linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/buffer_head.h>
  11#include <linux/workqueue.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <linux/migrate.h>
  15#include <linux/ratelimit.h>
  16#include <linux/uuid.h>
  17#include <linux/semaphore.h>
  18#include <linux/error-injection.h>
  19#include <linux/crc32c.h>
  20#include <linux/sched/mm.h>
  21#include <asm/unaligned.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42
  43#ifdef CONFIG_X86
  44#include <asm/cpufeature.h>
  45#endif
  46
  47#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  48                                 BTRFS_HEADER_FLAG_RELOC |\
  49                                 BTRFS_SUPER_FLAG_ERROR |\
  50                                 BTRFS_SUPER_FLAG_SEEDING |\
  51                                 BTRFS_SUPER_FLAG_METADUMP |\
  52                                 BTRFS_SUPER_FLAG_METADUMP_V2)
  53
  54static const struct extent_io_ops btree_extent_io_ops;
  55static void end_workqueue_fn(struct btrfs_work *work);
  56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  58                                      struct btrfs_fs_info *fs_info);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  61                                        struct extent_io_tree *dirty_pages,
  62                                        int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  64                                       struct extent_io_tree *pinned_extents);
  65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  67
  68/*
  69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  70 * is complete.  This is used during reads to verify checksums, and it is used
  71 * by writes to insert metadata for new file extents after IO is complete.
  72 */
  73struct btrfs_end_io_wq {
  74        struct bio *bio;
  75        bio_end_io_t *end_io;
  76        void *private;
  77        struct btrfs_fs_info *info;
  78        blk_status_t status;
  79        enum btrfs_wq_endio_type metadata;
  80        struct btrfs_work work;
  81};
  82
  83static struct kmem_cache *btrfs_end_io_wq_cache;
  84
  85int __init btrfs_end_io_wq_init(void)
  86{
  87        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  88                                        sizeof(struct btrfs_end_io_wq),
  89                                        0,
  90                                        SLAB_MEM_SPREAD,
  91                                        NULL);
  92        if (!btrfs_end_io_wq_cache)
  93                return -ENOMEM;
  94        return 0;
  95}
  96
  97void __cold btrfs_end_io_wq_exit(void)
  98{
  99        kmem_cache_destroy(btrfs_end_io_wq_cache);
 100}
 101
 102/*
 103 * async submit bios are used to offload expensive checksumming
 104 * onto the worker threads.  They checksum file and metadata bios
 105 * just before they are sent down the IO stack.
 106 */
 107struct async_submit_bio {
 108        void *private_data;
 109        struct bio *bio;
 110        extent_submit_bio_start_t *submit_bio_start;
 111        int mirror_num;
 112        /*
 113         * bio_offset is optional, can be used if the pages in the bio
 114         * can't tell us where in the file the bio should go
 115         */
 116        u64 bio_offset;
 117        struct btrfs_work work;
 118        blk_status_t status;
 119};
 120
 121/*
 122 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 124 * the level the eb occupies in the tree.
 125 *
 126 * Different roots are used for different purposes and may nest inside each
 127 * other and they require separate keysets.  As lockdep keys should be
 128 * static, assign keysets according to the purpose of the root as indicated
 129 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 130 * roots have separate keysets.
 131 *
 132 * Lock-nesting across peer nodes is always done with the immediate parent
 133 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 134 * subclass to avoid triggering lockdep warning in such cases.
 135 *
 136 * The key is set by the readpage_end_io_hook after the buffer has passed
 137 * csum validation but before the pages are unlocked.  It is also set by
 138 * btrfs_init_new_buffer on freshly allocated blocks.
 139 *
 140 * We also add a check to make sure the highest level of the tree is the
 141 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 142 * needs update as well.
 143 */
 144#ifdef CONFIG_DEBUG_LOCK_ALLOC
 145# if BTRFS_MAX_LEVEL != 8
 146#  error
 147# endif
 148
 149static struct btrfs_lockdep_keyset {
 150        u64                     id;             /* root objectid */
 151        const char              *name_stem;     /* lock name stem */
 152        char                    names[BTRFS_MAX_LEVEL + 1][20];
 153        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 154} btrfs_lockdep_keysets[] = {
 155        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 156        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 157        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 158        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 159        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 160        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 161        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 162        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 163        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 164        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 165        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 166        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 167        { .id = 0,                              .name_stem = "tree"     },
 168};
 169
 170void __init btrfs_init_lockdep(void)
 171{
 172        int i, j;
 173
 174        /* initialize lockdep class names */
 175        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 176                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 177
 178                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 179                        snprintf(ks->names[j], sizeof(ks->names[j]),
 180                                 "btrfs-%s-%02d", ks->name_stem, j);
 181        }
 182}
 183
 184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 185                                    int level)
 186{
 187        struct btrfs_lockdep_keyset *ks;
 188
 189        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 190
 191        /* find the matching keyset, id 0 is the default entry */
 192        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 193                if (ks->id == objectid)
 194                        break;
 195
 196        lockdep_set_class_and_name(&eb->lock,
 197                                   &ks->keys[level], ks->names[level]);
 198}
 199
 200#endif
 201
 202/*
 203 * extents on the btree inode are pretty simple, there's one extent
 204 * that covers the entire device
 205 */
 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 207                struct page *page, size_t pg_offset, u64 start, u64 len,
 208                int create)
 209{
 210        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 211        struct extent_map_tree *em_tree = &inode->extent_tree;
 212        struct extent_map *em;
 213        int ret;
 214
 215        read_lock(&em_tree->lock);
 216        em = lookup_extent_mapping(em_tree, start, len);
 217        if (em) {
 218                em->bdev = fs_info->fs_devices->latest_bdev;
 219                read_unlock(&em_tree->lock);
 220                goto out;
 221        }
 222        read_unlock(&em_tree->lock);
 223
 224        em = alloc_extent_map();
 225        if (!em) {
 226                em = ERR_PTR(-ENOMEM);
 227                goto out;
 228        }
 229        em->start = 0;
 230        em->len = (u64)-1;
 231        em->block_len = (u64)-1;
 232        em->block_start = 0;
 233        em->bdev = fs_info->fs_devices->latest_bdev;
 234
 235        write_lock(&em_tree->lock);
 236        ret = add_extent_mapping(em_tree, em, 0);
 237        if (ret == -EEXIST) {
 238                free_extent_map(em);
 239                em = lookup_extent_mapping(em_tree, start, len);
 240                if (!em)
 241                        em = ERR_PTR(-EIO);
 242        } else if (ret) {
 243                free_extent_map(em);
 244                em = ERR_PTR(ret);
 245        }
 246        write_unlock(&em_tree->lock);
 247
 248out:
 249        return em;
 250}
 251
 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
 253{
 254        return crc32c(seed, data, len);
 255}
 256
 257void btrfs_csum_final(u32 crc, u8 *result)
 258{
 259        put_unaligned_le32(~crc, result);
 260}
 261
 262/*
 263 * Compute the csum of a btree block and store the result to provided buffer.
 264 *
 265 * Returns error if the extent buffer cannot be mapped.
 266 */
 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
 268{
 269        unsigned long len;
 270        unsigned long cur_len;
 271        unsigned long offset = BTRFS_CSUM_SIZE;
 272        char *kaddr;
 273        unsigned long map_start;
 274        unsigned long map_len;
 275        int err;
 276        u32 crc = ~(u32)0;
 277
 278        len = buf->len - offset;
 279        while (len > 0) {
 280                /*
 281                 * Note: we don't need to check for the err == 1 case here, as
 282                 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
 283                 * and 'min_len = 32' and the currently implemented mapping
 284                 * algorithm we cannot cross a page boundary.
 285                 */
 286                err = map_private_extent_buffer(buf, offset, 32,
 287                                        &kaddr, &map_start, &map_len);
 288                if (WARN_ON(err))
 289                        return err;
 290                cur_len = min(len, map_len - (offset - map_start));
 291                crc = btrfs_csum_data(kaddr + offset - map_start,
 292                                      crc, cur_len);
 293                len -= cur_len;
 294                offset += cur_len;
 295        }
 296        memset(result, 0, BTRFS_CSUM_SIZE);
 297
 298        btrfs_csum_final(crc, result);
 299
 300        return 0;
 301}
 302
 303/*
 304 * we can't consider a given block up to date unless the transid of the
 305 * block matches the transid in the parent node's pointer.  This is how we
 306 * detect blocks that either didn't get written at all or got written
 307 * in the wrong place.
 308 */
 309static int verify_parent_transid(struct extent_io_tree *io_tree,
 310                                 struct extent_buffer *eb, u64 parent_transid,
 311                                 int atomic)
 312{
 313        struct extent_state *cached_state = NULL;
 314        int ret;
 315        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 316
 317        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 318                return 0;
 319
 320        if (atomic)
 321                return -EAGAIN;
 322
 323        if (need_lock) {
 324                btrfs_tree_read_lock(eb);
 325                btrfs_set_lock_blocking_read(eb);
 326        }
 327
 328        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 329                         &cached_state);
 330        if (extent_buffer_uptodate(eb) &&
 331            btrfs_header_generation(eb) == parent_transid) {
 332                ret = 0;
 333                goto out;
 334        }
 335        btrfs_err_rl(eb->fs_info,
 336                "parent transid verify failed on %llu wanted %llu found %llu",
 337                        eb->start,
 338                        parent_transid, btrfs_header_generation(eb));
 339        ret = 1;
 340
 341        /*
 342         * Things reading via commit roots that don't have normal protection,
 343         * like send, can have a really old block in cache that may point at a
 344         * block that has been freed and re-allocated.  So don't clear uptodate
 345         * if we find an eb that is under IO (dirty/writeback) because we could
 346         * end up reading in the stale data and then writing it back out and
 347         * making everybody very sad.
 348         */
 349        if (!extent_buffer_under_io(eb))
 350                clear_extent_buffer_uptodate(eb);
 351out:
 352        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 353                             &cached_state);
 354        if (need_lock)
 355                btrfs_tree_read_unlock_blocking(eb);
 356        return ret;
 357}
 358
 359/*
 360 * Return 0 if the superblock checksum type matches the checksum value of that
 361 * algorithm. Pass the raw disk superblock data.
 362 */
 363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 364                                  char *raw_disk_sb)
 365{
 366        struct btrfs_super_block *disk_sb =
 367                (struct btrfs_super_block *)raw_disk_sb;
 368        u16 csum_type = btrfs_super_csum_type(disk_sb);
 369        int ret = 0;
 370
 371        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 372                u32 crc = ~(u32)0;
 373                char result[sizeof(crc)];
 374
 375                /*
 376                 * The super_block structure does not span the whole
 377                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 378                 * is filled with zeros and is included in the checksum.
 379                 */
 380                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 381                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 382                btrfs_csum_final(crc, result);
 383
 384                if (memcmp(raw_disk_sb, result, sizeof(result)))
 385                        ret = 1;
 386        }
 387
 388        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 389                btrfs_err(fs_info, "unsupported checksum algorithm %u",
 390                                csum_type);
 391                ret = 1;
 392        }
 393
 394        return ret;
 395}
 396
 397int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 398                           struct btrfs_key *first_key, u64 parent_transid)
 399{
 400        struct btrfs_fs_info *fs_info = eb->fs_info;
 401        int found_level;
 402        struct btrfs_key found_key;
 403        int ret;
 404
 405        found_level = btrfs_header_level(eb);
 406        if (found_level != level) {
 407                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 408                     KERN_ERR "BTRFS: tree level check failed\n");
 409                btrfs_err(fs_info,
 410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 411                          eb->start, level, found_level);
 412                return -EIO;
 413        }
 414
 415        if (!first_key)
 416                return 0;
 417
 418        /*
 419         * For live tree block (new tree blocks in current transaction),
 420         * we need proper lock context to avoid race, which is impossible here.
 421         * So we only checks tree blocks which is read from disk, whose
 422         * generation <= fs_info->last_trans_committed.
 423         */
 424        if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 425                return 0;
 426        if (found_level)
 427                btrfs_node_key_to_cpu(eb, &found_key, 0);
 428        else
 429                btrfs_item_key_to_cpu(eb, &found_key, 0);
 430        ret = btrfs_comp_cpu_keys(first_key, &found_key);
 431
 432        if (ret) {
 433                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 434                     KERN_ERR "BTRFS: tree first key check failed\n");
 435                btrfs_err(fs_info,
 436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 437                          eb->start, parent_transid, first_key->objectid,
 438                          first_key->type, first_key->offset,
 439                          found_key.objectid, found_key.type,
 440                          found_key.offset);
 441        }
 442        return ret;
 443}
 444
 445/*
 446 * helper to read a given tree block, doing retries as required when
 447 * the checksums don't match and we have alternate mirrors to try.
 448 *
 449 * @parent_transid:     expected transid, skip check if 0
 450 * @level:              expected level, mandatory check
 451 * @first_key:          expected key of first slot, skip check if NULL
 452 */
 453static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 454                                          u64 parent_transid, int level,
 455                                          struct btrfs_key *first_key)
 456{
 457        struct btrfs_fs_info *fs_info = eb->fs_info;
 458        struct extent_io_tree *io_tree;
 459        int failed = 0;
 460        int ret;
 461        int num_copies = 0;
 462        int mirror_num = 0;
 463        int failed_mirror = 0;
 464
 465        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 466        while (1) {
 467                clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 468                ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 469                if (!ret) {
 470                        if (verify_parent_transid(io_tree, eb,
 471                                                   parent_transid, 0))
 472                                ret = -EIO;
 473                        else if (btrfs_verify_level_key(eb, level,
 474                                                first_key, parent_transid))
 475                                ret = -EUCLEAN;
 476                        else
 477                                break;
 478                }
 479
 480                num_copies = btrfs_num_copies(fs_info,
 481                                              eb->start, eb->len);
 482                if (num_copies == 1)
 483                        break;
 484
 485                if (!failed_mirror) {
 486                        failed = 1;
 487                        failed_mirror = eb->read_mirror;
 488                }
 489
 490                mirror_num++;
 491                if (mirror_num == failed_mirror)
 492                        mirror_num++;
 493
 494                if (mirror_num > num_copies)
 495                        break;
 496        }
 497
 498        if (failed && !ret && failed_mirror)
 499                btrfs_repair_eb_io_failure(eb, failed_mirror);
 500
 501        return ret;
 502}
 503
 504/*
 505 * checksum a dirty tree block before IO.  This has extra checks to make sure
 506 * we only fill in the checksum field in the first page of a multi-page block
 507 */
 508
 509static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 510{
 511        u64 start = page_offset(page);
 512        u64 found_start;
 513        u8 result[BTRFS_CSUM_SIZE];
 514        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 515        struct extent_buffer *eb;
 516        int ret;
 517
 518        eb = (struct extent_buffer *)page->private;
 519        if (page != eb->pages[0])
 520                return 0;
 521
 522        found_start = btrfs_header_bytenr(eb);
 523        /*
 524         * Please do not consolidate these warnings into a single if.
 525         * It is useful to know what went wrong.
 526         */
 527        if (WARN_ON(found_start != start))
 528                return -EUCLEAN;
 529        if (WARN_ON(!PageUptodate(page)))
 530                return -EUCLEAN;
 531
 532        ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 533                        btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 534
 535        if (csum_tree_block(eb, result))
 536                return -EINVAL;
 537
 538        if (btrfs_header_level(eb))
 539                ret = btrfs_check_node(eb);
 540        else
 541                ret = btrfs_check_leaf_full(eb);
 542
 543        if (ret < 0) {
 544                btrfs_err(fs_info,
 545                "block=%llu write time tree block corruption detected",
 546                          eb->start);
 547                return ret;
 548        }
 549        write_extent_buffer(eb, result, 0, csum_size);
 550
 551        return 0;
 552}
 553
 554static int check_tree_block_fsid(struct extent_buffer *eb)
 555{
 556        struct btrfs_fs_info *fs_info = eb->fs_info;
 557        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 558        u8 fsid[BTRFS_FSID_SIZE];
 559        int ret = 1;
 560
 561        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 562        while (fs_devices) {
 563                u8 *metadata_uuid;
 564
 565                /*
 566                 * Checking the incompat flag is only valid for the current
 567                 * fs. For seed devices it's forbidden to have their uuid
 568                 * changed so reading ->fsid in this case is fine
 569                 */
 570                if (fs_devices == fs_info->fs_devices &&
 571                    btrfs_fs_incompat(fs_info, METADATA_UUID))
 572                        metadata_uuid = fs_devices->metadata_uuid;
 573                else
 574                        metadata_uuid = fs_devices->fsid;
 575
 576                if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 577                        ret = 0;
 578                        break;
 579                }
 580                fs_devices = fs_devices->seed;
 581        }
 582        return ret;
 583}
 584
 585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 586                                      u64 phy_offset, struct page *page,
 587                                      u64 start, u64 end, int mirror)
 588{
 589        u64 found_start;
 590        int found_level;
 591        struct extent_buffer *eb;
 592        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 593        struct btrfs_fs_info *fs_info = root->fs_info;
 594        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 595        int ret = 0;
 596        u8 result[BTRFS_CSUM_SIZE];
 597        int reads_done;
 598
 599        if (!page->private)
 600                goto out;
 601
 602        eb = (struct extent_buffer *)page->private;
 603
 604        /* the pending IO might have been the only thing that kept this buffer
 605         * in memory.  Make sure we have a ref for all this other checks
 606         */
 607        extent_buffer_get(eb);
 608
 609        reads_done = atomic_dec_and_test(&eb->io_pages);
 610        if (!reads_done)
 611                goto err;
 612
 613        eb->read_mirror = mirror;
 614        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 615                ret = -EIO;
 616                goto err;
 617        }
 618
 619        found_start = btrfs_header_bytenr(eb);
 620        if (found_start != eb->start) {
 621                btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 622                             eb->start, found_start);
 623                ret = -EIO;
 624                goto err;
 625        }
 626        if (check_tree_block_fsid(eb)) {
 627                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 628                             eb->start);
 629                ret = -EIO;
 630                goto err;
 631        }
 632        found_level = btrfs_header_level(eb);
 633        if (found_level >= BTRFS_MAX_LEVEL) {
 634                btrfs_err(fs_info, "bad tree block level %d on %llu",
 635                          (int)btrfs_header_level(eb), eb->start);
 636                ret = -EIO;
 637                goto err;
 638        }
 639
 640        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 641                                       eb, found_level);
 642
 643        ret = csum_tree_block(eb, result);
 644        if (ret)
 645                goto err;
 646
 647        if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 648                u32 val;
 649                u32 found = 0;
 650
 651                memcpy(&found, result, csum_size);
 652
 653                read_extent_buffer(eb, &val, 0, csum_size);
 654                btrfs_warn_rl(fs_info,
 655                "%s checksum verify failed on %llu wanted %x found %x level %d",
 656                              fs_info->sb->s_id, eb->start,
 657                              val, found, btrfs_header_level(eb));
 658                ret = -EUCLEAN;
 659                goto err;
 660        }
 661
 662        /*
 663         * If this is a leaf block and it is corrupt, set the corrupt bit so
 664         * that we don't try and read the other copies of this block, just
 665         * return -EIO.
 666         */
 667        if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 668                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 669                ret = -EIO;
 670        }
 671
 672        if (found_level > 0 && btrfs_check_node(eb))
 673                ret = -EIO;
 674
 675        if (!ret)
 676                set_extent_buffer_uptodate(eb);
 677        else
 678                btrfs_err(fs_info,
 679                          "block=%llu read time tree block corruption detected",
 680                          eb->start);
 681err:
 682        if (reads_done &&
 683            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 684                btree_readahead_hook(eb, ret);
 685
 686        if (ret) {
 687                /*
 688                 * our io error hook is going to dec the io pages
 689                 * again, we have to make sure it has something
 690                 * to decrement
 691                 */
 692                atomic_inc(&eb->io_pages);
 693                clear_extent_buffer_uptodate(eb);
 694        }
 695        free_extent_buffer(eb);
 696out:
 697        return ret;
 698}
 699
 700static void end_workqueue_bio(struct bio *bio)
 701{
 702        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 703        struct btrfs_fs_info *fs_info;
 704        struct btrfs_workqueue *wq;
 705        btrfs_work_func_t func;
 706
 707        fs_info = end_io_wq->info;
 708        end_io_wq->status = bio->bi_status;
 709
 710        if (bio_op(bio) == REQ_OP_WRITE) {
 711                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 712                        wq = fs_info->endio_meta_write_workers;
 713                        func = btrfs_endio_meta_write_helper;
 714                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 715                        wq = fs_info->endio_freespace_worker;
 716                        func = btrfs_freespace_write_helper;
 717                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 718                        wq = fs_info->endio_raid56_workers;
 719                        func = btrfs_endio_raid56_helper;
 720                } else {
 721                        wq = fs_info->endio_write_workers;
 722                        func = btrfs_endio_write_helper;
 723                }
 724        } else {
 725                if (unlikely(end_io_wq->metadata ==
 726                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 727                        wq = fs_info->endio_repair_workers;
 728                        func = btrfs_endio_repair_helper;
 729                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 730                        wq = fs_info->endio_raid56_workers;
 731                        func = btrfs_endio_raid56_helper;
 732                } else if (end_io_wq->metadata) {
 733                        wq = fs_info->endio_meta_workers;
 734                        func = btrfs_endio_meta_helper;
 735                } else {
 736                        wq = fs_info->endio_workers;
 737                        func = btrfs_endio_helper;
 738                }
 739        }
 740
 741        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 742        btrfs_queue_work(wq, &end_io_wq->work);
 743}
 744
 745blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 746                        enum btrfs_wq_endio_type metadata)
 747{
 748        struct btrfs_end_io_wq *end_io_wq;
 749
 750        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 751        if (!end_io_wq)
 752                return BLK_STS_RESOURCE;
 753
 754        end_io_wq->private = bio->bi_private;
 755        end_io_wq->end_io = bio->bi_end_io;
 756        end_io_wq->info = info;
 757        end_io_wq->status = 0;
 758        end_io_wq->bio = bio;
 759        end_io_wq->metadata = metadata;
 760
 761        bio->bi_private = end_io_wq;
 762        bio->bi_end_io = end_workqueue_bio;
 763        return 0;
 764}
 765
 766static void run_one_async_start(struct btrfs_work *work)
 767{
 768        struct async_submit_bio *async;
 769        blk_status_t ret;
 770
 771        async = container_of(work, struct  async_submit_bio, work);
 772        ret = async->submit_bio_start(async->private_data, async->bio,
 773                                      async->bio_offset);
 774        if (ret)
 775                async->status = ret;
 776}
 777
 778/*
 779 * In order to insert checksums into the metadata in large chunks, we wait
 780 * until bio submission time.   All the pages in the bio are checksummed and
 781 * sums are attached onto the ordered extent record.
 782 *
 783 * At IO completion time the csums attached on the ordered extent record are
 784 * inserted into the tree.
 785 */
 786static void run_one_async_done(struct btrfs_work *work)
 787{
 788        struct async_submit_bio *async;
 789        struct inode *inode;
 790        blk_status_t ret;
 791
 792        async = container_of(work, struct  async_submit_bio, work);
 793        inode = async->private_data;
 794
 795        /* If an error occurred we just want to clean up the bio and move on */
 796        if (async->status) {
 797                async->bio->bi_status = async->status;
 798                bio_endio(async->bio);
 799                return;
 800        }
 801
 802        ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
 803                        async->mirror_num, 1);
 804        if (ret) {
 805                async->bio->bi_status = ret;
 806                bio_endio(async->bio);
 807        }
 808}
 809
 810static void run_one_async_free(struct btrfs_work *work)
 811{
 812        struct async_submit_bio *async;
 813
 814        async = container_of(work, struct  async_submit_bio, work);
 815        kfree(async);
 816}
 817
 818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 819                                 int mirror_num, unsigned long bio_flags,
 820                                 u64 bio_offset, void *private_data,
 821                                 extent_submit_bio_start_t *submit_bio_start)
 822{
 823        struct async_submit_bio *async;
 824
 825        async = kmalloc(sizeof(*async), GFP_NOFS);
 826        if (!async)
 827                return BLK_STS_RESOURCE;
 828
 829        async->private_data = private_data;
 830        async->bio = bio;
 831        async->mirror_num = mirror_num;
 832        async->submit_bio_start = submit_bio_start;
 833
 834        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 835                        run_one_async_done, run_one_async_free);
 836
 837        async->bio_offset = bio_offset;
 838
 839        async->status = 0;
 840
 841        if (op_is_sync(bio->bi_opf))
 842                btrfs_set_work_high_priority(&async->work);
 843
 844        btrfs_queue_work(fs_info->workers, &async->work);
 845        return 0;
 846}
 847
 848static blk_status_t btree_csum_one_bio(struct bio *bio)
 849{
 850        struct bio_vec *bvec;
 851        struct btrfs_root *root;
 852        int ret = 0;
 853        struct bvec_iter_all iter_all;
 854
 855        ASSERT(!bio_flagged(bio, BIO_CLONED));
 856        bio_for_each_segment_all(bvec, bio, iter_all) {
 857                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 858                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 859                if (ret)
 860                        break;
 861        }
 862
 863        return errno_to_blk_status(ret);
 864}
 865
 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 867                                             u64 bio_offset)
 868{
 869        /*
 870         * when we're called for a write, we're already in the async
 871         * submission context.  Just jump into btrfs_map_bio
 872         */
 873        return btree_csum_one_bio(bio);
 874}
 875
 876static int check_async_write(struct btrfs_inode *bi)
 877{
 878        if (atomic_read(&bi->sync_writers))
 879                return 0;
 880#ifdef CONFIG_X86
 881        if (static_cpu_has(X86_FEATURE_XMM4_2))
 882                return 0;
 883#endif
 884        return 1;
 885}
 886
 887static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 888                                          int mirror_num,
 889                                          unsigned long bio_flags)
 890{
 891        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 892        int async = check_async_write(BTRFS_I(inode));
 893        blk_status_t ret;
 894
 895        if (bio_op(bio) != REQ_OP_WRITE) {
 896                /*
 897                 * called for a read, do the setup so that checksum validation
 898                 * can happen in the async kernel threads
 899                 */
 900                ret = btrfs_bio_wq_end_io(fs_info, bio,
 901                                          BTRFS_WQ_ENDIO_METADATA);
 902                if (ret)
 903                        goto out_w_error;
 904                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 905        } else if (!async) {
 906                ret = btree_csum_one_bio(bio);
 907                if (ret)
 908                        goto out_w_error;
 909                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 910        } else {
 911                /*
 912                 * kthread helpers are used to submit writes so that
 913                 * checksumming can happen in parallel across all CPUs
 914                 */
 915                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 916                                          0, inode, btree_submit_bio_start);
 917        }
 918
 919        if (ret)
 920                goto out_w_error;
 921        return 0;
 922
 923out_w_error:
 924        bio->bi_status = ret;
 925        bio_endio(bio);
 926        return ret;
 927}
 928
 929#ifdef CONFIG_MIGRATION
 930static int btree_migratepage(struct address_space *mapping,
 931                        struct page *newpage, struct page *page,
 932                        enum migrate_mode mode)
 933{
 934        /*
 935         * we can't safely write a btree page from here,
 936         * we haven't done the locking hook
 937         */
 938        if (PageDirty(page))
 939                return -EAGAIN;
 940        /*
 941         * Buffers may be managed in a filesystem specific way.
 942         * We must have no buffers or drop them.
 943         */
 944        if (page_has_private(page) &&
 945            !try_to_release_page(page, GFP_KERNEL))
 946                return -EAGAIN;
 947        return migrate_page(mapping, newpage, page, mode);
 948}
 949#endif
 950
 951
 952static int btree_writepages(struct address_space *mapping,
 953                            struct writeback_control *wbc)
 954{
 955        struct btrfs_fs_info *fs_info;
 956        int ret;
 957
 958        if (wbc->sync_mode == WB_SYNC_NONE) {
 959
 960                if (wbc->for_kupdate)
 961                        return 0;
 962
 963                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 964                /* this is a bit racy, but that's ok */
 965                ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 966                                             BTRFS_DIRTY_METADATA_THRESH,
 967                                             fs_info->dirty_metadata_batch);
 968                if (ret < 0)
 969                        return 0;
 970        }
 971        return btree_write_cache_pages(mapping, wbc);
 972}
 973
 974static int btree_readpage(struct file *file, struct page *page)
 975{
 976        struct extent_io_tree *tree;
 977        tree = &BTRFS_I(page->mapping->host)->io_tree;
 978        return extent_read_full_page(tree, page, btree_get_extent, 0);
 979}
 980
 981static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 982{
 983        if (PageWriteback(page) || PageDirty(page))
 984                return 0;
 985
 986        return try_release_extent_buffer(page);
 987}
 988
 989static void btree_invalidatepage(struct page *page, unsigned int offset,
 990                                 unsigned int length)
 991{
 992        struct extent_io_tree *tree;
 993        tree = &BTRFS_I(page->mapping->host)->io_tree;
 994        extent_invalidatepage(tree, page, offset);
 995        btree_releasepage(page, GFP_NOFS);
 996        if (PagePrivate(page)) {
 997                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 998                           "page private not zero on page %llu",
 999                           (unsigned long long)page_offset(page));
1000                ClearPagePrivate(page);
1001                set_page_private(page, 0);
1002                put_page(page);
1003        }
1004}
1005
1006static int btree_set_page_dirty(struct page *page)
1007{
1008#ifdef DEBUG
1009        struct extent_buffer *eb;
1010
1011        BUG_ON(!PagePrivate(page));
1012        eb = (struct extent_buffer *)page->private;
1013        BUG_ON(!eb);
1014        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1015        BUG_ON(!atomic_read(&eb->refs));
1016        btrfs_assert_tree_locked(eb);
1017#endif
1018        return __set_page_dirty_nobuffers(page);
1019}
1020
1021static const struct address_space_operations btree_aops = {
1022        .readpage       = btree_readpage,
1023        .writepages     = btree_writepages,
1024        .releasepage    = btree_releasepage,
1025        .invalidatepage = btree_invalidatepage,
1026#ifdef CONFIG_MIGRATION
1027        .migratepage    = btree_migratepage,
1028#endif
1029        .set_page_dirty = btree_set_page_dirty,
1030};
1031
1032void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1033{
1034        struct extent_buffer *buf = NULL;
1035        int ret;
1036
1037        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1038        if (IS_ERR(buf))
1039                return;
1040
1041        ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1042        if (ret < 0)
1043                free_extent_buffer_stale(buf);
1044        else
1045                free_extent_buffer(buf);
1046}
1047
1048int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1049                         int mirror_num, struct extent_buffer **eb)
1050{
1051        struct extent_buffer *buf = NULL;
1052        int ret;
1053
1054        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1055        if (IS_ERR(buf))
1056                return 0;
1057
1058        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1059
1060        ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1061        if (ret) {
1062                free_extent_buffer_stale(buf);
1063                return ret;
1064        }
1065
1066        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1067                free_extent_buffer_stale(buf);
1068                return -EIO;
1069        } else if (extent_buffer_uptodate(buf)) {
1070                *eb = buf;
1071        } else {
1072                free_extent_buffer(buf);
1073        }
1074        return 0;
1075}
1076
1077struct extent_buffer *btrfs_find_create_tree_block(
1078                                                struct btrfs_fs_info *fs_info,
1079                                                u64 bytenr)
1080{
1081        if (btrfs_is_testing(fs_info))
1082                return alloc_test_extent_buffer(fs_info, bytenr);
1083        return alloc_extent_buffer(fs_info, bytenr);
1084}
1085
1086/*
1087 * Read tree block at logical address @bytenr and do variant basic but critical
1088 * verification.
1089 *
1090 * @parent_transid:     expected transid of this tree block, skip check if 0
1091 * @level:              expected level, mandatory check
1092 * @first_key:          expected key in slot 0, skip check if NULL
1093 */
1094struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1095                                      u64 parent_transid, int level,
1096                                      struct btrfs_key *first_key)
1097{
1098        struct extent_buffer *buf = NULL;
1099        int ret;
1100
1101        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1102        if (IS_ERR(buf))
1103                return buf;
1104
1105        ret = btree_read_extent_buffer_pages(buf, parent_transid,
1106                                             level, first_key);
1107        if (ret) {
1108                free_extent_buffer_stale(buf);
1109                return ERR_PTR(ret);
1110        }
1111        return buf;
1112
1113}
1114
1115void btrfs_clean_tree_block(struct extent_buffer *buf)
1116{
1117        struct btrfs_fs_info *fs_info = buf->fs_info;
1118        if (btrfs_header_generation(buf) ==
1119            fs_info->running_transaction->transid) {
1120                btrfs_assert_tree_locked(buf);
1121
1122                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1123                        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1124                                                 -buf->len,
1125                                                 fs_info->dirty_metadata_batch);
1126                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1127                        btrfs_set_lock_blocking_write(buf);
1128                        clear_extent_buffer_dirty(buf);
1129                }
1130        }
1131}
1132
1133static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1134{
1135        struct btrfs_subvolume_writers *writers;
1136        int ret;
1137
1138        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1139        if (!writers)
1140                return ERR_PTR(-ENOMEM);
1141
1142        ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1143        if (ret < 0) {
1144                kfree(writers);
1145                return ERR_PTR(ret);
1146        }
1147
1148        init_waitqueue_head(&writers->wait);
1149        return writers;
1150}
1151
1152static void
1153btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1154{
1155        percpu_counter_destroy(&writers->counter);
1156        kfree(writers);
1157}
1158
1159static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1160                         u64 objectid)
1161{
1162        bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1163        root->node = NULL;
1164        root->commit_root = NULL;
1165        root->state = 0;
1166        root->orphan_cleanup_state = 0;
1167
1168        root->last_trans = 0;
1169        root->highest_objectid = 0;
1170        root->nr_delalloc_inodes = 0;
1171        root->nr_ordered_extents = 0;
1172        root->inode_tree = RB_ROOT;
1173        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1174        root->block_rsv = NULL;
1175
1176        INIT_LIST_HEAD(&root->dirty_list);
1177        INIT_LIST_HEAD(&root->root_list);
1178        INIT_LIST_HEAD(&root->delalloc_inodes);
1179        INIT_LIST_HEAD(&root->delalloc_root);
1180        INIT_LIST_HEAD(&root->ordered_extents);
1181        INIT_LIST_HEAD(&root->ordered_root);
1182        INIT_LIST_HEAD(&root->reloc_dirty_list);
1183        INIT_LIST_HEAD(&root->logged_list[0]);
1184        INIT_LIST_HEAD(&root->logged_list[1]);
1185        spin_lock_init(&root->inode_lock);
1186        spin_lock_init(&root->delalloc_lock);
1187        spin_lock_init(&root->ordered_extent_lock);
1188        spin_lock_init(&root->accounting_lock);
1189        spin_lock_init(&root->log_extents_lock[0]);
1190        spin_lock_init(&root->log_extents_lock[1]);
1191        spin_lock_init(&root->qgroup_meta_rsv_lock);
1192        mutex_init(&root->objectid_mutex);
1193        mutex_init(&root->log_mutex);
1194        mutex_init(&root->ordered_extent_mutex);
1195        mutex_init(&root->delalloc_mutex);
1196        init_waitqueue_head(&root->log_writer_wait);
1197        init_waitqueue_head(&root->log_commit_wait[0]);
1198        init_waitqueue_head(&root->log_commit_wait[1]);
1199        INIT_LIST_HEAD(&root->log_ctxs[0]);
1200        INIT_LIST_HEAD(&root->log_ctxs[1]);
1201        atomic_set(&root->log_commit[0], 0);
1202        atomic_set(&root->log_commit[1], 0);
1203        atomic_set(&root->log_writers, 0);
1204        atomic_set(&root->log_batch, 0);
1205        refcount_set(&root->refs, 1);
1206        atomic_set(&root->will_be_snapshotted, 0);
1207        atomic_set(&root->snapshot_force_cow, 0);
1208        atomic_set(&root->nr_swapfiles, 0);
1209        root->log_transid = 0;
1210        root->log_transid_committed = -1;
1211        root->last_log_commit = 0;
1212        if (!dummy)
1213                extent_io_tree_init(fs_info, &root->dirty_log_pages,
1214                                    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1215
1216        memset(&root->root_key, 0, sizeof(root->root_key));
1217        memset(&root->root_item, 0, sizeof(root->root_item));
1218        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1219        if (!dummy)
1220                root->defrag_trans_start = fs_info->generation;
1221        else
1222                root->defrag_trans_start = 0;
1223        root->root_key.objectid = objectid;
1224        root->anon_dev = 0;
1225
1226        spin_lock_init(&root->root_item_lock);
1227        btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1228}
1229
1230static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1231                gfp_t flags)
1232{
1233        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1234        if (root)
1235                root->fs_info = fs_info;
1236        return root;
1237}
1238
1239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240/* Should only be used by the testing infrastructure */
1241struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1242{
1243        struct btrfs_root *root;
1244
1245        if (!fs_info)
1246                return ERR_PTR(-EINVAL);
1247
1248        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1249        if (!root)
1250                return ERR_PTR(-ENOMEM);
1251
1252        /* We don't use the stripesize in selftest, set it as sectorsize */
1253        __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1254        root->alloc_bytenr = 0;
1255
1256        return root;
1257}
1258#endif
1259
1260struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1261                                     u64 objectid)
1262{
1263        struct btrfs_fs_info *fs_info = trans->fs_info;
1264        struct extent_buffer *leaf;
1265        struct btrfs_root *tree_root = fs_info->tree_root;
1266        struct btrfs_root *root;
1267        struct btrfs_key key;
1268        unsigned int nofs_flag;
1269        int ret = 0;
1270        uuid_le uuid = NULL_UUID_LE;
1271
1272        /*
1273         * We're holding a transaction handle, so use a NOFS memory allocation
1274         * context to avoid deadlock if reclaim happens.
1275         */
1276        nofs_flag = memalloc_nofs_save();
1277        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1278        memalloc_nofs_restore(nofs_flag);
1279        if (!root)
1280                return ERR_PTR(-ENOMEM);
1281
1282        __setup_root(root, fs_info, objectid);
1283        root->root_key.objectid = objectid;
1284        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285        root->root_key.offset = 0;
1286
1287        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1288        if (IS_ERR(leaf)) {
1289                ret = PTR_ERR(leaf);
1290                leaf = NULL;
1291                goto fail;
1292        }
1293
1294        root->node = leaf;
1295        btrfs_mark_buffer_dirty(leaf);
1296
1297        root->commit_root = btrfs_root_node(root);
1298        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1299
1300        root->root_item.flags = 0;
1301        root->root_item.byte_limit = 0;
1302        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303        btrfs_set_root_generation(&root->root_item, trans->transid);
1304        btrfs_set_root_level(&root->root_item, 0);
1305        btrfs_set_root_refs(&root->root_item, 1);
1306        btrfs_set_root_used(&root->root_item, leaf->len);
1307        btrfs_set_root_last_snapshot(&root->root_item, 0);
1308        btrfs_set_root_dirid(&root->root_item, 0);
1309        if (is_fstree(objectid))
1310                uuid_le_gen(&uuid);
1311        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1312        root->root_item.drop_level = 0;
1313
1314        key.objectid = objectid;
1315        key.type = BTRFS_ROOT_ITEM_KEY;
1316        key.offset = 0;
1317        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318        if (ret)
1319                goto fail;
1320
1321        btrfs_tree_unlock(leaf);
1322
1323        return root;
1324
1325fail:
1326        if (leaf) {
1327                btrfs_tree_unlock(leaf);
1328                free_extent_buffer(root->commit_root);
1329                free_extent_buffer(leaf);
1330        }
1331        kfree(root);
1332
1333        return ERR_PTR(ret);
1334}
1335
1336static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337                                         struct btrfs_fs_info *fs_info)
1338{
1339        struct btrfs_root *root;
1340        struct extent_buffer *leaf;
1341
1342        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1343        if (!root)
1344                return ERR_PTR(-ENOMEM);
1345
1346        __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347
1348        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1351
1352        /*
1353         * DON'T set REF_COWS for log trees
1354         *
1355         * log trees do not get reference counted because they go away
1356         * before a real commit is actually done.  They do store pointers
1357         * to file data extents, and those reference counts still get
1358         * updated (along with back refs to the log tree).
1359         */
1360
1361        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1362                        NULL, 0, 0, 0);
1363        if (IS_ERR(leaf)) {
1364                kfree(root);
1365                return ERR_CAST(leaf);
1366        }
1367
1368        root->node = leaf;
1369
1370        btrfs_mark_buffer_dirty(root->node);
1371        btrfs_tree_unlock(root->node);
1372        return root;
1373}
1374
1375int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1376                             struct btrfs_fs_info *fs_info)
1377{
1378        struct btrfs_root *log_root;
1379
1380        log_root = alloc_log_tree(trans, fs_info);
1381        if (IS_ERR(log_root))
1382                return PTR_ERR(log_root);
1383        WARN_ON(fs_info->log_root_tree);
1384        fs_info->log_root_tree = log_root;
1385        return 0;
1386}
1387
1388int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1389                       struct btrfs_root *root)
1390{
1391        struct btrfs_fs_info *fs_info = root->fs_info;
1392        struct btrfs_root *log_root;
1393        struct btrfs_inode_item *inode_item;
1394
1395        log_root = alloc_log_tree(trans, fs_info);
1396        if (IS_ERR(log_root))
1397                return PTR_ERR(log_root);
1398
1399        log_root->last_trans = trans->transid;
1400        log_root->root_key.offset = root->root_key.objectid;
1401
1402        inode_item = &log_root->root_item.inode;
1403        btrfs_set_stack_inode_generation(inode_item, 1);
1404        btrfs_set_stack_inode_size(inode_item, 3);
1405        btrfs_set_stack_inode_nlink(inode_item, 1);
1406        btrfs_set_stack_inode_nbytes(inode_item,
1407                                     fs_info->nodesize);
1408        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1409
1410        btrfs_set_root_node(&log_root->root_item, log_root->node);
1411
1412        WARN_ON(root->log_root);
1413        root->log_root = log_root;
1414        root->log_transid = 0;
1415        root->log_transid_committed = -1;
1416        root->last_log_commit = 0;
1417        return 0;
1418}
1419
1420static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1421                                               struct btrfs_key *key)
1422{
1423        struct btrfs_root *root;
1424        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1425        struct btrfs_path *path;
1426        u64 generation;
1427        int ret;
1428        int level;
1429
1430        path = btrfs_alloc_path();
1431        if (!path)
1432                return ERR_PTR(-ENOMEM);
1433
1434        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1435        if (!root) {
1436                ret = -ENOMEM;
1437                goto alloc_fail;
1438        }
1439
1440        __setup_root(root, fs_info, key->objectid);
1441
1442        ret = btrfs_find_root(tree_root, key, path,
1443                              &root->root_item, &root->root_key);
1444        if (ret) {
1445                if (ret > 0)
1446                        ret = -ENOENT;
1447                goto find_fail;
1448        }
1449
1450        generation = btrfs_root_generation(&root->root_item);
1451        level = btrfs_root_level(&root->root_item);
1452        root->node = read_tree_block(fs_info,
1453                                     btrfs_root_bytenr(&root->root_item),
1454                                     generation, level, NULL);
1455        if (IS_ERR(root->node)) {
1456                ret = PTR_ERR(root->node);
1457                goto find_fail;
1458        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1459                ret = -EIO;
1460                free_extent_buffer(root->node);
1461                goto find_fail;
1462        }
1463        root->commit_root = btrfs_root_node(root);
1464out:
1465        btrfs_free_path(path);
1466        return root;
1467
1468find_fail:
1469        kfree(root);
1470alloc_fail:
1471        root = ERR_PTR(ret);
1472        goto out;
1473}
1474
1475struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1476                                      struct btrfs_key *location)
1477{
1478        struct btrfs_root *root;
1479
1480        root = btrfs_read_tree_root(tree_root, location);
1481        if (IS_ERR(root))
1482                return root;
1483
1484        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1485                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1486                btrfs_check_and_init_root_item(&root->root_item);
1487        }
1488
1489        return root;
1490}
1491
1492int btrfs_init_fs_root(struct btrfs_root *root)
1493{
1494        int ret;
1495        struct btrfs_subvolume_writers *writers;
1496
1497        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1498        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1499                                        GFP_NOFS);
1500        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1501                ret = -ENOMEM;
1502                goto fail;
1503        }
1504
1505        writers = btrfs_alloc_subvolume_writers();
1506        if (IS_ERR(writers)) {
1507                ret = PTR_ERR(writers);
1508                goto fail;
1509        }
1510        root->subv_writers = writers;
1511
1512        btrfs_init_free_ino_ctl(root);
1513        spin_lock_init(&root->ino_cache_lock);
1514        init_waitqueue_head(&root->ino_cache_wait);
1515
1516        ret = get_anon_bdev(&root->anon_dev);
1517        if (ret)
1518                goto fail;
1519
1520        mutex_lock(&root->objectid_mutex);
1521        ret = btrfs_find_highest_objectid(root,
1522                                        &root->highest_objectid);
1523        if (ret) {
1524                mutex_unlock(&root->objectid_mutex);
1525                goto fail;
1526        }
1527
1528        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1529
1530        mutex_unlock(&root->objectid_mutex);
1531
1532        return 0;
1533fail:
1534        /* The caller is responsible to call btrfs_free_fs_root */
1535        return ret;
1536}
1537
1538struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1539                                        u64 root_id)
1540{
1541        struct btrfs_root *root;
1542
1543        spin_lock(&fs_info->fs_roots_radix_lock);
1544        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1545                                 (unsigned long)root_id);
1546        spin_unlock(&fs_info->fs_roots_radix_lock);
1547        return root;
1548}
1549
1550int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1551                         struct btrfs_root *root)
1552{
1553        int ret;
1554
1555        ret = radix_tree_preload(GFP_NOFS);
1556        if (ret)
1557                return ret;
1558
1559        spin_lock(&fs_info->fs_roots_radix_lock);
1560        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1561                                (unsigned long)root->root_key.objectid,
1562                                root);
1563        if (ret == 0)
1564                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1565        spin_unlock(&fs_info->fs_roots_radix_lock);
1566        radix_tree_preload_end();
1567
1568        return ret;
1569}
1570
1571struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1572                                     struct btrfs_key *location,
1573                                     bool check_ref)
1574{
1575        struct btrfs_root *root;
1576        struct btrfs_path *path;
1577        struct btrfs_key key;
1578        int ret;
1579
1580        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1581                return fs_info->tree_root;
1582        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1583                return fs_info->extent_root;
1584        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1585                return fs_info->chunk_root;
1586        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1587                return fs_info->dev_root;
1588        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1589                return fs_info->csum_root;
1590        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1591                return fs_info->quota_root ? fs_info->quota_root :
1592                                             ERR_PTR(-ENOENT);
1593        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1594                return fs_info->uuid_root ? fs_info->uuid_root :
1595                                            ERR_PTR(-ENOENT);
1596        if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1597                return fs_info->free_space_root ? fs_info->free_space_root :
1598                                                  ERR_PTR(-ENOENT);
1599again:
1600        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601        if (root) {
1602                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1603                        return ERR_PTR(-ENOENT);
1604                return root;
1605        }
1606
1607        root = btrfs_read_fs_root(fs_info->tree_root, location);
1608        if (IS_ERR(root))
1609                return root;
1610
1611        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1612                ret = -ENOENT;
1613                goto fail;
1614        }
1615
1616        ret = btrfs_init_fs_root(root);
1617        if (ret)
1618                goto fail;
1619
1620        path = btrfs_alloc_path();
1621        if (!path) {
1622                ret = -ENOMEM;
1623                goto fail;
1624        }
1625        key.objectid = BTRFS_ORPHAN_OBJECTID;
1626        key.type = BTRFS_ORPHAN_ITEM_KEY;
1627        key.offset = location->objectid;
1628
1629        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1630        btrfs_free_path(path);
1631        if (ret < 0)
1632                goto fail;
1633        if (ret == 0)
1634                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635
1636        ret = btrfs_insert_fs_root(fs_info, root);
1637        if (ret) {
1638                if (ret == -EEXIST) {
1639                        btrfs_free_fs_root(root);
1640                        goto again;
1641                }
1642                goto fail;
1643        }
1644        return root;
1645fail:
1646        btrfs_free_fs_root(root);
1647        return ERR_PTR(ret);
1648}
1649
1650static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651{
1652        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653        int ret = 0;
1654        struct btrfs_device *device;
1655        struct backing_dev_info *bdi;
1656
1657        rcu_read_lock();
1658        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1659                if (!device->bdev)
1660                        continue;
1661                bdi = device->bdev->bd_bdi;
1662                if (bdi_congested(bdi, bdi_bits)) {
1663                        ret = 1;
1664                        break;
1665                }
1666        }
1667        rcu_read_unlock();
1668        return ret;
1669}
1670
1671/*
1672 * called by the kthread helper functions to finally call the bio end_io
1673 * functions.  This is where read checksum verification actually happens
1674 */
1675static void end_workqueue_fn(struct btrfs_work *work)
1676{
1677        struct bio *bio;
1678        struct btrfs_end_io_wq *end_io_wq;
1679
1680        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1681        bio = end_io_wq->bio;
1682
1683        bio->bi_status = end_io_wq->status;
1684        bio->bi_private = end_io_wq->private;
1685        bio->bi_end_io = end_io_wq->end_io;
1686        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1687        bio_endio(bio);
1688}
1689
1690static int cleaner_kthread(void *arg)
1691{
1692        struct btrfs_root *root = arg;
1693        struct btrfs_fs_info *fs_info = root->fs_info;
1694        int again;
1695
1696        while (1) {
1697                again = 0;
1698
1699                set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1700
1701                /* Make the cleaner go to sleep early. */
1702                if (btrfs_need_cleaner_sleep(fs_info))
1703                        goto sleep;
1704
1705                /*
1706                 * Do not do anything if we might cause open_ctree() to block
1707                 * before we have finished mounting the filesystem.
1708                 */
1709                if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1710                        goto sleep;
1711
1712                if (!mutex_trylock(&fs_info->cleaner_mutex))
1713                        goto sleep;
1714
1715                /*
1716                 * Avoid the problem that we change the status of the fs
1717                 * during the above check and trylock.
1718                 */
1719                if (btrfs_need_cleaner_sleep(fs_info)) {
1720                        mutex_unlock(&fs_info->cleaner_mutex);
1721                        goto sleep;
1722                }
1723
1724                btrfs_run_delayed_iputs(fs_info);
1725
1726                again = btrfs_clean_one_deleted_snapshot(root);
1727                mutex_unlock(&fs_info->cleaner_mutex);
1728
1729                /*
1730                 * The defragger has dealt with the R/O remount and umount,
1731                 * needn't do anything special here.
1732                 */
1733                btrfs_run_defrag_inodes(fs_info);
1734
1735                /*
1736                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737                 * with relocation (btrfs_relocate_chunk) and relocation
1738                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741                 * unused block groups.
1742                 */
1743                btrfs_delete_unused_bgs(fs_info);
1744sleep:
1745                clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1746                if (kthread_should_park())
1747                        kthread_parkme();
1748                if (kthread_should_stop())
1749                        return 0;
1750                if (!again) {
1751                        set_current_state(TASK_INTERRUPTIBLE);
1752                        schedule();
1753                        __set_current_state(TASK_RUNNING);
1754                }
1755        }
1756}
1757
1758static int transaction_kthread(void *arg)
1759{
1760        struct btrfs_root *root = arg;
1761        struct btrfs_fs_info *fs_info = root->fs_info;
1762        struct btrfs_trans_handle *trans;
1763        struct btrfs_transaction *cur;
1764        u64 transid;
1765        time64_t now;
1766        unsigned long delay;
1767        bool cannot_commit;
1768
1769        do {
1770                cannot_commit = false;
1771                delay = HZ * fs_info->commit_interval;
1772                mutex_lock(&fs_info->transaction_kthread_mutex);
1773
1774                spin_lock(&fs_info->trans_lock);
1775                cur = fs_info->running_transaction;
1776                if (!cur) {
1777                        spin_unlock(&fs_info->trans_lock);
1778                        goto sleep;
1779                }
1780
1781                now = ktime_get_seconds();
1782                if (cur->state < TRANS_STATE_BLOCKED &&
1783                    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1784                    (now < cur->start_time ||
1785                     now - cur->start_time < fs_info->commit_interval)) {
1786                        spin_unlock(&fs_info->trans_lock);
1787                        delay = HZ * 5;
1788                        goto sleep;
1789                }
1790                transid = cur->transid;
1791                spin_unlock(&fs_info->trans_lock);
1792
1793                /* If the file system is aborted, this will always fail. */
1794                trans = btrfs_attach_transaction(root);
1795                if (IS_ERR(trans)) {
1796                        if (PTR_ERR(trans) != -ENOENT)
1797                                cannot_commit = true;
1798                        goto sleep;
1799                }
1800                if (transid == trans->transid) {
1801                        btrfs_commit_transaction(trans);
1802                } else {
1803                        btrfs_end_transaction(trans);
1804                }
1805sleep:
1806                wake_up_process(fs_info->cleaner_kthread);
1807                mutex_unlock(&fs_info->transaction_kthread_mutex);
1808
1809                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1810                                      &fs_info->fs_state)))
1811                        btrfs_cleanup_transaction(fs_info);
1812                if (!kthread_should_stop() &&
1813                                (!btrfs_transaction_blocked(fs_info) ||
1814                                 cannot_commit))
1815                        schedule_timeout_interruptible(delay);
1816        } while (!kthread_should_stop());
1817        return 0;
1818}
1819
1820/*
1821 * this will find the highest generation in the array of
1822 * root backups.  The index of the highest array is returned,
1823 * or -1 if we can't find anything.
1824 *
1825 * We check to make sure the array is valid by comparing the
1826 * generation of the latest  root in the array with the generation
1827 * in the super block.  If they don't match we pitch it.
1828 */
1829static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830{
1831        u64 cur;
1832        int newest_index = -1;
1833        struct btrfs_root_backup *root_backup;
1834        int i;
1835
1836        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837                root_backup = info->super_copy->super_roots + i;
1838                cur = btrfs_backup_tree_root_gen(root_backup);
1839                if (cur == newest_gen)
1840                        newest_index = i;
1841        }
1842
1843        /* check to see if we actually wrapped around */
1844        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845                root_backup = info->super_copy->super_roots;
1846                cur = btrfs_backup_tree_root_gen(root_backup);
1847                if (cur == newest_gen)
1848                        newest_index = 0;
1849        }
1850        return newest_index;
1851}
1852
1853
1854/*
1855 * find the oldest backup so we know where to store new entries
1856 * in the backup array.  This will set the backup_root_index
1857 * field in the fs_info struct
1858 */
1859static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860                                     u64 newest_gen)
1861{
1862        int newest_index = -1;
1863
1864        newest_index = find_newest_super_backup(info, newest_gen);
1865        /* if there was garbage in there, just move along */
1866        if (newest_index == -1) {
1867                info->backup_root_index = 0;
1868        } else {
1869                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870        }
1871}
1872
1873/*
1874 * copy all the root pointers into the super backup array.
1875 * this will bump the backup pointer by one when it is
1876 * done
1877 */
1878static void backup_super_roots(struct btrfs_fs_info *info)
1879{
1880        int next_backup;
1881        struct btrfs_root_backup *root_backup;
1882        int last_backup;
1883
1884        next_backup = info->backup_root_index;
1885        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886                BTRFS_NUM_BACKUP_ROOTS;
1887
1888        /*
1889         * just overwrite the last backup if we're at the same generation
1890         * this happens only at umount
1891         */
1892        root_backup = info->super_for_commit->super_roots + last_backup;
1893        if (btrfs_backup_tree_root_gen(root_backup) ==
1894            btrfs_header_generation(info->tree_root->node))
1895                next_backup = last_backup;
1896
1897        root_backup = info->super_for_commit->super_roots + next_backup;
1898
1899        /*
1900         * make sure all of our padding and empty slots get zero filled
1901         * regardless of which ones we use today
1902         */
1903        memset(root_backup, 0, sizeof(*root_backup));
1904
1905        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906
1907        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908        btrfs_set_backup_tree_root_gen(root_backup,
1909                               btrfs_header_generation(info->tree_root->node));
1910
1911        btrfs_set_backup_tree_root_level(root_backup,
1912                               btrfs_header_level(info->tree_root->node));
1913
1914        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915        btrfs_set_backup_chunk_root_gen(root_backup,
1916                               btrfs_header_generation(info->chunk_root->node));
1917        btrfs_set_backup_chunk_root_level(root_backup,
1918                               btrfs_header_level(info->chunk_root->node));
1919
1920        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921        btrfs_set_backup_extent_root_gen(root_backup,
1922                               btrfs_header_generation(info->extent_root->node));
1923        btrfs_set_backup_extent_root_level(root_backup,
1924                               btrfs_header_level(info->extent_root->node));
1925
1926        /*
1927         * we might commit during log recovery, which happens before we set
1928         * the fs_root.  Make sure it is valid before we fill it in.
1929         */
1930        if (info->fs_root && info->fs_root->node) {
1931                btrfs_set_backup_fs_root(root_backup,
1932                                         info->fs_root->node->start);
1933                btrfs_set_backup_fs_root_gen(root_backup,
1934                               btrfs_header_generation(info->fs_root->node));
1935                btrfs_set_backup_fs_root_level(root_backup,
1936                               btrfs_header_level(info->fs_root->node));
1937        }
1938
1939        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940        btrfs_set_backup_dev_root_gen(root_backup,
1941                               btrfs_header_generation(info->dev_root->node));
1942        btrfs_set_backup_dev_root_level(root_backup,
1943                                       btrfs_header_level(info->dev_root->node));
1944
1945        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946        btrfs_set_backup_csum_root_gen(root_backup,
1947                               btrfs_header_generation(info->csum_root->node));
1948        btrfs_set_backup_csum_root_level(root_backup,
1949                               btrfs_header_level(info->csum_root->node));
1950
1951        btrfs_set_backup_total_bytes(root_backup,
1952                             btrfs_super_total_bytes(info->super_copy));
1953        btrfs_set_backup_bytes_used(root_backup,
1954                             btrfs_super_bytes_used(info->super_copy));
1955        btrfs_set_backup_num_devices(root_backup,
1956                             btrfs_super_num_devices(info->super_copy));
1957
1958        /*
1959         * if we don't copy this out to the super_copy, it won't get remembered
1960         * for the next commit
1961         */
1962        memcpy(&info->super_copy->super_roots,
1963               &info->super_for_commit->super_roots,
1964               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965}
1966
1967/*
1968 * this copies info out of the root backup array and back into
1969 * the in-memory super block.  It is meant to help iterate through
1970 * the array, so you send it the number of backups you've already
1971 * tried and the last backup index you used.
1972 *
1973 * this returns -1 when it has tried all the backups
1974 */
1975static noinline int next_root_backup(struct btrfs_fs_info *info,
1976                                     struct btrfs_super_block *super,
1977                                     int *num_backups_tried, int *backup_index)
1978{
1979        struct btrfs_root_backup *root_backup;
1980        int newest = *backup_index;
1981
1982        if (*num_backups_tried == 0) {
1983                u64 gen = btrfs_super_generation(super);
1984
1985                newest = find_newest_super_backup(info, gen);
1986                if (newest == -1)
1987                        return -1;
1988
1989                *backup_index = newest;
1990                *num_backups_tried = 1;
1991        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992                /* we've tried all the backups, all done */
1993                return -1;
1994        } else {
1995                /* jump to the next oldest backup */
1996                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997                        BTRFS_NUM_BACKUP_ROOTS;
1998                *backup_index = newest;
1999                *num_backups_tried += 1;
2000        }
2001        root_backup = super->super_roots + newest;
2002
2003        btrfs_set_super_generation(super,
2004                                   btrfs_backup_tree_root_gen(root_backup));
2005        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006        btrfs_set_super_root_level(super,
2007                                   btrfs_backup_tree_root_level(root_backup));
2008        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009
2010        /*
2011         * fixme: the total bytes and num_devices need to match or we should
2012         * need a fsck
2013         */
2014        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016        return 0;
2017}
2018
2019/* helper to cleanup workers */
2020static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021{
2022        btrfs_destroy_workqueue(fs_info->fixup_workers);
2023        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2024        btrfs_destroy_workqueue(fs_info->workers);
2025        btrfs_destroy_workqueue(fs_info->endio_workers);
2026        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2027        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2028        btrfs_destroy_workqueue(fs_info->rmw_workers);
2029        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2031        btrfs_destroy_workqueue(fs_info->submit_workers);
2032        btrfs_destroy_workqueue(fs_info->delayed_workers);
2033        btrfs_destroy_workqueue(fs_info->caching_workers);
2034        btrfs_destroy_workqueue(fs_info->readahead_workers);
2035        btrfs_destroy_workqueue(fs_info->flush_workers);
2036        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2037        btrfs_destroy_workqueue(fs_info->extent_workers);
2038        /*
2039         * Now that all other work queues are destroyed, we can safely destroy
2040         * the queues used for metadata I/O, since tasks from those other work
2041         * queues can do metadata I/O operations.
2042         */
2043        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045}
2046
2047static void free_root_extent_buffers(struct btrfs_root *root)
2048{
2049        if (root) {
2050                free_extent_buffer(root->node);
2051                free_extent_buffer(root->commit_root);
2052                root->node = NULL;
2053                root->commit_root = NULL;
2054        }
2055}
2056
2057/* helper to cleanup tree roots */
2058static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059{
2060        free_root_extent_buffers(info->tree_root);
2061
2062        free_root_extent_buffers(info->dev_root);
2063        free_root_extent_buffers(info->extent_root);
2064        free_root_extent_buffers(info->csum_root);
2065        free_root_extent_buffers(info->quota_root);
2066        free_root_extent_buffers(info->uuid_root);
2067        if (chunk_root)
2068                free_root_extent_buffers(info->chunk_root);
2069        free_root_extent_buffers(info->free_space_root);
2070}
2071
2072void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073{
2074        int ret;
2075        struct btrfs_root *gang[8];
2076        int i;
2077
2078        while (!list_empty(&fs_info->dead_roots)) {
2079                gang[0] = list_entry(fs_info->dead_roots.next,
2080                                     struct btrfs_root, root_list);
2081                list_del(&gang[0]->root_list);
2082
2083                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2084                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2085                } else {
2086                        free_extent_buffer(gang[0]->node);
2087                        free_extent_buffer(gang[0]->commit_root);
2088                        btrfs_put_fs_root(gang[0]);
2089                }
2090        }
2091
2092        while (1) {
2093                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094                                             (void **)gang, 0,
2095                                             ARRAY_SIZE(gang));
2096                if (!ret)
2097                        break;
2098                for (i = 0; i < ret; i++)
2099                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100        }
2101
2102        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103                btrfs_free_log_root_tree(NULL, fs_info);
2104                btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2105        }
2106}
2107
2108static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109{
2110        mutex_init(&fs_info->scrub_lock);
2111        atomic_set(&fs_info->scrubs_running, 0);
2112        atomic_set(&fs_info->scrub_pause_req, 0);
2113        atomic_set(&fs_info->scrubs_paused, 0);
2114        atomic_set(&fs_info->scrub_cancel_req, 0);
2115        init_waitqueue_head(&fs_info->scrub_pause_wait);
2116        refcount_set(&fs_info->scrub_workers_refcnt, 0);
2117}
2118
2119static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120{
2121        spin_lock_init(&fs_info->balance_lock);
2122        mutex_init(&fs_info->balance_mutex);
2123        atomic_set(&fs_info->balance_pause_req, 0);
2124        atomic_set(&fs_info->balance_cancel_req, 0);
2125        fs_info->balance_ctl = NULL;
2126        init_waitqueue_head(&fs_info->balance_wait_q);
2127}
2128
2129static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2130{
2131        struct inode *inode = fs_info->btree_inode;
2132
2133        inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134        set_nlink(inode, 1);
2135        /*
2136         * we set the i_size on the btree inode to the max possible int.
2137         * the real end of the address space is determined by all of
2138         * the devices in the system
2139         */
2140        inode->i_size = OFFSET_MAX;
2141        inode->i_mapping->a_ops = &btree_aops;
2142
2143        RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2144        extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2145                            IO_TREE_INODE_IO, inode);
2146        BTRFS_I(inode)->io_tree.track_uptodate = false;
2147        extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2148
2149        BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2150
2151        BTRFS_I(inode)->root = fs_info->tree_root;
2152        memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2153        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154        btrfs_insert_inode_hash(inode);
2155}
2156
2157static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158{
2159        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2160        init_rwsem(&fs_info->dev_replace.rwsem);
2161        init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2162}
2163
2164static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165{
2166        spin_lock_init(&fs_info->qgroup_lock);
2167        mutex_init(&fs_info->qgroup_ioctl_lock);
2168        fs_info->qgroup_tree = RB_ROOT;
2169        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170        fs_info->qgroup_seq = 1;
2171        fs_info->qgroup_ulist = NULL;
2172        fs_info->qgroup_rescan_running = false;
2173        mutex_init(&fs_info->qgroup_rescan_lock);
2174}
2175
2176static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2177                struct btrfs_fs_devices *fs_devices)
2178{
2179        u32 max_active = fs_info->thread_pool_size;
2180        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2181
2182        fs_info->workers =
2183                btrfs_alloc_workqueue(fs_info, "worker",
2184                                      flags | WQ_HIGHPRI, max_active, 16);
2185
2186        fs_info->delalloc_workers =
2187                btrfs_alloc_workqueue(fs_info, "delalloc",
2188                                      flags, max_active, 2);
2189
2190        fs_info->flush_workers =
2191                btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2192                                      flags, max_active, 0);
2193
2194        fs_info->caching_workers =
2195                btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2196
2197        /*
2198         * a higher idle thresh on the submit workers makes it much more
2199         * likely that bios will be send down in a sane order to the
2200         * devices
2201         */
2202        fs_info->submit_workers =
2203                btrfs_alloc_workqueue(fs_info, "submit", flags,
2204                                      min_t(u64, fs_devices->num_devices,
2205                                            max_active), 64);
2206
2207        fs_info->fixup_workers =
2208                btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2209
2210        /*
2211         * endios are largely parallel and should have a very
2212         * low idle thresh
2213         */
2214        fs_info->endio_workers =
2215                btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2216        fs_info->endio_meta_workers =
2217                btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2218                                      max_active, 4);
2219        fs_info->endio_meta_write_workers =
2220                btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2221                                      max_active, 2);
2222        fs_info->endio_raid56_workers =
2223                btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2224                                      max_active, 4);
2225        fs_info->endio_repair_workers =
2226                btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2227        fs_info->rmw_workers =
2228                btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2229        fs_info->endio_write_workers =
2230                btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2231                                      max_active, 2);
2232        fs_info->endio_freespace_worker =
2233                btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2234                                      max_active, 0);
2235        fs_info->delayed_workers =
2236                btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2237                                      max_active, 0);
2238        fs_info->readahead_workers =
2239                btrfs_alloc_workqueue(fs_info, "readahead", flags,
2240                                      max_active, 2);
2241        fs_info->qgroup_rescan_workers =
2242                btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2243        fs_info->extent_workers =
2244                btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2245                                      min_t(u64, fs_devices->num_devices,
2246                                            max_active), 8);
2247
2248        if (!(fs_info->workers && fs_info->delalloc_workers &&
2249              fs_info->submit_workers && fs_info->flush_workers &&
2250              fs_info->endio_workers && fs_info->endio_meta_workers &&
2251              fs_info->endio_meta_write_workers &&
2252              fs_info->endio_repair_workers &&
2253              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2254              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2255              fs_info->caching_workers && fs_info->readahead_workers &&
2256              fs_info->fixup_workers && fs_info->delayed_workers &&
2257              fs_info->extent_workers &&
2258              fs_info->qgroup_rescan_workers)) {
2259                return -ENOMEM;
2260        }
2261
2262        return 0;
2263}
2264
2265static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2266                            struct btrfs_fs_devices *fs_devices)
2267{
2268        int ret;
2269        struct btrfs_root *log_tree_root;
2270        struct btrfs_super_block *disk_super = fs_info->super_copy;
2271        u64 bytenr = btrfs_super_log_root(disk_super);
2272        int level = btrfs_super_log_root_level(disk_super);
2273
2274        if (fs_devices->rw_devices == 0) {
2275                btrfs_warn(fs_info, "log replay required on RO media");
2276                return -EIO;
2277        }
2278
2279        log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2280        if (!log_tree_root)
2281                return -ENOMEM;
2282
2283        __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2284
2285        log_tree_root->node = read_tree_block(fs_info, bytenr,
2286                                              fs_info->generation + 1,
2287                                              level, NULL);
2288        if (IS_ERR(log_tree_root->node)) {
2289                btrfs_warn(fs_info, "failed to read log tree");
2290                ret = PTR_ERR(log_tree_root->node);
2291                kfree(log_tree_root);
2292                return ret;
2293        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2294                btrfs_err(fs_info, "failed to read log tree");
2295                free_extent_buffer(log_tree_root->node);
2296                kfree(log_tree_root);
2297                return -EIO;
2298        }
2299        /* returns with log_tree_root freed on success */
2300        ret = btrfs_recover_log_trees(log_tree_root);
2301        if (ret) {
2302                btrfs_handle_fs_error(fs_info, ret,
2303                                      "Failed to recover log tree");
2304                free_extent_buffer(log_tree_root->node);
2305                kfree(log_tree_root);
2306                return ret;
2307        }
2308
2309        if (sb_rdonly(fs_info->sb)) {
2310                ret = btrfs_commit_super(fs_info);
2311                if (ret)
2312                        return ret;
2313        }
2314
2315        return 0;
2316}
2317
2318static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2319{
2320        struct btrfs_root *tree_root = fs_info->tree_root;
2321        struct btrfs_root *root;
2322        struct btrfs_key location;
2323        int ret;
2324
2325        BUG_ON(!fs_info->tree_root);
2326
2327        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328        location.type = BTRFS_ROOT_ITEM_KEY;
2329        location.offset = 0;
2330
2331        root = btrfs_read_tree_root(tree_root, &location);
2332        if (IS_ERR(root)) {
2333                ret = PTR_ERR(root);
2334                goto out;
2335        }
2336        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337        fs_info->extent_root = root;
2338
2339        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2340        root = btrfs_read_tree_root(tree_root, &location);
2341        if (IS_ERR(root)) {
2342                ret = PTR_ERR(root);
2343                goto out;
2344        }
2345        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346        fs_info->dev_root = root;
2347        btrfs_init_devices_late(fs_info);
2348
2349        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350        root = btrfs_read_tree_root(tree_root, &location);
2351        if (IS_ERR(root)) {
2352                ret = PTR_ERR(root);
2353                goto out;
2354        }
2355        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356        fs_info->csum_root = root;
2357
2358        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2359        root = btrfs_read_tree_root(tree_root, &location);
2360        if (!IS_ERR(root)) {
2361                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362                set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2363                fs_info->quota_root = root;
2364        }
2365
2366        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2367        root = btrfs_read_tree_root(tree_root, &location);
2368        if (IS_ERR(root)) {
2369                ret = PTR_ERR(root);
2370                if (ret != -ENOENT)
2371                        goto out;
2372        } else {
2373                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374                fs_info->uuid_root = root;
2375        }
2376
2377        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2378                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2379                root = btrfs_read_tree_root(tree_root, &location);
2380                if (IS_ERR(root)) {
2381                        ret = PTR_ERR(root);
2382                        goto out;
2383                }
2384                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385                fs_info->free_space_root = root;
2386        }
2387
2388        return 0;
2389out:
2390        btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2391                   location.objectid, ret);
2392        return ret;
2393}
2394
2395/*
2396 * Real super block validation
2397 * NOTE: super csum type and incompat features will not be checked here.
2398 *
2399 * @sb:         super block to check
2400 * @mirror_num: the super block number to check its bytenr:
2401 *              0       the primary (1st) sb
2402 *              1, 2    2nd and 3rd backup copy
2403 *             -1       skip bytenr check
2404 */
2405static int validate_super(struct btrfs_fs_info *fs_info,
2406                            struct btrfs_super_block *sb, int mirror_num)
2407{
2408        u64 nodesize = btrfs_super_nodesize(sb);
2409        u64 sectorsize = btrfs_super_sectorsize(sb);
2410        int ret = 0;
2411
2412        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2413                btrfs_err(fs_info, "no valid FS found");
2414                ret = -EINVAL;
2415        }
2416        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2417                btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2418                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2419                ret = -EINVAL;
2420        }
2421        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422                btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2423                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2424                ret = -EINVAL;
2425        }
2426        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427                btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2428                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2429                ret = -EINVAL;
2430        }
2431        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432                btrfs_err(fs_info, "log_root level too big: %d >= %d",
2433                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2434                ret = -EINVAL;
2435        }
2436
2437        /*
2438         * Check sectorsize and nodesize first, other check will need it.
2439         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2440         */
2441        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2442            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443                btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2444                ret = -EINVAL;
2445        }
2446        /* Only PAGE SIZE is supported yet */
2447        if (sectorsize != PAGE_SIZE) {
2448                btrfs_err(fs_info,
2449                        "sectorsize %llu not supported yet, only support %lu",
2450                        sectorsize, PAGE_SIZE);
2451                ret = -EINVAL;
2452        }
2453        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2454            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455                btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2456                ret = -EINVAL;
2457        }
2458        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2459                btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2460                          le32_to_cpu(sb->__unused_leafsize), nodesize);
2461                ret = -EINVAL;
2462        }
2463
2464        /* Root alignment check */
2465        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2466                btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2467                           btrfs_super_root(sb));
2468                ret = -EINVAL;
2469        }
2470        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2471                btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2472                           btrfs_super_chunk_root(sb));
2473                ret = -EINVAL;
2474        }
2475        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2476                btrfs_warn(fs_info, "log_root block unaligned: %llu",
2477                           btrfs_super_log_root(sb));
2478                ret = -EINVAL;
2479        }
2480
2481        if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2482                   BTRFS_FSID_SIZE) != 0) {
2483                btrfs_err(fs_info,
2484                        "dev_item UUID does not match metadata fsid: %pU != %pU",
2485                        fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2486                ret = -EINVAL;
2487        }
2488
2489        /*
2490         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2491         * done later
2492         */
2493        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2494                btrfs_err(fs_info, "bytes_used is too small %llu",
2495                          btrfs_super_bytes_used(sb));
2496                ret = -EINVAL;
2497        }
2498        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2499                btrfs_err(fs_info, "invalid stripesize %u",
2500                          btrfs_super_stripesize(sb));
2501                ret = -EINVAL;
2502        }
2503        if (btrfs_super_num_devices(sb) > (1UL << 31))
2504                btrfs_warn(fs_info, "suspicious number of devices: %llu",
2505                           btrfs_super_num_devices(sb));
2506        if (btrfs_super_num_devices(sb) == 0) {
2507                btrfs_err(fs_info, "number of devices is 0");
2508                ret = -EINVAL;
2509        }
2510
2511        if (mirror_num >= 0 &&
2512            btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2513                btrfs_err(fs_info, "super offset mismatch %llu != %u",
2514                          btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2515                ret = -EINVAL;
2516        }
2517
2518        /*
2519         * Obvious sys_chunk_array corruptions, it must hold at least one key
2520         * and one chunk
2521         */
2522        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2523                btrfs_err(fs_info, "system chunk array too big %u > %u",
2524                          btrfs_super_sys_array_size(sb),
2525                          BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2526                ret = -EINVAL;
2527        }
2528        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2529                        + sizeof(struct btrfs_chunk)) {
2530                btrfs_err(fs_info, "system chunk array too small %u < %zu",
2531                          btrfs_super_sys_array_size(sb),
2532                          sizeof(struct btrfs_disk_key)
2533                          + sizeof(struct btrfs_chunk));
2534                ret = -EINVAL;
2535        }
2536
2537        /*
2538         * The generation is a global counter, we'll trust it more than the others
2539         * but it's still possible that it's the one that's wrong.
2540         */
2541        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542                btrfs_warn(fs_info,
2543                        "suspicious: generation < chunk_root_generation: %llu < %llu",
2544                        btrfs_super_generation(sb),
2545                        btrfs_super_chunk_root_generation(sb));
2546        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2547            && btrfs_super_cache_generation(sb) != (u64)-1)
2548                btrfs_warn(fs_info,
2549                        "suspicious: generation < cache_generation: %llu < %llu",
2550                        btrfs_super_generation(sb),
2551                        btrfs_super_cache_generation(sb));
2552
2553        return ret;
2554}
2555
2556/*
2557 * Validation of super block at mount time.
2558 * Some checks already done early at mount time, like csum type and incompat
2559 * flags will be skipped.
2560 */
2561static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562{
2563        return validate_super(fs_info, fs_info->super_copy, 0);
2564}
2565
2566/*
2567 * Validation of super block at write time.
2568 * Some checks like bytenr check will be skipped as their values will be
2569 * overwritten soon.
2570 * Extra checks like csum type and incompat flags will be done here.
2571 */
2572static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2573                                      struct btrfs_super_block *sb)
2574{
2575        int ret;
2576
2577        ret = validate_super(fs_info, sb, -1);
2578        if (ret < 0)
2579                goto out;
2580        if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581                ret = -EUCLEAN;
2582                btrfs_err(fs_info, "invalid csum type, has %u want %u",
2583                          btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2584                goto out;
2585        }
2586        if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2587                ret = -EUCLEAN;
2588                btrfs_err(fs_info,
2589                "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2590                          btrfs_super_incompat_flags(sb),
2591                          (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592                goto out;
2593        }
2594out:
2595        if (ret < 0)
2596                btrfs_err(fs_info,
2597                "super block corruption detected before writing it to disk");
2598        return ret;
2599}
2600
2601int open_ctree(struct super_block *sb,
2602               struct btrfs_fs_devices *fs_devices,
2603               char *options)
2604{
2605        u32 sectorsize;
2606        u32 nodesize;
2607        u32 stripesize;
2608        u64 generation;
2609        u64 features;
2610        struct btrfs_key location;
2611        struct buffer_head *bh;
2612        struct btrfs_super_block *disk_super;
2613        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2614        struct btrfs_root *tree_root;
2615        struct btrfs_root *chunk_root;
2616        int ret;
2617        int err = -EINVAL;
2618        int num_backups_tried = 0;
2619        int backup_index = 0;
2620        int clear_free_space_tree = 0;
2621        int level;
2622
2623        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625        if (!tree_root || !chunk_root) {
2626                err = -ENOMEM;
2627                goto fail;
2628        }
2629
2630        ret = init_srcu_struct(&fs_info->subvol_srcu);
2631        if (ret) {
2632                err = ret;
2633                goto fail;
2634        }
2635
2636        ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2637        if (ret) {
2638                err = ret;
2639                goto fail_srcu;
2640        }
2641
2642        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2643        if (ret) {
2644                err = ret;
2645                goto fail_dio_bytes;
2646        }
2647        fs_info->dirty_metadata_batch = PAGE_SIZE *
2648                                        (1 + ilog2(nr_cpu_ids));
2649
2650        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2651        if (ret) {
2652                err = ret;
2653                goto fail_dirty_metadata_bytes;
2654        }
2655
2656        ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2657                        GFP_KERNEL);
2658        if (ret) {
2659                err = ret;
2660                goto fail_delalloc_bytes;
2661        }
2662
2663        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2664        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2665        INIT_LIST_HEAD(&fs_info->trans_list);
2666        INIT_LIST_HEAD(&fs_info->dead_roots);
2667        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2668        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2669        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2670        INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2671        spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2672        spin_lock_init(&fs_info->delalloc_root_lock);
2673        spin_lock_init(&fs_info->trans_lock);
2674        spin_lock_init(&fs_info->fs_roots_radix_lock);
2675        spin_lock_init(&fs_info->delayed_iput_lock);
2676        spin_lock_init(&fs_info->defrag_inodes_lock);
2677        spin_lock_init(&fs_info->tree_mod_seq_lock);
2678        spin_lock_init(&fs_info->super_lock);
2679        spin_lock_init(&fs_info->buffer_lock);
2680        spin_lock_init(&fs_info->unused_bgs_lock);
2681        rwlock_init(&fs_info->tree_mod_log_lock);
2682        mutex_init(&fs_info->unused_bg_unpin_mutex);
2683        mutex_init(&fs_info->delete_unused_bgs_mutex);
2684        mutex_init(&fs_info->reloc_mutex);
2685        mutex_init(&fs_info->delalloc_root_mutex);
2686        seqlock_init(&fs_info->profiles_lock);
2687
2688        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2689        INIT_LIST_HEAD(&fs_info->space_info);
2690        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2691        INIT_LIST_HEAD(&fs_info->unused_bgs);
2692        btrfs_mapping_init(&fs_info->mapping_tree);
2693        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2694                             BTRFS_BLOCK_RSV_GLOBAL);
2695        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2696        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2697        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2698        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2699                             BTRFS_BLOCK_RSV_DELOPS);
2700        btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2701                             BTRFS_BLOCK_RSV_DELREFS);
2702
2703        atomic_set(&fs_info->async_delalloc_pages, 0);
2704        atomic_set(&fs_info->defrag_running, 0);
2705        atomic_set(&fs_info->reada_works_cnt, 0);
2706        atomic_set(&fs_info->nr_delayed_iputs, 0);
2707        atomic64_set(&fs_info->tree_mod_seq, 0);
2708        fs_info->sb = sb;
2709        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2710        fs_info->metadata_ratio = 0;
2711        fs_info->defrag_inodes = RB_ROOT;
2712        atomic64_set(&fs_info->free_chunk_space, 0);
2713        fs_info->tree_mod_log = RB_ROOT;
2714        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2715        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2716        /* readahead state */
2717        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2718        spin_lock_init(&fs_info->reada_lock);
2719        btrfs_init_ref_verify(fs_info);
2720
2721        fs_info->thread_pool_size = min_t(unsigned long,
2722                                          num_online_cpus() + 2, 8);
2723
2724        INIT_LIST_HEAD(&fs_info->ordered_roots);
2725        spin_lock_init(&fs_info->ordered_root_lock);
2726
2727        fs_info->btree_inode = new_inode(sb);
2728        if (!fs_info->btree_inode) {
2729                err = -ENOMEM;
2730                goto fail_bio_counter;
2731        }
2732        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2733
2734        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2735                                        GFP_KERNEL);
2736        if (!fs_info->delayed_root) {
2737                err = -ENOMEM;
2738                goto fail_iput;
2739        }
2740        btrfs_init_delayed_root(fs_info->delayed_root);
2741
2742        btrfs_init_scrub(fs_info);
2743#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2744        fs_info->check_integrity_print_mask = 0;
2745#endif
2746        btrfs_init_balance(fs_info);
2747        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2748
2749        sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2750        sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2751
2752        btrfs_init_btree_inode(fs_info);
2753
2754        spin_lock_init(&fs_info->block_group_cache_lock);
2755        fs_info->block_group_cache_tree = RB_ROOT;
2756        fs_info->first_logical_byte = (u64)-1;
2757
2758        extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2759                            IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2760        extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2761                            IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2762        fs_info->pinned_extents = &fs_info->freed_extents[0];
2763        set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2764
2765        mutex_init(&fs_info->ordered_operations_mutex);
2766        mutex_init(&fs_info->tree_log_mutex);
2767        mutex_init(&fs_info->chunk_mutex);
2768        mutex_init(&fs_info->transaction_kthread_mutex);
2769        mutex_init(&fs_info->cleaner_mutex);
2770        mutex_init(&fs_info->ro_block_group_mutex);
2771        init_rwsem(&fs_info->commit_root_sem);
2772        init_rwsem(&fs_info->cleanup_work_sem);
2773        init_rwsem(&fs_info->subvol_sem);
2774        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2775
2776        btrfs_init_dev_replace_locks(fs_info);
2777        btrfs_init_qgroup(fs_info);
2778
2779        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2780        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2781
2782        init_waitqueue_head(&fs_info->transaction_throttle);
2783        init_waitqueue_head(&fs_info->transaction_wait);
2784        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2785        init_waitqueue_head(&fs_info->async_submit_wait);
2786        init_waitqueue_head(&fs_info->delayed_iputs_wait);
2787
2788        /* Usable values until the real ones are cached from the superblock */
2789        fs_info->nodesize = 4096;
2790        fs_info->sectorsize = 4096;
2791        fs_info->stripesize = 4096;
2792
2793        spin_lock_init(&fs_info->swapfile_pins_lock);
2794        fs_info->swapfile_pins = RB_ROOT;
2795
2796        ret = btrfs_alloc_stripe_hash_table(fs_info);
2797        if (ret) {
2798                err = ret;
2799                goto fail_alloc;
2800        }
2801
2802        __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2803
2804        invalidate_bdev(fs_devices->latest_bdev);
2805
2806        /*
2807         * Read super block and check the signature bytes only
2808         */
2809        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2810        if (IS_ERR(bh)) {
2811                err = PTR_ERR(bh);
2812                goto fail_alloc;
2813        }
2814
2815        /*
2816         * We want to check superblock checksum, the type is stored inside.
2817         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2818         */
2819        if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2820                btrfs_err(fs_info, "superblock checksum mismatch");
2821                err = -EINVAL;
2822                brelse(bh);
2823                goto fail_alloc;
2824        }
2825
2826        /*
2827         * super_copy is zeroed at allocation time and we never touch the
2828         * following bytes up to INFO_SIZE, the checksum is calculated from
2829         * the whole block of INFO_SIZE
2830         */
2831        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2832        brelse(bh);
2833
2834        disk_super = fs_info->super_copy;
2835
2836        ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2837                       BTRFS_FSID_SIZE));
2838
2839        if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2840                ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2841                                fs_info->super_copy->metadata_uuid,
2842                                BTRFS_FSID_SIZE));
2843        }
2844
2845        features = btrfs_super_flags(disk_super);
2846        if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2847                features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2848                btrfs_set_super_flags(disk_super, features);
2849                btrfs_info(fs_info,
2850                        "found metadata UUID change in progress flag, clearing");
2851        }
2852
2853        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2854               sizeof(*fs_info->super_for_commit));
2855
2856        ret = btrfs_validate_mount_super(fs_info);
2857        if (ret) {
2858                btrfs_err(fs_info, "superblock contains fatal errors");
2859                err = -EINVAL;
2860                goto fail_alloc;
2861        }
2862
2863        if (!btrfs_super_root(disk_super))
2864                goto fail_alloc;
2865
2866        /* check FS state, whether FS is broken. */
2867        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2868                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2869
2870        /*
2871         * run through our array of backup supers and setup
2872         * our ring pointer to the oldest one
2873         */
2874        generation = btrfs_super_generation(disk_super);
2875        find_oldest_super_backup(fs_info, generation);
2876
2877        /*
2878         * In the long term, we'll store the compression type in the super
2879         * block, and it'll be used for per file compression control.
2880         */
2881        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2882
2883        ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2884        if (ret) {
2885                err = ret;
2886                goto fail_alloc;
2887        }
2888
2889        features = btrfs_super_incompat_flags(disk_super) &
2890                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2891        if (features) {
2892                btrfs_err(fs_info,
2893                    "cannot mount because of unsupported optional features (%llx)",
2894                    features);
2895                err = -EINVAL;
2896                goto fail_alloc;
2897        }
2898
2899        features = btrfs_super_incompat_flags(disk_super);
2900        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2901        if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2902                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2903        else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2904                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2905
2906        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2907                btrfs_info(fs_info, "has skinny extents");
2908
2909        /*
2910         * flag our filesystem as having big metadata blocks if
2911         * they are bigger than the page size
2912         */
2913        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2914                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2915                        btrfs_info(fs_info,
2916                                "flagging fs with big metadata feature");
2917                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2918        }
2919
2920        nodesize = btrfs_super_nodesize(disk_super);
2921        sectorsize = btrfs_super_sectorsize(disk_super);
2922        stripesize = sectorsize;
2923        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2924        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2925
2926        /* Cache block sizes */
2927        fs_info->nodesize = nodesize;
2928        fs_info->sectorsize = sectorsize;
2929        fs_info->stripesize = stripesize;
2930
2931        /*
2932         * mixed block groups end up with duplicate but slightly offset
2933         * extent buffers for the same range.  It leads to corruptions
2934         */
2935        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2936            (sectorsize != nodesize)) {
2937                btrfs_err(fs_info,
2938"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2939                        nodesize, sectorsize);
2940                goto fail_alloc;
2941        }
2942
2943        /*
2944         * Needn't use the lock because there is no other task which will
2945         * update the flag.
2946         */
2947        btrfs_set_super_incompat_flags(disk_super, features);
2948
2949        features = btrfs_super_compat_ro_flags(disk_super) &
2950                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2951        if (!sb_rdonly(sb) && features) {
2952                btrfs_err(fs_info,
2953        "cannot mount read-write because of unsupported optional features (%llx)",
2954                       features);
2955                err = -EINVAL;
2956                goto fail_alloc;
2957        }
2958
2959        ret = btrfs_init_workqueues(fs_info, fs_devices);
2960        if (ret) {
2961                err = ret;
2962                goto fail_sb_buffer;
2963        }
2964
2965        sb->s_bdi->congested_fn = btrfs_congested_fn;
2966        sb->s_bdi->congested_data = fs_info;
2967        sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2968        sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2969        sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2970        sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2971
2972        sb->s_blocksize = sectorsize;
2973        sb->s_blocksize_bits = blksize_bits(sectorsize);
2974        memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2975
2976        mutex_lock(&fs_info->chunk_mutex);
2977        ret = btrfs_read_sys_array(fs_info);
2978        mutex_unlock(&fs_info->chunk_mutex);
2979        if (ret) {
2980                btrfs_err(fs_info, "failed to read the system array: %d", ret);
2981                goto fail_sb_buffer;
2982        }
2983
2984        generation = btrfs_super_chunk_root_generation(disk_super);
2985        level = btrfs_super_chunk_root_level(disk_super);
2986
2987        __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2988
2989        chunk_root->node = read_tree_block(fs_info,
2990                                           btrfs_super_chunk_root(disk_super),
2991                                           generation, level, NULL);
2992        if (IS_ERR(chunk_root->node) ||
2993            !extent_buffer_uptodate(chunk_root->node)) {
2994                btrfs_err(fs_info, "failed to read chunk root");
2995                if (!IS_ERR(chunk_root->node))
2996                        free_extent_buffer(chunk_root->node);
2997                chunk_root->node = NULL;
2998                goto fail_tree_roots;
2999        }
3000        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3001        chunk_root->commit_root = btrfs_root_node(chunk_root);
3002
3003        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3004           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3005
3006        ret = btrfs_read_chunk_tree(fs_info);
3007        if (ret) {
3008                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3009                goto fail_tree_roots;
3010        }
3011
3012        /*
3013         * Keep the devid that is marked to be the target device for the
3014         * device replace procedure
3015         */
3016        btrfs_free_extra_devids(fs_devices, 0);
3017
3018        if (!fs_devices->latest_bdev) {
3019                btrfs_err(fs_info, "failed to read devices");
3020                goto fail_tree_roots;
3021        }
3022
3023retry_root_backup:
3024        generation = btrfs_super_generation(disk_super);
3025        level = btrfs_super_root_level(disk_super);
3026
3027        tree_root->node = read_tree_block(fs_info,
3028                                          btrfs_super_root(disk_super),
3029                                          generation, level, NULL);
3030        if (IS_ERR(tree_root->node) ||
3031            !extent_buffer_uptodate(tree_root->node)) {
3032                btrfs_warn(fs_info, "failed to read tree root");
3033                if (!IS_ERR(tree_root->node))
3034                        free_extent_buffer(tree_root->node);
3035                tree_root->node = NULL;
3036                goto recovery_tree_root;
3037        }
3038
3039        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3040        tree_root->commit_root = btrfs_root_node(tree_root);
3041        btrfs_set_root_refs(&tree_root->root_item, 1);
3042
3043        mutex_lock(&tree_root->objectid_mutex);
3044        ret = btrfs_find_highest_objectid(tree_root,
3045                                        &tree_root->highest_objectid);
3046        if (ret) {
3047                mutex_unlock(&tree_root->objectid_mutex);
3048                goto recovery_tree_root;
3049        }
3050
3051        ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3052
3053        mutex_unlock(&tree_root->objectid_mutex);
3054
3055        ret = btrfs_read_roots(fs_info);
3056        if (ret)
3057                goto recovery_tree_root;
3058
3059        fs_info->generation = generation;
3060        fs_info->last_trans_committed = generation;
3061
3062        ret = btrfs_verify_dev_extents(fs_info);
3063        if (ret) {
3064                btrfs_err(fs_info,
3065                          "failed to verify dev extents against chunks: %d",
3066                          ret);
3067                goto fail_block_groups;
3068        }
3069        ret = btrfs_recover_balance(fs_info);
3070        if (ret) {
3071                btrfs_err(fs_info, "failed to recover balance: %d", ret);
3072                goto fail_block_groups;
3073        }
3074
3075        ret = btrfs_init_dev_stats(fs_info);
3076        if (ret) {
3077                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3078                goto fail_block_groups;
3079        }
3080
3081        ret = btrfs_init_dev_replace(fs_info);
3082        if (ret) {
3083                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3084                goto fail_block_groups;
3085        }
3086
3087        btrfs_free_extra_devids(fs_devices, 1);
3088
3089        ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3090        if (ret) {
3091                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3092                                ret);
3093                goto fail_block_groups;
3094        }
3095
3096        ret = btrfs_sysfs_add_device(fs_devices);
3097        if (ret) {
3098                btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3099                                ret);
3100                goto fail_fsdev_sysfs;
3101        }
3102
3103        ret = btrfs_sysfs_add_mounted(fs_info);
3104        if (ret) {
3105                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3106                goto fail_fsdev_sysfs;
3107        }
3108
3109        ret = btrfs_init_space_info(fs_info);
3110        if (ret) {
3111                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3112                goto fail_sysfs;
3113        }
3114
3115        ret = btrfs_read_block_groups(fs_info);
3116        if (ret) {
3117                btrfs_err(fs_info, "failed to read block groups: %d", ret);
3118                goto fail_sysfs;
3119        }
3120
3121        if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3122                btrfs_warn(fs_info,
3123                "writable mount is not allowed due to too many missing devices");
3124                goto fail_sysfs;
3125        }
3126
3127        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3128                                               "btrfs-cleaner");
3129        if (IS_ERR(fs_info->cleaner_kthread))
3130                goto fail_sysfs;
3131
3132        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3133                                                   tree_root,
3134                                                   "btrfs-transaction");
3135        if (IS_ERR(fs_info->transaction_kthread))
3136                goto fail_cleaner;
3137
3138        if (!btrfs_test_opt(fs_info, NOSSD) &&
3139            !fs_info->fs_devices->rotating) {
3140                btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3141        }
3142
3143        /*
3144         * Mount does not set all options immediately, we can do it now and do
3145         * not have to wait for transaction commit
3146         */
3147        btrfs_apply_pending_changes(fs_info);
3148
3149#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3150        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3151                ret = btrfsic_mount(fs_info, fs_devices,
3152                                    btrfs_test_opt(fs_info,
3153                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3154                                    1 : 0,
3155                                    fs_info->check_integrity_print_mask);
3156                if (ret)
3157                        btrfs_warn(fs_info,
3158                                "failed to initialize integrity check module: %d",
3159                                ret);
3160        }
3161#endif
3162        ret = btrfs_read_qgroup_config(fs_info);
3163        if (ret)
3164                goto fail_trans_kthread;
3165
3166        if (btrfs_build_ref_tree(fs_info))
3167                btrfs_err(fs_info, "couldn't build ref tree");
3168
3169        /* do not make disk changes in broken FS or nologreplay is given */
3170        if (btrfs_super_log_root(disk_super) != 0 &&
3171            !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3172                ret = btrfs_replay_log(fs_info, fs_devices);
3173                if (ret) {
3174                        err = ret;
3175                        goto fail_qgroup;
3176                }
3177        }
3178
3179        ret = btrfs_find_orphan_roots(fs_info);
3180        if (ret)
3181                goto fail_qgroup;
3182
3183        if (!sb_rdonly(sb)) {
3184                ret = btrfs_cleanup_fs_roots(fs_info);
3185                if (ret)
3186                        goto fail_qgroup;
3187
3188                mutex_lock(&fs_info->cleaner_mutex);
3189                ret = btrfs_recover_relocation(tree_root);
3190                mutex_unlock(&fs_info->cleaner_mutex);
3191                if (ret < 0) {
3192                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3193                                        ret);
3194                        err = -EINVAL;
3195                        goto fail_qgroup;
3196                }
3197        }
3198
3199        location.objectid = BTRFS_FS_TREE_OBJECTID;
3200        location.type = BTRFS_ROOT_ITEM_KEY;
3201        location.offset = 0;
3202
3203        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3204        if (IS_ERR(fs_info->fs_root)) {
3205                err = PTR_ERR(fs_info->fs_root);
3206                btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3207                goto fail_qgroup;
3208        }
3209
3210        if (sb_rdonly(sb))
3211                return 0;
3212
3213        if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3214            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3215                clear_free_space_tree = 1;
3216        } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3217                   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3218                btrfs_warn(fs_info, "free space tree is invalid");
3219                clear_free_space_tree = 1;
3220        }
3221
3222        if (clear_free_space_tree) {
3223                btrfs_info(fs_info, "clearing free space tree");
3224                ret = btrfs_clear_free_space_tree(fs_info);
3225                if (ret) {
3226                        btrfs_warn(fs_info,
3227                                   "failed to clear free space tree: %d", ret);
3228                        close_ctree(fs_info);
3229                        return ret;
3230                }
3231        }
3232
3233        if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3234            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3235                btrfs_info(fs_info, "creating free space tree");
3236                ret = btrfs_create_free_space_tree(fs_info);
3237                if (ret) {
3238                        btrfs_warn(fs_info,
3239                                "failed to create free space tree: %d", ret);
3240                        close_ctree(fs_info);
3241                        return ret;
3242                }
3243        }
3244
3245        down_read(&fs_info->cleanup_work_sem);
3246        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3247            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3248                up_read(&fs_info->cleanup_work_sem);
3249                close_ctree(fs_info);
3250                return ret;
3251        }
3252        up_read(&fs_info->cleanup_work_sem);
3253
3254        ret = btrfs_resume_balance_async(fs_info);
3255        if (ret) {
3256                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3257                close_ctree(fs_info);
3258                return ret;
3259        }
3260
3261        ret = btrfs_resume_dev_replace_async(fs_info);
3262        if (ret) {
3263                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3264                close_ctree(fs_info);
3265                return ret;
3266        }
3267
3268        btrfs_qgroup_rescan_resume(fs_info);
3269
3270        if (!fs_info->uuid_root) {
3271                btrfs_info(fs_info, "creating UUID tree");
3272                ret = btrfs_create_uuid_tree(fs_info);
3273                if (ret) {
3274                        btrfs_warn(fs_info,
3275                                "failed to create the UUID tree: %d", ret);
3276                        close_ctree(fs_info);
3277                        return ret;
3278                }
3279        } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3280                   fs_info->generation !=
3281                                btrfs_super_uuid_tree_generation(disk_super)) {
3282                btrfs_info(fs_info, "checking UUID tree");
3283                ret = btrfs_check_uuid_tree(fs_info);
3284                if (ret) {
3285                        btrfs_warn(fs_info,
3286                                "failed to check the UUID tree: %d", ret);
3287                        close_ctree(fs_info);
3288                        return ret;
3289                }
3290        } else {
3291                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3292        }
3293        set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3294
3295        /*
3296         * backuproot only affect mount behavior, and if open_ctree succeeded,
3297         * no need to keep the flag
3298         */
3299        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3300
3301        return 0;
3302
3303fail_qgroup:
3304        btrfs_free_qgroup_config(fs_info);
3305fail_trans_kthread:
3306        kthread_stop(fs_info->transaction_kthread);
3307        btrfs_cleanup_transaction(fs_info);
3308        btrfs_free_fs_roots(fs_info);
3309fail_cleaner:
3310        kthread_stop(fs_info->cleaner_kthread);
3311
3312        /*
3313         * make sure we're done with the btree inode before we stop our
3314         * kthreads
3315         */
3316        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3317
3318fail_sysfs:
3319        btrfs_sysfs_remove_mounted(fs_info);
3320
3321fail_fsdev_sysfs:
3322        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3323
3324fail_block_groups:
3325        btrfs_put_block_group_cache(fs_info);
3326
3327fail_tree_roots:
3328        free_root_pointers(fs_info, 1);
3329        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3330
3331fail_sb_buffer:
3332        btrfs_stop_all_workers(fs_info);
3333        btrfs_free_block_groups(fs_info);
3334fail_alloc:
3335fail_iput:
3336        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3337
3338        iput(fs_info->btree_inode);
3339fail_bio_counter:
3340        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3341fail_delalloc_bytes:
3342        percpu_counter_destroy(&fs_info->delalloc_bytes);
3343fail_dirty_metadata_bytes:
3344        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3345fail_dio_bytes:
3346        percpu_counter_destroy(&fs_info->dio_bytes);
3347fail_srcu:
3348        cleanup_srcu_struct(&fs_info->subvol_srcu);
3349fail:
3350        btrfs_free_stripe_hash_table(fs_info);
3351        btrfs_close_devices(fs_info->fs_devices);
3352        return err;
3353
3354recovery_tree_root:
3355        if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3356                goto fail_tree_roots;
3357
3358        free_root_pointers(fs_info, 0);
3359
3360        /* don't use the log in recovery mode, it won't be valid */
3361        btrfs_set_super_log_root(disk_super, 0);
3362
3363        /* we can't trust the free space cache either */
3364        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3365
3366        ret = next_root_backup(fs_info, fs_info->super_copy,
3367                               &num_backups_tried, &backup_index);
3368        if (ret == -1)
3369                goto fail_block_groups;
3370        goto retry_root_backup;
3371}
3372ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3373
3374static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3375{
3376        if (uptodate) {
3377                set_buffer_uptodate(bh);
3378        } else {
3379                struct btrfs_device *device = (struct btrfs_device *)
3380                        bh->b_private;
3381
3382                btrfs_warn_rl_in_rcu(device->fs_info,
3383                                "lost page write due to IO error on %s",
3384                                          rcu_str_deref(device->name));
3385                /* note, we don't set_buffer_write_io_error because we have
3386                 * our own ways of dealing with the IO errors
3387                 */
3388                clear_buffer_uptodate(bh);
3389                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3390        }
3391        unlock_buffer(bh);
3392        put_bh(bh);
3393}
3394
3395int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3396                        struct buffer_head **bh_ret)
3397{
3398        struct buffer_head *bh;
3399        struct btrfs_super_block *super;
3400        u64 bytenr;
3401
3402        bytenr = btrfs_sb_offset(copy_num);
3403        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3404                return -EINVAL;
3405
3406        bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3407        /*
3408         * If we fail to read from the underlying devices, as of now
3409         * the best option we have is to mark it EIO.
3410         */
3411        if (!bh)
3412                return -EIO;
3413
3414        super = (struct btrfs_super_block *)bh->b_data;
3415        if (btrfs_super_bytenr(super) != bytenr ||
3416                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3417                brelse(bh);
3418                return -EINVAL;
3419        }
3420
3421        *bh_ret = bh;
3422        return 0;
3423}
3424
3425
3426struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3427{
3428        struct buffer_head *bh;
3429        struct buffer_head *latest = NULL;
3430        struct btrfs_super_block *super;
3431        int i;
3432        u64 transid = 0;
3433        int ret = -EINVAL;
3434
3435        /* we would like to check all the supers, but that would make
3436         * a btrfs mount succeed after a mkfs from a different FS.
3437         * So, we need to add a special mount option to scan for
3438         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3439         */
3440        for (i = 0; i < 1; i++) {
3441                ret = btrfs_read_dev_one_super(bdev, i, &bh);
3442                if (ret)
3443                        continue;
3444
3445                super = (struct btrfs_super_block *)bh->b_data;
3446
3447                if (!latest || btrfs_super_generation(super) > transid) {
3448                        brelse(latest);
3449                        latest = bh;
3450                        transid = btrfs_super_generation(super);
3451                } else {
3452                        brelse(bh);
3453                }
3454        }
3455
3456        if (!latest)
3457                return ERR_PTR(ret);
3458
3459        return latest;
3460}
3461
3462/*
3463 * Write superblock @sb to the @device. Do not wait for completion, all the
3464 * buffer heads we write are pinned.
3465 *
3466 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3467 * the expected device size at commit time. Note that max_mirrors must be
3468 * same for write and wait phases.
3469 *
3470 * Return number of errors when buffer head is not found or submission fails.
3471 */
3472static int write_dev_supers(struct btrfs_device *device,
3473                            struct btrfs_super_block *sb, int max_mirrors)
3474{
3475        struct buffer_head *bh;
3476        int i;
3477        int ret;
3478        int errors = 0;
3479        u32 crc;
3480        u64 bytenr;
3481        int op_flags;
3482
3483        if (max_mirrors == 0)
3484                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3485
3486        for (i = 0; i < max_mirrors; i++) {
3487                bytenr = btrfs_sb_offset(i);
3488                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3489                    device->commit_total_bytes)
3490                        break;
3491
3492                btrfs_set_super_bytenr(sb, bytenr);
3493
3494                crc = ~(u32)0;
3495                crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3496                                      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3497                btrfs_csum_final(crc, sb->csum);
3498
3499                /* One reference for us, and we leave it for the caller */
3500                bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3501                              BTRFS_SUPER_INFO_SIZE);
3502                if (!bh) {
3503                        btrfs_err(device->fs_info,
3504                            "couldn't get super buffer head for bytenr %llu",
3505                            bytenr);
3506                        errors++;
3507                        continue;
3508                }
3509
3510                memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3511
3512                /* one reference for submit_bh */
3513                get_bh(bh);
3514
3515                set_buffer_uptodate(bh);
3516                lock_buffer(bh);
3517                bh->b_end_io = btrfs_end_buffer_write_sync;
3518                bh->b_private = device;
3519
3520                /*
3521                 * we fua the first super.  The others we allow
3522                 * to go down lazy.
3523                 */
3524                op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3525                if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3526                        op_flags |= REQ_FUA;
3527                ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3528                if (ret)
3529                        errors++;
3530        }
3531        return errors < i ? 0 : -1;
3532}
3533
3534/*
3535 * Wait for write completion of superblocks done by write_dev_supers,
3536 * @max_mirrors same for write and wait phases.
3537 *
3538 * Return number of errors when buffer head is not found or not marked up to
3539 * date.
3540 */
3541static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3542{
3543        struct buffer_head *bh;
3544        int i;
3545        int errors = 0;
3546        bool primary_failed = false;
3547        u64 bytenr;
3548
3549        if (max_mirrors == 0)
3550                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3551
3552        for (i = 0; i < max_mirrors; i++) {
3553                bytenr = btrfs_sb_offset(i);
3554                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555                    device->commit_total_bytes)
3556                        break;
3557
3558                bh = __find_get_block(device->bdev,
3559                                      bytenr / BTRFS_BDEV_BLOCKSIZE,
3560                                      BTRFS_SUPER_INFO_SIZE);
3561                if (!bh) {
3562                        errors++;
3563                        if (i == 0)
3564                                primary_failed = true;
3565                        continue;
3566                }
3567                wait_on_buffer(bh);
3568                if (!buffer_uptodate(bh)) {
3569                        errors++;
3570                        if (i == 0)
3571                                primary_failed = true;
3572                }
3573
3574                /* drop our reference */
3575                brelse(bh);
3576
3577                /* drop the reference from the writing run */
3578                brelse(bh);
3579        }
3580
3581        /* log error, force error return */
3582        if (primary_failed) {
3583                btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3584                          device->devid);
3585                return -1;
3586        }
3587
3588        return errors < i ? 0 : -1;
3589}
3590
3591/*
3592 * endio for the write_dev_flush, this will wake anyone waiting
3593 * for the barrier when it is done
3594 */
3595static void btrfs_end_empty_barrier(struct bio *bio)
3596{
3597        complete(bio->bi_private);
3598}
3599
3600/*
3601 * Submit a flush request to the device if it supports it. Error handling is
3602 * done in the waiting counterpart.
3603 */
3604static void write_dev_flush(struct btrfs_device *device)
3605{
3606        struct request_queue *q = bdev_get_queue(device->bdev);
3607        struct bio *bio = device->flush_bio;
3608
3609        if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3610                return;
3611
3612        bio_reset(bio);
3613        bio->bi_end_io = btrfs_end_empty_barrier;
3614        bio_set_dev(bio, device->bdev);
3615        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3616        init_completion(&device->flush_wait);
3617        bio->bi_private = &device->flush_wait;
3618
3619        btrfsic_submit_bio(bio);
3620        set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3621}
3622
3623/*
3624 * If the flush bio has been submitted by write_dev_flush, wait for it.
3625 */
3626static blk_status_t wait_dev_flush(struct btrfs_device *device)
3627{
3628        struct bio *bio = device->flush_bio;
3629
3630        if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3631                return BLK_STS_OK;
3632
3633        clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3634        wait_for_completion_io(&device->flush_wait);
3635
3636        return bio->bi_status;
3637}
3638
3639static int check_barrier_error(struct btrfs_fs_info *fs_info)
3640{
3641        if (!btrfs_check_rw_degradable(fs_info, NULL))
3642                return -EIO;
3643        return 0;
3644}
3645
3646/*
3647 * send an empty flush down to each device in parallel,
3648 * then wait for them
3649 */
3650static int barrier_all_devices(struct btrfs_fs_info *info)
3651{
3652        struct list_head *head;
3653        struct btrfs_device *dev;
3654        int errors_wait = 0;
3655        blk_status_t ret;
3656
3657        lockdep_assert_held(&info->fs_devices->device_list_mutex);
3658        /* send down all the barriers */
3659        head = &info->fs_devices->devices;
3660        list_for_each_entry(dev, head, dev_list) {
3661                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3662                        continue;
3663                if (!dev->bdev)
3664                        continue;
3665                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3666                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3667                        continue;
3668
3669                write_dev_flush(dev);
3670                dev->last_flush_error = BLK_STS_OK;
3671        }
3672
3673        /* wait for all the barriers */
3674        list_for_each_entry(dev, head, dev_list) {
3675                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3676                        continue;
3677                if (!dev->bdev) {
3678                        errors_wait++;
3679                        continue;
3680                }
3681                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683                        continue;
3684
3685                ret = wait_dev_flush(dev);
3686                if (ret) {
3687                        dev->last_flush_error = ret;
3688                        btrfs_dev_stat_inc_and_print(dev,
3689                                        BTRFS_DEV_STAT_FLUSH_ERRS);
3690                        errors_wait++;
3691                }
3692        }
3693
3694        if (errors_wait) {
3695                /*
3696                 * At some point we need the status of all disks
3697                 * to arrive at the volume status. So error checking
3698                 * is being pushed to a separate loop.
3699                 */
3700                return check_barrier_error(info);
3701        }
3702        return 0;
3703}
3704
3705int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3706{
3707        int raid_type;
3708        int min_tolerated = INT_MAX;
3709
3710        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3711            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3712                min_tolerated = min(min_tolerated,
3713                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3714                                    tolerated_failures);
3715
3716        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3717                if (raid_type == BTRFS_RAID_SINGLE)
3718                        continue;
3719                if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3720                        continue;
3721                min_tolerated = min(min_tolerated,
3722                                    btrfs_raid_array[raid_type].
3723                                    tolerated_failures);
3724        }
3725
3726        if (min_tolerated == INT_MAX) {
3727                pr_warn("BTRFS: unknown raid flag: %llu", flags);
3728                min_tolerated = 0;
3729        }
3730
3731        return min_tolerated;
3732}
3733
3734int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3735{
3736        struct list_head *head;
3737        struct btrfs_device *dev;
3738        struct btrfs_super_block *sb;
3739        struct btrfs_dev_item *dev_item;
3740        int ret;
3741        int do_barriers;
3742        int max_errors;
3743        int total_errors = 0;
3744        u64 flags;
3745
3746        do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3747
3748        /*
3749         * max_mirrors == 0 indicates we're from commit_transaction,
3750         * not from fsync where the tree roots in fs_info have not
3751         * been consistent on disk.
3752         */
3753        if (max_mirrors == 0)
3754                backup_super_roots(fs_info);
3755
3756        sb = fs_info->super_for_commit;
3757        dev_item = &sb->dev_item;
3758
3759        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3760        head = &fs_info->fs_devices->devices;
3761        max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3762
3763        if (do_barriers) {
3764                ret = barrier_all_devices(fs_info);
3765                if (ret) {
3766                        mutex_unlock(
3767                                &fs_info->fs_devices->device_list_mutex);
3768                        btrfs_handle_fs_error(fs_info, ret,
3769                                              "errors while submitting device barriers.");
3770                        return ret;
3771                }
3772        }
3773
3774        list_for_each_entry(dev, head, dev_list) {
3775                if (!dev->bdev) {
3776                        total_errors++;
3777                        continue;
3778                }
3779                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3780                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3781                        continue;
3782
3783                btrfs_set_stack_device_generation(dev_item, 0);
3784                btrfs_set_stack_device_type(dev_item, dev->type);
3785                btrfs_set_stack_device_id(dev_item, dev->devid);
3786                btrfs_set_stack_device_total_bytes(dev_item,
3787                                                   dev->commit_total_bytes);
3788                btrfs_set_stack_device_bytes_used(dev_item,
3789                                                  dev->commit_bytes_used);
3790                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3791                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3792                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3793                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3794                memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3795                       BTRFS_FSID_SIZE);
3796
3797                flags = btrfs_super_flags(sb);
3798                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3799
3800                ret = btrfs_validate_write_super(fs_info, sb);
3801                if (ret < 0) {
3802                        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3803                        btrfs_handle_fs_error(fs_info, -EUCLEAN,
3804                                "unexpected superblock corruption detected");
3805                        return -EUCLEAN;
3806                }
3807
3808                ret = write_dev_supers(dev, sb, max_mirrors);
3809                if (ret)
3810                        total_errors++;
3811        }
3812        if (total_errors > max_errors) {
3813                btrfs_err(fs_info, "%d errors while writing supers",
3814                          total_errors);
3815                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3816
3817                /* FUA is masked off if unsupported and can't be the reason */
3818                btrfs_handle_fs_error(fs_info, -EIO,
3819                                      "%d errors while writing supers",
3820                                      total_errors);
3821                return -EIO;
3822        }
3823
3824        total_errors = 0;
3825        list_for_each_entry(dev, head, dev_list) {
3826                if (!dev->bdev)
3827                        continue;
3828                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3829                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3830                        continue;
3831
3832                ret = wait_dev_supers(dev, max_mirrors);
3833                if (ret)
3834                        total_errors++;
3835        }
3836        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3837        if (total_errors > max_errors) {
3838                btrfs_handle_fs_error(fs_info, -EIO,
3839                                      "%d errors while writing supers",
3840                                      total_errors);
3841                return -EIO;
3842        }
3843        return 0;
3844}
3845
3846/* Drop a fs root from the radix tree and free it. */
3847void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3848                                  struct btrfs_root *root)
3849{
3850        spin_lock(&fs_info->fs_roots_radix_lock);
3851        radix_tree_delete(&fs_info->fs_roots_radix,
3852                          (unsigned long)root->root_key.objectid);
3853        spin_unlock(&fs_info->fs_roots_radix_lock);
3854
3855        if (btrfs_root_refs(&root->root_item) == 0)
3856                synchronize_srcu(&fs_info->subvol_srcu);
3857
3858        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3859                btrfs_free_log(NULL, root);
3860                if (root->reloc_root) {
3861                        free_extent_buffer(root->reloc_root->node);
3862                        free_extent_buffer(root->reloc_root->commit_root);
3863                        btrfs_put_fs_root(root->reloc_root);
3864                        root->reloc_root = NULL;
3865                }
3866        }
3867
3868        if (root->free_ino_pinned)
3869                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3870        if (root->free_ino_ctl)
3871                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3872        btrfs_free_fs_root(root);
3873}
3874
3875void btrfs_free_fs_root(struct btrfs_root *root)
3876{
3877        iput(root->ino_cache_inode);
3878        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3879        if (root->anon_dev)
3880                free_anon_bdev(root->anon_dev);
3881        if (root->subv_writers)
3882                btrfs_free_subvolume_writers(root->subv_writers);
3883        free_extent_buffer(root->node);
3884        free_extent_buffer(root->commit_root);
3885        kfree(root->free_ino_ctl);
3886        kfree(root->free_ino_pinned);
3887        btrfs_put_fs_root(root);
3888}
3889
3890int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3891{
3892        u64 root_objectid = 0;
3893        struct btrfs_root *gang[8];
3894        int i = 0;
3895        int err = 0;
3896        unsigned int ret = 0;
3897        int index;
3898
3899        while (1) {
3900                index = srcu_read_lock(&fs_info->subvol_srcu);
3901                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3902                                             (void **)gang, root_objectid,
3903                                             ARRAY_SIZE(gang));
3904                if (!ret) {
3905                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3906                        break;
3907                }
3908                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3909
3910                for (i = 0; i < ret; i++) {
3911                        /* Avoid to grab roots in dead_roots */
3912                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3913                                gang[i] = NULL;
3914                                continue;
3915                        }
3916                        /* grab all the search result for later use */
3917                        gang[i] = btrfs_grab_fs_root(gang[i]);
3918                }
3919                srcu_read_unlock(&fs_info->subvol_srcu, index);
3920
3921                for (i = 0; i < ret; i++) {
3922                        if (!gang[i])
3923                                continue;
3924                        root_objectid = gang[i]->root_key.objectid;
3925                        err = btrfs_orphan_cleanup(gang[i]);
3926                        if (err)
3927                                break;
3928                        btrfs_put_fs_root(gang[i]);
3929                }
3930                root_objectid++;
3931        }
3932
3933        /* release the uncleaned roots due to error */
3934        for (; i < ret; i++) {
3935                if (gang[i])
3936                        btrfs_put_fs_root(gang[i]);
3937        }
3938        return err;
3939}
3940
3941int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3942{
3943        struct btrfs_root *root = fs_info->tree_root;
3944        struct btrfs_trans_handle *trans;
3945
3946        mutex_lock(&fs_info->cleaner_mutex);
3947        btrfs_run_delayed_iputs(fs_info);
3948        mutex_unlock(&fs_info->cleaner_mutex);
3949        wake_up_process(fs_info->cleaner_kthread);
3950
3951        /* wait until ongoing cleanup work done */
3952        down_write(&fs_info->cleanup_work_sem);
3953        up_write(&fs_info->cleanup_work_sem);
3954
3955        trans = btrfs_join_transaction(root);
3956        if (IS_ERR(trans))
3957                return PTR_ERR(trans);
3958        return btrfs_commit_transaction(trans);
3959}
3960
3961void close_ctree(struct btrfs_fs_info *fs_info)
3962{
3963        int ret;
3964
3965        set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3966        /*
3967         * We don't want the cleaner to start new transactions, add more delayed
3968         * iputs, etc. while we're closing. We can't use kthread_stop() yet
3969         * because that frees the task_struct, and the transaction kthread might
3970         * still try to wake up the cleaner.
3971         */
3972        kthread_park(fs_info->cleaner_kthread);
3973
3974        /* wait for the qgroup rescan worker to stop */
3975        btrfs_qgroup_wait_for_completion(fs_info, false);
3976
3977        /* wait for the uuid_scan task to finish */
3978        down(&fs_info->uuid_tree_rescan_sem);
3979        /* avoid complains from lockdep et al., set sem back to initial state */
3980        up(&fs_info->uuid_tree_rescan_sem);
3981
3982        /* pause restriper - we want to resume on mount */
3983        btrfs_pause_balance(fs_info);
3984
3985        btrfs_dev_replace_suspend_for_unmount(fs_info);
3986
3987        btrfs_scrub_cancel(fs_info);
3988
3989        /* wait for any defraggers to finish */
3990        wait_event(fs_info->transaction_wait,
3991                   (atomic_read(&fs_info->defrag_running) == 0));
3992
3993        /* clear out the rbtree of defraggable inodes */
3994        btrfs_cleanup_defrag_inodes(fs_info);
3995
3996        cancel_work_sync(&fs_info->async_reclaim_work);
3997
3998        if (!sb_rdonly(fs_info->sb)) {
3999                /*
4000                 * The cleaner kthread is stopped, so do one final pass over
4001                 * unused block groups.
4002                 */
4003                btrfs_delete_unused_bgs(fs_info);
4004
4005                ret = btrfs_commit_super(fs_info);
4006                if (ret)
4007                        btrfs_err(fs_info, "commit super ret %d", ret);
4008        }
4009
4010        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011            test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4012                btrfs_error_commit_super(fs_info);
4013
4014        kthread_stop(fs_info->transaction_kthread);
4015        kthread_stop(fs_info->cleaner_kthread);
4016
4017        ASSERT(list_empty(&fs_info->delayed_iputs));
4018        set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4019
4020        btrfs_free_qgroup_config(fs_info);
4021        ASSERT(list_empty(&fs_info->delalloc_roots));
4022
4023        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4024                btrfs_info(fs_info, "at unmount delalloc count %lld",
4025                       percpu_counter_sum(&fs_info->delalloc_bytes));
4026        }
4027
4028        if (percpu_counter_sum(&fs_info->dio_bytes))
4029                btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030                           percpu_counter_sum(&fs_info->dio_bytes));
4031
4032        btrfs_sysfs_remove_mounted(fs_info);
4033        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4034
4035        btrfs_free_fs_roots(fs_info);
4036
4037        btrfs_put_block_group_cache(fs_info);
4038
4039        /*
4040         * we must make sure there is not any read request to
4041         * submit after we stopping all workers.
4042         */
4043        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4044        btrfs_stop_all_workers(fs_info);
4045
4046        btrfs_free_block_groups(fs_info);
4047
4048        clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4049        free_root_pointers(fs_info, 1);
4050
4051        iput(fs_info->btree_inode);
4052
4053#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4054        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4055                btrfsic_unmount(fs_info->fs_devices);
4056#endif
4057
4058        btrfs_mapping_tree_free(&fs_info->mapping_tree);
4059        btrfs_close_devices(fs_info->fs_devices);
4060
4061        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4062        percpu_counter_destroy(&fs_info->delalloc_bytes);
4063        percpu_counter_destroy(&fs_info->dio_bytes);
4064        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4065        cleanup_srcu_struct(&fs_info->subvol_srcu);
4066
4067        btrfs_free_stripe_hash_table(fs_info);
4068        btrfs_free_ref_cache(fs_info);
4069}
4070
4071int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4072                          int atomic)
4073{
4074        int ret;
4075        struct inode *btree_inode = buf->pages[0]->mapping->host;
4076
4077        ret = extent_buffer_uptodate(buf);
4078        if (!ret)
4079                return ret;
4080
4081        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4082                                    parent_transid, atomic);
4083        if (ret == -EAGAIN)
4084                return ret;
4085        return !ret;
4086}
4087
4088void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4089{
4090        struct btrfs_fs_info *fs_info;
4091        struct btrfs_root *root;
4092        u64 transid = btrfs_header_generation(buf);
4093        int was_dirty;
4094
4095#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4096        /*
4097         * This is a fast path so only do this check if we have sanity tests
4098         * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4099         * outside of the sanity tests.
4100         */
4101        if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4102                return;
4103#endif
4104        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4105        fs_info = root->fs_info;
4106        btrfs_assert_tree_locked(buf);
4107        if (transid != fs_info->generation)
4108                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4109                        buf->start, transid, fs_info->generation);
4110        was_dirty = set_extent_buffer_dirty(buf);
4111        if (!was_dirty)
4112                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4113                                         buf->len,
4114                                         fs_info->dirty_metadata_batch);
4115#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4116        /*
4117         * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4118         * but item data not updated.
4119         * So here we should only check item pointers, not item data.
4120         */
4121        if (btrfs_header_level(buf) == 0 &&
4122            btrfs_check_leaf_relaxed(buf)) {
4123                btrfs_print_leaf(buf);
4124                ASSERT(0);
4125        }
4126#endif
4127}
4128
4129static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4130                                        int flush_delayed)
4131{
4132        /*
4133         * looks as though older kernels can get into trouble with
4134         * this code, they end up stuck in balance_dirty_pages forever
4135         */
4136        int ret;
4137
4138        if (current->flags & PF_MEMALLOC)
4139                return;
4140
4141        if (flush_delayed)
4142                btrfs_balance_delayed_items(fs_info);
4143
4144        ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4145                                     BTRFS_DIRTY_METADATA_THRESH,
4146                                     fs_info->dirty_metadata_batch);
4147        if (ret > 0) {
4148                balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4149        }
4150}
4151
4152void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4153{
4154        __btrfs_btree_balance_dirty(fs_info, 1);
4155}
4156
4157void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4158{
4159        __btrfs_btree_balance_dirty(fs_info, 0);
4160}
4161
4162int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4163                      struct btrfs_key *first_key)
4164{
4165        return btree_read_extent_buffer_pages(buf, parent_transid,
4166                                              level, first_key);
4167}
4168
4169static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4170{
4171        /* cleanup FS via transaction */
4172        btrfs_cleanup_transaction(fs_info);
4173
4174        mutex_lock(&fs_info->cleaner_mutex);
4175        btrfs_run_delayed_iputs(fs_info);
4176        mutex_unlock(&fs_info->cleaner_mutex);
4177
4178        down_write(&fs_info->cleanup_work_sem);
4179        up_write(&fs_info->cleanup_work_sem);
4180}
4181
4182static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4183{
4184        struct btrfs_ordered_extent *ordered;
4185
4186        spin_lock(&root->ordered_extent_lock);
4187        /*
4188         * This will just short circuit the ordered completion stuff which will
4189         * make sure the ordered extent gets properly cleaned up.
4190         */
4191        list_for_each_entry(ordered, &root->ordered_extents,
4192                            root_extent_list)
4193                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4194        spin_unlock(&root->ordered_extent_lock);
4195}
4196
4197static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4198{
4199        struct btrfs_root *root;
4200        struct list_head splice;
4201
4202        INIT_LIST_HEAD(&splice);
4203
4204        spin_lock(&fs_info->ordered_root_lock);
4205        list_splice_init(&fs_info->ordered_roots, &splice);
4206        while (!list_empty(&splice)) {
4207                root = list_first_entry(&splice, struct btrfs_root,
4208                                        ordered_root);
4209                list_move_tail(&root->ordered_root,
4210                               &fs_info->ordered_roots);
4211
4212                spin_unlock(&fs_info->ordered_root_lock);
4213                btrfs_destroy_ordered_extents(root);
4214
4215                cond_resched();
4216                spin_lock(&fs_info->ordered_root_lock);
4217        }
4218        spin_unlock(&fs_info->ordered_root_lock);
4219
4220        /*
4221         * We need this here because if we've been flipped read-only we won't
4222         * get sync() from the umount, so we need to make sure any ordered
4223         * extents that haven't had their dirty pages IO start writeout yet
4224         * actually get run and error out properly.
4225         */
4226        btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4227}
4228
4229static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4230                                      struct btrfs_fs_info *fs_info)
4231{
4232        struct rb_node *node;
4233        struct btrfs_delayed_ref_root *delayed_refs;
4234        struct btrfs_delayed_ref_node *ref;
4235        int ret = 0;
4236
4237        delayed_refs = &trans->delayed_refs;
4238
4239        spin_lock(&delayed_refs->lock);
4240        if (atomic_read(&delayed_refs->num_entries) == 0) {
4241                spin_unlock(&delayed_refs->lock);
4242                btrfs_info(fs_info, "delayed_refs has NO entry");
4243                return ret;
4244        }
4245
4246        while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4247                struct btrfs_delayed_ref_head *head;
4248                struct rb_node *n;
4249                bool pin_bytes = false;
4250
4251                head = rb_entry(node, struct btrfs_delayed_ref_head,
4252                                href_node);
4253                if (btrfs_delayed_ref_lock(delayed_refs, head))
4254                        continue;
4255
4256                spin_lock(&head->lock);
4257                while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4258                        ref = rb_entry(n, struct btrfs_delayed_ref_node,
4259                                       ref_node);
4260                        ref->in_tree = 0;
4261                        rb_erase_cached(&ref->ref_node, &head->ref_tree);
4262                        RB_CLEAR_NODE(&ref->ref_node);
4263                        if (!list_empty(&ref->add_list))
4264                                list_del(&ref->add_list);
4265                        atomic_dec(&delayed_refs->num_entries);
4266                        btrfs_put_delayed_ref(ref);
4267                }
4268                if (head->must_insert_reserved)
4269                        pin_bytes = true;
4270                btrfs_free_delayed_extent_op(head->extent_op);
4271                btrfs_delete_ref_head(delayed_refs, head);
4272                spin_unlock(&head->lock);
4273                spin_unlock(&delayed_refs->lock);
4274                mutex_unlock(&head->mutex);
4275
4276                if (pin_bytes)
4277                        btrfs_pin_extent(fs_info, head->bytenr,
4278                                         head->num_bytes, 1);
4279                btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4280                btrfs_put_delayed_ref_head(head);
4281                cond_resched();
4282                spin_lock(&delayed_refs->lock);
4283        }
4284
4285        spin_unlock(&delayed_refs->lock);
4286
4287        return ret;
4288}
4289
4290static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4291{
4292        struct btrfs_inode *btrfs_inode;
4293        struct list_head splice;
4294
4295        INIT_LIST_HEAD(&splice);
4296
4297        spin_lock(&root->delalloc_lock);
4298        list_splice_init(&root->delalloc_inodes, &splice);
4299
4300        while (!list_empty(&splice)) {
4301                struct inode *inode = NULL;
4302                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4303                                               delalloc_inodes);
4304                __btrfs_del_delalloc_inode(root, btrfs_inode);
4305                spin_unlock(&root->delalloc_lock);
4306
4307                /*
4308                 * Make sure we get a live inode and that it'll not disappear
4309                 * meanwhile.
4310                 */
4311                inode = igrab(&btrfs_inode->vfs_inode);
4312                if (inode) {
4313                        invalidate_inode_pages2(inode->i_mapping);
4314                        iput(inode);
4315                }
4316                spin_lock(&root->delalloc_lock);
4317        }
4318        spin_unlock(&root->delalloc_lock);
4319}
4320
4321static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4322{
4323        struct btrfs_root *root;
4324        struct list_head splice;
4325
4326        INIT_LIST_HEAD(&splice);
4327
4328        spin_lock(&fs_info->delalloc_root_lock);
4329        list_splice_init(&fs_info->delalloc_roots, &splice);
4330        while (!list_empty(&splice)) {
4331                root = list_first_entry(&splice, struct btrfs_root,
4332                                         delalloc_root);
4333                root = btrfs_grab_fs_root(root);
4334                BUG_ON(!root);
4335                spin_unlock(&fs_info->delalloc_root_lock);
4336
4337                btrfs_destroy_delalloc_inodes(root);
4338                btrfs_put_fs_root(root);
4339
4340                spin_lock(&fs_info->delalloc_root_lock);
4341        }
4342        spin_unlock(&fs_info->delalloc_root_lock);
4343}
4344
4345static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4346                                        struct extent_io_tree *dirty_pages,
4347                                        int mark)
4348{
4349        int ret;
4350        struct extent_buffer *eb;
4351        u64 start = 0;
4352        u64 end;
4353
4354        while (1) {
4355                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356                                            mark, NULL);
4357                if (ret)
4358                        break;
4359
4360                clear_extent_bits(dirty_pages, start, end, mark);
4361                while (start <= end) {
4362                        eb = find_extent_buffer(fs_info, start);
4363                        start += fs_info->nodesize;
4364                        if (!eb)
4365                                continue;
4366                        wait_on_extent_buffer_writeback(eb);
4367
4368                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369                                               &eb->bflags))
4370                                clear_extent_buffer_dirty(eb);
4371                        free_extent_buffer_stale(eb);
4372                }
4373        }
4374
4375        return ret;
4376}
4377
4378static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4379                                       struct extent_io_tree *pinned_extents)
4380{
4381        struct extent_io_tree *unpin;
4382        u64 start;
4383        u64 end;
4384        int ret;
4385        bool loop = true;
4386
4387        unpin = pinned_extents;
4388again:
4389        while (1) {
4390                struct extent_state *cached_state = NULL;
4391
4392                /*
4393                 * The btrfs_finish_extent_commit() may get the same range as
4394                 * ours between find_first_extent_bit and clear_extent_dirty.
4395                 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4396                 * the same extent range.
4397                 */
4398                mutex_lock(&fs_info->unused_bg_unpin_mutex);
4399                ret = find_first_extent_bit(unpin, 0, &start, &end,
4400                                            EXTENT_DIRTY, &cached_state);
4401                if (ret) {
4402                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4403                        break;
4404                }
4405
4406                clear_extent_dirty(unpin, start, end, &cached_state);
4407                free_extent_state(cached_state);
4408                btrfs_error_unpin_extent_range(fs_info, start, end);
4409                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4410                cond_resched();
4411        }
4412
4413        if (loop) {
4414                if (unpin == &fs_info->freed_extents[0])
4415                        unpin = &fs_info->freed_extents[1];
4416                else
4417                        unpin = &fs_info->freed_extents[0];
4418                loop = false;
4419                goto again;
4420        }
4421
4422        return 0;
4423}
4424
4425static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4426{
4427        struct inode *inode;
4428
4429        inode = cache->io_ctl.inode;
4430        if (inode) {
4431                invalidate_inode_pages2(inode->i_mapping);
4432                BTRFS_I(inode)->generation = 0;
4433                cache->io_ctl.inode = NULL;
4434                iput(inode);
4435        }
4436        btrfs_put_block_group(cache);
4437}
4438
4439void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4440                             struct btrfs_fs_info *fs_info)
4441{
4442        struct btrfs_block_group_cache *cache;
4443
4444        spin_lock(&cur_trans->dirty_bgs_lock);
4445        while (!list_empty(&cur_trans->dirty_bgs)) {
4446                cache = list_first_entry(&cur_trans->dirty_bgs,
4447                                         struct btrfs_block_group_cache,
4448                                         dirty_list);
4449
4450                if (!list_empty(&cache->io_list)) {
4451                        spin_unlock(&cur_trans->dirty_bgs_lock);
4452                        list_del_init(&cache->io_list);
4453                        btrfs_cleanup_bg_io(cache);
4454                        spin_lock(&cur_trans->dirty_bgs_lock);
4455                }
4456
4457                list_del_init(&cache->dirty_list);
4458                spin_lock(&cache->lock);
4459                cache->disk_cache_state = BTRFS_DC_ERROR;
4460                spin_unlock(&cache->lock);
4461
4462                spin_unlock(&cur_trans->dirty_bgs_lock);
4463                btrfs_put_block_group(cache);
4464                btrfs_delayed_refs_rsv_release(fs_info, 1);
4465                spin_lock(&cur_trans->dirty_bgs_lock);
4466        }
4467        spin_unlock(&cur_trans->dirty_bgs_lock);
4468
4469        /*
4470         * Refer to the definition of io_bgs member for details why it's safe
4471         * to use it without any locking
4472         */
4473        while (!list_empty(&cur_trans->io_bgs)) {
4474                cache = list_first_entry(&cur_trans->io_bgs,
4475                                         struct btrfs_block_group_cache,
4476                                         io_list);
4477
4478                list_del_init(&cache->io_list);
4479                spin_lock(&cache->lock);
4480                cache->disk_cache_state = BTRFS_DC_ERROR;
4481                spin_unlock(&cache->lock);
4482                btrfs_cleanup_bg_io(cache);
4483        }
4484}
4485
4486void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4487                                   struct btrfs_fs_info *fs_info)
4488{
4489        struct btrfs_device *dev, *tmp;
4490
4491        btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4492        ASSERT(list_empty(&cur_trans->dirty_bgs));
4493        ASSERT(list_empty(&cur_trans->io_bgs));
4494
4495        list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4496                                 post_commit_list) {
4497                list_del_init(&dev->post_commit_list);
4498        }
4499
4500        btrfs_destroy_delayed_refs(cur_trans, fs_info);
4501
4502        cur_trans->state = TRANS_STATE_COMMIT_START;
4503        wake_up(&fs_info->transaction_blocked_wait);
4504
4505        cur_trans->state = TRANS_STATE_UNBLOCKED;
4506        wake_up(&fs_info->transaction_wait);
4507
4508        btrfs_destroy_delayed_inodes(fs_info);
4509        btrfs_assert_delayed_root_empty(fs_info);
4510
4511        btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4512                                     EXTENT_DIRTY);
4513        btrfs_destroy_pinned_extent(fs_info,
4514                                    fs_info->pinned_extents);
4515
4516        cur_trans->state =TRANS_STATE_COMPLETED;
4517        wake_up(&cur_trans->commit_wait);
4518}
4519
4520static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4521{
4522        struct btrfs_transaction *t;
4523
4524        mutex_lock(&fs_info->transaction_kthread_mutex);
4525
4526        spin_lock(&fs_info->trans_lock);
4527        while (!list_empty(&fs_info->trans_list)) {
4528                t = list_first_entry(&fs_info->trans_list,
4529                                     struct btrfs_transaction, list);
4530                if (t->state >= TRANS_STATE_COMMIT_START) {
4531                        refcount_inc(&t->use_count);
4532                        spin_unlock(&fs_info->trans_lock);
4533                        btrfs_wait_for_commit(fs_info, t->transid);
4534                        btrfs_put_transaction(t);
4535                        spin_lock(&fs_info->trans_lock);
4536                        continue;
4537                }
4538                if (t == fs_info->running_transaction) {
4539                        t->state = TRANS_STATE_COMMIT_DOING;
4540                        spin_unlock(&fs_info->trans_lock);
4541                        /*
4542                         * We wait for 0 num_writers since we don't hold a trans
4543                         * handle open currently for this transaction.
4544                         */
4545                        wait_event(t->writer_wait,
4546                                   atomic_read(&t->num_writers) == 0);
4547                } else {
4548                        spin_unlock(&fs_info->trans_lock);
4549                }
4550                btrfs_cleanup_one_transaction(t, fs_info);
4551
4552                spin_lock(&fs_info->trans_lock);
4553                if (t == fs_info->running_transaction)
4554                        fs_info->running_transaction = NULL;
4555                list_del_init(&t->list);
4556                spin_unlock(&fs_info->trans_lock);
4557
4558                btrfs_put_transaction(t);
4559                trace_btrfs_transaction_commit(fs_info->tree_root);
4560                spin_lock(&fs_info->trans_lock);
4561        }
4562        spin_unlock(&fs_info->trans_lock);
4563        btrfs_destroy_all_ordered_extents(fs_info);
4564        btrfs_destroy_delayed_inodes(fs_info);
4565        btrfs_assert_delayed_root_empty(fs_info);
4566        btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4567        btrfs_destroy_all_delalloc_inodes(fs_info);
4568        mutex_unlock(&fs_info->transaction_kthread_mutex);
4569
4570        return 0;
4571}
4572
4573static const struct extent_io_ops btree_extent_io_ops = {
4574        /* mandatory callbacks */
4575        .submit_bio_hook = btree_submit_bio_hook,
4576        .readpage_end_io_hook = btree_readpage_end_io_hook,
4577};
4578