exist for a virtual request number, the
1190 * irq_domain calls this function to associate the virtual request number with
1191 * a hardware request number.
1192 *
1193 * Return: 0
1194 */
1195static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1196                irq_hw_number_t hw)
1197{
1198        struct soctherm_oc_irq_chip_data *data = h->host_data;
1199
1200        irq_set_chip_data(virq, data);
1201        irq_set_chip(virq, &data->irq_chip);
1202        irq_set_nested_thread(virq, 1);
1203        return 0;
1204}
1205
1206/**
1207 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1208 * @d:      Interrupt request domain
1209 * @intspec:    Array of u32s from DTs "interrupt" property
1210 * @intsize:    Number of values inside the intspec array
1211 * @out_hwirq:  HW IRQ value associated with this interrupt
1212 * @out_type:   The IRQ SENSE type for this interrupt.
1213 *
1214 * This Device Tree IRQ specifier translation function will translate a
1215 * specific "interrupt" as defined by 2 DT values where the cell values map
1216 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1217 * number, this function will subtract 1 from the value listed in DT.
1218 *
1219 * Return: 0
1220 */
1221static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1222        struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1223        irq_hw_number_t *out_hwirq, unsigned int *out_type)
1224{
1225        if (WARN_ON(intsize < 2))
1226                return -EINVAL;
1227
1228        /*
1229         * The HW value is 1 index less than the DT IRQ values.
1230         * i.e. OC4 goes to HW index 3.
1231         */
1232        *out_hwirq = intspec[0] - 1;
1233        *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1234        return 0;
1235}
1236
1237static const struct irq_domain_ops soctherm_oc_domain_ops = {
1238        .map    = soctherm_oc_irq_map,
1239        .xlate  = soctherm_irq_domain_xlate_twocell,
1240};
1241
1242/**
1243 * soctherm_oc_int_init() - Initial enabling of the over
1244 * current interrupts
1245 * @np: The devicetree node for soctherm
1246 * @num_irqs:   The number of new interrupt requests
1247 *
1248 * Sets the over current interrupt request chip data
1249 *
1250 * Return: 0 on success or if overcurrent interrupts are not enabled,
1251 * -ENOMEM (out of memory), or irq_base if the function failed to
1252 * allocate the irqs
1253 */
1254static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1255{
1256        if (!num_irqs) {
1257                pr_info("%s(): OC interrupts are not enabled\n", __func__);
1258                return 0;
1259        }
1260
1261        mutex_init(&soc_irq_cdata.irq_lock);
1262        soc_irq_cdata.irq_enable = 0;
1263
1264        soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1265        soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1266        soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1267                soctherm_oc_irq_sync_unlock;
1268        soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1269        soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1270        soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1271        soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1272
1273        soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1274                                                     &soctherm_oc_domain_ops,
1275                                                     &soc_irq_cdata);
1276
1277        if (!soc_irq_cdata.domain) {
1278                pr_err("%s: Failed to create IRQ domain\n", __func__);
1279                return -ENOMEM;
1280        }
1281
1282        pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1283        return 0;
1284}
1285
1286#ifdef CONFIG_DEBUG_FS
1287static int regs_show(struct seq_file *s, void *data)
1288{
1289        struct platform_device *pdev = s->private;
1290        struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1291        const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1292        const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1293        u32 r, state;
1294        int i, level;
1295
1296        seq_puts(s, "-----TSENSE (convert HW)-----\n");
1297
1298        for (i = 0; i < ts->soc->num_tsensors; i++) {
1299                r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1300                state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1301
1302                seq_printf(s, "%s: ", tsensors[i].name);
1303                seq_printf(s, "En(%d) ", state);
1304
1305                if (!state) {
1306                        seq_puts(s, "\n");
1307                        continue;
1308                }
1309
1310                state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1311                seq_printf(s, "tiddq(%d) ", state);
1312                state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1313                seq_printf(s, "ten_count(%d) ", state);
1314                state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1315                seq_printf(s, "tsample(%d) ", state + 1);
1316
1317                r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1318                state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1319                seq_printf(s, "Temp(%d/", state);
1320                state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1321                seq_printf(s, "%d) ", translate_temp(state));
1322
1323                r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1324                state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1325                seq_printf(s, "Capture(%d/", state);
1326                state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1327                seq_printf(s, "%d) ", state);
1328
1329                r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1330                state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1331                seq_printf(s, "Stop(%d) ", state);
1332                state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1333                seq_printf(s, "Tall(%d) ", state);
1334                state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1335                seq_printf(s, "Over(%d/", state);
1336                state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1337                seq_printf(s, "%d/", state);
1338                state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1339                seq_printf(s, "%d) ", state);
1340
1341                r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1342                state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1343                seq_printf(s, "Therm_A/B(%d/", state);
1344                state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1345                seq_printf(s, "%d)\n", (s16)state);
1346        }
1347
1348        r = readl(ts->regs + SENSOR_PDIV);
1349        seq_printf(s, "PDIV: 0x%x\n", r);
1350
1351        r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1352        seq_printf(s, "HOTSPOT: 0x%x\n", r);
1353
1354        seq_puts(s, "\n");
1355        seq_puts(s, "-----SOC_THERM-----\n");
1356
1357        r = readl(ts->regs + SENSOR_TEMP1);
1358        state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1359        seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1360        state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1361        seq_printf(s, " GPU(%d) ", translate_temp(state));
1362        r = readl(ts->regs + SENSOR_TEMP2);
1363        state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1364        seq_printf(s, " PLLX(%d) ", translate_temp(state));
1365        state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1366        seq_printf(s, " MEM(%d)\n", translate_temp(state));
1367
1368        for (i = 0; i < ts->soc->num_ttgs; i++) {
1369                seq_printf(s, "%s:\n", ttgs[i]->name);
1370                for (level = 0; level < 4; level++) {
1371                        s32 v;
1372                        u32 mask;
1373                        u16 off = ttgs[i]->thermctl_lvl0_offset;
1374
1375                        r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1376
1377                        mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1378                        state = REG_GET_MASK(r, mask);
1379                        v = sign_extend32(state, ts->soc->bptt - 1);
1380                        v *= ts->soc->thresh_grain;
1381                        seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1382
1383                        mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1384                        state = REG_GET_MASK(r, mask);
1385                        v = sign_extend32(state, ts->soc->bptt - 1);
1386                        v *= ts->soc->thresh_grain;
1387                        seq_printf(s, "%d ) ", v);
1388
1389                        mask = THERMCTL_LVL0_CPU0_EN_MASK;
1390                        state = REG_GET_MASK(r, mask);
1391                        seq_printf(s, "En(%d) ", state);
1392
1393                        mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1394                        state = REG_GET_MASK(r, mask);
1395                        seq_puts(s, "CPU Throt");
1396                        if (!state)
1397                                seq_printf(s, "(%s) ", "none");
1398                        else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1399                                seq_printf(s, "(%s) ", "L");
1400                        else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1401                                seq_printf(s, "(%s) ", "H");
1402                        else
1403                                seq_printf(s, "(%s) ", "H+L");
1404
1405                        mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1406                        state = REG_GET_MASK(r, mask);
1407                        seq_puts(s, "GPU Throt");
1408                        if (!state)
1409                                seq_printf(s, "(%s) ", "none");
1410                        else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1411                                seq_printf(s, "(%s) ", "L");
1412                        else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1413                                seq_printf(s, "(%s) ", "H");
1414                        else
1415                                seq_printf(s, "(%s) ", "H+L");
1416
1417                        mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1418                        state = REG_GET_MASK(r, mask);
1419                        seq_printf(s, "Status(%s)\n",
1420                                   state == 0 ? "LO" :
1421                                   state == 1 ? "In" :
1422                                   state == 2 ? "Res" : "HI");
1423                }
1424        }
1425
1426        r = readl(ts->regs + THERMCTL_STATS_CTL);
1427        seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1428                   r & STATS_CTL_EN_UP ? "En" : "--",
1429                   r & STATS_CTL_EN_DN ? "En" : "--");
1430
1431        for (level = 0; level < 4; level++) {
1432                u16 off;
1433
1434                off = THERMCTL_LVL0_UP_STATS;
1435                r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1436                seq_printf(s, "  Level_%d Up(%d) ", level, r);
1437
1438                off = THERMCTL_LVL0_DN_STATS;
1439                r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1440                seq_printf(s, "Dn(%d)\n", r);
1441        }
1442
1443        r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1444        state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1445        seq_printf(s, "Thermtrip Any En(%d)\n", state);
1446        for (i = 0; i < ts->soc->num_ttgs; i++) {
1447                state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1448                seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1449                state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1450                state *= ts->soc->thresh_grain;
1451                seq_printf(s, "Thresh(%d)\n", state);
1452        }
1453
1454        r = readl(ts->regs + THROT_GLOBAL_CFG);
1455        seq_puts(s, "\n");
1456        seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1457
1458        seq_puts(s, "---------------------------------------------------\n");
1459        r = readl(ts->regs + THROT_STATUS);
1460        state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1461        seq_printf(s, "THROT STATUS: breach(%d) ", state);
1462        state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1463        seq_printf(s, "state(%d) ", state);
1464        state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1465        seq_printf(s, "enabled(%d)\n", state);
1466
1467        r = readl(ts->regs + CPU_PSKIP_STATUS);
1468        if (ts->soc->use_ccroc) {
1469                state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1470                seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1471        } else {
1472                state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1473                seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1474                state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1475                seq_printf(s, "N(%d) ", state);
1476                state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1477                seq_printf(s, "enabled(%d)\n", state);
1478        }
1479
1480        return 0;
1481}
1482
1483DEFINE_SHOW_ATTRIBUTE(regs);
1484
1485static void soctherm_debug_init(struct platform_device *pdev)
1486{
1487        struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1488        struct dentry *root, *file;
1489
1490        root = debugfs_create_dir("soctherm", NULL);
1491        if (!root) {
1492                dev_err(&pdev->dev, "failed to create debugfs directory\n");
1493                return;
1494        }
1495
1496        tegra->debugfs_dir = root;
1497
1498        file = debugfs_create_file("reg_contents", 0644, root,
1499                                   pdev, &regs_fops);
1500        if (!file) {
1501                dev_err(&pdev->dev, "failed to create debugfs file\n");
1502                debugfs_remove_recursive(tegra->debugfs_dir);
1503                tegra->debugfs_dir = NULL;
1504        }
1505}
1506#else
1507static inline void soctherm_debug_init(struct platform_device *pdev) {}
1508#endif
1509
1510static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1511{
1512        struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1513        int err;
1514
1515        if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1516                return -EINVAL;
1517
1518        reset_control_assert(tegra->reset);
1519
1520        if (enable) {
1521                err = clk_prepare_enable(tegra->clock_soctherm);
1522                if (err) {
1523                        reset_control_deassert(tegra->reset);
1524                        return err;
1525                }
1526
1527                err = clk_prepare_enable(tegra->clock_tsensor);
1528                if (err) {
1529                        clk_disable_unprepare(tegra->clock_soctherm);
1530                        reset_control_deassert(tegra->reset);
1531                        return err;
1532                }
1533        } else {
1534                clk_disable_unprepare(tegra->clock_tsensor);
1535                clk_disable_unprepare(tegra->clock_soctherm);
1536        }
1537
1538        reset_control_deassert(tegra->reset);
1539
1540        return 0;
1541}
1542
1543static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1544                                    unsigned long *max_state)
1545{
1546        *max_state = 1;
1547        return 0;
1548}
1549
1550static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1551                                    unsigned long *cur_state)
1552{
1553        struct tegra_soctherm *ts = cdev->devdata;
1554        u32 r;
1555
1556        r = readl(ts->regs + THROT_STATUS);
1557        if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1558                *cur_state = 1;
1559        else
1560                *cur_state = 0;
1561
1562        return 0;
1563}
1564
1565static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1566                                unsigned long cur_state)
1567{
1568        return 0;
1569}
1570
1571static const struct thermal_cooling_device_ops throt_cooling_ops = {
1572        .get_max_state = throt_get_cdev_max_state,
1573        .get_cur_state = throt_get_cdev_cur_state,
1574        .set_cur_state = throt_set_cdev_state,
1575};
1576
1577static int soctherm_thermtrips_parse(struct platform_device *pdev)
1578{
1579        struct device *dev = &pdev->dev;
1580        struct tegra_soctherm *ts = dev_get_drvdata(dev);
1581        struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1582        const int max_num_prop = ts->soc->num_ttgs * 2;
1583        u32 *tlb;
1584        int i, j, n, ret;
1585
1586        if (!tt)
1587                return -ENOMEM;
1588
1589        n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1590        if (n <= 0) {
1591                dev_info(dev,
1592                         "missing thermtrips, will use critical trips as shut down temp\n");
1593                return n;
1594        }
1595
1596        n = min(max_num_prop, n);
1597
1598        tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1599        if (!tlb)
1600                return -ENOMEM;
1601        ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1602                                         tlb, n);
1603        if (ret) {
1604                dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1605                return ret;
1606        }
1607
1608        i = 0;
1609        for (j = 0; j < n; j = j + 2) {
1610                if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1611                        continue;
1612
1613                tt[i].id = tlb[j];
1614                tt[i].temp = tlb[j + 1];
1615                i++;
1616        }
1617
1618        return 0;
1619}
1620
1621static void soctherm_oc_cfg_parse(struct device *dev,
1622                                struct device_node *np_oc,
1623                                struct soctherm_throt_cfg *stc)
1624{
1625        u32 val;
1626
1627        if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1628                stc->oc_cfg.active_low = 1;
1629        else
1630                stc->oc_cfg.active_low = 0;
1631
1632        if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1633                stc->oc_cfg.intr_en = 1;
1634                stc->oc_cfg.alarm_cnt_thresh = val;
1635        }
1636
1637        if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1638                stc->oc_cfg.throt_period = val;
1639
1640        if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1641                stc->oc_cfg.alarm_filter = val;
1642
1643        /* BRIEF throttling by default, do not support STICKY */
1644        stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1645}
1646
1647static int soctherm_throt_cfg_parse(struct device *dev,
1648                                    struct device_node *np,
1649                                    struct soctherm_throt_cfg *stc)
1650{
1651        struct tegra_soctherm *ts = dev_get_drvdata(dev);
1652        int ret;
1653        u32 val;
1654
1655        ret = of_property_read_u32(np, "nvidia,priority", &val);
1656        if (ret) {
1657                dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1658                return -EINVAL;
1659        }
1660        stc->priority = val;
1661
1662        ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1663                                   "nvidia,cpu-throt-level" :
1664                                   "nvidia,cpu-throt-percent", &val);
1665        if (!ret) {
1666                if (ts->soc->use_ccroc &&
1667                    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1668                        stc->cpu_throt_level = val;
1669                else if (!ts->soc->use_ccroc && val <= 100)
1670                        stc->cpu_throt_depth = val;
1671                else
1672                        goto err;
1673        } else {
1674                goto err;
1675        }
1676
1677        ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1678        if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1679                stc->gpu_throt_level = val;
1680        else
1681                goto err;
1682
1683        return 0;
1684
1685err:
1686        dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1687                stc->name);
1688        return -EINVAL;
1689}
1690
1691/**
1692 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1693 * and register them as cooling devices.
1694 */
1695static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1696{
1697        struct device *dev = &pdev->dev;
1698        struct tegra_soctherm *ts = dev_get_drvdata(dev);
1699        struct device_node *np_stc, *np_stcc;
1700        const char *name;
1701        int i;
1702
1703        for (i = 0; i < THROTTLE_SIZE; i++) {
1704                ts->throt_cfgs[i].name = throt_names[i];
1705                ts->throt_cfgs[i].id = i;
1706                ts->throt_cfgs[i].init = false;
1707        }
1708
1709        np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1710        if (!np_stc) {
1711                dev_info(dev,
1712                         "throttle-cfg: no throttle-cfgs - not enabling\n");
1713                return;
1714        }
1715
1716        for_each_child_of_node(np_stc, np_stcc) {
1717                struct soctherm_throt_cfg *stc;
1718                struct thermal_cooling_device *tcd;
1719                int err;
1720
1721                name = np_stcc->name;
1722                stc = find_throttle_cfg_by_name(ts, name);
1723                if (!stc) {
1724                        dev_err(dev,
1725                                "throttle-cfg: could not find %s\n", name);
1726                        continue;
1727                }
1728
1729                if (stc->init) {
1730                        dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1731                        of_node_put(np_stcc);
1732                        break;
1733                }
1734
1735                err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1736                if (err)
1737                        continue;
1738
1739                if (stc->id >= THROTTLE_OC1) {
1740                        soctherm_oc_cfg_parse(dev, np_stcc, stc);
1741                        stc->init = true;
1742                } else {
1743
1744                        tcd = thermal_of_cooling_device_register(np_stcc,
1745                                                         (char *)name, ts,
1746                                                         &throt_cooling_ops);
1747                        if (IS_ERR_OR_NULL(tcd)) {
1748                                dev_err(dev,
1749                                        "throttle-cfg: %s: failed to register cooling device\n",
1750                                        name);
1751                                continue;
1752                        }
1753                        stc->cdev = tcd;
1754                        stc->init = true;
1755                }
1756
1757        }
1758
1759        of_node_put(np_stc);
1760}
1761
1762/**
1763 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1764 * @level: describing the level LOW/MED/HIGH of throttling
1765 *
1766 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1767 * the M/N values desired for each level. This function does this.
1768 *
1769 * This function pre-programs the CCROC NV_THERM levels in terms of
1770 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1771 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1772 */
1773static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1774{
1775        u8 depth, dividend;
1776        u32 r;
1777
1778        switch (level) {
1779        case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1780                depth = 50;
1781                break;
1782        case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1783                depth = 75;
1784                break;
1785        case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1786                depth = 80;
1787                break;
1788        case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1789                return;
1790        default:
1791                return;
1792        }
1793
1794        dividend = THROT_DEPTH_DIVIDEND(depth);
1795
1796        /* setup PSKIP in ccroc nv_therm registers */
1797        r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1798        r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1799        r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1800        ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1801
1802        r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1803        r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1804        r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1805        r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1806        ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1807}
1808
1809/**
1810 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1811 * @throt: the LIGHT/HEAVY of throttle event id
1812 *
1813 * Pulse skippers are used to throttle clock frequencies.  This
1814 * function programs the pulse skippers based on @throt and platform
1815 * data.  This function is used on SoCs which have CPU-local pulse
1816 * skipper control, such as T13x. It programs soctherm's interface to
1817 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1818 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1819 */
1820static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1821                                         enum soctherm_throttle_id throt)
1822{
1823        u32 r, throt_vect;
1824
1825        /* Denver:CCROC NV_THERM interface N:3 Mapping */
1826        switch (ts->throt_cfgs[throt].cpu_throt_level) {
1827        case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1828                throt_vect = THROT_VECT_LOW;
1829                break;
1830        case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1831                throt_vect = THROT_VECT_MED;
1832                break;
1833        case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1834                throt_vect = THROT_VECT_HIGH;
1835                break;
1836        default:
1837                throt_vect = THROT_VECT_NONE;
1838                break;
1839        }
1840
1841        r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1842        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1843        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1844        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1845        writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1846
1847        /* bypass sequencer in soc_therm as it is programmed in ccroc */
1848        r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1849        writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1850}
1851
1852/**
1853 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1854 * @throt: the LIGHT/HEAVY of throttle event id
1855 *
1856 * Pulse skippers are used to throttle clock frequencies.  This
1857 * function programs the pulse skippers based on @throt and platform
1858 * data.  This function is used for CPUs that have "remote" pulse
1859 * skipper control, e.g., the CPU pulse skipper is controlled by the
1860 * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1861 * complex.)
1862 */
1863static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1864                               enum soctherm_throttle_id throt)
1865{
1866        u32 r;
1867        int depth;
1868        u8 dividend;
1869
1870        depth = ts->throt_cfgs[throt].cpu_throt_depth;
1871        dividend = THROT_DEPTH_DIVIDEND(depth);
1872
1873        r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1874        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1875        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1876        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1877        writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1878
1879        r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1880        r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1881        r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1882        writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1883}
1884
1885/**
1886 * throttlectl_gpu_level_select() - selects throttling level for GPU
1887 * @throt: the LIGHT/HEAVY of throttle event id
1888 *
1889 * This function programs soctherm's interface to GK20a NV_THERM to select
1890 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1891 *
1892 * Return: boolean true if HW was programmed
1893 */
1894static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1895                                         enum soctherm_throttle_id throt)
1896{
1897        u32 r, level, throt_vect;
1898
1899        level = ts->throt_cfgs[throt].gpu_throt_level;
1900        throt_vect = THROT_LEVEL_TO_DEPTH(level);
1901        r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1902        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1903        r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1904        writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1905}
1906
1907static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1908                                      enum soctherm_throttle_id throt)
1909{
1910        u32 r;
1911        struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1912
1913        if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1914                return -EINVAL;
1915
1916        r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1917        r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1918        r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1919        r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1920        writel(r, ts->regs + ALARM_CFG(throt));
1921        writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1922        writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1923        writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1924        soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1925
1926        return 0;
1927}
1928
1929/**
1930 * soctherm_throttle_program() - programs pulse skippers' configuration
1931 * @throt: the LIGHT/HEAVY of the throttle event id.
1932 *
1933 * Pulse skippers are used to throttle clock frequencies.
1934 * This function programs the pulse skippers.
1935 */
1936static void soctherm_throttle_program(struct tegra_soctherm *ts,
1937                                      enum soctherm_throttle_id throt)
1938{
1939        u32 r;
1940        struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1941
1942        if (!stc.init)
1943                return;
1944
1945        if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1946                return;
1947
1948        /* Setup PSKIP parameters */
1949        if (ts->soc->use_ccroc)
1950                throttlectl_cpu_level_select(ts, throt);
1951        else
1952                throttlectl_cpu_mn(ts, throt);
1953
1954        throttlectl_gpu_level_select(ts, throt);
1955
1956        r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1957        writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1958
1959        r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1960        writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1961
1962        r = readl(ts->regs + THROT_PRIORITY_LOCK);
1963        r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1964        if (r >= stc.priority)
1965                return;
1966        r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1967                         stc.priority);
1968        writel(r, ts->regs + THROT_PRIORITY_LOCK);
1969}
1970
1971static void tegra_soctherm_throttle(struct device *dev)
1972{
1973        struct tegra_soctherm *ts = dev_get_drvdata(dev);
1974        u32 v;
1975        int i;
1976
1977        /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1978        if (ts->soc->use_ccroc) {
1979                throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1980                throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1981                throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1982        }
1983
1984        /* Thermal HW throttle programming */
1985        for (i = 0; i < THROTTLE_SIZE; i++)
1986                soctherm_throttle_program(ts, i);
1987
1988        v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1989        if (ts->soc->use_ccroc) {
1990                ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1991
1992                v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1993                v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1994                ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1995        } else {
1996                writel(v, ts->regs + THROT_GLOBAL_CFG);
1997
1998                v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1999                v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
2000                writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2001        }
2002
2003        /* initialize stats collection */
2004        v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
2005            STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
2006        writel(v, ts->regs + THERMCTL_STATS_CTL);
2007}
2008
2009static int soctherm_interrupts_init(struct platform_device *pdev,
2010                                    struct tegra_soctherm *tegra)
2011{
2012        struct device_node *np = pdev->dev.of_node;
2013        int ret;
2014
2015        ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2016        if (ret < 0) {
2017                dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2018                return ret;
2019        }
2020
2021        tegra->thermal_irq = platform_get_irq(pdev, 0);
2022        if (tegra->thermal_irq < 0) {
2023                dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2024                return 0;
2025        }
2026
2027        tegra->edp_irq = platform_get_irq(pdev, 1);
2028        if (tegra->edp_irq < 0) {
2029                dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2030                return 0;
2031        }
2032
2033        ret = devm_request_threaded_irq(&pdev->dev,
2034                                        tegra->thermal_irq,
2035                                        soctherm_thermal_isr,
2036                                        soctherm_thermal_isr_thread,
2037                                        IRQF_ONESHOT,
2038                                        dev_name(&pdev->dev),
2039                                        tegra);
2040        if (ret < 0) {
2041                dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2042                return ret;
2043        }
2044
2045        ret = devm_request_threaded_irq(&pdev->dev,
2046                                        tegra->edp_irq,
2047                                        soctherm_edp_isr,
2048                                        soctherm_edp_isr_thread,
2049                                        IRQF_ONESHOT,
2050                                        "soctherm_edp",
2051                                        tegra);
2052        if (ret < 0) {
2053                dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2054                return ret;
2055        }
2056
2057        return 0;
2058}
2059
2060static void soctherm_init(struct platform_device *pdev)
2061{
2062        struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2063        const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2064        int i;
2065        u32 pdiv, hotspot;
2066
2067        /* Initialize raw sensors */
2068        for (i = 0; i < tegra->soc->num_tsensors; ++i)
2069                enable_tsensor(tegra, i);
2070
2071        /* program pdiv and hotspot offsets per THERM */
2072        pdiv = readl(tegra->regs + SENSOR_PDIV);
2073        hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2074        for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2075                pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2076                                    ttgs[i]->pdiv);
2077                /* hotspot offset from PLLX, doesn't need to configure PLLX */
2078                if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2079                        continue;
2080                hotspot =  REG_SET_MASK(hotspot,
2081                                        ttgs[i]->pllx_hotspot_mask,
2082                                        ttgs[i]->pllx_hotspot_diff);
2083        }
2084        writel(pdiv, tegra->regs + SENSOR_PDIV);
2085        writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2086
2087        /* Configure hw throttle */
2088        tegra_soctherm_throttle(&pdev->dev);
2089}
2090
2091static const struct of_device_id tegra_soctherm_of_match[] = {
2092#ifdef CONFIG_ARCH_TEGRA_124_SOC
2093        {
2094                .compatible = "nvidia,tegra124-soctherm",
2095                .data = &tegra124_soctherm,
2096        },
2097#endif
2098#ifdef CONFIG_ARCH_TEGRA_132_SOC
2099        {
2100                .compatible = "nvidia,tegra132-soctherm",
2101                .data = &tegra132_soctherm,
2102        },
2103#endif
2104#ifdef CONFIG_ARCH_TEGRA_210_SOC
2105        {
2106                .compatible = "nvidia,tegra210-soctherm",
2107                .data = &tegra210_soctherm,
2108        },
2109#endif
2110        { },
2111};
2112MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2113
2114static int tegra_soctherm_probe(struct platform_device *pdev)
2115{
2116        const struct of_device_id *match;
2117        struct tegra_soctherm *tegra;
2118        struct thermal_zone_device *z;
2119        struct tsensor_shared_calib shared_calib;
2120        struct resource *res;
2121        struct tegra_soctherm_soc *soc;
2122        unsigned int i;
2123        int err;
2124
2125        match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2126        if (!match)
2127                return -ENODEV;
2128
2129        soc = (struct tegra_soctherm_soc *)match->data;
2130        if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2131                return -EINVAL;
2132
2133        tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2134        if (!tegra)
2135                return -ENOMEM;
2136
2137        mutex_init(&tegra->thermctl_lock);
2138        dev_set_drvdata(&pdev->dev, tegra);
2139
2140        tegra->soc = soc;
2141
2142        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2143                                           "soctherm-reg");
2144        tegra->regs = devm_ioremap_resource(&pdev->dev, res);
2145        if (IS_ERR(tegra->regs)) {
2146                dev_err(&pdev->dev, "can't get soctherm registers");
2147                return PTR_ERR(tegra->regs);
2148        }
2149
2150        if (!tegra->soc->use_ccroc) {
2151                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2152                                                   "car-reg");
2153                tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
2154                if (IS_ERR(tegra->clk_regs)) {
2155                        dev_err(&pdev->dev, "can't get car clk registers");
2156                        return PTR_ERR(tegra->clk_regs);
2157                }
2158        } else {
2159                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2160                                                   "ccroc-reg");
2161                tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
2162                if (IS_ERR(tegra->ccroc_regs)) {
2163                        dev_err(&pdev->dev, "can't get ccroc registers");
2164                        return PTR_ERR(tegra->ccroc_regs);
2165                }
2166        }
2167
2168        tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2169        if (IS_ERR(tegra->reset)) {
2170                dev_err(&pdev->dev, "can't get soctherm reset\n");
2171                return PTR_ERR(tegra->reset);
2172        }
2173
2174        tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2175        if (IS_ERR(tegra->clock_tsensor)) {
2176                dev_err(&pdev->dev, "can't get tsensor clock\n");
2177                return PTR_ERR(tegra->clock_tsensor);
2178        }
2179
2180        tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2181        if (IS_ERR(tegra->clock_soctherm)) {
2182                dev_err(&pdev->dev, "can't get soctherm clock\n");
2183                return PTR_ERR(tegra->clock_soctherm);
2184        }
2185
2186        tegra->calib = devm_kcalloc(&pdev->dev,
2187                                    soc->num_tsensors, sizeof(u32),
2188                                    GFP_KERNEL);
2189        if (!tegra->calib)
2190                return -ENOMEM;
2191
2192        /* calculate shared calibration data */
2193        err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2194        if (err)
2195                return err;
2196
2197        /* calculate tsensor calibaration data */
2198        for (i = 0; i < soc->num_tsensors; ++i) {
2199                err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2200                                               &shared_calib,
2201                                               &tegra->calib[i]);
2202                if (err)
2203                        return err;
2204        }
2205
2206        tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2207                                           soc->num_ttgs, sizeof(z),
2208                                           GFP_KERNEL);
2209        if (!tegra->thermctl_tzs)
2210                return -ENOMEM;
2211
2212        err = soctherm_clk_enable(pdev, true);
2213        if (err)
2214                return err;
2215
2216        soctherm_thermtrips_parse(pdev);
2217
2218        soctherm_init_hw_throt_cdev(pdev);
2219
2220        soctherm_init(pdev);
2221
2222        for (i = 0; i < soc->num_ttgs; ++i) {
2223                struct tegra_thermctl_zone *zone =
2224                        devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2225                if (!zone) {
2226                        err = -ENOMEM;
2227                        goto disable_clocks;
2228                }
2229
2230                zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2231                zone->dev = &pdev->dev;
2232                zone->sg = soc->ttgs[i];
2233                zone->ts = tegra;
2234
2235                z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2236                                                         soc->ttgs[i]->id, zone,
2237                                                         &tegra_of_thermal_ops);
2238                if (IS_ERR(z)) {
2239                        err = PTR_ERR(z);
2240                        dev_err(&pdev->dev, "failed to register sensor: %d\n",
2241                                err);
2242                        goto disable_clocks;
2243                }
2244
2245                zone->tz = z;
2246                tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2247
2248                /* Configure hw trip points */
2249                err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2250                if (err)
2251                        goto disable_clocks;
2252        }
2253
2254        err = soctherm_interrupts_init(pdev, tegra);
2255
2256        soctherm_debug_init(pdev);
2257
2258        return 0;
2259
2260disable_clocks:
2261        soctherm_clk_enable(pdev, false);
2262
2263        return err;
2264}
2265
2266static int tegra_soctherm_remove(struct platform_device *pdev)
2267{
2268        struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2269
2270        debugfs_remove_recursive(tegra->debugfs_dir);
2271
2272        soctherm_clk_enable(pdev, false);
2273
2274        return 0;
2275}
2276
2277static int __maybe_unused soctherm_suspend(struct device *dev)
2278{
2279        struct platform_device *pdev = to_platform_device(dev);
2280
2281        soctherm_clk_enable(pdev, false);
2282
2283        return 0;
2284}
2285
2286static int __maybe_unused soctherm_resume(struct device *dev)
2287{
2288        struct platform_device *pdev = to_platform_device(dev);
2289        struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2290        struct tegra_soctherm_soc *soc = tegra->soc;
2291        int err, i;
2292
2293        err = soctherm_clk_enable(pdev, true);
2294        if (err) {
2295                dev_err(&pdev->dev,
2296                        "Resume failed: enable clocks failed\n");
2297                return err;
2298        }
2299
2300        soctherm_init(pdev);
2301
2302        for (i = 0; i < soc->num_ttgs; ++i) {
2303                struct thermal_zone_device *tz;
2304
2305                tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2306                err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2307                if (err) {
2308                        dev_err(&pdev->dev,
2309                                "Resume failed: set hwtrips failed\n");
2310                        return err;
2311                }
2312        }
2313
2314        return 0;
2315}
2316
2317static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2318
2319static struct platform_driver tegra_soctherm_driver = {
2320        .probe = tegra_soctherm_probe,
2321        .remove = tegra_soctherm_remove,
2322        .driver = {
2323                .name = "tegra_soctherm",
2324                .pm = &tegra_soctherm_pm,
2325                .of_match_table = tegra_soctherm_of_match,
2326        },
2327};
2328module_platform_driver(tegra_soctherm_driver);
2329
2330MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2331MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2332MODULE_LICENSE("GPL v2");
2333