linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *      Copyright 2018 Christoph Hellwig.
   9 *
  10 *      See ../COPYING for licensing terms.
  11 */
  12#define pr_fmt(fmt) "%s: " fmt, __func__
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/errno.h>
  17#include <linux/time.h>
  18#include <linux/aio_abi.h>
  19#include <linux/export.h>
  20#include <linux/syscalls.h>
  21#include <linux/backing-dev.h>
  22#include <linux/refcount.h>
  23#include <linux/uio.h>
  24
  25#include <linux/sched/signal.h>
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/mm.h>
  29#include <linux/mman.h>
  30#include <linux/mmu_context.h>
  31#include <linux/percpu.h>
  32#include <linux/slab.h>
  33#include <linux/timer.h>
  34#include <linux/aio.h>
  35#include <linux/highmem.h>
  36#include <linux/workqueue.h>
  37#include <linux/security.h>
  38#include <linux/eventfd.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/migrate.h>
  42#include <linux/ramfs.h>
  43#include <linux/percpu-refcount.h>
  44#include <linux/mount.h>
  45
  46#include <asm/kmap_types.h>
  47#include <linux/uaccess.h>
  48#include <linux/nospec.h>
  49
  50#include "internal.h"
  51
  52#define KIOCB_KEY               0
  53
  54#define AIO_RING_MAGIC                  0xa10a10a1
  55#define AIO_RING_COMPAT_FEATURES        1
  56#define AIO_RING_INCOMPAT_FEATURES      0
  57struct aio_ring {
  58        unsigned        id;     /* kernel internal index number */
  59        unsigned        nr;     /* number of io_events */
  60        unsigned        head;   /* Written to by userland or under ring_lock
  61                                 * mutex by aio_read_events_ring(). */
  62        unsigned        tail;
  63
  64        unsigned        magic;
  65        unsigned        compat_features;
  66        unsigned        incompat_features;
  67        unsigned        header_length;  /* size of aio_ring */
  68
  69
  70        struct io_event         io_events[0];
  71}; /* 128 bytes + ring size */
  72
  73/*
  74 * Plugging is meant to work with larger batches of IOs. If we don't
  75 * have more than the below, then don't bother setting up a plug.
  76 */
  77#define AIO_PLUG_THRESHOLD      2
  78
  79#define AIO_RING_PAGES  8
  80
  81struct kioctx_table {
  82        struct rcu_head         rcu;
  83        unsigned                nr;
  84        struct kioctx __rcu     *table[];
  85};
  86
  87struct kioctx_cpu {
  88        unsigned                reqs_available;
  89};
  90
  91struct ctx_rq_wait {
  92        struct completion comp;
  93        atomic_t count;
  94};
  95
  96struct kioctx {
  97        struct percpu_ref       users;
  98        atomic_t                dead;
  99
 100        struct percpu_ref       reqs;
 101
 102        unsigned long           user_id;
 103
 104        struct __percpu kioctx_cpu *cpu;
 105
 106        /*
 107         * For percpu reqs_available, number of slots we move to/from global
 108         * counter at a time:
 109         */
 110        unsigned                req_batch;
 111        /*
 112         * This is what userspace passed to io_setup(), it's not used for
 113         * anything but counting against the global max_reqs quota.
 114         *
 115         * The real limit is nr_events - 1, which will be larger (see
 116         * aio_setup_ring())
 117         */
 118        unsigned                max_reqs;
 119
 120        /* Size of ringbuffer, in units of struct io_event */
 121        unsigned                nr_events;
 122
 123        unsigned long           mmap_base;
 124        unsigned long           mmap_size;
 125
 126        struct page             **ring_pages;
 127        long                    nr_pages;
 128
 129        struct rcu_work         free_rwork;     /* see free_ioctx() */
 130
 131        /*
 132         * signals when all in-flight requests are done
 133         */
 134        struct ctx_rq_wait      *rq_wait;
 135
 136        struct {
 137                /*
 138                 * This counts the number of available slots in the ringbuffer,
 139                 * so we avoid overflowing it: it's decremented (if positive)
 140                 * when allocating a kiocb and incremented when the resulting
 141                 * io_event is pulled off the ringbuffer.
 142                 *
 143                 * We batch accesses to it with a percpu version.
 144                 */
 145                atomic_t        reqs_available;
 146        } ____cacheline_aligned_in_smp;
 147
 148        struct {
 149                spinlock_t      ctx_lock;
 150                struct list_head active_reqs;   /* used for cancellation */
 151        } ____cacheline_aligned_in_smp;
 152
 153        struct {
 154                struct mutex    ring_lock;
 155                wait_queue_head_t wait;
 156        } ____cacheline_aligned_in_smp;
 157
 158        struct {
 159                unsigned        tail;
 160                unsigned        completed_events;
 161                spinlock_t      completion_lock;
 162        } ____cacheline_aligned_in_smp;
 163
 164        struct page             *internal_pages[AIO_RING_PAGES];
 165        struct file             *aio_ring_file;
 166
 167        unsigned                id;
 168};
 169
 170/*
 171 * First field must be the file pointer in all the
 172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 173 */
 174struct fsync_iocb {
 175        struct file             *file;
 176        struct work_struct      work;
 177        bool                    datasync;
 178};
 179
 180struct poll_iocb {
 181        struct file             *file;
 182        struct wait_queue_head  *head;
 183        __poll_t                events;
 184        bool                    done;
 185        bool                    cancelled;
 186        struct wait_queue_entry wait;
 187        struct work_struct      work;
 188};
 189
 190/*
 191 * NOTE! Each of the iocb union members has the file pointer
 192 * as the first entry in their struct definition. So you can
 193 * access the file pointer through any of the sub-structs,
 194 * or directly as just 'ki_filp' in this struct.
 195 */
 196struct aio_kiocb {
 197        union {
 198                struct file             *ki_filp;
 199                struct kiocb            rw;
 200                struct fsync_iocb       fsync;
 201                struct poll_iocb        poll;
 202        };
 203
 204        struct kioctx           *ki_ctx;
 205        kiocb_cancel_fn         *ki_cancel;
 206
 207        struct io_event         ki_res;
 208
 209        struct list_head        ki_list;        /* the aio core uses this
 210                                                 * for cancellation */
 211        refcount_t              ki_refcnt;
 212
 213        /*
 214         * If the aio_resfd field of the userspace iocb is not zero,
 215         * this is the underlying eventfd context to deliver events to.
 216         */
 217        struct eventfd_ctx      *ki_eventfd;
 218};
 219
 220/*------ sysctl variables----*/
 221static DEFINE_SPINLOCK(aio_nr_lock);
 222unsigned long aio_nr;           /* current system wide number of aio requests */
 223unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 224/*----end sysctl variables---*/
 225
 226static struct kmem_cache        *kiocb_cachep;
 227static struct kmem_cache        *kioctx_cachep;
 228
 229static struct vfsmount *aio_mnt;
 230
 231static const struct file_operations aio_ring_fops;
 232static const struct address_space_operations aio_ctx_aops;
 233
 234static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 235{
 236        struct file *file;
 237        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 238        if (IS_ERR(inode))
 239                return ERR_CAST(inode);
 240
 241        inode->i_mapping->a_ops = &aio_ctx_aops;
 242        inode->i_mapping->private_data = ctx;
 243        inode->i_size = PAGE_SIZE * nr_pages;
 244
 245        file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 246                                O_RDWR, &aio_ring_fops);
 247        if (IS_ERR(file))
 248                iput(inode);
 249        return file;
 250}
 251
 252static struct dentry *aio_mount(struct file_system_type *fs_type,
 253                                int flags, const char *dev_name, void *data)
 254{
 255        struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
 256                                           AIO_RING_MAGIC);
 257
 258        if (!IS_ERR(root))
 259                root->d_sb->s_iflags |= SB_I_NOEXEC;
 260        return root;
 261}
 262
 263/* aio_setup
 264 *      Creates the slab caches used by the aio routines, panic on
 265 *      failure as this is done early during the boot sequence.
 266 */
 267static int __init aio_setup(void)
 268{
 269        static struct file_system_type aio_fs = {
 270                .name           = "aio",
 271                .mount          = aio_mount,
 272                .kill_sb        = kill_anon_super,
 273        };
 274        aio_mnt = kern_mount(&aio_fs);
 275        if (IS_ERR(aio_mnt))
 276                panic("Failed to create aio fs mount.");
 277
 278        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 279        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 280        return 0;
 281}
 282__initcall(aio_setup);
 283
 284static void put_aio_ring_file(struct kioctx *ctx)
 285{
 286        struct file *aio_ring_file = ctx->aio_ring_file;
 287        struct address_space *i_mapping;
 288
 289        if (aio_ring_file) {
 290                truncate_setsize(file_inode(aio_ring_file), 0);
 291
 292                /* Prevent further access to the kioctx from migratepages */
 293                i_mapping = aio_ring_file->f_mapping;
 294                spin_lock(&i_mapping->private_lock);
 295                i_mapping->private_data = NULL;
 296                ctx->aio_ring_file = NULL;
 297                spin_unlock(&i_mapping->private_lock);
 298
 299                fput(aio_ring_file);
 300        }
 301}
 302
 303static void aio_free_ring(struct kioctx *ctx)
 304{
 305        int i;
 306
 307        /* Disconnect the kiotx from the ring file.  This prevents future
 308         * accesses to the kioctx from page migration.
 309         */
 310        put_aio_ring_file(ctx);
 311
 312        for (i = 0; i < ctx->nr_pages; i++) {
 313                struct page *page;
 314                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 315                                page_count(ctx->ring_pages[i]));
 316                page = ctx->ring_pages[i];
 317                if (!page)
 318                        continue;
 319                ctx->ring_pages[i] = NULL;
 320                put_page(page);
 321        }
 322
 323        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 324                kfree(ctx->ring_pages);
 325                ctx->ring_pages = NULL;
 326        }
 327}
 328
 329static int aio_ring_mremap(struct vm_area_struct *vma)
 330{
 331        struct file *file = vma->vm_file;
 332        struct mm_struct *mm = vma->vm_mm;
 333        struct kioctx_table *table;
 334        int i, res = -EINVAL;
 335
 336        spin_lock(&mm->ioctx_lock);
 337        rcu_read_lock();
 338        table = rcu_dereference(mm->ioctx_table);
 339        for (i = 0; i < table->nr; i++) {
 340                struct kioctx *ctx;
 341
 342                ctx = rcu_dereference(table->table[i]);
 343                if (ctx && ctx->aio_ring_file == file) {
 344                        if (!atomic_read(&ctx->dead)) {
 345                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 346                                res = 0;
 347                        }
 348                        break;
 349                }
 350        }
 351
 352        rcu_read_unlock();
 353        spin_unlock(&mm->ioctx_lock);
 354        return res;
 355}
 356
 357static const struct vm_operations_struct aio_ring_vm_ops = {
 358        .mremap         = aio_ring_mremap,
 359#if IS_ENABLED(CONFIG_MMU)
 360        .fault          = filemap_fault,
 361        .map_pages      = filemap_map_pages,
 362        .page_mkwrite   = filemap_page_mkwrite,
 363#endif
 364};
 365
 366static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 367{
 368        vma->vm_flags |= VM_DONTEXPAND;
 369        vma->vm_ops = &aio_ring_vm_ops;
 370        return 0;
 371}
 372
 373static const struct file_operations aio_ring_fops = {
 374        .mmap = aio_ring_mmap,
 375};
 376
 377#if IS_ENABLED(CONFIG_MIGRATION)
 378static int aio_migratepage(struct address_space *mapping, struct page *new,
 379                        struct page *old, enum migrate_mode mode)
 380{
 381        struct kioctx *ctx;
 382        unsigned long flags;
 383        pgoff_t idx;
 384        int rc;
 385
 386        /*
 387         * We cannot support the _NO_COPY case here, because copy needs to
 388         * happen under the ctx->completion_lock. That does not work with the
 389         * migration workflow of MIGRATE_SYNC_NO_COPY.
 390         */
 391        if (mode == MIGRATE_SYNC_NO_COPY)
 392                return -EINVAL;
 393
 394        rc = 0;
 395
 396        /* mapping->private_lock here protects against the kioctx teardown.  */
 397        spin_lock(&mapping->private_lock);
 398        ctx = mapping->private_data;
 399        if (!ctx) {
 400                rc = -EINVAL;
 401                goto out;
 402        }
 403
 404        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 405         * to the ring's head, and prevents page migration from mucking in
 406         * a partially initialized kiotx.
 407         */
 408        if (!mutex_trylock(&ctx->ring_lock)) {
 409                rc = -EAGAIN;
 410                goto out;
 411        }
 412
 413        idx = old->index;
 414        if (idx < (pgoff_t)ctx->nr_pages) {
 415                /* Make sure the old page hasn't already been changed */
 416                if (ctx->ring_pages[idx] != old)
 417                        rc = -EAGAIN;
 418        } else
 419                rc = -EINVAL;
 420
 421        if (rc != 0)
 422                goto out_unlock;
 423
 424        /* Writeback must be complete */
 425        BUG_ON(PageWriteback(old));
 426        get_page(new);
 427
 428        rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
 429        if (rc != MIGRATEPAGE_SUCCESS) {
 430                put_page(new);
 431                goto out_unlock;
 432        }
 433
 434        /* Take completion_lock to prevent other writes to the ring buffer
 435         * while the old page is copied to the new.  This prevents new
 436         * events from being lost.
 437         */
 438        spin_lock_irqsave(&ctx->completion_lock, flags);
 439        migrate_page_copy(new, old);
 440        BUG_ON(ctx->ring_pages[idx] != old);
 441        ctx->ring_pages[idx] = new;
 442        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 443
 444        /* The old page is no longer accessible. */
 445        put_page(old);
 446
 447out_unlock:
 448        mutex_unlock(&ctx->ring_lock);
 449out:
 450        spin_unlock(&mapping->private_lock);
 451        return rc;
 452}
 453#endif
 454
 455static const struct address_space_operations aio_ctx_aops = {
 456        .set_page_dirty = __set_page_dirty_no_writeback,
 457#if IS_ENABLED(CONFIG_MIGRATION)
 458        .migratepage    = aio_migratepage,
 459#endif
 460};
 461
 462static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 463{
 464        struct aio_ring *ring;
 465        struct mm_struct *mm = current->mm;
 466        unsigned long size, unused;
 467        int nr_pages;
 468        int i;
 469        struct file *file;
 470
 471        /* Compensate for the ring buffer's head/tail overlap entry */
 472        nr_events += 2; /* 1 is required, 2 for good luck */
 473
 474        size = sizeof(struct aio_ring);
 475        size += sizeof(struct io_event) * nr_events;
 476
 477        nr_pages = PFN_UP(size);
 478        if (nr_pages < 0)
 479                return -EINVAL;
 480
 481        file = aio_private_file(ctx, nr_pages);
 482        if (IS_ERR(file)) {
 483                ctx->aio_ring_file = NULL;
 484                return -ENOMEM;
 485        }
 486
 487        ctx->aio_ring_file = file;
 488        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 489                        / sizeof(struct io_event);
 490
 491        ctx->ring_pages = ctx->internal_pages;
 492        if (nr_pages > AIO_RING_PAGES) {
 493                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 494                                          GFP_KERNEL);
 495                if (!ctx->ring_pages) {
 496                        put_aio_ring_file(ctx);
 497                        return -ENOMEM;
 498                }
 499        }
 500
 501        for (i = 0; i < nr_pages; i++) {
 502                struct page *page;
 503                page = find_or_create_page(file->f_mapping,
 504                                           i, GFP_HIGHUSER | __GFP_ZERO);
 505                if (!page)
 506                        break;
 507                pr_debug("pid(%d) page[%d]->count=%d\n",
 508                         current->pid, i, page_count(page));
 509                SetPageUptodate(page);
 510                unlock_page(page);
 511
 512                ctx->ring_pages[i] = page;
 513        }
 514        ctx->nr_pages = i;
 515
 516        if (unlikely(i != nr_pages)) {
 517                aio_free_ring(ctx);
 518                return -ENOMEM;
 519        }
 520
 521        ctx->mmap_size = nr_pages * PAGE_SIZE;
 522        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 523
 524        if (down_write_killable(&mm->mmap_sem)) {
 525                ctx->mmap_size = 0;
 526                aio_free_ring(ctx);
 527                return -EINTR;
 528        }
 529
 530        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 531                                       PROT_READ | PROT_WRITE,
 532                                       MAP_SHARED, 0, &unused, NULL);
 533        up_write(&mm->mmap_sem);
 534        if (IS_ERR((void *)ctx->mmap_base)) {
 535                ctx->mmap_size = 0;
 536                aio_free_ring(ctx);
 537                return -ENOMEM;
 538        }
 539
 540        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 541
 542        ctx->user_id = ctx->mmap_base;
 543        ctx->nr_events = nr_events; /* trusted copy */
 544
 545        ring = kmap_atomic(ctx->ring_pages[0]);
 546        ring->nr = nr_events;   /* user copy */
 547        ring->id = ~0U;
 548        ring->head = ring->tail = 0;
 549        ring->magic = AIO_RING_MAGIC;
 550        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 551        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 552        ring->header_length = sizeof(struct aio_ring);
 553        kunmap_atomic(ring);
 554        flush_dcache_page(ctx->ring_pages[0]);
 555
 556        return 0;
 557}
 558
 559#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 560#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 561#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 562
 563void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 564{
 565        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 566        struct kioctx *ctx = req->ki_ctx;
 567        unsigned long flags;
 568
 569        if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 570                return;
 571
 572        spin_lock_irqsave(&ctx->ctx_lock, flags);
 573        list_add_tail(&req->ki_list, &ctx->active_reqs);
 574        req->ki_cancel = cancel;
 575        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 576}
 577EXPORT_SYMBOL(kiocb_set_cancel_fn);
 578
 579/*
 580 * free_ioctx() should be RCU delayed to synchronize against the RCU
 581 * protected lookup_ioctx() and also needs process context to call
 582 * aio_free_ring().  Use rcu_work.
 583 */
 584static void free_ioctx(struct work_struct *work)
 585{
 586        struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 587                                          free_rwork);
 588        pr_debug("freeing %p\n", ctx);
 589
 590        aio_free_ring(ctx);
 591        free_percpu(ctx->cpu);
 592        percpu_ref_exit(&ctx->reqs);
 593        percpu_ref_exit(&ctx->users);
 594        kmem_cache_free(kioctx_cachep, ctx);
 595}
 596
 597static void free_ioctx_reqs(struct percpu_ref *ref)
 598{
 599        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 600
 601        /* At this point we know that there are no any in-flight requests */
 602        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 603                complete(&ctx->rq_wait->comp);
 604
 605        /* Synchronize against RCU protected table->table[] dereferences */
 606        INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 607        queue_rcu_work(system_wq, &ctx->free_rwork);
 608}
 609
 610/*
 611 * When this function runs, the kioctx has been removed from the "hash table"
 612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 613 * now it's safe to cancel any that need to be.
 614 */
 615static void free_ioctx_users(struct percpu_ref *ref)
 616{
 617        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 618        struct aio_kiocb *req;
 619
 620        spin_lock_irq(&ctx->ctx_lock);
 621
 622        while (!list_empty(&ctx->active_reqs)) {
 623                req = list_first_entry(&ctx->active_reqs,
 624                                       struct aio_kiocb, ki_list);
 625                req->ki_cancel(&req->rw);
 626                list_del_init(&req->ki_list);
 627        }
 628
 629        spin_unlock_irq(&ctx->ctx_lock);
 630
 631        percpu_ref_kill(&ctx->reqs);
 632        percpu_ref_put(&ctx->reqs);
 633}
 634
 635static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 636{
 637        unsigned i, new_nr;
 638        struct kioctx_table *table, *old;
 639        struct aio_ring *ring;
 640
 641        spin_lock(&mm->ioctx_lock);
 642        table = rcu_dereference_raw(mm->ioctx_table);
 643
 644        while (1) {
 645                if (table)
 646                        for (i = 0; i < table->nr; i++)
 647                                if (!rcu_access_pointer(table->table[i])) {
 648                                        ctx->id = i;
 649                                        rcu_assign_pointer(table->table[i], ctx);
 650                                        spin_unlock(&mm->ioctx_lock);
 651
 652                                        /* While kioctx setup is in progress,
 653                                         * we are protected from page migration
 654                                         * changes ring_pages by ->ring_lock.
 655                                         */
 656                                        ring = kmap_atomic(ctx->ring_pages[0]);
 657                                        ring->id = ctx->id;
 658                                        kunmap_atomic(ring);
 659                                        return 0;
 660                                }
 661
 662                new_nr = (table ? table->nr : 1) * 4;
 663                spin_unlock(&mm->ioctx_lock);
 664
 665                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 666                                new_nr, GFP_KERNEL);
 667                if (!table)
 668                        return -ENOMEM;
 669
 670                table->nr = new_nr;
 671
 672                spin_lock(&mm->ioctx_lock);
 673                old = rcu_dereference_raw(mm->ioctx_table);
 674
 675                if (!old) {
 676                        rcu_assign_pointer(mm->ioctx_table, table);
 677                } else if (table->nr > old->nr) {
 678                        memcpy(table->table, old->table,
 679                               old->nr * sizeof(struct kioctx *));
 680
 681                        rcu_assign_pointer(mm->ioctx_table, table);
 682                        kfree_rcu(old, rcu);
 683                } else {
 684                        kfree(table);
 685                        table = old;
 686                }
 687        }
 688}
 689
 690static void aio_nr_sub(unsigned nr)
 691{
 692        spin_lock(&aio_nr_lock);
 693        if (WARN_ON(aio_nr - nr > aio_nr))
 694                aio_nr = 0;
 695        else
 696                aio_nr -= nr;
 697        spin_unlock(&aio_nr_lock);
 698}
 699
 700/* ioctx_alloc
 701 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 702 */
 703static struct kioctx *ioctx_alloc(unsigned nr_events)
 704{
 705        struct mm_struct *mm = current->mm;
 706        struct kioctx *ctx;
 707        int err = -ENOMEM;
 708
 709        /*
 710         * Store the original nr_events -- what userspace passed to io_setup(),
 711         * for counting against the global limit -- before it changes.
 712         */
 713        unsigned int max_reqs = nr_events;
 714
 715        /*
 716         * We keep track of the number of available ringbuffer slots, to prevent
 717         * overflow (reqs_available), and we also use percpu counters for this.
 718         *
 719         * So since up to half the slots might be on other cpu's percpu counters
 720         * and unavailable, double nr_events so userspace sees what they
 721         * expected: additionally, we move req_batch slots to/from percpu
 722         * counters at a time, so make sure that isn't 0:
 723         */
 724        nr_events = max(nr_events, num_possible_cpus() * 4);
 725        nr_events *= 2;
 726
 727        /* Prevent overflows */
 728        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 729                pr_debug("ENOMEM: nr_events too high\n");
 730                return ERR_PTR(-EINVAL);
 731        }
 732
 733        if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 734                return ERR_PTR(-EAGAIN);
 735
 736        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 737        if (!ctx)
 738                return ERR_PTR(-ENOMEM);
 739
 740        ctx->max_reqs = max_reqs;
 741
 742        spin_lock_init(&ctx->ctx_lock);
 743        spin_lock_init(&ctx->completion_lock);
 744        mutex_init(&ctx->ring_lock);
 745        /* Protect against page migration throughout kiotx setup by keeping
 746         * the ring_lock mutex held until setup is complete. */
 747        mutex_lock(&ctx->ring_lock);
 748        init_waitqueue_head(&ctx->wait);
 749
 750        INIT_LIST_HEAD(&ctx->active_reqs);
 751
 752        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 753                goto err;
 754
 755        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 756                goto err;
 757
 758        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 759        if (!ctx->cpu)
 760                goto err;
 761
 762        err = aio_setup_ring(ctx, nr_events);
 763        if (err < 0)
 764                goto err;
 765
 766        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 767        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 768        if (ctx->req_batch < 1)
 769                ctx->req_batch = 1;
 770
 771        /* limit the number of system wide aios */
 772        spin_lock(&aio_nr_lock);
 773        if (aio_nr + ctx->max_reqs > aio_max_nr ||
 774            aio_nr + ctx->max_reqs < aio_nr) {
 775                spin_unlock(&aio_nr_lock);
 776                err = -EAGAIN;
 777                goto err_ctx;
 778        }
 779        aio_nr += ctx->max_reqs;
 780        spin_unlock(&aio_nr_lock);
 781
 782        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 783        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 784
 785        err = ioctx_add_table(ctx, mm);
 786        if (err)
 787                goto err_cleanup;
 788
 789        /* Release the ring_lock mutex now that all setup is complete. */
 790        mutex_unlock(&ctx->ring_lock);
 791
 792        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 793                 ctx, ctx->user_id, mm, ctx->nr_events);
 794        return ctx;
 795
 796err_cleanup:
 797        aio_nr_sub(ctx->max_reqs);
 798err_ctx:
 799        atomic_set(&ctx->dead, 1);
 800        if (ctx->mmap_size)
 801                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 802        aio_free_ring(ctx);
 803err:
 804        mutex_unlock(&ctx->ring_lock);
 805        free_percpu(ctx->cpu);
 806        percpu_ref_exit(&ctx->reqs);
 807        percpu_ref_exit(&ctx->users);
 808        kmem_cache_free(kioctx_cachep, ctx);
 809        pr_debug("error allocating ioctx %d\n", err);
 810        return ERR_PTR(err);
 811}
 812
 813/* kill_ioctx
 814 *      Cancels all outstanding aio requests on an aio context.  Used
 815 *      when the processes owning a context have all exited to encourage
 816 *      the rapid destruction of the kioctx.
 817 */
 818static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 819                      struct ctx_rq_wait *wait)
 820{
 821        struct kioctx_table *table;
 822
 823        spin_lock(&mm->ioctx_lock);
 824        if (atomic_xchg(&ctx->dead, 1)) {
 825                spin_unlock(&mm->ioctx_lock);
 826                return -EINVAL;
 827        }
 828
 829        table = rcu_dereference_raw(mm->ioctx_table);
 830        WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 831        RCU_INIT_POINTER(table->table[ctx->id], NULL);
 832        spin_unlock(&mm->ioctx_lock);
 833
 834        /* free_ioctx_reqs() will do the necessary RCU synchronization */
 835        wake_up_all(&ctx->wait);
 836
 837        /*
 838         * It'd be more correct to do this in free_ioctx(), after all
 839         * the outstanding kiocbs have finished - but by then io_destroy
 840         * has already returned, so io_setup() could potentially return
 841         * -EAGAIN with no ioctxs actually in use (as far as userspace
 842         *  could tell).
 843         */
 844        aio_nr_sub(ctx->max_reqs);
 845
 846        if (ctx->mmap_size)
 847                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 848
 849        ctx->rq_wait = wait;
 850        percpu_ref_kill(&ctx->users);
 851        return 0;
 852}
 853
 854/*
 855 * exit_aio: called when the last user of mm goes away.  At this point, there is
 856 * no way for any new requests to be submited or any of the io_* syscalls to be
 857 * called on the context.
 858 *
 859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 860 * them.
 861 */
 862void exit_aio(struct mm_struct *mm)
 863{
 864        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 865        struct ctx_rq_wait wait;
 866        int i, skipped;
 867
 868        if (!table)
 869                return;
 870
 871        atomic_set(&wait.count, table->nr);
 872        init_completion(&wait.comp);
 873
 874        skipped = 0;
 875        for (i = 0; i < table->nr; ++i) {
 876                struct kioctx *ctx =
 877                        rcu_dereference_protected(table->table[i], true);
 878
 879                if (!ctx) {
 880                        skipped++;
 881                        continue;
 882                }
 883
 884                /*
 885                 * We don't need to bother with munmap() here - exit_mmap(mm)
 886                 * is coming and it'll unmap everything. And we simply can't,
 887                 * this is not necessarily our ->mm.
 888                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 889                 * that it needs to unmap the area, just set it to 0.
 890                 */
 891                ctx->mmap_size = 0;
 892                kill_ioctx(mm, ctx, &wait);
 893        }
 894
 895        if (!atomic_sub_and_test(skipped, &wait.count)) {
 896                /* Wait until all IO for the context are done. */
 897                wait_for_completion(&wait.comp);
 898        }
 899
 900        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 901        kfree(table);
 902}
 903
 904static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 905{
 906        struct kioctx_cpu *kcpu;
 907        unsigned long flags;
 908
 909        local_irq_save(flags);
 910        kcpu = this_cpu_ptr(ctx->cpu);
 911        kcpu->reqs_available += nr;
 912
 913        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 914                kcpu->reqs_available -= ctx->req_batch;
 915                atomic_add(ctx->req_batch, &ctx->reqs_available);
 916        }
 917
 918        local_irq_restore(flags);
 919}
 920
 921static bool __get_reqs_available(struct kioctx *ctx)
 922{
 923        struct kioctx_cpu *kcpu;
 924        bool ret = false;
 925        unsigned long flags;
 926
 927        local_irq_save(flags);
 928        kcpu = this_cpu_ptr(ctx->cpu);
 929        if (!kcpu->reqs_available) {
 930                int old, avail = atomic_read(&ctx->reqs_available);
 931
 932                do {
 933                        if (avail < ctx->req_batch)
 934                                goto out;
 935
 936                        old = avail;
 937                        avail = atomic_cmpxchg(&ctx->reqs_available,
 938                                               avail, avail - ctx->req_batch);
 939                } while (avail != old);
 940
 941                kcpu->reqs_available += ctx->req_batch;
 942        }
 943
 944        ret = true;
 945        kcpu->reqs_available--;
 946out:
 947        local_irq_restore(flags);
 948        return ret;
 949}
 950
 951/* refill_reqs_available
 952 *      Updates the reqs_available reference counts used for tracking the
 953 *      number of free slots in the completion ring.  This can be called
 954 *      from aio_complete() (to optimistically update reqs_available) or
 955 *      from aio_get_req() (the we're out of events case).  It must be
 956 *      called holding ctx->completion_lock.
 957 */
 958static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 959                                  unsigned tail)
 960{
 961        unsigned events_in_ring, completed;
 962
 963        /* Clamp head since userland can write to it. */
 964        head %= ctx->nr_events;
 965        if (head <= tail)
 966                events_in_ring = tail - head;
 967        else
 968                events_in_ring = ctx->nr_events - (head - tail);
 969
 970        completed = ctx->completed_events;
 971        if (events_in_ring < completed)
 972                completed -= events_in_ring;
 973        else
 974                completed = 0;
 975
 976        if (!completed)
 977                return;
 978
 979        ctx->completed_events -= completed;
 980        put_reqs_available(ctx, completed);
 981}
 982
 983/* user_refill_reqs_available
 984 *      Called to refill reqs_available when aio_get_req() encounters an
 985 *      out of space in the completion ring.
 986 */
 987static void user_refill_reqs_available(struct kioctx *ctx)
 988{
 989        spin_lock_irq(&ctx->completion_lock);
 990        if (ctx->completed_events) {
 991                struct aio_ring *ring;
 992                unsigned head;
 993
 994                /* Access of ring->head may race with aio_read_events_ring()
 995                 * here, but that's okay since whether we read the old version
 996                 * or the new version, and either will be valid.  The important
 997                 * part is that head cannot pass tail since we prevent
 998                 * aio_complete() from updating tail by holding
 999                 * ctx->completion_lock.  Even if head is invalid, the check
1000                 * against ctx->completed_events below will make sure we do the
1001                 * safe/right thing.
1002                 */
1003                ring = kmap_atomic(ctx->ring_pages[0]);
1004                head = ring->head;
1005                kunmap_atomic(ring);
1006
1007                refill_reqs_available(ctx, head, ctx->tail);
1008        }
1009
1010        spin_unlock_irq(&ctx->completion_lock);
1011}
1012
1013static bool get_reqs_available(struct kioctx *ctx)
1014{
1015        if (__get_reqs_available(ctx))
1016                return true;
1017        user_refill_reqs_available(ctx);
1018        return __get_reqs_available(ctx);
1019}
1020
1021/* aio_get_req
1022 *      Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
1024 *
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1027 */
1028static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029{
1030        struct aio_kiocb *req;
1031
1032        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033        if (unlikely(!req))
1034                return NULL;
1035
1036        if (unlikely(!get_reqs_available(ctx))) {
1037                kmem_cache_free(kiocb_cachep, req);
1038                return NULL;
1039        }
1040
1041        percpu_ref_get(&ctx->reqs);
1042        req->ki_ctx = ctx;
1043        INIT_LIST_HEAD(&req->ki_list);
1044        refcount_set(&req->ki_refcnt, 2);
1045        req->ki_eventfd = NULL;
1046        return req;
1047}
1048
1049static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1050{
1051        struct aio_ring __user *ring  = (void __user *)ctx_id;
1052        struct mm_struct *mm = current->mm;
1053        struct kioctx *ctx, *ret = NULL;
1054        struct kioctx_table *table;
1055        unsigned id;
1056
1057        if (get_user(id, &ring->id))
1058                return NULL;
1059
1060        rcu_read_lock();
1061        table = rcu_dereference(mm->ioctx_table);
1062
1063        if (!table || id >= table->nr)
1064                goto out;
1065
1066        id = array_index_nospec(id, table->nr);
1067        ctx = rcu_dereference(table->table[id]);
1068        if (ctx && ctx->user_id == ctx_id) {
1069                if (percpu_ref_tryget_live(&ctx->users))
1070                        ret = ctx;
1071        }
1072out:
1073        rcu_read_unlock();
1074        return ret;
1075}
1076
1077static inline void iocb_destroy(struct aio_kiocb *iocb)
1078{
1079        if (iocb->ki_eventfd)
1080                eventfd_ctx_put(iocb->ki_eventfd);
1081        if (iocb->ki_filp)
1082                fput(iocb->ki_filp);
1083        percpu_ref_put(&iocb->ki_ctx->reqs);
1084        kmem_cache_free(kiocb_cachep, iocb);
1085}
1086
1087/* aio_complete
1088 *      Called when the io request on the given iocb is complete.
1089 */
1090static void aio_complete(struct aio_kiocb *iocb)
1091{
1092        struct kioctx   *ctx = iocb->ki_ctx;
1093        struct aio_ring *ring;
1094        struct io_event *ev_page, *event;
1095        unsigned tail, pos, head;
1096        unsigned long   flags;
1097
1098        /*
1099         * Add a completion event to the ring buffer. Must be done holding
1100         * ctx->completion_lock to prevent other code from messing with the tail
1101         * pointer since we might be called from irq context.
1102         */
1103        spin_lock_irqsave(&ctx->completion_lock, flags);
1104
1105        tail = ctx->tail;
1106        pos = tail + AIO_EVENTS_OFFSET;
1107
1108        if (++tail >= ctx->nr_events)
1109                tail = 0;
1110
1111        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1112        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1113
1114        *event = iocb->ki_res;
1115
1116        kunmap_atomic(ev_page);
1117        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1118
1119        pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120                 (void __user *)(unsigned long)iocb->ki_res.obj,
1121                 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1122
1123        /* after flagging the request as done, we
1124         * must never even look at it again
1125         */
1126        smp_wmb();      /* make event visible before updating tail */
1127
1128        ctx->tail = tail;
1129
1130        ring = kmap_atomic(ctx->ring_pages[0]);
1131        head = ring->head;
1132        ring->tail = tail;
1133        kunmap_atomic(ring);
1134        flush_dcache_page(ctx->ring_pages[0]);
1135
1136        ctx->completed_events++;
1137        if (ctx->completed_events > 1)
1138                refill_reqs_available(ctx, head, tail);
1139        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140
1141        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1142
1143        /*
1144         * Check if the user asked us to deliver the result through an
1145         * eventfd. The eventfd_signal() function is safe to be called
1146         * from IRQ context.
1147         */
1148        if (iocb->ki_eventfd)
1149                eventfd_signal(iocb->ki_eventfd, 1);
1150
1151        /*
1152         * We have to order our ring_info tail store above and test
1153         * of the wait list below outside the wait lock.  This is
1154         * like in wake_up_bit() where clearing a bit has to be
1155         * ordered with the unlocked test.
1156         */
1157        smp_mb();
1158
1159        if (waitqueue_active(&ctx->wait))
1160                wake_up(&ctx->wait);
1161}
1162
1163static inline void iocb_put(struct aio_kiocb *iocb)
1164{
1165        if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166                aio_complete(iocb);
1167                iocb_destroy(iocb);
1168        }
1169}
1170
1171/* aio_read_events_ring
1172 *      Pull an event off of the ioctx's event ring.  Returns the number of
1173 *      events fetched
1174 */
1175static long aio_read_events_ring(struct kioctx *ctx,
1176                                 struct io_event __user *event, long nr)
1177{
1178        struct aio_ring *ring;
1179        unsigned head, tail, pos;
1180        long ret = 0;
1181        int copy_ret;
1182
1183        /*
1184         * The mutex can block and wake us up and that will cause
1185         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186         * and repeat. This should be rare enough that it doesn't cause
1187         * peformance issues. See the comment in read_events() for more detail.
1188         */
1189        sched_annotate_sleep();
1190        mutex_lock(&ctx->ring_lock);
1191
1192        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1193        ring = kmap_atomic(ctx->ring_pages[0]);
1194        head = ring->head;
1195        tail = ring->tail;
1196        kunmap_atomic(ring);
1197
1198        /*
1199         * Ensure that once we've read the current tail pointer, that
1200         * we also see the events that were stored up to the tail.
1201         */
1202        smp_rmb();
1203
1204        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1205
1206        if (head == tail)
1207                goto out;
1208
1209        head %= ctx->nr_events;
1210        tail %= ctx->nr_events;
1211
1212        while (ret < nr) {
1213                long avail;
1214                struct io_event *ev;
1215                struct page *page;
1216
1217                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1218                if (head == tail)
1219                        break;
1220
1221                pos = head + AIO_EVENTS_OFFSET;
1222                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1223                pos %= AIO_EVENTS_PER_PAGE;
1224
1225                avail = min(avail, nr - ret);
1226                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1227
1228                ev = kmap(page);
1229                copy_ret = copy_to_user(event + ret, ev + pos,
1230                                        sizeof(*ev) * avail);
1231                kunmap(page);
1232
1233                if (unlikely(copy_ret)) {
1234                        ret = -EFAULT;
1235                        goto out;
1236                }
1237
1238                ret += avail;
1239                head += avail;
1240                head %= ctx->nr_events;
1241        }
1242
1243        ring = kmap_atomic(ctx->ring_pages[0]);
1244        ring->head = head;
1245        kunmap_atomic(ring);
1246        flush_dcache_page(ctx->ring_pages[0]);
1247
1248        pr_debug("%li  h%u t%u\n", ret, head, tail);
1249out:
1250        mutex_unlock(&ctx->ring_lock);
1251
1252        return ret;
1253}
1254
1255static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256                            struct io_event __user *event, long *i)
1257{
1258        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1259
1260        if (ret > 0)
1261                *i += ret;
1262
1263        if (unlikely(atomic_read(&ctx->dead)))
1264                ret = -EINVAL;
1265
1266        if (!*i)
1267                *i = ret;
1268
1269        return ret < 0 || *i >= min_nr;
1270}
1271
1272static long read_events(struct kioctx *ctx, long min_nr, long nr,
1273                        struct io_event __user *event,
1274                        ktime_t until)
1275{
1276        long ret = 0;
1277
1278        /*
1279         * Note that aio_read_events() is being called as the conditional - i.e.
1280         * we're calling it after prepare_to_wait() has set task state to
1281         * TASK_INTERRUPTIBLE.
1282         *
1283         * But aio_read_events() can block, and if it blocks it's going to flip
1284         * the task state back to TASK_RUNNING.
1285         *
1286         * This should be ok, provided it doesn't flip the state back to
1287         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288         * will only happen if the mutex_lock() call blocks, and we then find
1289         * the ringbuffer empty. So in practice we should be ok, but it's
1290         * something to be aware of when touching this code.
1291         */
1292        if (until == 0)
1293                aio_read_events(ctx, min_nr, nr, event, &ret);
1294        else
1295                wait_event_interruptible_hrtimeout(ctx->wait,
1296                                aio_read_events(ctx, min_nr, nr, event, &ret),
1297                                until);
1298        return ret;
1299}
1300
1301/* sys_io_setup:
1302 *      Create an aio_context capable of receiving at least nr_events.
1303 *      ctxp must not point to an aio_context that already exists, and
1304 *      must be initialized to 0 prior to the call.  On successful
1305 *      creation of the aio_context, *ctxp is filled in with the resulting 
1306 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1307 *      if the specified nr_events exceeds internal limits.  May fail 
1308 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1309 *      of available events.  May fail with -ENOMEM if insufficient kernel
1310 *      resources are available.  May fail with -EFAULT if an invalid
1311 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1312 *      implemented.
1313 */
1314SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1315{
1316        struct kioctx *ioctx = NULL;
1317        unsigned long ctx;
1318        long ret;
1319
1320        ret = get_user(ctx, ctxp);
1321        if (unlikely(ret))
1322                goto out;
1323
1324        ret = -EINVAL;
1325        if (unlikely(ctx || nr_events == 0)) {
1326                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1327                         ctx, nr_events);
1328                goto out;
1329        }
1330
1331        ioctx = ioctx_alloc(nr_events);
1332        ret = PTR_ERR(ioctx);
1333        if (!IS_ERR(ioctx)) {
1334                ret = put_user(ioctx->user_id, ctxp);
1335                if (ret)
1336                        kill_ioctx(current->mm, ioctx, NULL);
1337                percpu_ref_put(&ioctx->users);
1338        }
1339
1340out:
1341        return ret;
1342}
1343
1344#ifdef CONFIG_COMPAT
1345COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1346{
1347        struct kioctx *ioctx = NULL;
1348        unsigned long ctx;
1349        long ret;
1350
1351        ret = get_user(ctx, ctx32p);
1352        if (unlikely(ret))
1353                goto out;
1354
1355        ret = -EINVAL;
1356        if (unlikely(ctx || nr_events == 0)) {
1357                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358                         ctx, nr_events);
1359                goto out;
1360        }
1361
1362        ioctx = ioctx_alloc(nr_events);
1363        ret = PTR_ERR(ioctx);
1364        if (!IS_ERR(ioctx)) {
1365                /* truncating is ok because it's a user address */
1366                ret = put_user((u32)ioctx->user_id, ctx32p);
1367                if (ret)
1368                        kill_ioctx(current->mm, ioctx, NULL);
1369                percpu_ref_put(&ioctx->users);
1370        }
1371
1372out:
1373        return ret;
1374}
1375#endif
1376
1377/* sys_io_destroy:
1378 *      Destroy the aio_context specified.  May cancel any outstanding 
1379 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1380 *      implemented.  May fail with -EINVAL if the context pointed to
1381 *      is invalid.
1382 */
1383SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1384{
1385        struct kioctx *ioctx = lookup_ioctx(ctx);
1386        if (likely(NULL != ioctx)) {
1387                struct ctx_rq_wait wait;
1388                int ret;
1389
1390                init_completion(&wait.comp);
1391                atomic_set(&wait.count, 1);
1392
1393                /* Pass requests_done to kill_ioctx() where it can be set
1394                 * in a thread-safe way. If we try to set it here then we have
1395                 * a race condition if two io_destroy() called simultaneously.
1396                 */
1397                ret = kill_ioctx(current->mm, ioctx, &wait);
1398                percpu_ref_put(&ioctx->users);
1399
1400                /* Wait until all IO for the context are done. Otherwise kernel
1401                 * keep using user-space buffers even if user thinks the context
1402                 * is destroyed.
1403                 */
1404                if (!ret)
1405                        wait_for_completion(&wait.comp);
1406
1407                return ret;
1408        }
1409        pr_debug("EINVAL: invalid context id\n");
1410        return -EINVAL;
1411}
1412
1413static void aio_remove_iocb(struct aio_kiocb *iocb)
1414{
1415        struct kioctx *ctx = iocb->ki_ctx;
1416        unsigned long flags;
1417
1418        spin_lock_irqsave(&ctx->ctx_lock, flags);
1419        list_del(&iocb->ki_list);
1420        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421}
1422
1423static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1424{
1425        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1426
1427        if (!list_empty_careful(&iocb->ki_list))
1428                aio_remove_iocb(iocb);
1429
1430        if (kiocb->ki_flags & IOCB_WRITE) {
1431                struct inode *inode = file_inode(kiocb->ki_filp);
1432
1433                /*
1434                 * Tell lockdep we inherited freeze protection from submission
1435                 * thread.
1436                 */
1437                if (S_ISREG(inode->i_mode))
1438                        __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439                file_end_write(kiocb->ki_filp);
1440        }
1441
1442        iocb->ki_res.res = res;
1443        iocb->ki_res.res2 = res2;
1444        iocb_put(iocb);
1445}
1446
1447static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1448{
1449        int ret;
1450
1451        req->ki_complete = aio_complete_rw;
1452        req->private = NULL;
1453        req->ki_pos = iocb->aio_offset;
1454        req->ki_flags = iocb_flags(req->ki_filp);
1455        if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456                req->ki_flags |= IOCB_EVENTFD;
1457        req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1458        if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1459                /*
1460                 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461                 * aio_reqprio is interpreted as an I/O scheduling
1462                 * class and priority.
1463                 */
1464                ret = ioprio_check_cap(iocb->aio_reqprio);
1465                if (ret) {
1466                        pr_debug("aio ioprio check cap error: %d\n", ret);
1467                        return ret;
1468                }
1469
1470                req->ki_ioprio = iocb->aio_reqprio;
1471        } else
1472                req->ki_ioprio = get_current_ioprio();
1473
1474        ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475        if (unlikely(ret))
1476                return ret;
1477
1478        req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479        return 0;
1480}
1481
1482static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1483                bool vectored, bool compat, struct iov_iter *iter)
1484{
1485        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1486        size_t len = iocb->aio_nbytes;
1487
1488        if (!vectored) {
1489                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1490                *iovec = NULL;
1491                return ret;
1492        }
1493#ifdef CONFIG_COMPAT
1494        if (compat)
1495                return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1496                                iter);
1497#endif
1498        return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1499}
1500
1501static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1502{
1503        switch (ret) {
1504        case -EIOCBQUEUED:
1505                break;
1506        case -ERESTARTSYS:
1507        case -ERESTARTNOINTR:
1508        case -ERESTARTNOHAND:
1509        case -ERESTART_RESTARTBLOCK:
1510                /*
1511                 * There's no easy way to restart the syscall since other AIO's
1512                 * may be already running. Just fail this IO with EINTR.
1513                 */
1514                ret = -EINTR;
1515                /*FALLTHRU*/
1516        default:
1517                req->ki_complete(req, ret, 0);
1518        }
1519}
1520
1521static int aio_read(struct kiocb *req, const struct iocb *iocb,
1522                        bool vectored, bool compat)
1523{
1524        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1525        struct iov_iter iter;
1526        struct file *file;
1527        int ret;
1528
1529        ret = aio_prep_rw(req, iocb);
1530        if (ret)
1531                return ret;
1532        file = req->ki_filp;
1533        if (unlikely(!(file->f_mode & FMODE_READ)))
1534                return -EBADF;
1535        ret = -EINVAL;
1536        if (unlikely(!file->f_op->read_iter))
1537                return -EINVAL;
1538
1539        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1540        if (ret)
1541                return ret;
1542        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1543        if (!ret)
1544                aio_rw_done(req, call_read_iter(file, req, &iter));
1545        kfree(iovec);
1546        return ret;
1547}
1548
1549static int aio_write(struct kiocb *req, const struct iocb *iocb,
1550                         bool vectored, bool compat)
1551{
1552        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1553        struct iov_iter iter;
1554        struct file *file;
1555        int ret;
1556
1557        ret = aio_prep_rw(req, iocb);
1558        if (ret)
1559                return ret;
1560        file = req->ki_filp;
1561
1562        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1563                return -EBADF;
1564        if (unlikely(!file->f_op->write_iter))
1565                return -EINVAL;
1566
1567        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1568        if (ret)
1569                return ret;
1570        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1571        if (!ret) {
1572                /*
1573                 * Open-code file_start_write here to grab freeze protection,
1574                 * which will be released by another thread in
1575                 * aio_complete_rw().  Fool lockdep by telling it the lock got
1576                 * released so that it doesn't complain about the held lock when
1577                 * we return to userspace.
1578                 */
1579                if (S_ISREG(file_inode(file)->i_mode)) {
1580                        __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1581                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1582                }
1583                req->ki_flags |= IOCB_WRITE;
1584                aio_rw_done(req, call_write_iter(file, req, &iter));
1585        }
1586        kfree(iovec);
1587        return ret;
1588}
1589
1590static void aio_fsync_work(struct work_struct *work)
1591{
1592        struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1593
1594        iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1595        iocb_put(iocb);
1596}
1597
1598static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1599                     bool datasync)
1600{
1601        if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1602                        iocb->aio_rw_flags))
1603                return -EINVAL;
1604
1605        if (unlikely(!req->file->f_op->fsync))
1606                return -EINVAL;
1607
1608        req->datasync = datasync;
1609        INIT_WORK(&req->work, aio_fsync_work);
1610        schedule_work(&req->work);
1611        return 0;
1612}
1613
1614static void aio_poll_complete_work(struct work_struct *work)
1615{
1616        struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1617        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1618        struct poll_table_struct pt = { ._key = req->events };
1619        struct kioctx *ctx = iocb->ki_ctx;
1620        __poll_t mask = 0;
1621
1622        if (!READ_ONCE(req->cancelled))
1623                mask = vfs_poll(req->file, &pt) & req->events;
1624
1625        /*
1626         * Note that ->ki_cancel callers also delete iocb from active_reqs after
1627         * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1628         * synchronize with them.  In the cancellation case the list_del_init
1629         * itself is not actually needed, but harmless so we keep it in to
1630         * avoid further branches in the fast path.
1631         */
1632        spin_lock_irq(&ctx->ctx_lock);
1633        if (!mask && !READ_ONCE(req->cancelled)) {
1634                add_wait_queue(req->head, &req->wait);
1635                spin_unlock_irq(&ctx->ctx_lock);
1636                return;
1637        }
1638        list_del_init(&iocb->ki_list);
1639        iocb->ki_res.res = mangle_poll(mask);
1640        req->done = true;
1641        spin_unlock_irq(&ctx->ctx_lock);
1642
1643        iocb_put(iocb);
1644}
1645
1646/* assumes we are called with irqs disabled */
1647static int aio_poll_cancel(struct kiocb *iocb)
1648{
1649        struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1650        struct poll_iocb *req = &aiocb->poll;
1651
1652        spin_lock(&req->head->lock);
1653        WRITE_ONCE(req->cancelled, true);
1654        if (!list_empty(&req->wait.entry)) {
1655                list_del_init(&req->wait.entry);
1656                schedule_work(&aiocb->poll.work);
1657        }
1658        spin_unlock(&req->head->lock);
1659
1660        return 0;
1661}
1662
1663static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1664                void *key)
1665{
1666        struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1667        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1668        __poll_t mask = key_to_poll(key);
1669        unsigned long flags;
1670
1671        /* for instances that support it check for an event match first: */
1672        if (mask && !(mask & req->events))
1673                return 0;
1674
1675        list_del_init(&req->wait.entry);
1676
1677        if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1678                /*
1679                 * Try to complete the iocb inline if we can. Use
1680                 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1681                 * call this function with IRQs disabled and because IRQs
1682                 * have to be disabled before ctx_lock is obtained.
1683                 */
1684                list_del(&iocb->ki_list);
1685                iocb->ki_res.res = mangle_poll(mask);
1686                req->done = true;
1687                spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1688                iocb_put(iocb);
1689        } else {
1690                schedule_work(&req->work);
1691        }
1692        return 1;
1693}
1694
1695struct aio_poll_table {
1696        struct poll_table_struct        pt;
1697        struct aio_kiocb                *iocb;
1698        int                             error;
1699};
1700
1701static void
1702aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1703                struct poll_table_struct *p)
1704{
1705        struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1706
1707        /* multiple wait queues per file are not supported */
1708        if (unlikely(pt->iocb->poll.head)) {
1709                pt->error = -EINVAL;
1710                return;
1711        }
1712
1713        pt->error = 0;
1714        pt->iocb->poll.head = head;
1715        add_wait_queue(head, &pt->iocb->poll.wait);
1716}
1717
1718static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1719{
1720        struct kioctx *ctx = aiocb->ki_ctx;
1721        struct poll_iocb *req = &aiocb->poll;
1722        struct aio_poll_table apt;
1723        bool cancel = false;
1724        __poll_t mask;
1725
1726        /* reject any unknown events outside the normal event mask. */
1727        if ((u16)iocb->aio_buf != iocb->aio_buf)
1728                return -EINVAL;
1729        /* reject fields that are not defined for poll */
1730        if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1731                return -EINVAL;
1732
1733        INIT_WORK(&req->work, aio_poll_complete_work);
1734        req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1735
1736        req->head = NULL;
1737        req->done = false;
1738        req->cancelled = false;
1739
1740        apt.pt._qproc = aio_poll_queue_proc;
1741        apt.pt._key = req->events;
1742        apt.iocb = aiocb;
1743        apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1744
1745        /* initialized the list so that we can do list_empty checks */
1746        INIT_LIST_HEAD(&req->wait.entry);
1747        init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1748
1749        mask = vfs_poll(req->file, &apt.pt) & req->events;
1750        spin_lock_irq(&ctx->ctx_lock);
1751        if (likely(req->head)) {
1752                spin_lock(&req->head->lock);
1753                if (unlikely(list_empty(&req->wait.entry))) {
1754                        if (apt.error)
1755                                cancel = true;
1756                        apt.error = 0;
1757                        mask = 0;
1758                }
1759                if (mask || apt.error) {
1760                        list_del_init(&req->wait.entry);
1761                } else if (cancel) {
1762                        WRITE_ONCE(req->cancelled, true);
1763                } else if (!req->done) { /* actually waiting for an event */
1764                        list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1765                        aiocb->ki_cancel = aio_poll_cancel;
1766                }
1767                spin_unlock(&req->head->lock);
1768        }
1769        if (mask) { /* no async, we'd stolen it */
1770                aiocb->ki_res.res = mangle_poll(mask);
1771                apt.error = 0;
1772        }
1773        spin_unlock_irq(&ctx->ctx_lock);
1774        if (mask)
1775                iocb_put(aiocb);
1776        return apt.error;
1777}
1778
1779static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1780                           struct iocb __user *user_iocb, struct aio_kiocb *req,
1781                           bool compat)
1782{
1783        req->ki_filp = fget(iocb->aio_fildes);
1784        if (unlikely(!req->ki_filp))
1785                return -EBADF;
1786
1787        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1788                struct eventfd_ctx *eventfd;
1789                /*
1790                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1791                 * instance of the file* now. The file descriptor must be
1792                 * an eventfd() fd, and will be signaled for each completed
1793                 * event using the eventfd_signal() function.
1794                 */
1795                eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1796                if (IS_ERR(eventfd))
1797                        return PTR_ERR(eventfd);
1798
1799                req->ki_eventfd = eventfd;
1800        }
1801
1802        if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1803                pr_debug("EFAULT: aio_key\n");
1804                return -EFAULT;
1805        }
1806
1807        req->ki_res.obj = (u64)(unsigned long)user_iocb;
1808        req->ki_res.data = iocb->aio_data;
1809        req->ki_res.res = 0;
1810        req->ki_res.res2 = 0;
1811
1812        switch (iocb->aio_lio_opcode) {
1813        case IOCB_CMD_PREAD:
1814                return aio_read(&req->rw, iocb, false, compat);
1815        case IOCB_CMD_PWRITE:
1816                return aio_write(&req->rw, iocb, false, compat);
1817        case IOCB_CMD_PREADV:
1818                return aio_read(&req->rw, iocb, true, compat);
1819        case IOCB_CMD_PWRITEV:
1820                return aio_write(&req->rw, iocb, true, compat);
1821        case IOCB_CMD_FSYNC:
1822                return aio_fsync(&req->fsync, iocb, false);
1823        case IOCB_CMD_FDSYNC:
1824                return aio_fsync(&req->fsync, iocb, true);
1825        case IOCB_CMD_POLL:
1826                return aio_poll(req, iocb);
1827        default:
1828                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1829                return -EINVAL;
1830        }
1831}
1832
1833static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1834                         bool compat)
1835{
1836        struct aio_kiocb *req;
1837        struct iocb iocb;
1838        int err;
1839
1840        if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1841                return -EFAULT;
1842
1843        /* enforce forwards compatibility on users */
1844        if (unlikely(iocb.aio_reserved2)) {
1845                pr_debug("EINVAL: reserve field set\n");
1846                return -EINVAL;
1847        }
1848
1849        /* prevent overflows */
1850        if (unlikely(
1851            (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1852            (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1853            ((ssize_t)iocb.aio_nbytes < 0)
1854           )) {
1855                pr_debug("EINVAL: overflow check\n");
1856                return -EINVAL;
1857        }
1858
1859        req = aio_get_req(ctx);
1860        if (unlikely(!req))
1861                return -EAGAIN;
1862
1863        err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1864
1865        /* Done with the synchronous reference */
1866        iocb_put(req);
1867
1868        /*
1869         * If err is 0, we'd either done aio_complete() ourselves or have
1870         * arranged for that to be done asynchronously.  Anything non-zero
1871         * means that we need to destroy req ourselves.
1872         */
1873        if (unlikely(err)) {
1874                iocb_destroy(req);
1875                put_reqs_available(ctx, 1);
1876        }
1877        return err;
1878}
1879
1880/* sys_io_submit:
1881 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1882 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1883 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1884 *      *iocbpp[0] is not properly initialized, if the operation specified
1885 *      is invalid for the file descriptor in the iocb.  May fail with
1886 *      -EFAULT if any of the data structures point to invalid data.  May
1887 *      fail with -EBADF if the file descriptor specified in the first
1888 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1889 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1890 *      fail with -ENOSYS if not implemented.
1891 */
1892SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1893                struct iocb __user * __user *, iocbpp)
1894{
1895        struct kioctx *ctx;
1896        long ret = 0;
1897        int i = 0;
1898        struct blk_plug plug;
1899
1900        if (unlikely(nr < 0))
1901                return -EINVAL;
1902
1903        ctx = lookup_ioctx(ctx_id);
1904        if (unlikely(!ctx)) {
1905                pr_debug("EINVAL: invalid context id\n");
1906                return -EINVAL;
1907        }
1908
1909        if (nr > ctx->nr_events)
1910                nr = ctx->nr_events;
1911
1912        if (nr > AIO_PLUG_THRESHOLD)
1913                blk_start_plug(&plug);
1914        for (i = 0; i < nr; i++) {
1915                struct iocb __user *user_iocb;
1916
1917                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1918                        ret = -EFAULT;
1919                        break;
1920                }
1921
1922                ret = io_submit_one(ctx, user_iocb, false);
1923                if (ret)
1924                        break;
1925        }
1926        if (nr > AIO_PLUG_THRESHOLD)
1927                blk_finish_plug(&plug);
1928
1929        percpu_ref_put(&ctx->users);
1930        return i ? i : ret;
1931}
1932
1933#ifdef CONFIG_COMPAT
1934COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1935                       int, nr, compat_uptr_t __user *, iocbpp)
1936{
1937        struct kioctx *ctx;
1938        long ret = 0;
1939        int i = 0;
1940        struct blk_plug plug;
1941
1942        if (unlikely(nr < 0))
1943                return -EINVAL;
1944
1945        ctx = lookup_ioctx(ctx_id);
1946        if (unlikely(!ctx)) {
1947                pr_debug("EINVAL: invalid context id\n");
1948                return -EINVAL;
1949        }
1950
1951        if (nr > ctx->nr_events)
1952                nr = ctx->nr_events;
1953
1954        if (nr > AIO_PLUG_THRESHOLD)
1955                blk_start_plug(&plug);
1956        for (i = 0; i < nr; i++) {
1957                compat_uptr_t user_iocb;
1958
1959                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1960                        ret = -EFAULT;
1961                        break;
1962                }
1963
1964                ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1965                if (ret)
1966                        break;
1967        }
1968        if (nr > AIO_PLUG_THRESHOLD)
1969                blk_finish_plug(&plug);
1970
1971        percpu_ref_put(&ctx->users);
1972        return i ? i : ret;
1973}
1974#endif
1975
1976/* sys_io_cancel:
1977 *      Attempts to cancel an iocb previously passed to io_submit.  If
1978 *      the operation is successfully cancelled, the resulting event is
1979 *      copied into the memory pointed to by result without being placed
1980 *      into the completion queue and 0 is returned.  May fail with
1981 *      -EFAULT if any of the data structures pointed to are invalid.
1982 *      May fail with -EINVAL if aio_context specified by ctx_id is
1983 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1984 *      cancelled.  Will fail with -ENOSYS if not implemented.
1985 */
1986SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1987                struct io_event __user *, result)
1988{
1989        struct kioctx *ctx;
1990        struct aio_kiocb *kiocb;
1991        int ret = -EINVAL;
1992        u32 key;
1993        u64 obj = (u64)(unsigned long)iocb;
1994
1995        if (unlikely(get_user(key, &iocb->aio_key)))
1996                return -EFAULT;
1997        if (unlikely(key != KIOCB_KEY))
1998                return -EINVAL;
1999
2000        ctx = lookup_ioctx(ctx_id);
2001        if (unlikely(!ctx))
2002                return -EINVAL;
2003
2004        spin_lock_irq(&ctx->ctx_lock);
2005        /* TODO: use a hash or array, this sucks. */
2006        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2007                if (kiocb->ki_res.obj == obj) {
2008                        ret = kiocb->ki_cancel(&kiocb->rw);
2009                        list_del_init(&kiocb->ki_list);
2010                        break;
2011                }
2012        }
2013        spin_unlock_irq(&ctx->ctx_lock);
2014
2015        if (!ret) {
2016                /*
2017                 * The result argument is no longer used - the io_event is
2018                 * always delivered via the ring buffer. -EINPROGRESS indicates
2019                 * cancellation is progress:
2020                 */
2021                ret = -EINPROGRESS;
2022        }
2023
2024        percpu_ref_put(&ctx->users);
2025
2026        return ret;
2027}
2028
2029static long do_io_getevents(aio_context_t ctx_id,
2030                long min_nr,
2031                long nr,
2032                struct io_event __user *events,
2033                struct timespec64 *ts)
2034{
2035        ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2036        struct kioctx *ioctx = lookup_ioctx(ctx_id);
2037        long ret = -EINVAL;
2038
2039        if (likely(ioctx)) {
2040                if (likely(min_nr <= nr && min_nr >= 0))
2041                        ret = read_events(ioctx, min_nr, nr, events, until);
2042                percpu_ref_put(&ioctx->users);
2043        }
2044
2045        return ret;
2046}
2047
2048/* io_getevents:
2049 *      Attempts to read at least min_nr events and up to nr events from
2050 *      the completion queue for the aio_context specified by ctx_id. If
2051 *      it succeeds, the number of read events is returned. May fail with
2052 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2053 *      out of range, if timeout is out of range.  May fail with -EFAULT
2054 *      if any of the memory specified is invalid.  May return 0 or
2055 *      < min_nr if the timeout specified by timeout has elapsed
2056 *      before sufficient events are available, where timeout == NULL
2057 *      specifies an infinite timeout. Note that the timeout pointed to by
2058 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
2059 */
2060#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2061
2062SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2063                long, min_nr,
2064                long, nr,
2065                struct io_event __user *, events,
2066                struct __kernel_timespec __user *, timeout)
2067{
2068        struct timespec64       ts;
2069        int                     ret;
2070
2071        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2072                return -EFAULT;
2073
2074        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2075        if (!ret && signal_pending(current))
2076                ret = -EINTR;
2077        return ret;
2078}
2079
2080#endif
2081
2082struct __aio_sigset {
2083        const sigset_t __user   *sigmask;
2084        size_t          sigsetsize;
2085};
2086
2087SYSCALL_DEFINE6(io_pgetevents,
2088                aio_context_t, ctx_id,
2089                long, min_nr,
2090                long, nr,
2091                struct io_event __user *, events,
2092                struct __kernel_timespec __user *, timeout,
2093                const struct __aio_sigset __user *, usig)
2094{
2095        struct __aio_sigset     ksig = { NULL, };
2096        sigset_t                ksigmask, sigsaved;
2097        struct timespec64       ts;
2098        bool interrupted;
2099        int ret;
2100
2101        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2102                return -EFAULT;
2103
2104        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2105                return -EFAULT;
2106
2107        ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2108        if (ret)
2109                return ret;
2110
2111        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2112
2113        interrupted = signal_pending(current);
2114        restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2115        if (interrupted && !ret)
2116                ret = -ERESTARTNOHAND;
2117
2118        return ret;
2119}
2120
2121#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2122
2123SYSCALL_DEFINE6(io_pgetevents_time32,
2124                aio_context_t, ctx_id,
2125                long, min_nr,
2126                long, nr,
2127                struct io_event __user *, events,
2128                struct old_timespec32 __user *, timeout,
2129                const struct __aio_sigset __user *, usig)
2130{
2131        struct __aio_sigset     ksig = { NULL, };
2132        sigset_t                ksigmask, sigsaved;
2133        struct timespec64       ts;
2134        bool interrupted;
2135        int ret;
2136
2137        if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2138                return -EFAULT;
2139
2140        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2141                return -EFAULT;
2142
2143
2144        ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2145        if (ret)
2146                return ret;
2147
2148        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2149
2150        interrupted = signal_pending(current);
2151        restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2152        if (interrupted && !ret)
2153                ret = -ERESTARTNOHAND;
2154
2155        return ret;
2156}
2157
2158#endif
2159
2160#if defined(CONFIG_COMPAT_32BIT_TIME)
2161
2162SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2163                __s32, min_nr,
2164                __s32, nr,
2165                struct io_event __user *, events,
2166                struct old_timespec32 __user *, timeout)
2167{
2168        struct timespec64 t;
2169        int ret;
2170
2171        if (timeout && get_old_timespec32(&t, timeout))
2172                return -EFAULT;
2173
2174        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2175        if (!ret && signal_pending(current))
2176                ret = -EINTR;
2177        return ret;
2178}
2179
2180#endif
2181
2182#ifdef CONFIG_COMPAT
2183
2184struct __compat_aio_sigset {
2185        compat_sigset_t __user  *sigmask;
2186        compat_size_t           sigsetsize;
2187};
2188
2189#if defined(CONFIG_COMPAT_32BIT_TIME)
2190
2191COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2192                compat_aio_context_t, ctx_id,
2193                compat_long_t, min_nr,
2194                compat_long_t, nr,
2195                struct io_event __user *, events,
2196                struct old_timespec32 __user *, timeout,
2197                const struct __compat_aio_sigset __user *, usig)
2198{
2199        struct __compat_aio_sigset ksig = { NULL, };
2200        sigset_t ksigmask, sigsaved;
2201        struct timespec64 t;
2202        bool interrupted;
2203        int ret;
2204
2205        if (timeout && get_old_timespec32(&t, timeout))
2206                return -EFAULT;
2207
2208        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2209                return -EFAULT;
2210
2211        ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2212        if (ret)
2213                return ret;
2214
2215        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2216
2217        interrupted = signal_pending(current);
2218        restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2219        if (interrupted && !ret)
2220                ret = -ERESTARTNOHAND;
2221
2222        return ret;
2223}
2224
2225#endif
2226
2227COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2228                compat_aio_context_t, ctx_id,
2229                compat_long_t, min_nr,
2230                compat_long_t, nr,
2231                struct io_event __user *, events,
2232                struct __kernel_timespec __user *, timeout,
2233                const struct __compat_aio_sigset __user *, usig)
2234{
2235        struct __compat_aio_sigset ksig = { NULL, };
2236        sigset_t ksigmask, sigsaved;
2237        struct timespec64 t;
2238        bool interrupted;
2239        int ret;
2240
2241        if (timeout && get_timespec64(&t, timeout))
2242                return -EFAULT;
2243
2244        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2245                return -EFAULT;
2246
2247        ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2248        if (ret)
2249                return ret;
2250
2251        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2252
2253        interrupted = signal_pending(current);
2254        restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2255        if (interrupted && !ret)
2256                ret = -ERESTARTNOHAND;
2257
2258        return ret;
2259}
2260#endif
2261