linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "tree-log.h"
  20#include "disk-io.h"
  21#include "print-tree.h"
  22#include "volumes.h"
  23#include "raid56.h"
  24#include "locking.h"
  25#include "free-space-cache.h"
  26#include "free-space-tree.h"
  27#include "math.h"
  28#include "sysfs.h"
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31
  32#undef SCRAMBLE_DELAYED_REFS
  33
  34/*
  35 * control flags for do_chunk_alloc's force field
  36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  37 * if we really need one.
  38 *
  39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  40 * if we have very few chunks already allocated.  This is
  41 * used as part of the clustering code to help make sure
  42 * we have a good pool of storage to cluster in, without
  43 * filling the FS with empty chunks
  44 *
  45 * CHUNK_ALLOC_FORCE means it must try to allocate one
  46 *
  47 */
  48enum {
  49        CHUNK_ALLOC_NO_FORCE = 0,
  50        CHUNK_ALLOC_LIMITED = 1,
  51        CHUNK_ALLOC_FORCE = 2,
  52};
  53
  54/*
  55 * Declare a helper function to detect underflow of various space info members
  56 */
  57#define DECLARE_SPACE_INFO_UPDATE(name)                                 \
  58static inline void update_##name(struct btrfs_space_info *sinfo,        \
  59                                 s64 bytes)                             \
  60{                                                                       \
  61        if (bytes < 0 && sinfo->name < -bytes) {                        \
  62                WARN_ON(1);                                             \
  63                sinfo->name = 0;                                        \
  64                return;                                                 \
  65        }                                                               \
  66        sinfo->name += bytes;                                           \
  67}
  68
  69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
  70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
  71
  72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  73                               struct btrfs_delayed_ref_node *node, u64 parent,
  74                               u64 root_objectid, u64 owner_objectid,
  75                               u64 owner_offset, int refs_to_drop,
  76                               struct btrfs_delayed_extent_op *extra_op);
  77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  78                                    struct extent_buffer *leaf,
  79                                    struct btrfs_extent_item *ei);
  80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  81                                      u64 parent, u64 root_objectid,
  82                                      u64 flags, u64 owner, u64 offset,
  83                                      struct btrfs_key *ins, int ref_mod);
  84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  85                                     struct btrfs_delayed_ref_node *node,
  86                                     struct btrfs_delayed_extent_op *extent_op);
  87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
  88                          int force);
  89static int find_next_key(struct btrfs_path *path, int level,
  90                         struct btrfs_key *key);
  91static void dump_space_info(struct btrfs_fs_info *fs_info,
  92                            struct btrfs_space_info *info, u64 bytes,
  93                            int dump_block_groups);
  94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  95                               u64 num_bytes);
  96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
  97                                     struct btrfs_space_info *space_info,
  98                                     u64 num_bytes);
  99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
 100                                     struct btrfs_space_info *space_info,
 101                                     u64 num_bytes);
 102
 103static noinline int
 104block_group_cache_done(struct btrfs_block_group_cache *cache)
 105{
 106        smp_mb();
 107        return cache->cached == BTRFS_CACHE_FINISHED ||
 108                cache->cached == BTRFS_CACHE_ERROR;
 109}
 110
 111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 112{
 113        return (cache->flags & bits) == bits;
 114}
 115
 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 117{
 118        atomic_inc(&cache->count);
 119}
 120
 121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 122{
 123        if (atomic_dec_and_test(&cache->count)) {
 124                WARN_ON(cache->pinned > 0);
 125                WARN_ON(cache->reserved > 0);
 126
 127                /*
 128                 * If not empty, someone is still holding mutex of
 129                 * full_stripe_lock, which can only be released by caller.
 130                 * And it will definitely cause use-after-free when caller
 131                 * tries to release full stripe lock.
 132                 *
 133                 * No better way to resolve, but only to warn.
 134                 */
 135                WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 136                kfree(cache->free_space_ctl);
 137                kfree(cache);
 138        }
 139}
 140
 141/*
 142 * this adds the block group to the fs_info rb tree for the block group
 143 * cache
 144 */
 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 146                                struct btrfs_block_group_cache *block_group)
 147{
 148        struct rb_node **p;
 149        struct rb_node *parent = NULL;
 150        struct btrfs_block_group_cache *cache;
 151
 152        spin_lock(&info->block_group_cache_lock);
 153        p = &info->block_group_cache_tree.rb_node;
 154
 155        while (*p) {
 156                parent = *p;
 157                cache = rb_entry(parent, struct btrfs_block_group_cache,
 158                                 cache_node);
 159                if (block_group->key.objectid < cache->key.objectid) {
 160                        p = &(*p)->rb_left;
 161                } else if (block_group->key.objectid > cache->key.objectid) {
 162                        p = &(*p)->rb_right;
 163                } else {
 164                        spin_unlock(&info->block_group_cache_lock);
 165                        return -EEXIST;
 166                }
 167        }
 168
 169        rb_link_node(&block_group->cache_node, parent, p);
 170        rb_insert_color(&block_group->cache_node,
 171                        &info->block_group_cache_tree);
 172
 173        if (info->first_logical_byte > block_group->key.objectid)
 174                info->first_logical_byte = block_group->key.objectid;
 175
 176        spin_unlock(&info->block_group_cache_lock);
 177
 178        return 0;
 179}
 180
 181/*
 182 * This will return the block group at or after bytenr if contains is 0, else
 183 * it will return the block group that contains the bytenr
 184 */
 185static struct btrfs_block_group_cache *
 186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 187                              int contains)
 188{
 189        struct btrfs_block_group_cache *cache, *ret = NULL;
 190        struct rb_node *n;
 191        u64 end, start;
 192
 193        spin_lock(&info->block_group_cache_lock);
 194        n = info->block_group_cache_tree.rb_node;
 195
 196        while (n) {
 197                cache = rb_entry(n, struct btrfs_block_group_cache,
 198                                 cache_node);
 199                end = cache->key.objectid + cache->key.offset - 1;
 200                start = cache->key.objectid;
 201
 202                if (bytenr < start) {
 203                        if (!contains && (!ret || start < ret->key.objectid))
 204                                ret = cache;
 205                        n = n->rb_left;
 206                } else if (bytenr > start) {
 207                        if (contains && bytenr <= end) {
 208                                ret = cache;
 209                                break;
 210                        }
 211                        n = n->rb_right;
 212                } else {
 213                        ret = cache;
 214                        break;
 215                }
 216        }
 217        if (ret) {
 218                btrfs_get_block_group(ret);
 219                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 220                        info->first_logical_byte = ret->key.objectid;
 221        }
 222        spin_unlock(&info->block_group_cache_lock);
 223
 224        return ret;
 225}
 226
 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
 228                               u64 start, u64 num_bytes)
 229{
 230        u64 end = start + num_bytes - 1;
 231        set_extent_bits(&fs_info->freed_extents[0],
 232                        start, end, EXTENT_UPTODATE);
 233        set_extent_bits(&fs_info->freed_extents[1],
 234                        start, end, EXTENT_UPTODATE);
 235        return 0;
 236}
 237
 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
 239{
 240        struct btrfs_fs_info *fs_info = cache->fs_info;
 241        u64 start, end;
 242
 243        start = cache->key.objectid;
 244        end = start + cache->key.offset - 1;
 245
 246        clear_extent_bits(&fs_info->freed_extents[0],
 247                          start, end, EXTENT_UPTODATE);
 248        clear_extent_bits(&fs_info->freed_extents[1],
 249                          start, end, EXTENT_UPTODATE);
 250}
 251
 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
 253{
 254        struct btrfs_fs_info *fs_info = cache->fs_info;
 255        u64 bytenr;
 256        u64 *logical;
 257        int stripe_len;
 258        int i, nr, ret;
 259
 260        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 261                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 262                cache->bytes_super += stripe_len;
 263                ret = add_excluded_extent(fs_info, cache->key.objectid,
 264                                          stripe_len);
 265                if (ret)
 266                        return ret;
 267        }
 268
 269        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 270                bytenr = btrfs_sb_offset(i);
 271                ret = btrfs_rmap_block(fs_info, cache->key.objectid,
 272                                       bytenr, &logical, &nr, &stripe_len);
 273                if (ret)
 274                        return ret;
 275
 276                while (nr--) {
 277                        u64 start, len;
 278
 279                        if (logical[nr] > cache->key.objectid +
 280                            cache->key.offset)
 281                                continue;
 282
 283                        if (logical[nr] + stripe_len <= cache->key.objectid)
 284                                continue;
 285
 286                        start = logical[nr];
 287                        if (start < cache->key.objectid) {
 288                                start = cache->key.objectid;
 289                                len = (logical[nr] + stripe_len) - start;
 290                        } else {
 291                                len = min_t(u64, stripe_len,
 292                                            cache->key.objectid +
 293                                            cache->key.offset - start);
 294                        }
 295
 296                        cache->bytes_super += len;
 297                        ret = add_excluded_extent(fs_info, start, len);
 298                        if (ret) {
 299                                kfree(logical);
 300                                return ret;
 301                        }
 302                }
 303
 304                kfree(logical);
 305        }
 306        return 0;
 307}
 308
 309static struct btrfs_caching_control *
 310get_caching_control(struct btrfs_block_group_cache *cache)
 311{
 312        struct btrfs_caching_control *ctl;
 313
 314        spin_lock(&cache->lock);
 315        if (!cache->caching_ctl) {
 316                spin_unlock(&cache->lock);
 317                return NULL;
 318        }
 319
 320        ctl = cache->caching_ctl;
 321        refcount_inc(&ctl->count);
 322        spin_unlock(&cache->lock);
 323        return ctl;
 324}
 325
 326static void put_caching_control(struct btrfs_caching_control *ctl)
 327{
 328        if (refcount_dec_and_test(&ctl->count))
 329                kfree(ctl);
 330}
 331
 332#ifdef CONFIG_BTRFS_DEBUG
 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
 334{
 335        struct btrfs_fs_info *fs_info = block_group->fs_info;
 336        u64 start = block_group->key.objectid;
 337        u64 len = block_group->key.offset;
 338        u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 339                fs_info->nodesize : fs_info->sectorsize;
 340        u64 step = chunk << 1;
 341
 342        while (len > chunk) {
 343                btrfs_remove_free_space(block_group, start, chunk);
 344                start += step;
 345                if (len < step)
 346                        len = 0;
 347                else
 348                        len -= step;
 349        }
 350}
 351#endif
 352
 353/*
 354 * this is only called by cache_block_group, since we could have freed extents
 355 * we need to check the pinned_extents for any extents that can't be used yet
 356 * since their free space will be released as soon as the transaction commits.
 357 */
 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 359                       u64 start, u64 end)
 360{
 361        struct btrfs_fs_info *info = block_group->fs_info;
 362        u64 extent_start, extent_end, size, total_added = 0;
 363        int ret;
 364
 365        while (start < end) {
 366                ret = find_first_extent_bit(info->pinned_extents, start,
 367                                            &extent_start, &extent_end,
 368                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 369                                            NULL);
 370                if (ret)
 371                        break;
 372
 373                if (extent_start <= start) {
 374                        start = extent_end + 1;
 375                } else if (extent_start > start && extent_start < end) {
 376                        size = extent_start - start;
 377                        total_added += size;
 378                        ret = btrfs_add_free_space(block_group, start,
 379                                                   size);
 380                        BUG_ON(ret); /* -ENOMEM or logic error */
 381                        start = extent_end + 1;
 382                } else {
 383                        break;
 384                }
 385        }
 386
 387        if (start < end) {
 388                size = end - start;
 389                total_added += size;
 390                ret = btrfs_add_free_space(block_group, start, size);
 391                BUG_ON(ret); /* -ENOMEM or logic error */
 392        }
 393
 394        return total_added;
 395}
 396
 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 398{
 399        struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
 400        struct btrfs_fs_info *fs_info = block_group->fs_info;
 401        struct btrfs_root *extent_root = fs_info->extent_root;
 402        struct btrfs_path *path;
 403        struct extent_buffer *leaf;
 404        struct btrfs_key key;
 405        u64 total_found = 0;
 406        u64 last = 0;
 407        u32 nritems;
 408        int ret;
 409        bool wakeup = true;
 410
 411        path = btrfs_alloc_path();
 412        if (!path)
 413                return -ENOMEM;
 414
 415        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 416
 417#ifdef CONFIG_BTRFS_DEBUG
 418        /*
 419         * If we're fragmenting we don't want to make anybody think we can
 420         * allocate from this block group until we've had a chance to fragment
 421         * the free space.
 422         */
 423        if (btrfs_should_fragment_free_space(block_group))
 424                wakeup = false;
 425#endif
 426        /*
 427         * We don't want to deadlock with somebody trying to allocate a new
 428         * extent for the extent root while also trying to search the extent
 429         * root to add free space.  So we skip locking and search the commit
 430         * root, since its read-only
 431         */
 432        path->skip_locking = 1;
 433        path->search_commit_root = 1;
 434        path->reada = READA_FORWARD;
 435
 436        key.objectid = last;
 437        key.offset = 0;
 438        key.type = BTRFS_EXTENT_ITEM_KEY;
 439
 440next:
 441        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 442        if (ret < 0)
 443                goto out;
 444
 445        leaf = path->nodes[0];
 446        nritems = btrfs_header_nritems(leaf);
 447
 448        while (1) {
 449                if (btrfs_fs_closing(fs_info) > 1) {
 450                        last = (u64)-1;
 451                        break;
 452                }
 453
 454                if (path->slots[0] < nritems) {
 455                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 456                } else {
 457                        ret = find_next_key(path, 0, &key);
 458                        if (ret)
 459                                break;
 460
 461                        if (need_resched() ||
 462                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 463                                if (wakeup)
 464                                        caching_ctl->progress = last;
 465                                btrfs_release_path(path);
 466                                up_read(&fs_info->commit_root_sem);
 467                                mutex_unlock(&caching_ctl->mutex);
 468                                cond_resched();
 469                                mutex_lock(&caching_ctl->mutex);
 470                                down_read(&fs_info->commit_root_sem);
 471                                goto next;
 472                        }
 473
 474                        ret = btrfs_next_leaf(extent_root, path);
 475                        if (ret < 0)
 476                                goto out;
 477                        if (ret)
 478                                break;
 479                        leaf = path->nodes[0];
 480                        nritems = btrfs_header_nritems(leaf);
 481                        continue;
 482                }
 483
 484                if (key.objectid < last) {
 485                        key.objectid = last;
 486                        key.offset = 0;
 487                        key.type = BTRFS_EXTENT_ITEM_KEY;
 488
 489                        if (wakeup)
 490                                caching_ctl->progress = last;
 491                        btrfs_release_path(path);
 492                        goto next;
 493                }
 494
 495                if (key.objectid < block_group->key.objectid) {
 496                        path->slots[0]++;
 497                        continue;
 498                }
 499
 500                if (key.objectid >= block_group->key.objectid +
 501                    block_group->key.offset)
 502                        break;
 503
 504                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 505                    key.type == BTRFS_METADATA_ITEM_KEY) {
 506                        total_found += add_new_free_space(block_group, last,
 507                                                          key.objectid);
 508                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 509                                last = key.objectid +
 510                                        fs_info->nodesize;
 511                        else
 512                                last = key.objectid + key.offset;
 513
 514                        if (total_found > CACHING_CTL_WAKE_UP) {
 515                                total_found = 0;
 516                                if (wakeup)
 517                                        wake_up(&caching_ctl->wait);
 518                        }
 519                }
 520                path->slots[0]++;
 521        }
 522        ret = 0;
 523
 524        total_found += add_new_free_space(block_group, last,
 525                                          block_group->key.objectid +
 526                                          block_group->key.offset);
 527        caching_ctl->progress = (u64)-1;
 528
 529out:
 530        btrfs_free_path(path);
 531        return ret;
 532}
 533
 534static noinline void caching_thread(struct btrfs_work *work)
 535{
 536        struct btrfs_block_group_cache *block_group;
 537        struct btrfs_fs_info *fs_info;
 538        struct btrfs_caching_control *caching_ctl;
 539        int ret;
 540
 541        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 542        block_group = caching_ctl->block_group;
 543        fs_info = block_group->fs_info;
 544
 545        mutex_lock(&caching_ctl->mutex);
 546        down_read(&fs_info->commit_root_sem);
 547
 548        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 549                ret = load_free_space_tree(caching_ctl);
 550        else
 551                ret = load_extent_tree_free(caching_ctl);
 552
 553        spin_lock(&block_group->lock);
 554        block_group->caching_ctl = NULL;
 555        block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 556        spin_unlock(&block_group->lock);
 557
 558#ifdef CONFIG_BTRFS_DEBUG
 559        if (btrfs_should_fragment_free_space(block_group)) {
 560                u64 bytes_used;
 561
 562                spin_lock(&block_group->space_info->lock);
 563                spin_lock(&block_group->lock);
 564                bytes_used = block_group->key.offset -
 565                        btrfs_block_group_used(&block_group->item);
 566                block_group->space_info->bytes_used += bytes_used >> 1;
 567                spin_unlock(&block_group->lock);
 568                spin_unlock(&block_group->space_info->lock);
 569                fragment_free_space(block_group);
 570        }
 571#endif
 572
 573        caching_ctl->progress = (u64)-1;
 574
 575        up_read(&fs_info->commit_root_sem);
 576        free_excluded_extents(block_group);
 577        mutex_unlock(&caching_ctl->mutex);
 578
 579        wake_up(&caching_ctl->wait);
 580
 581        put_caching_control(caching_ctl);
 582        btrfs_put_block_group(block_group);
 583}
 584
 585static int cache_block_group(struct btrfs_block_group_cache *cache,
 586                             int load_cache_only)
 587{
 588        DEFINE_WAIT(wait);
 589        struct btrfs_fs_info *fs_info = cache->fs_info;
 590        struct btrfs_caching_control *caching_ctl;
 591        int ret = 0;
 592
 593        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 594        if (!caching_ctl)
 595                return -ENOMEM;
 596
 597        INIT_LIST_HEAD(&caching_ctl->list);
 598        mutex_init(&caching_ctl->mutex);
 599        init_waitqueue_head(&caching_ctl->wait);
 600        caching_ctl->block_group = cache;
 601        caching_ctl->progress = cache->key.objectid;
 602        refcount_set(&caching_ctl->count, 1);
 603        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 604                        caching_thread, NULL, NULL);
 605
 606        spin_lock(&cache->lock);
 607        /*
 608         * This should be a rare occasion, but this could happen I think in the
 609         * case where one thread starts to load the space cache info, and then
 610         * some other thread starts a transaction commit which tries to do an
 611         * allocation while the other thread is still loading the space cache
 612         * info.  The previous loop should have kept us from choosing this block
 613         * group, but if we've moved to the state where we will wait on caching
 614         * block groups we need to first check if we're doing a fast load here,
 615         * so we can wait for it to finish, otherwise we could end up allocating
 616         * from a block group who's cache gets evicted for one reason or
 617         * another.
 618         */
 619        while (cache->cached == BTRFS_CACHE_FAST) {
 620                struct btrfs_caching_control *ctl;
 621
 622                ctl = cache->caching_ctl;
 623                refcount_inc(&ctl->count);
 624                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 625                spin_unlock(&cache->lock);
 626
 627                schedule();
 628
 629                finish_wait(&ctl->wait, &wait);
 630                put_caching_control(ctl);
 631                spin_lock(&cache->lock);
 632        }
 633
 634        if (cache->cached != BTRFS_CACHE_NO) {
 635                spin_unlock(&cache->lock);
 636                kfree(caching_ctl);
 637                return 0;
 638        }
 639        WARN_ON(cache->caching_ctl);
 640        cache->caching_ctl = caching_ctl;
 641        cache->cached = BTRFS_CACHE_FAST;
 642        spin_unlock(&cache->lock);
 643
 644        if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 645                mutex_lock(&caching_ctl->mutex);
 646                ret = load_free_space_cache(cache);
 647
 648                spin_lock(&cache->lock);
 649                if (ret == 1) {
 650                        cache->caching_ctl = NULL;
 651                        cache->cached = BTRFS_CACHE_FINISHED;
 652                        cache->last_byte_to_unpin = (u64)-1;
 653                        caching_ctl->progress = (u64)-1;
 654                } else {
 655                        if (load_cache_only) {
 656                                cache->caching_ctl = NULL;
 657                                cache->cached = BTRFS_CACHE_NO;
 658                        } else {
 659                                cache->cached = BTRFS_CACHE_STARTED;
 660                                cache->has_caching_ctl = 1;
 661                        }
 662                }
 663                spin_unlock(&cache->lock);
 664#ifdef CONFIG_BTRFS_DEBUG
 665                if (ret == 1 &&
 666                    btrfs_should_fragment_free_space(cache)) {
 667                        u64 bytes_used;
 668
 669                        spin_lock(&cache->space_info->lock);
 670                        spin_lock(&cache->lock);
 671                        bytes_used = cache->key.offset -
 672                                btrfs_block_group_used(&cache->item);
 673                        cache->space_info->bytes_used += bytes_used >> 1;
 674                        spin_unlock(&cache->lock);
 675                        spin_unlock(&cache->space_info->lock);
 676                        fragment_free_space(cache);
 677                }
 678#endif
 679                mutex_unlock(&caching_ctl->mutex);
 680
 681                wake_up(&caching_ctl->wait);
 682                if (ret == 1) {
 683                        put_caching_control(caching_ctl);
 684                        free_excluded_extents(cache);
 685                        return 0;
 686                }
 687        } else {
 688                /*
 689                 * We're either using the free space tree or no caching at all.
 690                 * Set cached to the appropriate value and wakeup any waiters.
 691                 */
 692                spin_lock(&cache->lock);
 693                if (load_cache_only) {
 694                        cache->caching_ctl = NULL;
 695                        cache->cached = BTRFS_CACHE_NO;
 696                } else {
 697                        cache->cached = BTRFS_CACHE_STARTED;
 698                        cache->has_caching_ctl = 1;
 699                }
 700                spin_unlock(&cache->lock);
 701                wake_up(&caching_ctl->wait);
 702        }
 703
 704        if (load_cache_only) {
 705                put_caching_control(caching_ctl);
 706                return 0;
 707        }
 708
 709        down_write(&fs_info->commit_root_sem);
 710        refcount_inc(&caching_ctl->count);
 711        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 712        up_write(&fs_info->commit_root_sem);
 713
 714        btrfs_get_block_group(cache);
 715
 716        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 717
 718        return ret;
 719}
 720
 721/*
 722 * return the block group that starts at or after bytenr
 723 */
 724static struct btrfs_block_group_cache *
 725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 726{
 727        return block_group_cache_tree_search(info, bytenr, 0);
 728}
 729
 730/*
 731 * return the block group that contains the given bytenr
 732 */
 733struct btrfs_block_group_cache *btrfs_lookup_block_group(
 734                                                 struct btrfs_fs_info *info,
 735                                                 u64 bytenr)
 736{
 737        return block_group_cache_tree_search(info, bytenr, 1);
 738}
 739
 740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 741                                                  u64 flags)
 742{
 743        struct list_head *head = &info->space_info;
 744        struct btrfs_space_info *found;
 745
 746        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 747
 748        rcu_read_lock();
 749        list_for_each_entry_rcu(found, head, list) {
 750                if (found->flags & flags) {
 751                        rcu_read_unlock();
 752                        return found;
 753                }
 754        }
 755        rcu_read_unlock();
 756        return NULL;
 757}
 758
 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
 760                             struct btrfs_ref *ref, int sign)
 761{
 762        struct btrfs_space_info *space_info;
 763        s64 num_bytes;
 764        u64 flags;
 765
 766        ASSERT(sign == 1 || sign == -1);
 767        num_bytes = sign * ref->len;
 768        if (ref->type == BTRFS_REF_METADATA) {
 769                if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
 770                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
 771                else
 772                        flags = BTRFS_BLOCK_GROUP_METADATA;
 773        } else {
 774                flags = BTRFS_BLOCK_GROUP_DATA;
 775        }
 776
 777        space_info = __find_space_info(fs_info, flags);
 778        ASSERT(space_info);
 779        percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
 780                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 781}
 782
 783/*
 784 * after adding space to the filesystem, we need to clear the full flags
 785 * on all the space infos.
 786 */
 787void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 788{
 789        struct list_head *head = &info->space_info;
 790        struct btrfs_space_info *found;
 791
 792        rcu_read_lock();
 793        list_for_each_entry_rcu(found, head, list)
 794                found->full = 0;
 795        rcu_read_unlock();
 796}
 797
 798/* simple helper to search for an existing data extent at a given offset */
 799int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 800{
 801        int ret;
 802        struct btrfs_key key;
 803        struct btrfs_path *path;
 804
 805        path = btrfs_alloc_path();
 806        if (!path)
 807                return -ENOMEM;
 808
 809        key.objectid = start;
 810        key.offset = len;
 811        key.type = BTRFS_EXTENT_ITEM_KEY;
 812        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 813        btrfs_free_path(path);
 814        return ret;
 815}
 816
 817/*
 818 * helper function to lookup reference count and flags of a tree block.
 819 *
 820 * the head node for delayed ref is used to store the sum of all the
 821 * reference count modifications queued up in the rbtree. the head
 822 * node may also store the extent flags to set. This way you can check
 823 * to see what the reference count and extent flags would be if all of
 824 * the delayed refs are not processed.
 825 */
 826int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 827                             struct btrfs_fs_info *fs_info, u64 bytenr,
 828                             u64 offset, int metadata, u64 *refs, u64 *flags)
 829{
 830        struct btrfs_delayed_ref_head *head;
 831        struct btrfs_delayed_ref_root *delayed_refs;
 832        struct btrfs_path *path;
 833        struct btrfs_extent_item *ei;
 834        struct extent_buffer *leaf;
 835        struct btrfs_key key;
 836        u32 item_size;
 837        u64 num_refs;
 838        u64 extent_flags;
 839        int ret;
 840
 841        /*
 842         * If we don't have skinny metadata, don't bother doing anything
 843         * different
 844         */
 845        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 846                offset = fs_info->nodesize;
 847                metadata = 0;
 848        }
 849
 850        path = btrfs_alloc_path();
 851        if (!path)
 852                return -ENOMEM;
 853
 854        if (!trans) {
 855                path->skip_locking = 1;
 856                path->search_commit_root = 1;
 857        }
 858
 859search_again:
 860        key.objectid = bytenr;
 861        key.offset = offset;
 862        if (metadata)
 863                key.type = BTRFS_METADATA_ITEM_KEY;
 864        else
 865                key.type = BTRFS_EXTENT_ITEM_KEY;
 866
 867        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 868        if (ret < 0)
 869                goto out_free;
 870
 871        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 872                if (path->slots[0]) {
 873                        path->slots[0]--;
 874                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 875                                              path->slots[0]);
 876                        if (key.objectid == bytenr &&
 877                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 878                            key.offset == fs_info->nodesize)
 879                                ret = 0;
 880                }
 881        }
 882
 883        if (ret == 0) {
 884                leaf = path->nodes[0];
 885                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 886                if (item_size >= sizeof(*ei)) {
 887                        ei = btrfs_item_ptr(leaf, path->slots[0],
 888                                            struct btrfs_extent_item);
 889                        num_refs = btrfs_extent_refs(leaf, ei);
 890                        extent_flags = btrfs_extent_flags(leaf, ei);
 891                } else {
 892                        ret = -EINVAL;
 893                        btrfs_print_v0_err(fs_info);
 894                        if (trans)
 895                                btrfs_abort_transaction(trans, ret);
 896                        else
 897                                btrfs_handle_fs_error(fs_info, ret, NULL);
 898
 899                        goto out_free;
 900                }
 901
 902                BUG_ON(num_refs == 0);
 903        } else {
 904                num_refs = 0;
 905                extent_flags = 0;
 906                ret = 0;
 907        }
 908
 909        if (!trans)
 910                goto out;
 911
 912        delayed_refs = &trans->transaction->delayed_refs;
 913        spin_lock(&delayed_refs->lock);
 914        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 915        if (head) {
 916                if (!mutex_trylock(&head->mutex)) {
 917                        refcount_inc(&head->refs);
 918                        spin_unlock(&delayed_refs->lock);
 919
 920                        btrfs_release_path(path);
 921
 922                        /*
 923                         * Mutex was contended, block until it's released and try
 924                         * again
 925                         */
 926                        mutex_lock(&head->mutex);
 927                        mutex_unlock(&head->mutex);
 928                        btrfs_put_delayed_ref_head(head);
 929                        goto search_again;
 930                }
 931                spin_lock(&head->lock);
 932                if (head->extent_op && head->extent_op->update_flags)
 933                        extent_flags |= head->extent_op->flags_to_set;
 934                else
 935                        BUG_ON(num_refs == 0);
 936
 937                num_refs += head->ref_mod;
 938                spin_unlock(&head->lock);
 939                mutex_unlock(&head->mutex);
 940        }
 941        spin_unlock(&delayed_refs->lock);
 942out:
 943        WARN_ON(num_refs == 0);
 944        if (refs)
 945                *refs = num_refs;
 946        if (flags)
 947                *flags = extent_flags;
 948out_free:
 949        btrfs_free_path(path);
 950        return ret;
 951}
 952
 953/*
 954 * Back reference rules.  Back refs have three main goals:
 955 *
 956 * 1) differentiate between all holders of references to an extent so that
 957 *    when a reference is dropped we can make sure it was a valid reference
 958 *    before freeing the extent.
 959 *
 960 * 2) Provide enough information to quickly find the holders of an extent
 961 *    if we notice a given block is corrupted or bad.
 962 *
 963 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 964 *    maintenance.  This is actually the same as #2, but with a slightly
 965 *    different use case.
 966 *
 967 * There are two kinds of back refs. The implicit back refs is optimized
 968 * for pointers in non-shared tree blocks. For a given pointer in a block,
 969 * back refs of this kind provide information about the block's owner tree
 970 * and the pointer's key. These information allow us to find the block by
 971 * b-tree searching. The full back refs is for pointers in tree blocks not
 972 * referenced by their owner trees. The location of tree block is recorded
 973 * in the back refs. Actually the full back refs is generic, and can be
 974 * used in all cases the implicit back refs is used. The major shortcoming
 975 * of the full back refs is its overhead. Every time a tree block gets
 976 * COWed, we have to update back refs entry for all pointers in it.
 977 *
 978 * For a newly allocated tree block, we use implicit back refs for
 979 * pointers in it. This means most tree related operations only involve
 980 * implicit back refs. For a tree block created in old transaction, the
 981 * only way to drop a reference to it is COW it. So we can detect the
 982 * event that tree block loses its owner tree's reference and do the
 983 * back refs conversion.
 984 *
 985 * When a tree block is COWed through a tree, there are four cases:
 986 *
 987 * The reference count of the block is one and the tree is the block's
 988 * owner tree. Nothing to do in this case.
 989 *
 990 * The reference count of the block is one and the tree is not the
 991 * block's owner tree. In this case, full back refs is used for pointers
 992 * in the block. Remove these full back refs, add implicit back refs for
 993 * every pointers in the new block.
 994 *
 995 * The reference count of the block is greater than one and the tree is
 996 * the block's owner tree. In this case, implicit back refs is used for
 997 * pointers in the block. Add full back refs for every pointers in the
 998 * block, increase lower level extents' reference counts. The original
 999 * implicit back refs are entailed to the new block.
1000 *
1001 * The reference count of the block is greater than one and the tree is
1002 * not the block's owner tree. Add implicit back refs for every pointer in
1003 * the new block, increase lower level extents' reference count.
1004 *
1005 * Back Reference Key composing:
1006 *
1007 * The key objectid corresponds to the first byte in the extent,
1008 * The key type is used to differentiate between types of back refs.
1009 * There are different meanings of the key offset for different types
1010 * of back refs.
1011 *
1012 * File extents can be referenced by:
1013 *
1014 * - multiple snapshots, subvolumes, or different generations in one subvol
1015 * - different files inside a single subvolume
1016 * - different offsets inside a file (bookend extents in file.c)
1017 *
1018 * The extent ref structure for the implicit back refs has fields for:
1019 *
1020 * - Objectid of the subvolume root
1021 * - objectid of the file holding the reference
1022 * - original offset in the file
1023 * - how many bookend extents
1024 *
1025 * The key offset for the implicit back refs is hash of the first
1026 * three fields.
1027 *
1028 * The extent ref structure for the full back refs has field for:
1029 *
1030 * - number of pointers in the tree leaf
1031 *
1032 * The key offset for the implicit back refs is the first byte of
1033 * the tree leaf
1034 *
1035 * When a file extent is allocated, The implicit back refs is used.
1036 * the fields are filled in:
1037 *
1038 *     (root_key.objectid, inode objectid, offset in file, 1)
1039 *
1040 * When a file extent is removed file truncation, we find the
1041 * corresponding implicit back refs and check the following fields:
1042 *
1043 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1044 *
1045 * Btree extents can be referenced by:
1046 *
1047 * - Different subvolumes
1048 *
1049 * Both the implicit back refs and the full back refs for tree blocks
1050 * only consist of key. The key offset for the implicit back refs is
1051 * objectid of block's owner tree. The key offset for the full back refs
1052 * is the first byte of parent block.
1053 *
1054 * When implicit back refs is used, information about the lowest key and
1055 * level of the tree block are required. These information are stored in
1056 * tree block info structure.
1057 */
1058
1059/*
1060 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1061 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1062 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1063 */
1064int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1065                                     struct btrfs_extent_inline_ref *iref,
1066                                     enum btrfs_inline_ref_type is_data)
1067{
1068        int type = btrfs_extent_inline_ref_type(eb, iref);
1069        u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1070
1071        if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1072            type == BTRFS_SHARED_BLOCK_REF_KEY ||
1073            type == BTRFS_SHARED_DATA_REF_KEY ||
1074            type == BTRFS_EXTENT_DATA_REF_KEY) {
1075                if (is_data == BTRFS_REF_TYPE_BLOCK) {
1076                        if (type == BTRFS_TREE_BLOCK_REF_KEY)
1077                                return type;
1078                        if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1079                                ASSERT(eb->fs_info);
1080                                /*
1081                                 * Every shared one has parent tree
1082                                 * block, which must be aligned to
1083                                 * nodesize.
1084                                 */
1085                                if (offset &&
1086                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1087                                        return type;
1088                        }
1089                } else if (is_data == BTRFS_REF_TYPE_DATA) {
1090                        if (type == BTRFS_EXTENT_DATA_REF_KEY)
1091                                return type;
1092                        if (type == BTRFS_SHARED_DATA_REF_KEY) {
1093                                ASSERT(eb->fs_info);
1094                                /*
1095                                 * Every shared one has parent tree
1096                                 * block, which must be aligned to
1097                                 * nodesize.
1098                                 */
1099                                if (offset &&
1100                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1101                                        return type;
1102                        }
1103                } else {
1104                        ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1105                        return type;
1106                }
1107        }
1108
1109        btrfs_print_leaf((struct extent_buffer *)eb);
1110        btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1111                  eb->start, type);
1112        WARN_ON(1);
1113
1114        return BTRFS_REF_TYPE_INVALID;
1115}
1116
1117static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1118{
1119        u32 high_crc = ~(u32)0;
1120        u32 low_crc = ~(u32)0;
1121        __le64 lenum;
1122
1123        lenum = cpu_to_le64(root_objectid);
1124        high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1125        lenum = cpu_to_le64(owner);
1126        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1127        lenum = cpu_to_le64(offset);
1128        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1129
1130        return ((u64)high_crc << 31) ^ (u64)low_crc;
1131}
1132
1133static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1134                                     struct btrfs_extent_data_ref *ref)
1135{
1136        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1137                                    btrfs_extent_data_ref_objectid(leaf, ref),
1138                                    btrfs_extent_data_ref_offset(leaf, ref));
1139}
1140
1141static int match_extent_data_ref(struct extent_buffer *leaf,
1142                                 struct btrfs_extent_data_ref *ref,
1143                                 u64 root_objectid, u64 owner, u64 offset)
1144{
1145        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1146            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1147            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1148                return 0;
1149        return 1;
1150}
1151
1152static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1153                                           struct btrfs_path *path,
1154                                           u64 bytenr, u64 parent,
1155                                           u64 root_objectid,
1156                                           u64 owner, u64 offset)
1157{
1158        struct btrfs_root *root = trans->fs_info->extent_root;
1159        struct btrfs_key key;
1160        struct btrfs_extent_data_ref *ref;
1161        struct extent_buffer *leaf;
1162        u32 nritems;
1163        int ret;
1164        int recow;
1165        int err = -ENOENT;
1166
1167        key.objectid = bytenr;
1168        if (parent) {
1169                key.type = BTRFS_SHARED_DATA_REF_KEY;
1170                key.offset = parent;
1171        } else {
1172                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1173                key.offset = hash_extent_data_ref(root_objectid,
1174                                                  owner, offset);
1175        }
1176again:
1177        recow = 0;
1178        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179        if (ret < 0) {
1180                err = ret;
1181                goto fail;
1182        }
1183
1184        if (parent) {
1185                if (!ret)
1186                        return 0;
1187                goto fail;
1188        }
1189
1190        leaf = path->nodes[0];
1191        nritems = btrfs_header_nritems(leaf);
1192        while (1) {
1193                if (path->slots[0] >= nritems) {
1194                        ret = btrfs_next_leaf(root, path);
1195                        if (ret < 0)
1196                                err = ret;
1197                        if (ret)
1198                                goto fail;
1199
1200                        leaf = path->nodes[0];
1201                        nritems = btrfs_header_nritems(leaf);
1202                        recow = 1;
1203                }
1204
1205                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1206                if (key.objectid != bytenr ||
1207                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1208                        goto fail;
1209
1210                ref = btrfs_item_ptr(leaf, path->slots[0],
1211                                     struct btrfs_extent_data_ref);
1212
1213                if (match_extent_data_ref(leaf, ref, root_objectid,
1214                                          owner, offset)) {
1215                        if (recow) {
1216                                btrfs_release_path(path);
1217                                goto again;
1218                        }
1219                        err = 0;
1220                        break;
1221                }
1222                path->slots[0]++;
1223        }
1224fail:
1225        return err;
1226}
1227
1228static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1229                                           struct btrfs_path *path,
1230                                           u64 bytenr, u64 parent,
1231                                           u64 root_objectid, u64 owner,
1232                                           u64 offset, int refs_to_add)
1233{
1234        struct btrfs_root *root = trans->fs_info->extent_root;
1235        struct btrfs_key key;
1236        struct extent_buffer *leaf;
1237        u32 size;
1238        u32 num_refs;
1239        int ret;
1240
1241        key.objectid = bytenr;
1242        if (parent) {
1243                key.type = BTRFS_SHARED_DATA_REF_KEY;
1244                key.offset = parent;
1245                size = sizeof(struct btrfs_shared_data_ref);
1246        } else {
1247                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1248                key.offset = hash_extent_data_ref(root_objectid,
1249                                                  owner, offset);
1250                size = sizeof(struct btrfs_extent_data_ref);
1251        }
1252
1253        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1254        if (ret && ret != -EEXIST)
1255                goto fail;
1256
1257        leaf = path->nodes[0];
1258        if (parent) {
1259                struct btrfs_shared_data_ref *ref;
1260                ref = btrfs_item_ptr(leaf, path->slots[0],
1261                                     struct btrfs_shared_data_ref);
1262                if (ret == 0) {
1263                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1264                } else {
1265                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1266                        num_refs += refs_to_add;
1267                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1268                }
1269        } else {
1270                struct btrfs_extent_data_ref *ref;
1271                while (ret == -EEXIST) {
1272                        ref = btrfs_item_ptr(leaf, path->slots[0],
1273                                             struct btrfs_extent_data_ref);
1274                        if (match_extent_data_ref(leaf, ref, root_objectid,
1275                                                  owner, offset))
1276                                break;
1277                        btrfs_release_path(path);
1278                        key.offset++;
1279                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1280                                                      size);
1281                        if (ret && ret != -EEXIST)
1282                                goto fail;
1283
1284                        leaf = path->nodes[0];
1285                }
1286                ref = btrfs_item_ptr(leaf, path->slots[0],
1287                                     struct btrfs_extent_data_ref);
1288                if (ret == 0) {
1289                        btrfs_set_extent_data_ref_root(leaf, ref,
1290                                                       root_objectid);
1291                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1292                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1293                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1294                } else {
1295                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1296                        num_refs += refs_to_add;
1297                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1298                }
1299        }
1300        btrfs_mark_buffer_dirty(leaf);
1301        ret = 0;
1302fail:
1303        btrfs_release_path(path);
1304        return ret;
1305}
1306
1307static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1308                                           struct btrfs_path *path,
1309                                           int refs_to_drop, int *last_ref)
1310{
1311        struct btrfs_key key;
1312        struct btrfs_extent_data_ref *ref1 = NULL;
1313        struct btrfs_shared_data_ref *ref2 = NULL;
1314        struct extent_buffer *leaf;
1315        u32 num_refs = 0;
1316        int ret = 0;
1317
1318        leaf = path->nodes[0];
1319        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1320
1321        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1322                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1323                                      struct btrfs_extent_data_ref);
1324                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1325        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1326                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1327                                      struct btrfs_shared_data_ref);
1328                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1329        } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1330                btrfs_print_v0_err(trans->fs_info);
1331                btrfs_abort_transaction(trans, -EINVAL);
1332                return -EINVAL;
1333        } else {
1334                BUG();
1335        }
1336
1337        BUG_ON(num_refs < refs_to_drop);
1338        num_refs -= refs_to_drop;
1339
1340        if (num_refs == 0) {
1341                ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1342                *last_ref = 1;
1343        } else {
1344                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1345                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1346                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1347                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1348                btrfs_mark_buffer_dirty(leaf);
1349        }
1350        return ret;
1351}
1352
1353static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1354                                          struct btrfs_extent_inline_ref *iref)
1355{
1356        struct btrfs_key key;
1357        struct extent_buffer *leaf;
1358        struct btrfs_extent_data_ref *ref1;
1359        struct btrfs_shared_data_ref *ref2;
1360        u32 num_refs = 0;
1361        int type;
1362
1363        leaf = path->nodes[0];
1364        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1365
1366        BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1367        if (iref) {
1368                /*
1369                 * If type is invalid, we should have bailed out earlier than
1370                 * this call.
1371                 */
1372                type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1373                ASSERT(type != BTRFS_REF_TYPE_INVALID);
1374                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1375                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1376                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1377                } else {
1378                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1379                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1380                }
1381        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1382                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1383                                      struct btrfs_extent_data_ref);
1384                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1385        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1386                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1387                                      struct btrfs_shared_data_ref);
1388                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1389        } else {
1390                WARN_ON(1);
1391        }
1392        return num_refs;
1393}
1394
1395static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1396                                          struct btrfs_path *path,
1397                                          u64 bytenr, u64 parent,
1398                                          u64 root_objectid)
1399{
1400        struct btrfs_root *root = trans->fs_info->extent_root;
1401        struct btrfs_key key;
1402        int ret;
1403
1404        key.objectid = bytenr;
1405        if (parent) {
1406                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407                key.offset = parent;
1408        } else {
1409                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410                key.offset = root_objectid;
1411        }
1412
1413        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1414        if (ret > 0)
1415                ret = -ENOENT;
1416        return ret;
1417}
1418
1419static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1420                                          struct btrfs_path *path,
1421                                          u64 bytenr, u64 parent,
1422                                          u64 root_objectid)
1423{
1424        struct btrfs_key key;
1425        int ret;
1426
1427        key.objectid = bytenr;
1428        if (parent) {
1429                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1430                key.offset = parent;
1431        } else {
1432                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1433                key.offset = root_objectid;
1434        }
1435
1436        ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1437                                      path, &key, 0);
1438        btrfs_release_path(path);
1439        return ret;
1440}
1441
1442static inline int extent_ref_type(u64 parent, u64 owner)
1443{
1444        int type;
1445        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1446                if (parent > 0)
1447                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1448                else
1449                        type = BTRFS_TREE_BLOCK_REF_KEY;
1450        } else {
1451                if (parent > 0)
1452                        type = BTRFS_SHARED_DATA_REF_KEY;
1453                else
1454                        type = BTRFS_EXTENT_DATA_REF_KEY;
1455        }
1456        return type;
1457}
1458
1459static int find_next_key(struct btrfs_path *path, int level,
1460                         struct btrfs_key *key)
1461
1462{
1463        for (; level < BTRFS_MAX_LEVEL; level++) {
1464                if (!path->nodes[level])
1465                        break;
1466                if (path->slots[level] + 1 >=
1467                    btrfs_header_nritems(path->nodes[level]))
1468                        continue;
1469                if (level == 0)
1470                        btrfs_item_key_to_cpu(path->nodes[level], key,
1471                                              path->slots[level] + 1);
1472                else
1473                        btrfs_node_key_to_cpu(path->nodes[level], key,
1474                                              path->slots[level] + 1);
1475                return 0;
1476        }
1477        return 1;
1478}
1479
1480/*
1481 * look for inline back ref. if back ref is found, *ref_ret is set
1482 * to the address of inline back ref, and 0 is returned.
1483 *
1484 * if back ref isn't found, *ref_ret is set to the address where it
1485 * should be inserted, and -ENOENT is returned.
1486 *
1487 * if insert is true and there are too many inline back refs, the path
1488 * points to the extent item, and -EAGAIN is returned.
1489 *
1490 * NOTE: inline back refs are ordered in the same way that back ref
1491 *       items in the tree are ordered.
1492 */
1493static noinline_for_stack
1494int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1495                                 struct btrfs_path *path,
1496                                 struct btrfs_extent_inline_ref **ref_ret,
1497                                 u64 bytenr, u64 num_bytes,
1498                                 u64 parent, u64 root_objectid,
1499                                 u64 owner, u64 offset, int insert)
1500{
1501        struct btrfs_fs_info *fs_info = trans->fs_info;
1502        struct btrfs_root *root = fs_info->extent_root;
1503        struct btrfs_key key;
1504        struct extent_buffer *leaf;
1505        struct btrfs_extent_item *ei;
1506        struct btrfs_extent_inline_ref *iref;
1507        u64 flags;
1508        u64 item_size;
1509        unsigned long ptr;
1510        unsigned long end;
1511        int extra_size;
1512        int type;
1513        int want;
1514        int ret;
1515        int err = 0;
1516        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1517        int needed;
1518
1519        key.objectid = bytenr;
1520        key.type = BTRFS_EXTENT_ITEM_KEY;
1521        key.offset = num_bytes;
1522
1523        want = extent_ref_type(parent, owner);
1524        if (insert) {
1525                extra_size = btrfs_extent_inline_ref_size(want);
1526                path->keep_locks = 1;
1527        } else
1528                extra_size = -1;
1529
1530        /*
1531         * Owner is our level, so we can just add one to get the level for the
1532         * block we are interested in.
1533         */
1534        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1535                key.type = BTRFS_METADATA_ITEM_KEY;
1536                key.offset = owner;
1537        }
1538
1539again:
1540        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1541        if (ret < 0) {
1542                err = ret;
1543                goto out;
1544        }
1545
1546        /*
1547         * We may be a newly converted file system which still has the old fat
1548         * extent entries for metadata, so try and see if we have one of those.
1549         */
1550        if (ret > 0 && skinny_metadata) {
1551                skinny_metadata = false;
1552                if (path->slots[0]) {
1553                        path->slots[0]--;
1554                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1555                                              path->slots[0]);
1556                        if (key.objectid == bytenr &&
1557                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1558                            key.offset == num_bytes)
1559                                ret = 0;
1560                }
1561                if (ret) {
1562                        key.objectid = bytenr;
1563                        key.type = BTRFS_EXTENT_ITEM_KEY;
1564                        key.offset = num_bytes;
1565                        btrfs_release_path(path);
1566                        goto again;
1567                }
1568        }
1569
1570        if (ret && !insert) {
1571                err = -ENOENT;
1572                goto out;
1573        } else if (WARN_ON(ret)) {
1574                err = -EIO;
1575                goto out;
1576        }
1577
1578        leaf = path->nodes[0];
1579        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1580        if (unlikely(item_size < sizeof(*ei))) {
1581                err = -EINVAL;
1582                btrfs_print_v0_err(fs_info);
1583                btrfs_abort_transaction(trans, err);
1584                goto out;
1585        }
1586
1587        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1588        flags = btrfs_extent_flags(leaf, ei);
1589
1590        ptr = (unsigned long)(ei + 1);
1591        end = (unsigned long)ei + item_size;
1592
1593        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1594                ptr += sizeof(struct btrfs_tree_block_info);
1595                BUG_ON(ptr > end);
1596        }
1597
1598        if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1599                needed = BTRFS_REF_TYPE_DATA;
1600        else
1601                needed = BTRFS_REF_TYPE_BLOCK;
1602
1603        err = -ENOENT;
1604        while (1) {
1605                if (ptr >= end) {
1606                        WARN_ON(ptr > end);
1607                        break;
1608                }
1609                iref = (struct btrfs_extent_inline_ref *)ptr;
1610                type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1611                if (type == BTRFS_REF_TYPE_INVALID) {
1612                        err = -EUCLEAN;
1613                        goto out;
1614                }
1615
1616                if (want < type)
1617                        break;
1618                if (want > type) {
1619                        ptr += btrfs_extent_inline_ref_size(type);
1620                        continue;
1621                }
1622
1623                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1624                        struct btrfs_extent_data_ref *dref;
1625                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1626                        if (match_extent_data_ref(leaf, dref, root_objectid,
1627                                                  owner, offset)) {
1628                                err = 0;
1629                                break;
1630                        }
1631                        if (hash_extent_data_ref_item(leaf, dref) <
1632                            hash_extent_data_ref(root_objectid, owner, offset))
1633                                break;
1634                } else {
1635                        u64 ref_offset;
1636                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1637                        if (parent > 0) {
1638                                if (parent == ref_offset) {
1639                                        err = 0;
1640                                        break;
1641                                }
1642                                if (ref_offset < parent)
1643                                        break;
1644                        } else {
1645                                if (root_objectid == ref_offset) {
1646                                        err = 0;
1647                                        break;
1648                                }
1649                                if (ref_offset < root_objectid)
1650                                        break;
1651                        }
1652                }
1653                ptr += btrfs_extent_inline_ref_size(type);
1654        }
1655        if (err == -ENOENT && insert) {
1656                if (item_size + extra_size >=
1657                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1658                        err = -EAGAIN;
1659                        goto out;
1660                }
1661                /*
1662                 * To add new inline back ref, we have to make sure
1663                 * there is no corresponding back ref item.
1664                 * For simplicity, we just do not add new inline back
1665                 * ref if there is any kind of item for this block
1666                 */
1667                if (find_next_key(path, 0, &key) == 0 &&
1668                    key.objectid == bytenr &&
1669                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1670                        err = -EAGAIN;
1671                        goto out;
1672                }
1673        }
1674        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1675out:
1676        if (insert) {
1677                path->keep_locks = 0;
1678                btrfs_unlock_up_safe(path, 1);
1679        }
1680        return err;
1681}
1682
1683/*
1684 * helper to add new inline back ref
1685 */
1686static noinline_for_stack
1687void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1688                                 struct btrfs_path *path,
1689                                 struct btrfs_extent_inline_ref *iref,
1690                                 u64 parent, u64 root_objectid,
1691                                 u64 owner, u64 offset, int refs_to_add,
1692                                 struct btrfs_delayed_extent_op *extent_op)
1693{
1694        struct extent_buffer *leaf;
1695        struct btrfs_extent_item *ei;
1696        unsigned long ptr;
1697        unsigned long end;
1698        unsigned long item_offset;
1699        u64 refs;
1700        int size;
1701        int type;
1702
1703        leaf = path->nodes[0];
1704        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1705        item_offset = (unsigned long)iref - (unsigned long)ei;
1706
1707        type = extent_ref_type(parent, owner);
1708        size = btrfs_extent_inline_ref_size(type);
1709
1710        btrfs_extend_item(path, size);
1711
1712        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713        refs = btrfs_extent_refs(leaf, ei);
1714        refs += refs_to_add;
1715        btrfs_set_extent_refs(leaf, ei, refs);
1716        if (extent_op)
1717                __run_delayed_extent_op(extent_op, leaf, ei);
1718
1719        ptr = (unsigned long)ei + item_offset;
1720        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1721        if (ptr < end - size)
1722                memmove_extent_buffer(leaf, ptr + size, ptr,
1723                                      end - size - ptr);
1724
1725        iref = (struct btrfs_extent_inline_ref *)ptr;
1726        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1727        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1728                struct btrfs_extent_data_ref *dref;
1729                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1730                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1731                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1732                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1733                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1734        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1735                struct btrfs_shared_data_ref *sref;
1736                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1737                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1738                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1740                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1741        } else {
1742                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1743        }
1744        btrfs_mark_buffer_dirty(leaf);
1745}
1746
1747static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1748                                 struct btrfs_path *path,
1749                                 struct btrfs_extent_inline_ref **ref_ret,
1750                                 u64 bytenr, u64 num_bytes, u64 parent,
1751                                 u64 root_objectid, u64 owner, u64 offset)
1752{
1753        int ret;
1754
1755        ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1756                                           num_bytes, parent, root_objectid,
1757                                           owner, offset, 0);
1758        if (ret != -ENOENT)
1759                return ret;
1760
1761        btrfs_release_path(path);
1762        *ref_ret = NULL;
1763
1764        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1765                ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1766                                            root_objectid);
1767        } else {
1768                ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1769                                             root_objectid, owner, offset);
1770        }
1771        return ret;
1772}
1773
1774/*
1775 * helper to update/remove inline back ref
1776 */
1777static noinline_for_stack
1778void update_inline_extent_backref(struct btrfs_path *path,
1779                                  struct btrfs_extent_inline_ref *iref,
1780                                  int refs_to_mod,
1781                                  struct btrfs_delayed_extent_op *extent_op,
1782                                  int *last_ref)
1783{
1784        struct extent_buffer *leaf = path->nodes[0];
1785        struct btrfs_extent_item *ei;
1786        struct btrfs_extent_data_ref *dref = NULL;
1787        struct btrfs_shared_data_ref *sref = NULL;
1788        unsigned long ptr;
1789        unsigned long end;
1790        u32 item_size;
1791        int size;
1792        int type;
1793        u64 refs;
1794
1795        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1796        refs = btrfs_extent_refs(leaf, ei);
1797        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1798        refs += refs_to_mod;
1799        btrfs_set_extent_refs(leaf, ei, refs);
1800        if (extent_op)
1801                __run_delayed_extent_op(extent_op, leaf, ei);
1802
1803        /*
1804         * If type is invalid, we should have bailed out after
1805         * lookup_inline_extent_backref().
1806         */
1807        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1808        ASSERT(type != BTRFS_REF_TYPE_INVALID);
1809
1810        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1811                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1812                refs = btrfs_extent_data_ref_count(leaf, dref);
1813        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1814                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1815                refs = btrfs_shared_data_ref_count(leaf, sref);
1816        } else {
1817                refs = 1;
1818                BUG_ON(refs_to_mod != -1);
1819        }
1820
1821        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1822        refs += refs_to_mod;
1823
1824        if (refs > 0) {
1825                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1826                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1827                else
1828                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1829        } else {
1830                *last_ref = 1;
1831                size =  btrfs_extent_inline_ref_size(type);
1832                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1833                ptr = (unsigned long)iref;
1834                end = (unsigned long)ei + item_size;
1835                if (ptr + size < end)
1836                        memmove_extent_buffer(leaf, ptr, ptr + size,
1837                                              end - ptr - size);
1838                item_size -= size;
1839                btrfs_truncate_item(path, item_size, 1);
1840        }
1841        btrfs_mark_buffer_dirty(leaf);
1842}
1843
1844static noinline_for_stack
1845int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1846                                 struct btrfs_path *path,
1847                                 u64 bytenr, u64 num_bytes, u64 parent,
1848                                 u64 root_objectid, u64 owner,
1849                                 u64 offset, int refs_to_add,
1850                                 struct btrfs_delayed_extent_op *extent_op)
1851{
1852        struct btrfs_extent_inline_ref *iref;
1853        int ret;
1854
1855        ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1856                                           num_bytes, parent, root_objectid,
1857                                           owner, offset, 1);
1858        if (ret == 0) {
1859                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1860                update_inline_extent_backref(path, iref, refs_to_add,
1861                                             extent_op, NULL);
1862        } else if (ret == -ENOENT) {
1863                setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1864                                            root_objectid, owner, offset,
1865                                            refs_to_add, extent_op);
1866                ret = 0;
1867        }
1868        return ret;
1869}
1870
1871static int insert_extent_backref(struct btrfs_trans_handle *trans,
1872                                 struct btrfs_path *path,
1873                                 u64 bytenr, u64 parent, u64 root_objectid,
1874                                 u64 owner, u64 offset, int refs_to_add)
1875{
1876        int ret;
1877        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1878                BUG_ON(refs_to_add != 1);
1879                ret = insert_tree_block_ref(trans, path, bytenr, parent,
1880                                            root_objectid);
1881        } else {
1882                ret = insert_extent_data_ref(trans, path, bytenr, parent,
1883                                             root_objectid, owner, offset,
1884                                             refs_to_add);
1885        }
1886        return ret;
1887}
1888
1889static int remove_extent_backref(struct btrfs_trans_handle *trans,
1890                                 struct btrfs_path *path,
1891                                 struct btrfs_extent_inline_ref *iref,
1892                                 int refs_to_drop, int is_data, int *last_ref)
1893{
1894        int ret = 0;
1895
1896        BUG_ON(!is_data && refs_to_drop != 1);
1897        if (iref) {
1898                update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1899                                             last_ref);
1900        } else if (is_data) {
1901                ret = remove_extent_data_ref(trans, path, refs_to_drop,
1902                                             last_ref);
1903        } else {
1904                *last_ref = 1;
1905                ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1906        }
1907        return ret;
1908}
1909
1910static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1911                               u64 *discarded_bytes)
1912{
1913        int j, ret = 0;
1914        u64 bytes_left, end;
1915        u64 aligned_start = ALIGN(start, 1 << 9);
1916
1917        if (WARN_ON(start != aligned_start)) {
1918                len -= aligned_start - start;
1919                len = round_down(len, 1 << 9);
1920                start = aligned_start;
1921        }
1922
1923        *discarded_bytes = 0;
1924
1925        if (!len)
1926                return 0;
1927
1928        end = start + len;
1929        bytes_left = len;
1930
1931        /* Skip any superblocks on this device. */
1932        for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1933                u64 sb_start = btrfs_sb_offset(j);
1934                u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1935                u64 size = sb_start - start;
1936
1937                if (!in_range(sb_start, start, bytes_left) &&
1938                    !in_range(sb_end, start, bytes_left) &&
1939                    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1940                        continue;
1941
1942                /*
1943                 * Superblock spans beginning of range.  Adjust start and
1944                 * try again.
1945                 */
1946                if (sb_start <= start) {
1947                        start += sb_end - start;
1948                        if (start > end) {
1949                                bytes_left = 0;
1950                                break;
1951                        }
1952                        bytes_left = end - start;
1953                        continue;
1954                }
1955
1956                if (size) {
1957                        ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1958                                                   GFP_NOFS, 0);
1959                        if (!ret)
1960                                *discarded_bytes += size;
1961                        else if (ret != -EOPNOTSUPP)
1962                                return ret;
1963                }
1964
1965                start = sb_end;
1966                if (start > end) {
1967                        bytes_left = 0;
1968                        break;
1969                }
1970                bytes_left = end - start;
1971        }
1972
1973        if (bytes_left) {
1974                ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1975                                           GFP_NOFS, 0);
1976                if (!ret)
1977                        *discarded_bytes += bytes_left;
1978        }
1979        return ret;
1980}
1981
1982int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1983                         u64 num_bytes, u64 *actual_bytes)
1984{
1985        int ret;
1986        u64 discarded_bytes = 0;
1987        struct btrfs_bio *bbio = NULL;
1988
1989
1990        /*
1991         * Avoid races with device replace and make sure our bbio has devices
1992         * associated to its stripes that don't go away while we are discarding.
1993         */
1994        btrfs_bio_counter_inc_blocked(fs_info);
1995        /* Tell the block device(s) that the sectors can be discarded */
1996        ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1997                              &bbio, 0);
1998        /* Error condition is -ENOMEM */
1999        if (!ret) {
2000                struct btrfs_bio_stripe *stripe = bbio->stripes;
2001                int i;
2002
2003
2004                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2005                        u64 bytes;
2006                        struct request_queue *req_q;
2007
2008                        if (!stripe->dev->bdev) {
2009                                ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2010                                continue;
2011                        }
2012                        req_q = bdev_get_queue(stripe->dev->bdev);
2013                        if (!blk_queue_discard(req_q))
2014                                continue;
2015
2016                        ret = btrfs_issue_discard(stripe->dev->bdev,
2017                                                  stripe->physical,
2018                                                  stripe->length,
2019                                                  &bytes);
2020                        if (!ret)
2021                                discarded_bytes += bytes;
2022                        else if (ret != -EOPNOTSUPP)
2023                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2024
2025                        /*
2026                         * Just in case we get back EOPNOTSUPP for some reason,
2027                         * just ignore the return value so we don't screw up
2028                         * people calling discard_extent.
2029                         */
2030                        ret = 0;
2031                }
2032                btrfs_put_bbio(bbio);
2033        }
2034        btrfs_bio_counter_dec(fs_info);
2035
2036        if (actual_bytes)
2037                *actual_bytes = discarded_bytes;
2038
2039
2040        if (ret == -EOPNOTSUPP)
2041                ret = 0;
2042        return ret;
2043}
2044
2045/* Can return -ENOMEM */
2046int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2047                         struct btrfs_ref *generic_ref)
2048{
2049        struct btrfs_fs_info *fs_info = trans->fs_info;
2050        int old_ref_mod, new_ref_mod;
2051        int ret;
2052
2053        ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
2054               generic_ref->action);
2055        BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
2056               generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
2057
2058        if (generic_ref->type == BTRFS_REF_METADATA)
2059                ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
2060                                NULL, &old_ref_mod, &new_ref_mod);
2061        else
2062                ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
2063                                                 &old_ref_mod, &new_ref_mod);
2064
2065        btrfs_ref_tree_mod(fs_info, generic_ref);
2066
2067        if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2068                add_pinned_bytes(fs_info, generic_ref, -1);
2069
2070        return ret;
2071}
2072
2073/*
2074 * __btrfs_inc_extent_ref - insert backreference for a given extent
2075 *
2076 * @trans:          Handle of transaction
2077 *
2078 * @node:           The delayed ref node used to get the bytenr/length for
2079 *                  extent whose references are incremented.
2080 *
2081 * @parent:         If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2082 *                  BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2083 *                  bytenr of the parent block. Since new extents are always
2084 *                  created with indirect references, this will only be the case
2085 *                  when relocating a shared extent. In that case, root_objectid
2086 *                  will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2087 *                  be 0
2088 *
2089 * @root_objectid:  The id of the root where this modification has originated,
2090 *                  this can be either one of the well-known metadata trees or
2091 *                  the subvolume id which references this extent.
2092 *
2093 * @owner:          For data extents it is the inode number of the owning file.
2094 *                  For metadata extents this parameter holds the level in the
2095 *                  tree of the extent.
2096 *
2097 * @offset:         For metadata extents the offset is ignored and is currently
2098 *                  always passed as 0. For data extents it is the fileoffset
2099 *                  this extent belongs to.
2100 *
2101 * @refs_to_add     Number of references to add
2102 *
2103 * @extent_op       Pointer to a structure, holding information necessary when
2104 *                  updating a tree block's flags
2105 *
2106 */
2107static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108                                  struct btrfs_delayed_ref_node *node,
2109                                  u64 parent, u64 root_objectid,
2110                                  u64 owner, u64 offset, int refs_to_add,
2111                                  struct btrfs_delayed_extent_op *extent_op)
2112{
2113        struct btrfs_path *path;
2114        struct extent_buffer *leaf;
2115        struct btrfs_extent_item *item;
2116        struct btrfs_key key;
2117        u64 bytenr = node->bytenr;
2118        u64 num_bytes = node->num_bytes;
2119        u64 refs;
2120        int ret;
2121
2122        path = btrfs_alloc_path();
2123        if (!path)
2124                return -ENOMEM;
2125
2126        path->reada = READA_FORWARD;
2127        path->leave_spinning = 1;
2128        /* this will setup the path even if it fails to insert the back ref */
2129        ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2130                                           parent, root_objectid, owner,
2131                                           offset, refs_to_add, extent_op);
2132        if ((ret < 0 && ret != -EAGAIN) || !ret)
2133                goto out;
2134
2135        /*
2136         * Ok we had -EAGAIN which means we didn't have space to insert and
2137         * inline extent ref, so just update the reference count and add a
2138         * normal backref.
2139         */
2140        leaf = path->nodes[0];
2141        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2142        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2143        refs = btrfs_extent_refs(leaf, item);
2144        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2145        if (extent_op)
2146                __run_delayed_extent_op(extent_op, leaf, item);
2147
2148        btrfs_mark_buffer_dirty(leaf);
2149        btrfs_release_path(path);
2150
2151        path->reada = READA_FORWARD;
2152        path->leave_spinning = 1;
2153        /* now insert the actual backref */
2154        ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2155                                    owner, offset, refs_to_add);
2156        if (ret)
2157                btrfs_abort_transaction(trans, ret);
2158out:
2159        btrfs_free_path(path);
2160        return ret;
2161}
2162
2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164                                struct btrfs_delayed_ref_node *node,
2165                                struct btrfs_delayed_extent_op *extent_op,
2166                                int insert_reserved)
2167{
2168        int ret = 0;
2169        struct btrfs_delayed_data_ref *ref;
2170        struct btrfs_key ins;
2171        u64 parent = 0;
2172        u64 ref_root = 0;
2173        u64 flags = 0;
2174
2175        ins.objectid = node->bytenr;
2176        ins.offset = node->num_bytes;
2177        ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179        ref = btrfs_delayed_node_to_data_ref(node);
2180        trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2181
2182        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183                parent = ref->parent;
2184        ref_root = ref->root;
2185
2186        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187                if (extent_op)
2188                        flags |= extent_op->flags_to_set;
2189                ret = alloc_reserved_file_extent(trans, parent, ref_root,
2190                                                 flags, ref->objectid,
2191                                                 ref->offset, &ins,
2192                                                 node->ref_mod);
2193        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194                ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2195                                             ref->objectid, ref->offset,
2196                                             node->ref_mod, extent_op);
2197        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2198                ret = __btrfs_free_extent(trans, node, parent,
2199                                          ref_root, ref->objectid,
2200                                          ref->offset, node->ref_mod,
2201                                          extent_op);
2202        } else {
2203                BUG();
2204        }
2205        return ret;
2206}
2207
2208static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209                                    struct extent_buffer *leaf,
2210                                    struct btrfs_extent_item *ei)
2211{
2212        u64 flags = btrfs_extent_flags(leaf, ei);
2213        if (extent_op->update_flags) {
2214                flags |= extent_op->flags_to_set;
2215                btrfs_set_extent_flags(leaf, ei, flags);
2216        }
2217
2218        if (extent_op->update_key) {
2219                struct btrfs_tree_block_info *bi;
2220                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221                bi = (struct btrfs_tree_block_info *)(ei + 1);
2222                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223        }
2224}
2225
2226static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2227                                 struct btrfs_delayed_ref_head *head,
2228                                 struct btrfs_delayed_extent_op *extent_op)
2229{
2230        struct btrfs_fs_info *fs_info = trans->fs_info;
2231        struct btrfs_key key;
2232        struct btrfs_path *path;
2233        struct btrfs_extent_item *ei;
2234        struct extent_buffer *leaf;
2235        u32 item_size;
2236        int ret;
2237        int err = 0;
2238        int metadata = !extent_op->is_data;
2239
2240        if (trans->aborted)
2241                return 0;
2242
2243        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2244                metadata = 0;
2245
2246        path = btrfs_alloc_path();
2247        if (!path)
2248                return -ENOMEM;
2249
2250        key.objectid = head->bytenr;
2251
2252        if (metadata) {
2253                key.type = BTRFS_METADATA_ITEM_KEY;
2254                key.offset = extent_op->level;
2255        } else {
2256                key.type = BTRFS_EXTENT_ITEM_KEY;
2257                key.offset = head->num_bytes;
2258        }
2259
2260again:
2261        path->reada = READA_FORWARD;
2262        path->leave_spinning = 1;
2263        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2264        if (ret < 0) {
2265                err = ret;
2266                goto out;
2267        }
2268        if (ret > 0) {
2269                if (metadata) {
2270                        if (path->slots[0] > 0) {
2271                                path->slots[0]--;
2272                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2273                                                      path->slots[0]);
2274                                if (key.objectid == head->bytenr &&
2275                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2276                                    key.offset == head->num_bytes)
2277                                        ret = 0;
2278                        }
2279                        if (ret > 0) {
2280                                btrfs_release_path(path);
2281                                metadata = 0;
2282
2283                                key.objectid = head->bytenr;
2284                                key.offset = head->num_bytes;
2285                                key.type = BTRFS_EXTENT_ITEM_KEY;
2286                                goto again;
2287                        }
2288                } else {
2289                        err = -EIO;
2290                        goto out;
2291                }
2292        }
2293
2294        leaf = path->nodes[0];
2295        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2296
2297        if (unlikely(item_size < sizeof(*ei))) {
2298                err = -EINVAL;
2299                btrfs_print_v0_err(fs_info);
2300                btrfs_abort_transaction(trans, err);
2301                goto out;
2302        }
2303
2304        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305        __run_delayed_extent_op(extent_op, leaf, ei);
2306
2307        btrfs_mark_buffer_dirty(leaf);
2308out:
2309        btrfs_free_path(path);
2310        return err;
2311}
2312
2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2314                                struct btrfs_delayed_ref_node *node,
2315                                struct btrfs_delayed_extent_op *extent_op,
2316                                int insert_reserved)
2317{
2318        int ret = 0;
2319        struct btrfs_delayed_tree_ref *ref;
2320        u64 parent = 0;
2321        u64 ref_root = 0;
2322
2323        ref = btrfs_delayed_node_to_tree_ref(node);
2324        trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2325
2326        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2327                parent = ref->parent;
2328        ref_root = ref->root;
2329
2330        if (node->ref_mod != 1) {
2331                btrfs_err(trans->fs_info,
2332        "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2333                          node->bytenr, node->ref_mod, node->action, ref_root,
2334                          parent);
2335                return -EIO;
2336        }
2337        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2338                BUG_ON(!extent_op || !extent_op->update_flags);
2339                ret = alloc_reserved_tree_block(trans, node, extent_op);
2340        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2341                ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2342                                             ref->level, 0, 1, extent_op);
2343        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2344                ret = __btrfs_free_extent(trans, node, parent, ref_root,
2345                                          ref->level, 0, 1, extent_op);
2346        } else {
2347                BUG();
2348        }
2349        return ret;
2350}
2351
2352/* helper function to actually process a single delayed ref entry */
2353static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2354                               struct btrfs_delayed_ref_node *node,
2355                               struct btrfs_delayed_extent_op *extent_op,
2356                               int insert_reserved)
2357{
2358        int ret = 0;
2359
2360        if (trans->aborted) {
2361                if (insert_reserved)
2362                        btrfs_pin_extent(trans->fs_info, node->bytenr,
2363                                         node->num_bytes, 1);
2364                return 0;
2365        }
2366
2367        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2368            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2369                ret = run_delayed_tree_ref(trans, node, extent_op,
2370                                           insert_reserved);
2371        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2372                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2373                ret = run_delayed_data_ref(trans, node, extent_op,
2374                                           insert_reserved);
2375        else
2376                BUG();
2377        if (ret && insert_reserved)
2378                btrfs_pin_extent(trans->fs_info, node->bytenr,
2379                                 node->num_bytes, 1);
2380        return ret;
2381}
2382
2383static inline struct btrfs_delayed_ref_node *
2384select_delayed_ref(struct btrfs_delayed_ref_head *head)
2385{
2386        struct btrfs_delayed_ref_node *ref;
2387
2388        if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2389                return NULL;
2390
2391        /*
2392         * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2393         * This is to prevent a ref count from going down to zero, which deletes
2394         * the extent item from the extent tree, when there still are references
2395         * to add, which would fail because they would not find the extent item.
2396         */
2397        if (!list_empty(&head->ref_add_list))
2398                return list_first_entry(&head->ref_add_list,
2399                                struct btrfs_delayed_ref_node, add_list);
2400
2401        ref = rb_entry(rb_first_cached(&head->ref_tree),
2402                       struct btrfs_delayed_ref_node, ref_node);
2403        ASSERT(list_empty(&ref->add_list));
2404        return ref;
2405}
2406
2407static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2408                                      struct btrfs_delayed_ref_head *head)
2409{
2410        spin_lock(&delayed_refs->lock);
2411        head->processing = 0;
2412        delayed_refs->num_heads_ready++;
2413        spin_unlock(&delayed_refs->lock);
2414        btrfs_delayed_ref_unlock(head);
2415}
2416
2417static struct btrfs_delayed_extent_op *cleanup_extent_op(
2418                                struct btrfs_delayed_ref_head *head)
2419{
2420        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2421
2422        if (!extent_op)
2423                return NULL;
2424
2425        if (head->must_insert_reserved) {
2426                head->extent_op = NULL;
2427                btrfs_free_delayed_extent_op(extent_op);
2428                return NULL;
2429        }
2430        return extent_op;
2431}
2432
2433static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2434                                     struct btrfs_delayed_ref_head *head)
2435{
2436        struct btrfs_delayed_extent_op *extent_op;
2437        int ret;
2438
2439        extent_op = cleanup_extent_op(head);
2440        if (!extent_op)
2441                return 0;
2442        head->extent_op = NULL;
2443        spin_unlock(&head->lock);
2444        ret = run_delayed_extent_op(trans, head, extent_op);
2445        btrfs_free_delayed_extent_op(extent_op);
2446        return ret ? ret : 1;
2447}
2448
2449void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2450                                  struct btrfs_delayed_ref_root *delayed_refs,
2451                                  struct btrfs_delayed_ref_head *head)
2452{
2453        int nr_items = 1;       /* Dropping this ref head update. */
2454
2455        if (head->total_ref_mod < 0) {
2456                struct btrfs_space_info *space_info;
2457                u64 flags;
2458
2459                if (head->is_data)
2460                        flags = BTRFS_BLOCK_GROUP_DATA;
2461                else if (head->is_system)
2462                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
2463                else
2464                        flags = BTRFS_BLOCK_GROUP_METADATA;
2465                space_info = __find_space_info(fs_info, flags);
2466                ASSERT(space_info);
2467                percpu_counter_add_batch(&space_info->total_bytes_pinned,
2468                                   -head->num_bytes,
2469                                   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2470
2471                /*
2472                 * We had csum deletions accounted for in our delayed refs rsv,
2473                 * we need to drop the csum leaves for this update from our
2474                 * delayed_refs_rsv.
2475                 */
2476                if (head->is_data) {
2477                        spin_lock(&delayed_refs->lock);
2478                        delayed_refs->pending_csums -= head->num_bytes;
2479                        spin_unlock(&delayed_refs->lock);
2480                        nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2481                                head->num_bytes);
2482                }
2483        }
2484
2485        btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2486}
2487
2488static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2489                            struct btrfs_delayed_ref_head *head)
2490{
2491
2492        struct btrfs_fs_info *fs_info = trans->fs_info;
2493        struct btrfs_delayed_ref_root *delayed_refs;
2494        int ret;
2495
2496        delayed_refs = &trans->transaction->delayed_refs;
2497
2498        ret = run_and_cleanup_extent_op(trans, head);
2499        if (ret < 0) {
2500                unselect_delayed_ref_head(delayed_refs, head);
2501                btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2502                return ret;
2503        } else if (ret) {
2504                return ret;
2505        }
2506
2507        /*
2508         * Need to drop our head ref lock and re-acquire the delayed ref lock
2509         * and then re-check to make sure nobody got added.
2510         */
2511        spin_unlock(&head->lock);
2512        spin_lock(&delayed_refs->lock);
2513        spin_lock(&head->lock);
2514        if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2515                spin_unlock(&head->lock);
2516                spin_unlock(&delayed_refs->lock);
2517                return 1;
2518        }
2519        btrfs_delete_ref_head(delayed_refs, head);
2520        spin_unlock(&head->lock);
2521        spin_unlock(&delayed_refs->lock);
2522
2523        if (head->must_insert_reserved) {
2524                btrfs_pin_extent(fs_info, head->bytenr,
2525                                 head->num_bytes, 1);
2526                if (head->is_data) {
2527                        ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2528                                              head->num_bytes);
2529                }
2530        }
2531
2532        btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2533
2534        trace_run_delayed_ref_head(fs_info, head, 0);
2535        btrfs_delayed_ref_unlock(head);
2536        btrfs_put_delayed_ref_head(head);
2537        return 0;
2538}
2539
2540static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2541                                        struct btrfs_trans_handle *trans)
2542{
2543        struct btrfs_delayed_ref_root *delayed_refs =
2544                &trans->transaction->delayed_refs;
2545        struct btrfs_delayed_ref_head *head = NULL;
2546        int ret;
2547
2548        spin_lock(&delayed_refs->lock);
2549        head = btrfs_select_ref_head(delayed_refs);
2550        if (!head) {
2551                spin_unlock(&delayed_refs->lock);
2552                return head;
2553        }
2554
2555        /*
2556         * Grab the lock that says we are going to process all the refs for
2557         * this head
2558         */
2559        ret = btrfs_delayed_ref_lock(delayed_refs, head);
2560        spin_unlock(&delayed_refs->lock);
2561
2562        /*
2563         * We may have dropped the spin lock to get the head mutex lock, and
2564         * that might have given someone else time to free the head.  If that's
2565         * true, it has been removed from our list and we can move on.
2566         */
2567        if (ret == -EAGAIN)
2568                head = ERR_PTR(-EAGAIN);
2569
2570        return head;
2571}
2572
2573static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2574                                    struct btrfs_delayed_ref_head *locked_ref,
2575                                    unsigned long *run_refs)
2576{
2577        struct btrfs_fs_info *fs_info = trans->fs_info;
2578        struct btrfs_delayed_ref_root *delayed_refs;
2579        struct btrfs_delayed_extent_op *extent_op;
2580        struct btrfs_delayed_ref_node *ref;
2581        int must_insert_reserved = 0;
2582        int ret;
2583
2584        delayed_refs = &trans->transaction->delayed_refs;
2585
2586        lockdep_assert_held(&locked_ref->mutex);
2587        lockdep_assert_held(&locked_ref->lock);
2588
2589        while ((ref = select_delayed_ref(locked_ref))) {
2590                if (ref->seq &&
2591                    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2592                        spin_unlock(&locked_ref->lock);
2593                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2594                        return -EAGAIN;
2595                }
2596
2597                (*run_refs)++;
2598                ref->in_tree = 0;
2599                rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2600                RB_CLEAR_NODE(&ref->ref_node);
2601                if (!list_empty(&ref->add_list))
2602                        list_del(&ref->add_list);
2603                /*
2604                 * When we play the delayed ref, also correct the ref_mod on
2605                 * head
2606                 */
2607                switch (ref->action) {
2608                case BTRFS_ADD_DELAYED_REF:
2609                case BTRFS_ADD_DELAYED_EXTENT:
2610                        locked_ref->ref_mod -= ref->ref_mod;
2611                        break;
2612                case BTRFS_DROP_DELAYED_REF:
2613                        locked_ref->ref_mod += ref->ref_mod;
2614                        break;
2615                default:
2616                        WARN_ON(1);
2617                }
2618                atomic_dec(&delayed_refs->num_entries);
2619
2620                /*
2621                 * Record the must_insert_reserved flag before we drop the
2622                 * spin lock.
2623                 */
2624                must_insert_reserved = locked_ref->must_insert_reserved;
2625                locked_ref->must_insert_reserved = 0;
2626
2627                extent_op = locked_ref->extent_op;
2628                locked_ref->extent_op = NULL;
2629                spin_unlock(&locked_ref->lock);
2630
2631                ret = run_one_delayed_ref(trans, ref, extent_op,
2632                                          must_insert_reserved);
2633
2634                btrfs_free_delayed_extent_op(extent_op);
2635                if (ret) {
2636                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2637                        btrfs_put_delayed_ref(ref);
2638                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2639                                    ret);
2640                        return ret;
2641                }
2642
2643                btrfs_put_delayed_ref(ref);
2644                cond_resched();
2645
2646                spin_lock(&locked_ref->lock);
2647                btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2648        }
2649
2650        return 0;
2651}
2652
2653/*
2654 * Returns 0 on success or if called with an already aborted transaction.
2655 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2656 */
2657static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2658                                             unsigned long nr)
2659{
2660        struct btrfs_fs_info *fs_info = trans->fs_info;
2661        struct btrfs_delayed_ref_root *delayed_refs;
2662        struct btrfs_delayed_ref_head *locked_ref = NULL;
2663        ktime_t start = ktime_get();
2664        int ret;
2665        unsigned long count = 0;
2666        unsigned long actual_count = 0;
2667
2668        delayed_refs = &trans->transaction->delayed_refs;
2669        do {
2670                if (!locked_ref) {
2671                        locked_ref = btrfs_obtain_ref_head(trans);
2672                        if (IS_ERR_OR_NULL(locked_ref)) {
2673                                if (PTR_ERR(locked_ref) == -EAGAIN) {
2674                                        continue;
2675                                } else {
2676                                        break;
2677                                }
2678                        }
2679                        count++;
2680                }
2681                /*
2682                 * We need to try and merge add/drops of the same ref since we
2683                 * can run into issues with relocate dropping the implicit ref
2684                 * and then it being added back again before the drop can
2685                 * finish.  If we merged anything we need to re-loop so we can
2686                 * get a good ref.
2687                 * Or we can get node references of the same type that weren't
2688                 * merged when created due to bumps in the tree mod seq, and
2689                 * we need to merge them to prevent adding an inline extent
2690                 * backref before dropping it (triggering a BUG_ON at
2691                 * insert_inline_extent_backref()).
2692                 */
2693                spin_lock(&locked_ref->lock);
2694                btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2695
2696                ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2697                                                      &actual_count);
2698                if (ret < 0 && ret != -EAGAIN) {
2699                        /*
2700                         * Error, btrfs_run_delayed_refs_for_head already
2701                         * unlocked everything so just bail out
2702                         */
2703                        return ret;
2704                } else if (!ret) {
2705                        /*
2706                         * Success, perform the usual cleanup of a processed
2707                         * head
2708                         */
2709                        ret = cleanup_ref_head(trans, locked_ref);
2710                        if (ret > 0 ) {
2711                                /* We dropped our lock, we need to loop. */
2712                                ret = 0;
2713                                continue;
2714                        } else if (ret) {
2715                                return ret;
2716                        }
2717                }
2718
2719                /*
2720                 * Either success case or btrfs_run_delayed_refs_for_head
2721                 * returned -EAGAIN, meaning we need to select another head
2722                 */
2723
2724                locked_ref = NULL;
2725                cond_resched();
2726        } while ((nr != -1 && count < nr) || locked_ref);
2727
2728        /*
2729         * We don't want to include ref heads since we can have empty ref heads
2730         * and those will drastically skew our runtime down since we just do
2731         * accounting, no actual extent tree updates.
2732         */
2733        if (actual_count > 0) {
2734                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2735                u64 avg;
2736
2737                /*
2738                 * We weigh the current average higher than our current runtime
2739                 * to avoid large swings in the average.
2740                 */
2741                spin_lock(&delayed_refs->lock);
2742                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2743                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2744                spin_unlock(&delayed_refs->lock);
2745        }
2746        return 0;
2747}
2748
2749#ifdef SCRAMBLE_DELAYED_REFS
2750/*
2751 * Normally delayed refs get processed in ascending bytenr order. This
2752 * correlates in most cases to the order added. To expose dependencies on this
2753 * order, we start to process the tree in the middle instead of the beginning
2754 */
2755static u64 find_middle(struct rb_root *root)
2756{
2757        struct rb_node *n = root->rb_node;
2758        struct btrfs_delayed_ref_node *entry;
2759        int alt = 1;
2760        u64 middle;
2761        u64 first = 0, last = 0;
2762
2763        n = rb_first(root);
2764        if (n) {
2765                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2766                first = entry->bytenr;
2767        }
2768        n = rb_last(root);
2769        if (n) {
2770                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2771                last = entry->bytenr;
2772        }
2773        n = root->rb_node;
2774
2775        while (n) {
2776                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2777                WARN_ON(!entry->in_tree);
2778
2779                middle = entry->bytenr;
2780
2781                if (alt)
2782                        n = n->rb_left;
2783                else
2784                        n = n->rb_right;
2785
2786                alt = 1 - alt;
2787        }
2788        return middle;
2789}
2790#endif
2791
2792static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2793{
2794        u64 num_bytes;
2795
2796        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2797                             sizeof(struct btrfs_extent_inline_ref));
2798        if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2799                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2800
2801        /*
2802         * We don't ever fill up leaves all the way so multiply by 2 just to be
2803         * closer to what we're really going to want to use.
2804         */
2805        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2806}
2807
2808/*
2809 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2810 * would require to store the csums for that many bytes.
2811 */
2812u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2813{
2814        u64 csum_size;
2815        u64 num_csums_per_leaf;
2816        u64 num_csums;
2817
2818        csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2819        num_csums_per_leaf = div64_u64(csum_size,
2820                        (u64)btrfs_super_csum_size(fs_info->super_copy));
2821        num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2822        num_csums += num_csums_per_leaf - 1;
2823        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2824        return num_csums;
2825}
2826
2827bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2828{
2829        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2830        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2831        bool ret = false;
2832        u64 reserved;
2833
2834        spin_lock(&global_rsv->lock);
2835        reserved = global_rsv->reserved;
2836        spin_unlock(&global_rsv->lock);
2837
2838        /*
2839         * Since the global reserve is just kind of magic we don't really want
2840         * to rely on it to save our bacon, so if our size is more than the
2841         * delayed_refs_rsv and the global rsv then it's time to think about
2842         * bailing.
2843         */
2844        spin_lock(&delayed_refs_rsv->lock);
2845        reserved += delayed_refs_rsv->reserved;
2846        if (delayed_refs_rsv->size >= reserved)
2847                ret = true;
2848        spin_unlock(&delayed_refs_rsv->lock);
2849        return ret;
2850}
2851
2852int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2853{
2854        u64 num_entries =
2855                atomic_read(&trans->transaction->delayed_refs.num_entries);
2856        u64 avg_runtime;
2857        u64 val;
2858
2859        smp_mb();
2860        avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2861        val = num_entries * avg_runtime;
2862        if (val >= NSEC_PER_SEC)
2863                return 1;
2864        if (val >= NSEC_PER_SEC / 2)
2865                return 2;
2866
2867        return btrfs_check_space_for_delayed_refs(trans->fs_info);
2868}
2869
2870/*
2871 * this starts processing the delayed reference count updates and
2872 * extent insertions we have queued up so far.  count can be
2873 * 0, which means to process everything in the tree at the start
2874 * of the run (but not newly added entries), or it can be some target
2875 * number you'd like to process.
2876 *
2877 * Returns 0 on success or if called with an aborted transaction
2878 * Returns <0 on error and aborts the transaction
2879 */
2880int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2881                           unsigned long count)
2882{
2883        struct btrfs_fs_info *fs_info = trans->fs_info;
2884        struct rb_node *node;
2885        struct btrfs_delayed_ref_root *delayed_refs;
2886        struct btrfs_delayed_ref_head *head;
2887        int ret;
2888        int run_all = count == (unsigned long)-1;
2889
2890        /* We'll clean this up in btrfs_cleanup_transaction */
2891        if (trans->aborted)
2892                return 0;
2893
2894        if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2895                return 0;
2896
2897        delayed_refs = &trans->transaction->delayed_refs;
2898        if (count == 0)
2899                count = atomic_read(&delayed_refs->num_entries) * 2;
2900
2901again:
2902#ifdef SCRAMBLE_DELAYED_REFS
2903        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2904#endif
2905        ret = __btrfs_run_delayed_refs(trans, count);
2906        if (ret < 0) {
2907                btrfs_abort_transaction(trans, ret);
2908                return ret;
2909        }
2910
2911        if (run_all) {
2912                btrfs_create_pending_block_groups(trans);
2913
2914                spin_lock(&delayed_refs->lock);
2915                node = rb_first_cached(&delayed_refs->href_root);
2916                if (!node) {
2917                        spin_unlock(&delayed_refs->lock);
2918                        goto out;
2919                }
2920                head = rb_entry(node, struct btrfs_delayed_ref_head,
2921                                href_node);
2922                refcount_inc(&head->refs);
2923                spin_unlock(&delayed_refs->lock);
2924
2925                /* Mutex was contended, block until it's released and retry. */
2926                mutex_lock(&head->mutex);
2927                mutex_unlock(&head->mutex);
2928
2929                btrfs_put_delayed_ref_head(head);
2930                cond_resched();
2931                goto again;
2932        }
2933out:
2934        return 0;
2935}
2936
2937int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2938                                u64 bytenr, u64 num_bytes, u64 flags,
2939                                int level, int is_data)
2940{
2941        struct btrfs_delayed_extent_op *extent_op;
2942        int ret;
2943
2944        extent_op = btrfs_alloc_delayed_extent_op();
2945        if (!extent_op)
2946                return -ENOMEM;
2947
2948        extent_op->flags_to_set = flags;
2949        extent_op->update_flags = true;
2950        extent_op->update_key = false;
2951        extent_op->is_data = is_data ? true : false;
2952        extent_op->level = level;
2953
2954        ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2955        if (ret)
2956                btrfs_free_delayed_extent_op(extent_op);
2957        return ret;
2958}
2959
2960static noinline int check_delayed_ref(struct btrfs_root *root,
2961                                      struct btrfs_path *path,
2962                                      u64 objectid, u64 offset, u64 bytenr)
2963{
2964        struct btrfs_delayed_ref_head *head;
2965        struct btrfs_delayed_ref_node *ref;
2966        struct btrfs_delayed_data_ref *data_ref;
2967        struct btrfs_delayed_ref_root *delayed_refs;
2968        struct btrfs_transaction *cur_trans;
2969        struct rb_node *node;
2970        int ret = 0;
2971
2972        spin_lock(&root->fs_info->trans_lock);
2973        cur_trans = root->fs_info->running_transaction;
2974        if (cur_trans)
2975                refcount_inc(&cur_trans->use_count);
2976        spin_unlock(&root->fs_info->trans_lock);
2977        if (!cur_trans)
2978                return 0;
2979
2980        delayed_refs = &cur_trans->delayed_refs;
2981        spin_lock(&delayed_refs->lock);
2982        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2983        if (!head) {
2984                spin_unlock(&delayed_refs->lock);
2985                btrfs_put_transaction(cur_trans);
2986                return 0;
2987        }
2988
2989        if (!mutex_trylock(&head->mutex)) {
2990                refcount_inc(&head->refs);
2991                spin_unlock(&delayed_refs->lock);
2992
2993                btrfs_release_path(path);
2994
2995                /*
2996                 * Mutex was contended, block until it's released and let
2997                 * caller try again
2998                 */
2999                mutex_lock(&head->mutex);
3000                mutex_unlock(&head->mutex);
3001                btrfs_put_delayed_ref_head(head);
3002                btrfs_put_transaction(cur_trans);
3003                return -EAGAIN;
3004        }
3005        spin_unlock(&delayed_refs->lock);
3006
3007        spin_lock(&head->lock);
3008        /*
3009         * XXX: We should replace this with a proper search function in the
3010         * future.
3011         */
3012        for (node = rb_first_cached(&head->ref_tree); node;
3013             node = rb_next(node)) {
3014                ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3015                /* If it's a shared ref we know a cross reference exists */
3016                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3017                        ret = 1;
3018                        break;
3019                }
3020
3021                data_ref = btrfs_delayed_node_to_data_ref(ref);
3022
3023                /*
3024                 * If our ref doesn't match the one we're currently looking at
3025                 * then we have a cross reference.
3026                 */
3027                if (data_ref->root != root->root_key.objectid ||
3028                    data_ref->objectid != objectid ||
3029                    data_ref->offset != offset) {
3030                        ret = 1;
3031                        break;
3032                }
3033        }
3034        spin_unlock(&head->lock);
3035        mutex_unlock(&head->mutex);
3036        btrfs_put_transaction(cur_trans);
3037        return ret;
3038}
3039
3040static noinline int check_committed_ref(struct btrfs_root *root,
3041                                        struct btrfs_path *path,
3042                                        u64 objectid, u64 offset, u64 bytenr)
3043{
3044        struct btrfs_fs_info *fs_info = root->fs_info;
3045        struct btrfs_root *extent_root = fs_info->extent_root;
3046        struct extent_buffer *leaf;
3047        struct btrfs_extent_data_ref *ref;
3048        struct btrfs_extent_inline_ref *iref;
3049        struct btrfs_extent_item *ei;
3050        struct btrfs_key key;
3051        u32 item_size;
3052        int type;
3053        int ret;
3054
3055        key.objectid = bytenr;
3056        key.offset = (u64)-1;
3057        key.type = BTRFS_EXTENT_ITEM_KEY;
3058
3059        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3060        if (ret < 0)
3061                goto out;
3062        BUG_ON(ret == 0); /* Corruption */
3063
3064        ret = -ENOENT;
3065        if (path->slots[0] == 0)
3066                goto out;
3067
3068        path->slots[0]--;
3069        leaf = path->nodes[0];
3070        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3071
3072        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3073                goto out;
3074
3075        ret = 1;
3076        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3077        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3078
3079        if (item_size != sizeof(*ei) +
3080            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3081                goto out;
3082
3083        if (btrfs_extent_generation(leaf, ei) <=
3084            btrfs_root_last_snapshot(&root->root_item))
3085                goto out;
3086
3087        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3088
3089        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3090        if (type != BTRFS_EXTENT_DATA_REF_KEY)
3091                goto out;
3092
3093        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3094        if (btrfs_extent_refs(leaf, ei) !=
3095            btrfs_extent_data_ref_count(leaf, ref) ||
3096            btrfs_extent_data_ref_root(leaf, ref) !=
3097            root->root_key.objectid ||
3098            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3099            btrfs_extent_data_ref_offset(leaf, ref) != offset)
3100                goto out;
3101
3102        ret = 0;
3103out:
3104        return ret;
3105}
3106
3107int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3108                          u64 bytenr)
3109{
3110        struct btrfs_path *path;
3111        int ret;
3112
3113        path = btrfs_alloc_path();
3114        if (!path)
3115                return -ENOMEM;
3116
3117        do {
3118                ret = check_committed_ref(root, path, objectid,
3119                                          offset, bytenr);
3120                if (ret && ret != -ENOENT)
3121                        goto out;
3122
3123                ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3124        } while (ret == -EAGAIN);
3125
3126out:
3127        btrfs_free_path(path);
3128        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3129                WARN_ON(ret > 0);
3130        return ret;
3131}
3132
3133static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3134                           struct btrfs_root *root,
3135                           struct extent_buffer *buf,
3136                           int full_backref, int inc)
3137{
3138        struct btrfs_fs_info *fs_info = root->fs_info;
3139        u64 bytenr;
3140        u64 num_bytes;
3141        u64 parent;
3142        u64 ref_root;
3143        u32 nritems;
3144        struct btrfs_key key;
3145        struct btrfs_file_extent_item *fi;
3146        struct btrfs_ref generic_ref = { 0 };
3147        bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
3148        int i;
3149        int action;
3150        int level;
3151        int ret = 0;
3152
3153        if (btrfs_is_testing(fs_info))
3154                return 0;
3155
3156        ref_root = btrfs_header_owner(buf);
3157        nritems = btrfs_header_nritems(buf);
3158        level = btrfs_header_level(buf);
3159
3160        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3161                return 0;
3162
3163        if (full_backref)
3164                parent = buf->start;
3165        else
3166                parent = 0;
3167        if (inc)
3168                action = BTRFS_ADD_DELAYED_REF;
3169        else
3170                action = BTRFS_DROP_DELAYED_REF;
3171
3172        for (i = 0; i < nritems; i++) {
3173                if (level == 0) {
3174                        btrfs_item_key_to_cpu(buf, &key, i);
3175                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3176                                continue;
3177                        fi = btrfs_item_ptr(buf, i,
3178                                            struct btrfs_file_extent_item);
3179                        if (btrfs_file_extent_type(buf, fi) ==
3180                            BTRFS_FILE_EXTENT_INLINE)
3181                                continue;
3182                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3183                        if (bytenr == 0)
3184                                continue;
3185
3186                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3187                        key.offset -= btrfs_file_extent_offset(buf, fi);
3188                        btrfs_init_generic_ref(&generic_ref, action, bytenr,
3189                                               num_bytes, parent);
3190                        generic_ref.real_root = root->root_key.objectid;
3191                        btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3192                                            key.offset);
3193                        generic_ref.skip_qgroup = for_reloc;
3194                        if (inc)
3195                                ret = btrfs_inc_extent_ref(trans, &generic_ref);
3196                        else
3197                                ret = btrfs_free_extent(trans, &generic_ref);
3198                        if (ret)
3199                                goto fail;
3200                } else {
3201                        bytenr = btrfs_node_blockptr(buf, i);
3202                        num_bytes = fs_info->nodesize;
3203                        btrfs_init_generic_ref(&generic_ref, action, bytenr,
3204                                               num_bytes, parent);
3205                        generic_ref.real_root = root->root_key.objectid;
3206                        btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3207                        generic_ref.skip_qgroup = for_reloc;
3208                        if (inc)
3209                                ret = btrfs_inc_extent_ref(trans, &generic_ref);
3210                        else
3211                                ret = btrfs_free_extent(trans, &generic_ref);
3212                        if (ret)
3213                                goto fail;
3214                }
3215        }
3216        return 0;
3217fail:
3218        return ret;
3219}
3220
3221int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3222                  struct extent_buffer *buf, int full_backref)
3223{
3224        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3225}
3226
3227int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3228                  struct extent_buffer *buf, int full_backref)
3229{
3230        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3231}
3232
3233static int write_one_cache_group(struct btrfs_trans_handle *trans,
3234                                 struct btrfs_path *path,
3235                                 struct btrfs_block_group_cache *cache)
3236{
3237        struct btrfs_fs_info *fs_info = trans->fs_info;
3238        int ret;
3239        struct btrfs_root *extent_root = fs_info->extent_root;
3240        unsigned long bi;
3241        struct extent_buffer *leaf;
3242
3243        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3244        if (ret) {
3245                if (ret > 0)
3246                        ret = -ENOENT;
3247                goto fail;
3248        }
3249
3250        leaf = path->nodes[0];
3251        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3252        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3253        btrfs_mark_buffer_dirty(leaf);
3254fail:
3255        btrfs_release_path(path);
3256        return ret;
3257
3258}
3259
3260static struct btrfs_block_group_cache *next_block_group(
3261                struct btrfs_block_group_cache *cache)
3262{
3263        struct btrfs_fs_info *fs_info = cache->fs_info;
3264        struct rb_node *node;
3265
3266        spin_lock(&fs_info->block_group_cache_lock);
3267
3268        /* If our block group was removed, we need a full search. */
3269        if (RB_EMPTY_NODE(&cache->cache_node)) {
3270                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3271
3272                spin_unlock(&fs_info->block_group_cache_lock);
3273                btrfs_put_block_group(cache);
3274                cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3275        }
3276        node = rb_next(&cache->cache_node);
3277        btrfs_put_block_group(cache);
3278        if (node) {
3279                cache = rb_entry(node, struct btrfs_block_group_cache,
3280                                 cache_node);
3281                btrfs_get_block_group(cache);
3282        } else
3283                cache = NULL;
3284        spin_unlock(&fs_info->block_group_cache_lock);
3285        return cache;
3286}
3287
3288static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3289                            struct btrfs_trans_handle *trans,
3290                            struct btrfs_path *path)
3291{
3292        struct btrfs_fs_info *fs_info = block_group->fs_info;
3293        struct btrfs_root *root = fs_info->tree_root;
3294        struct inode *inode = NULL;
3295        struct extent_changeset *data_reserved = NULL;
3296        u64 alloc_hint = 0;
3297        int dcs = BTRFS_DC_ERROR;
3298        u64 num_pages = 0;
3299        int retries = 0;
3300        int ret = 0;
3301
3302        /*
3303         * If this block group is smaller than 100 megs don't bother caching the
3304         * block group.
3305         */
3306        if (block_group->key.offset < (100 * SZ_1M)) {
3307                spin_lock(&block_group->lock);
3308                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3309                spin_unlock(&block_group->lock);
3310                return 0;
3311        }
3312
3313        if (trans->aborted)
3314                return 0;
3315again:
3316        inode = lookup_free_space_inode(block_group, path);
3317        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3318                ret = PTR_ERR(inode);
3319                btrfs_release_path(path);
3320                goto out;
3321        }
3322
3323        if (IS_ERR(inode)) {
3324                BUG_ON(retries);
3325                retries++;
3326
3327                if (block_group->ro)
3328                        goto out_free;
3329
3330                ret = create_free_space_inode(trans, block_group, path);
3331                if (ret)
3332                        goto out_free;
3333                goto again;
3334        }
3335
3336        /*
3337         * We want to set the generation to 0, that way if anything goes wrong
3338         * from here on out we know not to trust this cache when we load up next
3339         * time.
3340         */
3341        BTRFS_I(inode)->generation = 0;
3342        ret = btrfs_update_inode(trans, root, inode);
3343        if (ret) {
3344                /*
3345                 * So theoretically we could recover from this, simply set the
3346                 * super cache generation to 0 so we know to invalidate the
3347                 * cache, but then we'd have to keep track of the block groups
3348                 * that fail this way so we know we _have_ to reset this cache
3349                 * before the next commit or risk reading stale cache.  So to
3350                 * limit our exposure to horrible edge cases lets just abort the
3351                 * transaction, this only happens in really bad situations
3352                 * anyway.
3353                 */
3354                btrfs_abort_transaction(trans, ret);
3355                goto out_put;
3356        }
3357        WARN_ON(ret);
3358
3359        /* We've already setup this transaction, go ahead and exit */
3360        if (block_group->cache_generation == trans->transid &&
3361            i_size_read(inode)) {
3362                dcs = BTRFS_DC_SETUP;
3363                goto out_put;
3364        }
3365
3366        if (i_size_read(inode) > 0) {
3367                ret = btrfs_check_trunc_cache_free_space(fs_info,
3368                                        &fs_info->global_block_rsv);
3369                if (ret)
3370                        goto out_put;
3371
3372                ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3373                if (ret)
3374                        goto out_put;
3375        }
3376
3377        spin_lock(&block_group->lock);
3378        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3379            !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3380                /*
3381                 * don't bother trying to write stuff out _if_
3382                 * a) we're not cached,
3383                 * b) we're with nospace_cache mount option,
3384                 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3385                 */
3386                dcs = BTRFS_DC_WRITTEN;
3387                spin_unlock(&block_group->lock);
3388                goto out_put;
3389        }
3390        spin_unlock(&block_group->lock);
3391
3392        /*
3393         * We hit an ENOSPC when setting up the cache in this transaction, just
3394         * skip doing the setup, we've already cleared the cache so we're safe.
3395         */
3396        if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3397                ret = -ENOSPC;
3398                goto out_put;
3399        }
3400
3401        /*
3402         * Try to preallocate enough space based on how big the block group is.
3403         * Keep in mind this has to include any pinned space which could end up
3404         * taking up quite a bit since it's not folded into the other space
3405         * cache.
3406         */
3407        num_pages = div_u64(block_group->key.offset, SZ_256M);
3408        if (!num_pages)
3409                num_pages = 1;
3410
3411        num_pages *= 16;
3412        num_pages *= PAGE_SIZE;
3413
3414        ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3415        if (ret)
3416                goto out_put;
3417
3418        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3419                                              num_pages, num_pages,
3420                                              &alloc_hint);
3421        /*
3422         * Our cache requires contiguous chunks so that we don't modify a bunch
3423         * of metadata or split extents when writing the cache out, which means
3424         * we can enospc if we are heavily fragmented in addition to just normal
3425         * out of space conditions.  So if we hit this just skip setting up any
3426         * other block groups for this transaction, maybe we'll unpin enough
3427         * space the next time around.
3428         */
3429        if (!ret)
3430                dcs = BTRFS_DC_SETUP;
3431        else if (ret == -ENOSPC)
3432                set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3433
3434out_put:
3435        iput(inode);
3436out_free:
3437        btrfs_release_path(path);
3438out:
3439        spin_lock(&block_group->lock);
3440        if (!ret && dcs == BTRFS_DC_SETUP)
3441                block_group->cache_generation = trans->transid;
3442        block_group->disk_cache_state = dcs;
3443        spin_unlock(&block_group->lock);
3444
3445        extent_changeset_free(data_reserved);
3446        return ret;
3447}
3448
3449int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3450{
3451        struct btrfs_fs_info *fs_info = trans->fs_info;
3452        struct btrfs_block_group_cache *cache, *tmp;
3453        struct btrfs_transaction *cur_trans = trans->transaction;
3454        struct btrfs_path *path;
3455
3456        if (list_empty(&cur_trans->dirty_bgs) ||
3457            !btrfs_test_opt(fs_info, SPACE_CACHE))
3458                return 0;
3459
3460        path = btrfs_alloc_path();
3461        if (!path)
3462                return -ENOMEM;
3463
3464        /* Could add new block groups, use _safe just in case */
3465        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3466                                 dirty_list) {
3467                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3468                        cache_save_setup(cache, trans, path);
3469        }
3470
3471        btrfs_free_path(path);
3472        return 0;
3473}
3474
3475/*
3476 * transaction commit does final block group cache writeback during a
3477 * critical section where nothing is allowed to change the FS.  This is
3478 * required in order for the cache to actually match the block group,
3479 * but can introduce a lot of latency into the commit.
3480 *
3481 * So, btrfs_start_dirty_block_groups is here to kick off block group
3482 * cache IO.  There's a chance we'll have to redo some of it if the
3483 * block group changes again during the commit, but it greatly reduces
3484 * the commit latency by getting rid of the easy block groups while
3485 * we're still allowing others to join the commit.
3486 */
3487int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3488{
3489        struct btrfs_fs_info *fs_info = trans->fs_info;
3490        struct btrfs_block_group_cache *cache;
3491        struct btrfs_transaction *cur_trans = trans->transaction;
3492        int ret = 0;
3493        int should_put;
3494        struct btrfs_path *path = NULL;
3495        LIST_HEAD(dirty);
3496        struct list_head *io = &cur_trans->io_bgs;
3497        int num_started = 0;
3498        int loops = 0;
3499
3500        spin_lock(&cur_trans->dirty_bgs_lock);
3501        if (list_empty(&cur_trans->dirty_bgs)) {
3502                spin_unlock(&cur_trans->dirty_bgs_lock);
3503                return 0;
3504        }
3505        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3506        spin_unlock(&cur_trans->dirty_bgs_lock);
3507
3508again:
3509        /*
3510         * make sure all the block groups on our dirty list actually
3511         * exist
3512         */
3513        btrfs_create_pending_block_groups(trans);
3514
3515        if (!path) {
3516                path = btrfs_alloc_path();
3517                if (!path)
3518                        return -ENOMEM;
3519        }
3520
3521        /*
3522         * cache_write_mutex is here only to save us from balance or automatic
3523         * removal of empty block groups deleting this block group while we are
3524         * writing out the cache
3525         */
3526        mutex_lock(&trans->transaction->cache_write_mutex);
3527        while (!list_empty(&dirty)) {
3528                bool drop_reserve = true;
3529
3530                cache = list_first_entry(&dirty,
3531                                         struct btrfs_block_group_cache,
3532                                         dirty_list);
3533                /*
3534                 * this can happen if something re-dirties a block
3535                 * group that is already under IO.  Just wait for it to
3536                 * finish and then do it all again
3537                 */
3538                if (!list_empty(&cache->io_list)) {
3539                        list_del_init(&cache->io_list);
3540                        btrfs_wait_cache_io(trans, cache, path);
3541                        btrfs_put_block_group(cache);
3542                }
3543
3544
3545                /*
3546                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3547                 * if it should update the cache_state.  Don't delete
3548                 * until after we wait.
3549                 *
3550                 * Since we're not running in the commit critical section
3551                 * we need the dirty_bgs_lock to protect from update_block_group
3552                 */
3553                spin_lock(&cur_trans->dirty_bgs_lock);
3554                list_del_init(&cache->dirty_list);
3555                spin_unlock(&cur_trans->dirty_bgs_lock);
3556
3557                should_put = 1;
3558
3559                cache_save_setup(cache, trans, path);
3560
3561                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3562                        cache->io_ctl.inode = NULL;
3563                        ret = btrfs_write_out_cache(trans, cache, path);
3564                        if (ret == 0 && cache->io_ctl.inode) {
3565                                num_started++;
3566                                should_put = 0;
3567
3568                                /*
3569                                 * The cache_write_mutex is protecting the
3570                                 * io_list, also refer to the definition of
3571                                 * btrfs_transaction::io_bgs for more details
3572                                 */
3573                                list_add_tail(&cache->io_list, io);
3574                        } else {
3575                                /*
3576                                 * if we failed to write the cache, the
3577                                 * generation will be bad and life goes on
3578                                 */
3579                                ret = 0;
3580                        }
3581                }
3582                if (!ret) {
3583                        ret = write_one_cache_group(trans, path, cache);
3584                        /*
3585                         * Our block group might still be attached to the list
3586                         * of new block groups in the transaction handle of some
3587                         * other task (struct btrfs_trans_handle->new_bgs). This
3588                         * means its block group item isn't yet in the extent
3589                         * tree. If this happens ignore the error, as we will
3590                         * try again later in the critical section of the
3591                         * transaction commit.
3592                         */
3593                        if (ret == -ENOENT) {
3594                                ret = 0;
3595                                spin_lock(&cur_trans->dirty_bgs_lock);
3596                                if (list_empty(&cache->dirty_list)) {
3597                                        list_add_tail(&cache->dirty_list,
3598                                                      &cur_trans->dirty_bgs);
3599                                        btrfs_get_block_group(cache);
3600                                        drop_reserve = false;
3601                                }
3602                                spin_unlock(&cur_trans->dirty_bgs_lock);
3603                        } else if (ret) {
3604                                btrfs_abort_transaction(trans, ret);
3605                        }
3606                }
3607
3608                /* if it's not on the io list, we need to put the block group */
3609                if (should_put)
3610                        btrfs_put_block_group(cache);
3611                if (drop_reserve)
3612                        btrfs_delayed_refs_rsv_release(fs_info, 1);
3613
3614                if (ret)
3615                        break;
3616
3617                /*
3618                 * Avoid blocking other tasks for too long. It might even save
3619                 * us from writing caches for block groups that are going to be
3620                 * removed.
3621                 */
3622                mutex_unlock(&trans->transaction->cache_write_mutex);
3623                mutex_lock(&trans->transaction->cache_write_mutex);
3624        }
3625        mutex_unlock(&trans->transaction->cache_write_mutex);
3626
3627        /*
3628         * go through delayed refs for all the stuff we've just kicked off
3629         * and then loop back (just once)
3630         */
3631        ret = btrfs_run_delayed_refs(trans, 0);
3632        if (!ret && loops == 0) {
3633                loops++;
3634                spin_lock(&cur_trans->dirty_bgs_lock);
3635                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3636                /*
3637                 * dirty_bgs_lock protects us from concurrent block group
3638                 * deletes too (not just cache_write_mutex).
3639                 */
3640                if (!list_empty(&dirty)) {
3641                        spin_unlock(&cur_trans->dirty_bgs_lock);
3642                        goto again;
3643                }
3644                spin_unlock(&cur_trans->dirty_bgs_lock);
3645        } else if (ret < 0) {
3646                btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3647        }
3648
3649        btrfs_free_path(path);
3650        return ret;
3651}
3652
3653int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3654{
3655        struct btrfs_fs_info *fs_info = trans->fs_info;
3656        struct btrfs_block_group_cache *cache;
3657        struct btrfs_transaction *cur_trans = trans->transaction;
3658        int ret = 0;
3659        int should_put;
3660        struct btrfs_path *path;
3661        struct list_head *io = &cur_trans->io_bgs;
3662        int num_started = 0;
3663
3664        path = btrfs_alloc_path();
3665        if (!path)
3666                return -ENOMEM;
3667
3668        /*
3669         * Even though we are in the critical section of the transaction commit,
3670         * we can still have concurrent tasks adding elements to this
3671         * transaction's list of dirty block groups. These tasks correspond to
3672         * endio free space workers started when writeback finishes for a
3673         * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3674         * allocate new block groups as a result of COWing nodes of the root
3675         * tree when updating the free space inode. The writeback for the space
3676         * caches is triggered by an earlier call to
3677         * btrfs_start_dirty_block_groups() and iterations of the following
3678         * loop.
3679         * Also we want to do the cache_save_setup first and then run the
3680         * delayed refs to make sure we have the best chance at doing this all
3681         * in one shot.
3682         */
3683        spin_lock(&cur_trans->dirty_bgs_lock);
3684        while (!list_empty(&cur_trans->dirty_bgs)) {
3685                cache = list_first_entry(&cur_trans->dirty_bgs,
3686                                         struct btrfs_block_group_cache,
3687                                         dirty_list);
3688
3689                /*
3690                 * this can happen if cache_save_setup re-dirties a block
3691                 * group that is already under IO.  Just wait for it to
3692                 * finish and then do it all again
3693                 */
3694                if (!list_empty(&cache->io_list)) {
3695                        spin_unlock(&cur_trans->dirty_bgs_lock);
3696                        list_del_init(&cache->io_list);
3697                        btrfs_wait_cache_io(trans, cache, path);
3698                        btrfs_put_block_group(cache);
3699                        spin_lock(&cur_trans->dirty_bgs_lock);
3700                }
3701
3702                /*
3703                 * don't remove from the dirty list until after we've waited
3704                 * on any pending IO
3705                 */
3706                list_del_init(&cache->dirty_list);
3707                spin_unlock(&cur_trans->dirty_bgs_lock);
3708                should_put = 1;
3709
3710                cache_save_setup(cache, trans, path);
3711
3712                if (!ret)
3713                        ret = btrfs_run_delayed_refs(trans,
3714                                                     (unsigned long) -1);
3715
3716                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3717                        cache->io_ctl.inode = NULL;
3718                        ret = btrfs_write_out_cache(trans, cache, path);
3719                        if (ret == 0 && cache->io_ctl.inode) {
3720                                num_started++;
3721                                should_put = 0;
3722                                list_add_tail(&cache->io_list, io);
3723                        } else {
3724                                /*
3725                                 * if we failed to write the cache, the
3726                                 * generation will be bad and life goes on
3727                                 */
3728                                ret = 0;
3729                        }
3730                }
3731                if (!ret) {
3732                        ret = write_one_cache_group(trans, path, cache);
3733                        /*
3734                         * One of the free space endio workers might have
3735                         * created a new block group while updating a free space
3736                         * cache's inode (at inode.c:btrfs_finish_ordered_io())
3737                         * and hasn't released its transaction handle yet, in
3738                         * which case the new block group is still attached to
3739                         * its transaction handle and its creation has not
3740                         * finished yet (no block group item in the extent tree
3741                         * yet, etc). If this is the case, wait for all free
3742                         * space endio workers to finish and retry. This is a
3743                         * a very rare case so no need for a more efficient and
3744                         * complex approach.
3745                         */
3746                        if (ret == -ENOENT) {
3747                                wait_event(cur_trans->writer_wait,
3748                                   atomic_read(&cur_trans->num_writers) == 1);
3749                                ret = write_one_cache_group(trans, path, cache);
3750                        }
3751                        if (ret)
3752                                btrfs_abort_transaction(trans, ret);
3753                }
3754
3755                /* if its not on the io list, we need to put the block group */
3756                if (should_put)
3757                        btrfs_put_block_group(cache);
3758                btrfs_delayed_refs_rsv_release(fs_info, 1);
3759                spin_lock(&cur_trans->dirty_bgs_lock);
3760        }
3761        spin_unlock(&cur_trans->dirty_bgs_lock);
3762
3763        /*
3764         * Refer to the definition of io_bgs member for details why it's safe
3765         * to use it without any locking
3766         */
3767        while (!list_empty(io)) {
3768                cache = list_first_entry(io, struct btrfs_block_group_cache,
3769                                         io_list);
3770                list_del_init(&cache->io_list);
3771                btrfs_wait_cache_io(trans, cache, path);
3772                btrfs_put_block_group(cache);
3773        }
3774
3775        btrfs_free_path(path);
3776        return ret;
3777}
3778
3779int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3780{
3781        struct btrfs_block_group_cache *block_group;
3782        int readonly = 0;
3783
3784        block_group = btrfs_lookup_block_group(fs_info, bytenr);
3785        if (!block_group || block_group->ro)
3786                readonly = 1;
3787        if (block_group)
3788                btrfs_put_block_group(block_group);
3789        return readonly;
3790}
3791
3792bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3793{
3794        struct btrfs_block_group_cache *bg;
3795        bool ret = true;
3796
3797        bg = btrfs_lookup_block_group(fs_info, bytenr);
3798        if (!bg)
3799                return false;
3800
3801        spin_lock(&bg->lock);
3802        if (bg->ro)
3803                ret = false;
3804        else
3805                atomic_inc(&bg->nocow_writers);
3806        spin_unlock(&bg->lock);
3807
3808        /* no put on block group, done by btrfs_dec_nocow_writers */
3809        if (!ret)
3810                btrfs_put_block_group(bg);
3811
3812        return ret;
3813
3814}
3815
3816void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3817{
3818        struct btrfs_block_group_cache *bg;
3819
3820        bg = btrfs_lookup_block_group(fs_info, bytenr);
3821        ASSERT(bg);
3822        if (atomic_dec_and_test(&bg->nocow_writers))
3823                wake_up_var(&bg->nocow_writers);
3824        /*
3825         * Once for our lookup and once for the lookup done by a previous call
3826         * to btrfs_inc_nocow_writers()
3827         */
3828        btrfs_put_block_group(bg);
3829        btrfs_put_block_group(bg);
3830}
3831
3832void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3833{
3834        wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3835}
3836
3837static const char *alloc_name(u64 flags)
3838{
3839        switch (flags) {
3840        case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3841                return "mixed";
3842        case BTRFS_BLOCK_GROUP_METADATA:
3843                return "metadata";
3844        case BTRFS_BLOCK_GROUP_DATA:
3845                return "data";
3846        case BTRFS_BLOCK_GROUP_SYSTEM:
3847                return "system";
3848        default:
3849                WARN_ON(1);
3850                return "invalid-combination";
3851        };
3852}
3853
3854static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3855{
3856
3857        struct btrfs_space_info *space_info;
3858        int i;
3859        int ret;
3860
3861        space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3862        if (!space_info)
3863                return -ENOMEM;
3864
3865        ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3866                                 GFP_KERNEL);
3867        if (ret) {
3868                kfree(space_info);
3869                return ret;
3870        }
3871
3872        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3873                INIT_LIST_HEAD(&space_info->block_groups[i]);
3874        init_rwsem(&space_info->groups_sem);
3875        spin_lock_init(&space_info->lock);
3876        space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3877        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3878        init_waitqueue_head(&space_info->wait);
3879        INIT_LIST_HEAD(&space_info->ro_bgs);
3880        INIT_LIST_HEAD(&space_info->tickets);
3881        INIT_LIST_HEAD(&space_info->priority_tickets);
3882
3883        ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3884                                    info->space_info_kobj, "%s",
3885                                    alloc_name(space_info->flags));
3886        if (ret) {
3887                kobject_put(&space_info->kobj);
3888                return ret;
3889        }
3890
3891        list_add_rcu(&space_info->list, &info->space_info);
3892        if (flags & BTRFS_BLOCK_GROUP_DATA)
3893                info->data_sinfo = space_info;
3894
3895        return ret;
3896}
3897
3898static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3899                             u64 total_bytes, u64 bytes_used,
3900                             u64 bytes_readonly,
3901                             struct btrfs_space_info **space_info)
3902{
3903        struct btrfs_space_info *found;
3904        int factor;
3905
3906        factor = btrfs_bg_type_to_factor(flags);
3907
3908        found = __find_space_info(info, flags);
3909        ASSERT(found);
3910        spin_lock(&found->lock);
3911        found->total_bytes += total_bytes;
3912        found->disk_total += total_bytes * factor;
3913        found->bytes_used += bytes_used;
3914        found->disk_used += bytes_used * factor;
3915        found->bytes_readonly += bytes_readonly;
3916        if (total_bytes > 0)
3917                found->full = 0;
3918        space_info_add_new_bytes(info, found, total_bytes -
3919                                 bytes_used - bytes_readonly);
3920        spin_unlock(&found->lock);
3921        *space_info = found;
3922}
3923
3924static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3925{
3926        u64 extra_flags = chunk_to_extended(flags) &
3927                                BTRFS_EXTENDED_PROFILE_MASK;
3928
3929        write_seqlock(&fs_info->profiles_lock);
3930        if (flags & BTRFS_BLOCK_GROUP_DATA)
3931                fs_info->avail_data_alloc_bits |= extra_flags;
3932        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3933                fs_info->avail_metadata_alloc_bits |= extra_flags;
3934        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3935                fs_info->avail_system_alloc_bits |= extra_flags;
3936        write_sequnlock(&fs_info->profiles_lock);
3937}
3938
3939/*
3940 * returns target flags in extended format or 0 if restripe for this
3941 * chunk_type is not in progress
3942 *
3943 * should be called with balance_lock held
3944 */
3945static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3946{
3947        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3948        u64 target = 0;
3949
3950        if (!bctl)
3951                return 0;
3952
3953        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3954            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3955                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3956        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3957                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3958                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3959        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3960                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3961                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3962        }
3963
3964        return target;
3965}
3966
3967/*
3968 * @flags: available profiles in extended format (see ctree.h)
3969 *
3970 * Returns reduced profile in chunk format.  If profile changing is in
3971 * progress (either running or paused) picks the target profile (if it's
3972 * already available), otherwise falls back to plain reducing.
3973 */
3974static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3975{
3976        u64 num_devices = fs_info->fs_devices->rw_devices;
3977        u64 target;
3978        u64 raid_type;
3979        u64 allowed = 0;
3980
3981        /*
3982         * see if restripe for this chunk_type is in progress, if so
3983         * try to reduce to the target profile
3984         */
3985        spin_lock(&fs_info->balance_lock);
3986        target = get_restripe_target(fs_info, flags);
3987        if (target) {
3988                /* pick target profile only if it's already available */
3989                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3990                        spin_unlock(&fs_info->balance_lock);
3991                        return extended_to_chunk(target);
3992                }
3993        }
3994        spin_unlock(&fs_info->balance_lock);
3995
3996        /* First, mask out the RAID levels which aren't possible */
3997        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3998                if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3999                        allowed |= btrfs_raid_array[raid_type].bg_flag;
4000        }
4001        allowed &= flags;
4002
4003        if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4004                allowed = BTRFS_BLOCK_GROUP_RAID6;
4005        else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4006                allowed = BTRFS_BLOCK_GROUP_RAID5;
4007        else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4008                allowed = BTRFS_BLOCK_GROUP_RAID10;
4009        else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4010                allowed = BTRFS_BLOCK_GROUP_RAID1;
4011        else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4012                allowed = BTRFS_BLOCK_GROUP_RAID0;
4013
4014        flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4015
4016        return extended_to_chunk(flags | allowed);
4017}
4018
4019static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4020{
4021        unsigned seq;
4022        u64 flags;
4023
4024        do {
4025                flags = orig_flags;
4026                seq = read_seqbegin(&fs_info->profiles_lock);
4027
4028                if (flags & BTRFS_BLOCK_GROUP_DATA)
4029                        flags |= fs_info->avail_data_alloc_bits;
4030                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4031                        flags |= fs_info->avail_system_alloc_bits;
4032                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4033                        flags |= fs_info->avail_metadata_alloc_bits;
4034        } while (read_seqretry(&fs_info->profiles_lock, seq));
4035
4036        return btrfs_reduce_alloc_profile(fs_info, flags);
4037}
4038
4039static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4040{
4041        struct btrfs_fs_info *fs_info = root->fs_info;
4042        u64 flags;
4043        u64 ret;
4044
4045        if (data)
4046                flags = BTRFS_BLOCK_GROUP_DATA;
4047        else if (root == fs_info->chunk_root)
4048                flags = BTRFS_BLOCK_GROUP_SYSTEM;
4049        else
4050                flags = BTRFS_BLOCK_GROUP_METADATA;
4051
4052        ret = get_alloc_profile(fs_info, flags);
4053        return ret;
4054}
4055
4056u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4057{
4058        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4059}
4060
4061u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4062{
4063        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4064}
4065
4066u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4067{
4068        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4069}
4070
4071static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4072                                 bool may_use_included)
4073{
4074        ASSERT(s_info);
4075        return s_info->bytes_used + s_info->bytes_reserved +
4076                s_info->bytes_pinned + s_info->bytes_readonly +
4077                (may_use_included ? s_info->bytes_may_use : 0);
4078}
4079
4080int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4081{
4082        struct btrfs_root *root = inode->root;
4083        struct btrfs_fs_info *fs_info = root->fs_info;
4084        struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4085        u64 used;
4086        int ret = 0;
4087        int need_commit = 2;
4088        int have_pinned_space;
4089
4090        /* make sure bytes are sectorsize aligned */
4091        bytes = ALIGN(bytes, fs_info->sectorsize);
4092
4093        if (btrfs_is_free_space_inode(inode)) {
4094                need_commit = 0;
4095                ASSERT(current->journal_info);
4096        }
4097
4098again:
4099        /* make sure we have enough space to handle the data first */
4100        spin_lock(&data_sinfo->lock);
4101        used = btrfs_space_info_used(data_sinfo, true);
4102
4103        if (used + bytes > data_sinfo->total_bytes) {
4104                struct btrfs_trans_handle *trans;
4105
4106                /*
4107                 * if we don't have enough free bytes in this space then we need
4108                 * to alloc a new chunk.
4109                 */
4110                if (!data_sinfo->full) {
4111                        u64 alloc_target;
4112
4113                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4114                        spin_unlock(&data_sinfo->lock);
4115
4116                        alloc_target = btrfs_data_alloc_profile(fs_info);
4117                        /*
4118                         * It is ugly that we don't call nolock join
4119                         * transaction for the free space inode case here.
4120                         * But it is safe because we only do the data space
4121                         * reservation for the free space cache in the
4122                         * transaction context, the common join transaction
4123                         * just increase the counter of the current transaction
4124                         * handler, doesn't try to acquire the trans_lock of
4125                         * the fs.
4126                         */
4127                        trans = btrfs_join_transaction(root);
4128                        if (IS_ERR(trans))
4129                                return PTR_ERR(trans);
4130
4131                        ret = do_chunk_alloc(trans, alloc_target,
4132                                             CHUNK_ALLOC_NO_FORCE);
4133                        btrfs_end_transaction(trans);
4134                        if (ret < 0) {
4135                                if (ret != -ENOSPC)
4136                                        return ret;
4137                                else {
4138                                        have_pinned_space = 1;
4139                                        goto commit_trans;
4140                                }
4141                        }
4142
4143                        goto again;
4144                }
4145
4146                /*
4147                 * If we don't have enough pinned space to deal with this
4148                 * allocation, and no removed chunk in current transaction,
4149                 * don't bother committing the transaction.
4150                 */
4151                have_pinned_space = __percpu_counter_compare(
4152                        &data_sinfo->total_bytes_pinned,
4153                        used + bytes - data_sinfo->total_bytes,
4154                        BTRFS_TOTAL_BYTES_PINNED_BATCH);
4155                spin_unlock(&data_sinfo->lock);
4156
4157                /* commit the current transaction and try again */
4158commit_trans:
4159                if (need_commit) {
4160                        need_commit--;
4161
4162                        if (need_commit > 0) {
4163                                btrfs_start_delalloc_roots(fs_info, -1);
4164                                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4165                                                         (u64)-1);
4166                        }
4167
4168                        trans = btrfs_join_transaction(root);
4169                        if (IS_ERR(trans))
4170                                return PTR_ERR(trans);
4171                        if (have_pinned_space >= 0 ||
4172                            test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4173                                     &trans->transaction->flags) ||
4174                            need_commit > 0) {
4175                                ret = btrfs_commit_transaction(trans);
4176                                if (ret)
4177                                        return ret;
4178                                /*
4179                                 * The cleaner kthread might still be doing iput
4180                                 * operations. Wait for it to finish so that
4181                                 * more space is released.  We don't need to
4182                                 * explicitly run the delayed iputs here because
4183                                 * the commit_transaction would have woken up
4184                                 * the cleaner.
4185                                 */
4186                                ret = btrfs_wait_on_delayed_iputs(fs_info);
4187                                if (ret)
4188                                        return ret;
4189                                goto again;
4190                        } else {
4191                                btrfs_end_transaction(trans);
4192                        }
4193                }
4194
4195                trace_btrfs_space_reservation(fs_info,
4196                                              "space_info:enospc",
4197                                              data_sinfo->flags, bytes, 1);
4198                return -ENOSPC;
4199        }
4200        update_bytes_may_use(data_sinfo, bytes);
4201        trace_btrfs_space_reservation(fs_info, "space_info",
4202                                      data_sinfo->flags, bytes, 1);
4203        spin_unlock(&data_sinfo->lock);
4204
4205        return 0;
4206}
4207
4208int btrfs_check_data_free_space(struct inode *inode,
4209                        struct extent_changeset **reserved, u64 start, u64 len)
4210{
4211        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4212        int ret;
4213
4214        /* align the range */
4215        len = round_up(start + len, fs_info->sectorsize) -
4216              round_down(start, fs_info->sectorsize);
4217        start = round_down(start, fs_info->sectorsize);
4218
4219        ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4220        if (ret < 0)
4221                return ret;
4222
4223        /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4224        ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4225        if (ret < 0)
4226                btrfs_free_reserved_data_space_noquota(inode, start, len);
4227        else
4228                ret = 0;
4229        return ret;
4230}
4231
4232/*
4233 * Called if we need to clear a data reservation for this inode
4234 * Normally in a error case.
4235 *
4236 * This one will *NOT* use accurate qgroup reserved space API, just for case
4237 * which we can't sleep and is sure it won't affect qgroup reserved space.
4238 * Like clear_bit_hook().
4239 */
4240void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4241                                            u64 len)
4242{
4243        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4244        struct btrfs_space_info *data_sinfo;
4245
4246        /* Make sure the range is aligned to sectorsize */
4247        len = round_up(start + len, fs_info->sectorsize) -
4248              round_down(start, fs_info->sectorsize);
4249        start = round_down(start, fs_info->sectorsize);
4250
4251        data_sinfo = fs_info->data_sinfo;
4252        spin_lock(&data_sinfo->lock);
4253        update_bytes_may_use(data_sinfo, -len);
4254        trace_btrfs_space_reservation(fs_info, "space_info",
4255                                      data_sinfo->flags, len, 0);
4256        spin_unlock(&data_sinfo->lock);
4257}
4258
4259/*
4260 * Called if we need to clear a data reservation for this inode
4261 * Normally in a error case.
4262 *
4263 * This one will handle the per-inode data rsv map for accurate reserved
4264 * space framework.
4265 */
4266void btrfs_free_reserved_data_space(struct inode *inode,
4267                        struct extent_changeset *reserved, u64 start, u64 len)
4268{
4269        struct btrfs_root *root = BTRFS_I(inode)->root;
4270
4271        /* Make sure the range is aligned to sectorsize */
4272        len = round_up(start + len, root->fs_info->sectorsize) -
4273              round_down(start, root->fs_info->sectorsize);
4274        start = round_down(start, root->fs_info->sectorsize);
4275
4276        btrfs_free_reserved_data_space_noquota(inode, start, len);
4277        btrfs_qgroup_free_data(inode, reserved, start, len);
4278}
4279
4280static void force_metadata_allocation(struct btrfs_fs_info *info)
4281{
4282        struct list_head *head = &info->space_info;
4283        struct btrfs_space_info *found;
4284
4285        rcu_read_lock();
4286        list_for_each_entry_rcu(found, head, list) {
4287                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4288                        found->force_alloc = CHUNK_ALLOC_FORCE;
4289        }
4290        rcu_read_unlock();
4291}
4292
4293static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4294{
4295        return (global->size << 1);
4296}
4297
4298static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4299                              struct btrfs_space_info *sinfo, int force)
4300{
4301        u64 bytes_used = btrfs_space_info_used(sinfo, false);
4302        u64 thresh;
4303
4304        if (force == CHUNK_ALLOC_FORCE)
4305                return 1;
4306
4307        /*
4308         * in limited mode, we want to have some free space up to
4309         * about 1% of the FS size.
4310         */
4311        if (force == CHUNK_ALLOC_LIMITED) {
4312                thresh = btrfs_super_total_bytes(fs_info->super_copy);
4313                thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4314
4315                if (sinfo->total_bytes - bytes_used < thresh)
4316                        return 1;
4317        }
4318
4319        if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4320                return 0;
4321        return 1;
4322}
4323
4324static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4325{
4326        u64 num_dev;
4327
4328        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4329                    BTRFS_BLOCK_GROUP_RAID0 |
4330                    BTRFS_BLOCK_GROUP_RAID5 |
4331                    BTRFS_BLOCK_GROUP_RAID6))
4332                num_dev = fs_info->fs_devices->rw_devices;
4333        else if (type & BTRFS_BLOCK_GROUP_RAID1)
4334                num_dev = 2;
4335        else
4336                num_dev = 1;    /* DUP or single */
4337
4338        return num_dev;
4339}
4340
4341/*
4342 * If @is_allocation is true, reserve space in the system space info necessary
4343 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4344 * removing a chunk.
4345 */
4346void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4347{
4348        struct btrfs_fs_info *fs_info = trans->fs_info;
4349        struct btrfs_space_info *info;
4350        u64 left;
4351        u64 thresh;
4352        int ret = 0;
4353        u64 num_devs;
4354
4355        /*
4356         * Needed because we can end up allocating a system chunk and for an
4357         * atomic and race free space reservation in the chunk block reserve.
4358         */
4359        lockdep_assert_held(&fs_info->chunk_mutex);
4360
4361        info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4362        spin_lock(&info->lock);
4363        left = info->total_bytes - btrfs_space_info_used(info, true);
4364        spin_unlock(&info->lock);
4365
4366        num_devs = get_profile_num_devs(fs_info, type);
4367
4368        /* num_devs device items to update and 1 chunk item to add or remove */
4369        thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4370                btrfs_calc_trans_metadata_size(fs_info, 1);
4371
4372        if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4373                btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4374                           left, thresh, type);
4375                dump_space_info(fs_info, info, 0, 0);
4376        }
4377
4378        if (left < thresh) {
4379                u64 flags = btrfs_system_alloc_profile(fs_info);
4380
4381                /*
4382                 * Ignore failure to create system chunk. We might end up not
4383                 * needing it, as we might not need to COW all nodes/leafs from
4384                 * the paths we visit in the chunk tree (they were already COWed
4385                 * or created in the current transaction for example).
4386                 */
4387                ret = btrfs_alloc_chunk(trans, flags);
4388        }
4389
4390        if (!ret) {
4391                ret = btrfs_block_rsv_add(fs_info->chunk_root,
4392                                          &fs_info->chunk_block_rsv,
4393                                          thresh, BTRFS_RESERVE_NO_FLUSH);
4394                if (!ret)
4395                        trans->chunk_bytes_reserved += thresh;
4396        }
4397}
4398
4399/*
4400 * If force is CHUNK_ALLOC_FORCE:
4401 *    - return 1 if it successfully allocates a chunk,
4402 *    - return errors including -ENOSPC otherwise.
4403 * If force is NOT CHUNK_ALLOC_FORCE:
4404 *    - return 0 if it doesn't need to allocate a new chunk,
4405 *    - return 1 if it successfully allocates a chunk,
4406 *    - return errors including -ENOSPC otherwise.
4407 */
4408static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4409                          int force)
4410{
4411        struct btrfs_fs_info *fs_info = trans->fs_info;
4412        struct btrfs_space_info *space_info;
4413        bool wait_for_alloc = false;
4414        bool should_alloc = false;
4415        int ret = 0;
4416
4417        /* Don't re-enter if we're already allocating a chunk */
4418        if (trans->allocating_chunk)
4419                return -ENOSPC;
4420
4421        space_info = __find_space_info(fs_info, flags);
4422        ASSERT(space_info);
4423
4424        do {
4425                spin_lock(&space_info->lock);
4426                if (force < space_info->force_alloc)
4427                        force = space_info->force_alloc;
4428                should_alloc = should_alloc_chunk(fs_info, space_info, force);
4429                if (space_info->full) {
4430                        /* No more free physical space */
4431                        if (should_alloc)
4432                                ret = -ENOSPC;
4433                        else
4434                                ret = 0;
4435                        spin_unlock(&space_info->lock);
4436                        return ret;
4437                } else if (!should_alloc) {
4438                        spin_unlock(&space_info->lock);
4439                        return 0;
4440                } else if (space_info->chunk_alloc) {
4441                        /*
4442                         * Someone is already allocating, so we need to block
4443                         * until this someone is finished and then loop to
4444                         * recheck if we should continue with our allocation
4445                         * attempt.
4446                         */
4447                        wait_for_alloc = true;
4448                        spin_unlock(&space_info->lock);
4449                        mutex_lock(&fs_info->chunk_mutex);
4450                        mutex_unlock(&fs_info->chunk_mutex);
4451                } else {
4452                        /* Proceed with allocation */
4453                        space_info->chunk_alloc = 1;
4454                        wait_for_alloc = false;
4455                        spin_unlock(&space_info->lock);
4456                }
4457
4458                cond_resched();
4459        } while (wait_for_alloc);
4460
4461        mutex_lock(&fs_info->chunk_mutex);
4462        trans->allocating_chunk = true;
4463
4464        /*
4465         * If we have mixed data/metadata chunks we want to make sure we keep
4466         * allocating mixed chunks instead of individual chunks.
4467         */
4468        if (btrfs_mixed_space_info(space_info))
4469                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4470
4471        /*
4472         * if we're doing a data chunk, go ahead and make sure that
4473         * we keep a reasonable number of metadata chunks allocated in the
4474         * FS as well.
4475         */
4476        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4477                fs_info->data_chunk_allocations++;
4478                if (!(fs_info->data_chunk_allocations %
4479                      fs_info->metadata_ratio))
4480                        force_metadata_allocation(fs_info);
4481        }
4482
4483        /*
4484         * Check if we have enough space in SYSTEM chunk because we may need
4485         * to update devices.
4486         */
4487        check_system_chunk(trans, flags);
4488
4489        ret = btrfs_alloc_chunk(trans, flags);
4490        trans->allocating_chunk = false;
4491
4492        spin_lock(&space_info->lock);
4493        if (ret < 0) {
4494                if (ret == -ENOSPC)
4495                        space_info->full = 1;
4496                else
4497                        goto out;
4498        } else {
4499                ret = 1;
4500                space_info->max_extent_size = 0;
4501        }
4502
4503        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4504out:
4505        space_info->chunk_alloc = 0;
4506        spin_unlock(&space_info->lock);
4507        mutex_unlock(&fs_info->chunk_mutex);
4508        /*
4509         * When we allocate a new chunk we reserve space in the chunk block
4510         * reserve to make sure we can COW nodes/leafs in the chunk tree or
4511         * add new nodes/leafs to it if we end up needing to do it when
4512         * inserting the chunk item and updating device items as part of the
4513         * second phase of chunk allocation, performed by
4514         * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4515         * large number of new block groups to create in our transaction
4516         * handle's new_bgs list to avoid exhausting the chunk block reserve
4517         * in extreme cases - like having a single transaction create many new
4518         * block groups when starting to write out the free space caches of all
4519         * the block groups that were made dirty during the lifetime of the
4520         * transaction.
4521         */
4522        if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4523                btrfs_create_pending_block_groups(trans);
4524
4525        return ret;
4526}
4527
4528static int can_overcommit(struct btrfs_fs_info *fs_info,
4529                          struct btrfs_space_info *space_info, u64 bytes,
4530                          enum btrfs_reserve_flush_enum flush,
4531                          bool system_chunk)
4532{
4533        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4534        u64 profile;
4535        u64 space_size;
4536        u64 avail;
4537        u64 used;
4538        int factor;
4539
4540        /* Don't overcommit when in mixed mode. */
4541        if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4542                return 0;
4543
4544        if (system_chunk)
4545                profile = btrfs_system_alloc_profile(fs_info);
4546        else
4547                profile = btrfs_metadata_alloc_profile(fs_info);
4548
4549        used = btrfs_space_info_used(space_info, false);
4550
4551        /*
4552         * We only want to allow over committing if we have lots of actual space
4553         * free, but if we don't have enough space to handle the global reserve
4554         * space then we could end up having a real enospc problem when trying
4555         * to allocate a chunk or some other such important allocation.
4556         */
4557        spin_lock(&global_rsv->lock);
4558        space_size = calc_global_rsv_need_space(global_rsv);
4559        spin_unlock(&global_rsv->lock);
4560        if (used + space_size >= space_info->total_bytes)
4561                return 0;
4562
4563        used += space_info->bytes_may_use;
4564
4565        avail = atomic64_read(&fs_info->free_chunk_space);
4566
4567        /*
4568         * If we have dup, raid1 or raid10 then only half of the free
4569         * space is actually usable.  For raid56, the space info used
4570         * doesn't include the parity drive, so we don't have to
4571         * change the math
4572         */
4573        factor = btrfs_bg_type_to_factor(profile);
4574        avail = div_u64(avail, factor);
4575
4576        /*
4577         * If we aren't flushing all things, let us overcommit up to
4578         * 1/2th of the space. If we can flush, don't let us overcommit
4579         * too much, let it overcommit up to 1/8 of the space.
4580         */
4581        if (flush == BTRFS_RESERVE_FLUSH_ALL)
4582                avail >>= 3;
4583        else
4584                avail >>= 1;
4585
4586        if (used + bytes < space_info->total_bytes + avail)
4587                return 1;
4588        return 0;
4589}
4590
4591static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4592                                         unsigned long nr_pages, int nr_items)
4593{
4594        struct super_block *sb = fs_info->sb;
4595
4596        if (down_read_trylock(&sb->s_umount)) {
4597                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4598                up_read(&sb->s_umount);
4599        } else {
4600                /*
4601                 * We needn't worry the filesystem going from r/w to r/o though
4602                 * we don't acquire ->s_umount mutex, because the filesystem
4603                 * should guarantee the delalloc inodes list be empty after
4604                 * the filesystem is readonly(all dirty pages are written to
4605                 * the disk).
4606                 */
4607                btrfs_start_delalloc_roots(fs_info, nr_items);
4608                if (!current->journal_info)
4609                        btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4610        }
4611}
4612
4613static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4614                                        u64 to_reclaim)
4615{
4616        u64 bytes;
4617        u64 nr;
4618
4619        bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4620        nr = div64_u64(to_reclaim, bytes);
4621        if (!nr)
4622                nr = 1;
4623        return nr;
4624}
4625
4626#define EXTENT_SIZE_PER_ITEM    SZ_256K
4627
4628/*
4629 * shrink metadata reservation for delalloc
4630 */
4631static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4632                            u64 orig, bool wait_ordered)
4633{
4634        struct btrfs_space_info *space_info;
4635        struct btrfs_trans_handle *trans;
4636        u64 delalloc_bytes;
4637        u64 dio_bytes;
4638        u64 async_pages;
4639        u64 items;
4640        long time_left;
4641        unsigned long nr_pages;
4642        int loops;
4643
4644        /* Calc the number of the pages we need flush for space reservation */
4645        items = calc_reclaim_items_nr(fs_info, to_reclaim);
4646        to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4647
4648        trans = (struct btrfs_trans_handle *)current->journal_info;
4649        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4650
4651        delalloc_bytes = percpu_counter_sum_positive(
4652                                                &fs_info->delalloc_bytes);
4653        dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4654        if (delalloc_bytes == 0 && dio_bytes == 0) {
4655                if (trans)
4656                        return;
4657                if (wait_ordered)
4658                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4659                return;
4660        }
4661
4662        /*
4663         * If we are doing more ordered than delalloc we need to just wait on
4664         * ordered extents, otherwise we'll waste time trying to flush delalloc
4665         * that likely won't give us the space back we need.
4666         */
4667        if (dio_bytes > delalloc_bytes)
4668                wait_ordered = true;
4669
4670        loops = 0;
4671        while ((delalloc_bytes || dio_bytes) && loops < 3) {
4672                nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4673
4674                /*
4675                 * Triggers inode writeback for up to nr_pages. This will invoke
4676                 * ->writepages callback and trigger delalloc filling
4677                 *  (btrfs_run_delalloc_range()).
4678                 */
4679                btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4680
4681                /*
4682                 * We need to wait for the compressed pages to start before
4683                 * we continue.
4684                 */
4685                async_pages = atomic_read(&fs_info->async_delalloc_pages);
4686                if (!async_pages)
4687                        goto skip_async;
4688
4689                /*
4690                 * Calculate how many compressed pages we want to be written
4691                 * before we continue. I.e if there are more async pages than we
4692                 * require wait_event will wait until nr_pages are written.
4693                 */
4694                if (async_pages <= nr_pages)
4695                        async_pages = 0;
4696                else
4697                        async_pages -= nr_pages;
4698
4699                wait_event(fs_info->async_submit_wait,
4700                           atomic_read(&fs_info->async_delalloc_pages) <=
4701                           (int)async_pages);
4702skip_async:
4703                spin_lock(&space_info->lock);
4704                if (list_empty(&space_info->tickets) &&
4705                    list_empty(&space_info->priority_tickets)) {
4706                        spin_unlock(&space_info->lock);
4707                        break;
4708                }
4709                spin_unlock(&space_info->lock);
4710
4711                loops++;
4712                if (wait_ordered && !trans) {
4713                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4714                } else {
4715                        time_left = schedule_timeout_killable(1);
4716                        if (time_left)
4717                                break;
4718                }
4719                delalloc_bytes = percpu_counter_sum_positive(
4720                                                &fs_info->delalloc_bytes);
4721                dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4722        }
4723}
4724
4725struct reserve_ticket {
4726        u64 orig_bytes;
4727        u64 bytes;
4728        int error;
4729        struct list_head list;
4730        wait_queue_head_t wait;
4731};
4732
4733/**
4734 * maybe_commit_transaction - possibly commit the transaction if its ok to
4735 * @root - the root we're allocating for
4736 * @bytes - the number of bytes we want to reserve
4737 * @force - force the commit
4738 *
4739 * This will check to make sure that committing the transaction will actually
4740 * get us somewhere and then commit the transaction if it does.  Otherwise it
4741 * will return -ENOSPC.
4742 */
4743static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4744                                  struct btrfs_space_info *space_info)
4745{
4746        struct reserve_ticket *ticket = NULL;
4747        struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4748        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4749        struct btrfs_trans_handle *trans;
4750        u64 bytes_needed;
4751        u64 reclaim_bytes = 0;
4752
4753        trans = (struct btrfs_trans_handle *)current->journal_info;
4754        if (trans)
4755                return -EAGAIN;
4756
4757        spin_lock(&space_info->lock);
4758        if (!list_empty(&space_info->priority_tickets))
4759                ticket = list_first_entry(&space_info->priority_tickets,
4760                                          struct reserve_ticket, list);
4761        else if (!list_empty(&space_info->tickets))
4762                ticket = list_first_entry(&space_info->tickets,
4763                                          struct reserve_ticket, list);
4764        bytes_needed = (ticket) ? ticket->bytes : 0;
4765        spin_unlock(&space_info->lock);
4766
4767        if (!bytes_needed)
4768                return 0;
4769
4770        trans = btrfs_join_transaction(fs_info->extent_root);
4771        if (IS_ERR(trans))
4772                return PTR_ERR(trans);
4773
4774        /*
4775         * See if there is enough pinned space to make this reservation, or if
4776         * we have block groups that are going to be freed, allowing us to
4777         * possibly do a chunk allocation the next loop through.
4778         */
4779        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4780            __percpu_counter_compare(&space_info->total_bytes_pinned,
4781                                     bytes_needed,
4782                                     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4783                goto commit;
4784
4785        /*
4786         * See if there is some space in the delayed insertion reservation for
4787         * this reservation.
4788         */
4789        if (space_info != delayed_rsv->space_info)
4790                goto enospc;
4791
4792        spin_lock(&delayed_rsv->lock);
4793        reclaim_bytes += delayed_rsv->reserved;
4794        spin_unlock(&delayed_rsv->lock);
4795
4796        spin_lock(&delayed_refs_rsv->lock);
4797        reclaim_bytes += delayed_refs_rsv->reserved;
4798        spin_unlock(&delayed_refs_rsv->lock);
4799        if (reclaim_bytes >= bytes_needed)
4800                goto commit;
4801        bytes_needed -= reclaim_bytes;
4802
4803        if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4804                                   bytes_needed,
4805                                   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4806                goto enospc;
4807
4808commit:
4809        return btrfs_commit_transaction(trans);
4810enospc:
4811        btrfs_end_transaction(trans);
4812        return -ENOSPC;
4813}
4814
4815/*
4816 * Try to flush some data based on policy set by @state. This is only advisory
4817 * and may fail for various reasons. The caller is supposed to examine the
4818 * state of @space_info to detect the outcome.
4819 */
4820static void flush_space(struct btrfs_fs_info *fs_info,
4821                       struct btrfs_space_info *space_info, u64 num_bytes,
4822                       int state)
4823{
4824        struct btrfs_root *root = fs_info->extent_root;
4825        struct btrfs_trans_handle *trans;
4826        int nr;
4827        int ret = 0;
4828
4829        switch (state) {
4830        case FLUSH_DELAYED_ITEMS_NR:
4831        case FLUSH_DELAYED_ITEMS:
4832                if (state == FLUSH_DELAYED_ITEMS_NR)
4833                        nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4834                else
4835                        nr = -1;
4836
4837                trans = btrfs_join_transaction(root);
4838                if (IS_ERR(trans)) {
4839                        ret = PTR_ERR(trans);
4840                        break;
4841                }
4842                ret = btrfs_run_delayed_items_nr(trans, nr);
4843                btrfs_end_transaction(trans);
4844                break;
4845        case FLUSH_DELALLOC:
4846        case FLUSH_DELALLOC_WAIT:
4847                shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4848                                state == FLUSH_DELALLOC_WAIT);
4849                break;
4850        case FLUSH_DELAYED_REFS_NR:
4851        case FLUSH_DELAYED_REFS:
4852                trans = btrfs_join_transaction(root);
4853                if (IS_ERR(trans)) {
4854                        ret = PTR_ERR(trans);
4855                        break;
4856                }
4857                if (state == FLUSH_DELAYED_REFS_NR)
4858                        nr = calc_reclaim_items_nr(fs_info, num_bytes);
4859                else
4860                        nr = 0;
4861                btrfs_run_delayed_refs(trans, nr);
4862                btrfs_end_transaction(trans);
4863                break;
4864        case ALLOC_CHUNK:
4865        case ALLOC_CHUNK_FORCE:
4866                trans = btrfs_join_transaction(root);
4867                if (IS_ERR(trans)) {
4868                        ret = PTR_ERR(trans);
4869                        break;
4870                }
4871                ret = do_chunk_alloc(trans,
4872                                     btrfs_metadata_alloc_profile(fs_info),
4873                                     (state == ALLOC_CHUNK) ?
4874                                      CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
4875                btrfs_end_transaction(trans);
4876                if (ret > 0 || ret == -ENOSPC)
4877                        ret = 0;
4878                break;
4879        case COMMIT_TRANS:
4880                /*
4881                 * If we have pending delayed iputs then we could free up a
4882                 * bunch of pinned space, so make sure we run the iputs before
4883                 * we do our pinned bytes check below.
4884                 */
4885                btrfs_run_delayed_iputs(fs_info);
4886                btrfs_wait_on_delayed_iputs(fs_info);
4887
4888                ret = may_commit_transaction(fs_info, space_info);
4889                break;
4890        default:
4891                ret = -ENOSPC;
4892                break;
4893        }
4894
4895        trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4896                                ret);
4897        return;
4898}
4899
4900static inline u64
4901btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4902                                 struct btrfs_space_info *space_info,
4903                                 bool system_chunk)
4904{
4905        struct reserve_ticket *ticket;
4906        u64 used;
4907        u64 expected;
4908        u64 to_reclaim = 0;
4909
4910        list_for_each_entry(ticket, &space_info->tickets, list)
4911                to_reclaim += ticket->bytes;
4912        list_for_each_entry(ticket, &space_info->priority_tickets, list)
4913                to_reclaim += ticket->bytes;
4914        if (to_reclaim)
4915                return to_reclaim;
4916
4917        to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4918        if (can_overcommit(fs_info, space_info, to_reclaim,
4919                           BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4920                return 0;
4921
4922        used = btrfs_space_info_used(space_info, true);
4923
4924        if (can_overcommit(fs_info, space_info, SZ_1M,
4925                           BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4926                expected = div_factor_fine(space_info->total_bytes, 95);
4927        else
4928                expected = div_factor_fine(space_info->total_bytes, 90);
4929
4930        if (used > expected)
4931                to_reclaim = used - expected;
4932        else
4933                to_reclaim = 0;
4934        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4935                                     space_info->bytes_reserved);
4936        return to_reclaim;
4937}
4938
4939static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4940                                        struct btrfs_space_info *space_info,
4941                                        u64 used, bool system_chunk)
4942{
4943        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4944
4945        /* If we're just plain full then async reclaim just slows us down. */
4946        if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4947                return 0;
4948
4949        if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4950                                              system_chunk))
4951                return 0;
4952
4953        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4954                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4955}
4956
4957static bool wake_all_tickets(struct list_head *head)
4958{
4959        struct reserve_ticket *ticket;
4960
4961        while (!list_empty(head)) {
4962                ticket = list_first_entry(head, struct reserve_ticket, list);
4963                list_del_init(&ticket->list);
4964                ticket->error = -ENOSPC;
4965                wake_up(&ticket->wait);
4966                if (ticket->bytes != ticket->orig_bytes)
4967                        return true;
4968        }
4969        return false;
4970}
4971
4972/*
4973 * This is for normal flushers, we can wait all goddamned day if we want to.  We
4974 * will loop and continuously try to flush as long as we are making progress.
4975 * We count progress as clearing off tickets each time we have to loop.
4976 */
4977static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4978{
4979        struct btrfs_fs_info *fs_info;
4980        struct btrfs_space_info *space_info;
4981        u64 to_reclaim;
4982        int flush_state;
4983        int commit_cycles = 0;
4984        u64 last_tickets_id;
4985
4986        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4987        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4988
4989        spin_lock(&space_info->lock);
4990        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4991                                                      false);
4992        if (!to_reclaim) {
4993                space_info->flush = 0;
4994                spin_unlock(&space_info->lock);
4995                return;
4996        }
4997        last_tickets_id = space_info->tickets_id;
4998        spin_unlock(&space_info->lock);
4999
5000        flush_state = FLUSH_DELAYED_ITEMS_NR;
5001        do {
5002                flush_space(fs_info, space_info, to_reclaim, flush_state);
5003                spin_lock(&space_info->lock);
5004                if (list_empty(&space_info->tickets)) {
5005                        space_info->flush = 0;
5006                        spin_unlock(&space_info->lock);
5007                        return;
5008                }
5009                to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5010                                                              space_info,
5011                                                              false);
5012                if (last_tickets_id == space_info->tickets_id) {
5013                        flush_state++;
5014                } else {
5015                        last_tickets_id = space_info->tickets_id;
5016                        flush_state = FLUSH_DELAYED_ITEMS_NR;
5017                        if (commit_cycles)
5018                                commit_cycles--;
5019                }
5020
5021                /*
5022                 * We don't want to force a chunk allocation until we've tried
5023                 * pretty hard to reclaim space.  Think of the case where we
5024                 * freed up a bunch of space and so have a lot of pinned space
5025                 * to reclaim.  We would rather use that than possibly create a
5026                 * underutilized metadata chunk.  So if this is our first run
5027                 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5028                 * commit the transaction.  If nothing has changed the next go
5029                 * around then we can force a chunk allocation.
5030                 */
5031                if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5032                        flush_state++;
5033
5034                if (flush_state > COMMIT_TRANS) {
5035                        commit_cycles++;
5036                        if (commit_cycles > 2) {
5037                                if (wake_all_tickets(&space_info->tickets)) {
5038                                        flush_state = FLUSH_DELAYED_ITEMS_NR;
5039                                        commit_cycles--;
5040                                } else {
5041                                        space_info->flush = 0;
5042                                }
5043                        } else {
5044                                flush_state = FLUSH_DELAYED_ITEMS_NR;
5045                        }
5046                }
5047                spin_unlock(&space_info->lock);
5048        } while (flush_state <= COMMIT_TRANS);
5049}
5050
5051void btrfs_init_async_reclaim_work(struct work_struct *work)
5052{
5053        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5054}
5055
5056static const enum btrfs_flush_state priority_flush_states[] = {
5057        FLUSH_DELAYED_ITEMS_NR,
5058        FLUSH_DELAYED_ITEMS,
5059        ALLOC_CHUNK,
5060};
5061
5062static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5063                                            struct btrfs_space_info *space_info,
5064                                            struct reserve_ticket *ticket)
5065{
5066        u64 to_reclaim;
5067        int flush_state;
5068
5069        spin_lock(&space_info->lock);
5070        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5071                                                      false);
5072        if (!to_reclaim) {
5073                spin_unlock(&space_info->lock);
5074                return;
5075        }
5076        spin_unlock(&space_info->lock);
5077
5078        flush_state = 0;
5079        do {
5080                flush_space(fs_info, space_info, to_reclaim,
5081                            priority_flush_states[flush_state]);
5082                flush_state++;
5083                spin_lock(&space_info->lock);
5084                if (ticket->bytes == 0) {
5085                        spin_unlock(&space_info->lock);
5086                        return;
5087                }
5088                spin_unlock(&space_info->lock);
5089        } while (flush_state < ARRAY_SIZE(priority_flush_states));
5090}
5091
5092static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5093                               struct btrfs_space_info *space_info,
5094                               struct reserve_ticket *ticket)
5095
5096{
5097        DEFINE_WAIT(wait);
5098        u64 reclaim_bytes = 0;
5099        int ret = 0;
5100
5101        spin_lock(&space_info->lock);
5102        while (ticket->bytes > 0 && ticket->error == 0) {
5103                ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5104                if (ret) {
5105                        ret = -EINTR;
5106                        break;
5107                }
5108                spin_unlock(&space_info->lock);
5109
5110                schedule();
5111
5112                finish_wait(&ticket->wait, &wait);
5113                spin_lock(&space_info->lock);
5114        }
5115        if (!ret)
5116                ret = ticket->error;
5117        if (!list_empty(&ticket->list))
5118                list_del_init(&ticket->list);
5119        if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5120                reclaim_bytes = ticket->orig_bytes - ticket->bytes;
5121        spin_unlock(&space_info->lock);
5122
5123        if (reclaim_bytes)
5124                space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5125        return ret;
5126}
5127
5128/**
5129 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5130 * @root - the root we're allocating for
5131 * @space_info - the space info we want to allocate from
5132 * @orig_bytes - the number of bytes we want
5133 * @flush - whether or not we can flush to make our reservation
5134 *
5135 * This will reserve orig_bytes number of bytes from the space info associated
5136 * with the block_rsv.  If there is not enough space it will make an attempt to
5137 * flush out space to make room.  It will do this by flushing delalloc if
5138 * possible or committing the transaction.  If flush is 0 then no attempts to
5139 * regain reservations will be made and this will fail if there is not enough
5140 * space already.
5141 */
5142static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5143                                    struct btrfs_space_info *space_info,
5144                                    u64 orig_bytes,
5145                                    enum btrfs_reserve_flush_enum flush,
5146                                    bool system_chunk)
5147{
5148        struct reserve_ticket ticket;
5149        u64 used;
5150        u64 reclaim_bytes = 0;
5151        int ret = 0;
5152
5153        ASSERT(orig_bytes);
5154        ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5155
5156        spin_lock(&space_info->lock);
5157        ret = -ENOSPC;
5158        used = btrfs_space_info_used(space_info, true);
5159
5160        /*
5161         * If we have enough space then hooray, make our reservation and carry
5162         * on.  If not see if we can overcommit, and if we can, hooray carry on.
5163         * If not things get more complicated.
5164         */
5165        if (used + orig_bytes <= space_info->total_bytes) {
5166                update_bytes_may_use(space_info, orig_bytes);
5167                trace_btrfs_space_reservation(fs_info, "space_info",
5168                                              space_info->flags, orig_bytes, 1);
5169                ret = 0;
5170        } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5171                                  system_chunk)) {
5172                update_bytes_may_use(space_info, orig_bytes);
5173                trace_btrfs_space_reservation(fs_info, "space_info",
5174                                              space_info->flags, orig_bytes, 1);
5175                ret = 0;
5176        }
5177
5178        /*
5179         * If we couldn't make a reservation then setup our reservation ticket
5180         * and kick the async worker if it's not already running.
5181         *
5182         * If we are a priority flusher then we just need to add our ticket to
5183         * the list and we will do our own flushing further down.
5184         */
5185        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5186                ticket.orig_bytes = orig_bytes;
5187                ticket.bytes = orig_bytes;
5188                ticket.error = 0;
5189                init_waitqueue_head(&ticket.wait);
5190                if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5191                        list_add_tail(&ticket.list, &space_info->tickets);
5192                        if (!space_info->flush) {
5193                                space_info->flush = 1;
5194                                trace_btrfs_trigger_flush(fs_info,
5195                                                          space_info->flags,
5196                                                          orig_bytes, flush,
5197                                                          "enospc");
5198                                queue_work(system_unbound_wq,
5199                                           &fs_info->async_reclaim_work);
5200                        }
5201                } else {
5202                        list_add_tail(&ticket.list,
5203                                      &space_info->priority_tickets);
5204                }
5205        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5206                used += orig_bytes;
5207                /*
5208                 * We will do the space reservation dance during log replay,
5209                 * which means we won't have fs_info->fs_root set, so don't do
5210                 * the async reclaim as we will panic.
5211                 */
5212                if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5213                    need_do_async_reclaim(fs_info, space_info,
5214                                          used, system_chunk) &&
5215                    !work_busy(&fs_info->async_reclaim_work)) {
5216                        trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217                                                  orig_bytes, flush, "preempt");
5218                        queue_work(system_unbound_wq,
5219                                   &fs_info->async_reclaim_work);
5220                }
5221        }
5222        spin_unlock(&space_info->lock);
5223        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5224                return ret;
5225
5226        if (flush == BTRFS_RESERVE_FLUSH_ALL)
5227                return wait_reserve_ticket(fs_info, space_info, &ticket);
5228
5229        ret = 0;
5230        priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5231        spin_lock(&space_info->lock);
5232        if (ticket.bytes) {
5233                if (ticket.bytes < orig_bytes)
5234                        reclaim_bytes = orig_bytes - ticket.bytes;
5235                list_del_init(&ticket.list);
5236                ret = -ENOSPC;
5237        }
5238        spin_unlock(&space_info->lock);
5239
5240        if (reclaim_bytes)
5241                space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5242        ASSERT(list_empty(&ticket.list));
5243        return ret;
5244}
5245
5246/**
5247 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5248 * @root - the root we're allocating for
5249 * @block_rsv - the block_rsv we're allocating for
5250 * @orig_bytes - the number of bytes we want
5251 * @flush - whether or not we can flush to make our reservation
5252 *
5253 * This will reserve orig_bytes number of bytes from the space info associated
5254 * with the block_rsv.  If there is not enough space it will make an attempt to
5255 * flush out space to make room.  It will do this by flushing delalloc if
5256 * possible or committing the transaction.  If flush is 0 then no attempts to
5257 * regain reservations will be made and this will fail if there is not enough
5258 * space already.
5259 */
5260static int reserve_metadata_bytes(struct btrfs_root *root,
5261                                  struct btrfs_block_rsv *block_rsv,
5262                                  u64 orig_bytes,
5263                                  enum btrfs_reserve_flush_enum flush)
5264{
5265        struct btrfs_fs_info *fs_info = root->fs_info;
5266        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5267        int ret;
5268        bool system_chunk = (root == fs_info->chunk_root);
5269
5270        ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5271                                       orig_bytes, flush, system_chunk);
5272        if (ret == -ENOSPC &&
5273            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5274                if (block_rsv != global_rsv &&
5275                    !block_rsv_use_bytes(global_rsv, orig_bytes))
5276                        ret = 0;
5277        }
5278        if (ret == -ENOSPC) {
5279                trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5280                                              block_rsv->space_info->flags,
5281                                              orig_bytes, 1);
5282
5283                if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5284                        dump_space_info(fs_info, block_rsv->space_info,
5285                                        orig_bytes, 0);
5286        }
5287        return ret;
5288}
5289
5290static struct btrfs_block_rsv *get_block_rsv(
5291                                        const struct btrfs_trans_handle *trans,
5292                                        const struct btrfs_root *root)
5293{
5294        struct btrfs_fs_info *fs_info = root->fs_info;
5295        struct btrfs_block_rsv *block_rsv = NULL;
5296
5297        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5298            (root == fs_info->csum_root && trans->adding_csums) ||
5299            (root == fs_info->uuid_root))
5300                block_rsv = trans->block_rsv;
5301
5302        if (!block_rsv)
5303                block_rsv = root->block_rsv;
5304
5305        if (!block_rsv)
5306                block_rsv = &fs_info->empty_block_rsv;
5307
5308        return block_rsv;
5309}
5310
5311static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5312                               u64 num_bytes)
5313{
5314        int ret = -ENOSPC;
5315        spin_lock(&block_rsv->lock);
5316        if (block_rsv->reserved >= num_bytes) {
5317                block_rsv->reserved -= num_bytes;
5318                if (block_rsv->reserved < block_rsv->size)
5319                        block_rsv->full = 0;
5320                ret = 0;
5321        }
5322        spin_unlock(&block_rsv->lock);
5323        return ret;
5324}
5325
5326static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5327                                u64 num_bytes, bool update_size)
5328{
5329        spin_lock(&block_rsv->lock);
5330        block_rsv->reserved += num_bytes;
5331        if (update_size)
5332                block_rsv->size += num_bytes;
5333        else if (block_rsv->reserved >= block_rsv->size)
5334                block_rsv->full = 1;
5335        spin_unlock(&block_rsv->lock);
5336}
5337
5338int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5339                             struct btrfs_block_rsv *dest, u64 num_bytes,
5340                             int min_factor)
5341{
5342        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5343        u64 min_bytes;
5344
5345        if (global_rsv->space_info != dest->space_info)
5346                return -ENOSPC;
5347
5348        spin_lock(&global_rsv->lock);
5349        min_bytes = div_factor(global_rsv->size, min_factor);
5350        if (global_rsv->reserved < min_bytes + num_bytes) {
5351                spin_unlock(&global_rsv->lock);
5352                return -ENOSPC;
5353        }
5354        global_rsv->reserved -= num_bytes;
5355        if (global_rsv->reserved < global_rsv->size)
5356                global_rsv->full = 0;
5357        spin_unlock(&global_rsv->lock);
5358
5359        block_rsv_add_bytes(dest, num_bytes, true);
5360        return 0;
5361}
5362
5363/**
5364 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5365 * @fs_info - the fs info for our fs.
5366 * @src - the source block rsv to transfer from.
5367 * @num_bytes - the number of bytes to transfer.
5368 *
5369 * This transfers up to the num_bytes amount from the src rsv to the
5370 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
5371 */
5372void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5373                                       struct btrfs_block_rsv *src,
5374                                       u64 num_bytes)
5375{
5376        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5377        u64 to_free = 0;
5378
5379        spin_lock(&src->lock);
5380        src->reserved -= num_bytes;
5381        src->size -= num_bytes;
5382        spin_unlock(&src->lock);
5383
5384        spin_lock(&delayed_refs_rsv->lock);
5385        if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5386                u64 delta = delayed_refs_rsv->size -
5387                        delayed_refs_rsv->reserved;
5388                if (num_bytes > delta) {
5389                        to_free = num_bytes - delta;
5390                        num_bytes = delta;
5391                }
5392        } else {
5393                to_free = num_bytes;
5394                num_bytes = 0;
5395        }
5396
5397        if (num_bytes)
5398                delayed_refs_rsv->reserved += num_bytes;
5399        if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5400                delayed_refs_rsv->full = 1;
5401        spin_unlock(&delayed_refs_rsv->lock);
5402
5403        if (num_bytes)
5404                trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5405                                              0, num_bytes, 1);
5406        if (to_free)
5407                space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5408                                         to_free);
5409}
5410
5411/**
5412 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5413 * @fs_info - the fs_info for our fs.
5414 * @flush - control how we can flush for this reservation.
5415 *
5416 * This will refill the delayed block_rsv up to 1 items size worth of space and
5417 * will return -ENOSPC if we can't make the reservation.
5418 */
5419int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5420                                  enum btrfs_reserve_flush_enum flush)
5421{
5422        struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5423        u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5424        u64 num_bytes = 0;
5425        int ret = -ENOSPC;
5426
5427        spin_lock(&block_rsv->lock);
5428        if (block_rsv->reserved < block_rsv->size) {
5429                num_bytes = block_rsv->size - block_rsv->reserved;
5430                num_bytes = min(num_bytes, limit);
5431        }
5432        spin_unlock(&block_rsv->lock);
5433
5434        if (!num_bytes)
5435                return 0;
5436
5437        ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5438                                     num_bytes, flush);
5439        if (ret)
5440                return ret;
5441        block_rsv_add_bytes(block_rsv, num_bytes, 0);
5442        trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5443                                      0, num_bytes, 1);
5444        return 0;
5445}
5446
5447/*
5448 * This is for space we already have accounted in space_info->bytes_may_use, so
5449 * basically when we're returning space from block_rsv's.
5450 */
5451static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5452                                     struct btrfs_space_info *space_info,
5453                                     u64 num_bytes)
5454{
5455        struct reserve_ticket *ticket;
5456        struct list_head *head;
5457        u64 used;
5458        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5459        bool check_overcommit = false;
5460
5461        spin_lock(&space_info->lock);
5462        head = &space_info->priority_tickets;
5463
5464        /*
5465         * If we are over our limit then we need to check and see if we can
5466         * overcommit, and if we can't then we just need to free up our space
5467         * and not satisfy any requests.
5468         */
5469        used = btrfs_space_info_used(space_info, true);
5470        if (used - num_bytes >= space_info->total_bytes)
5471                check_overcommit = true;
5472again:
5473        while (!list_empty(head) && num_bytes) {
5474                ticket = list_first_entry(head, struct reserve_ticket,
5475                                          list);
5476                /*
5477                 * We use 0 bytes because this space is already reserved, so
5478                 * adding the ticket space would be a double count.
5479                 */
5480                if (check_overcommit &&
5481                    !can_overcommit(fs_info, space_info, 0, flush, false))
5482                        break;
5483                if (num_bytes >= ticket->bytes) {
5484                        list_del_init(&ticket->list);
5485                        num_bytes -= ticket->bytes;
5486                        ticket->bytes = 0;
5487                        space_info->tickets_id++;
5488                        wake_up(&ticket->wait);
5489                } else {
5490                        ticket->bytes -= num_bytes;
5491                        num_bytes = 0;
5492                }
5493        }
5494
5495        if (num_bytes && head == &space_info->priority_tickets) {
5496                head = &space_info->tickets;
5497                flush = BTRFS_RESERVE_FLUSH_ALL;
5498                goto again;
5499        }
5500        update_bytes_may_use(space_info, -num_bytes);
5501        trace_btrfs_space_reservation(fs_info, "space_info",
5502                                      space_info->flags, num_bytes, 0);
5503        spin_unlock(&space_info->lock);
5504}
5505
5506/*
5507 * This is for newly allocated space that isn't accounted in
5508 * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5509 * we use this helper.
5510 */
5511static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5512                                     struct btrfs_space_info *space_info,
5513                                     u64 num_bytes)
5514{
5515        struct reserve_ticket *ticket;
5516        struct list_head *head = &space_info->priority_tickets;
5517
5518again:
5519        while (!list_empty(head) && num_bytes) {
5520                ticket = list_first_entry(head, struct reserve_ticket,
5521                                          list);
5522                if (num_bytes >= ticket->bytes) {
5523                        trace_btrfs_space_reservation(fs_info, "space_info",
5524                                                      space_info->flags,
5525                                                      ticket->bytes, 1);
5526                        list_del_init(&ticket->list);
5527                        num_bytes -= ticket->bytes;
5528                        update_bytes_may_use(space_info, ticket->bytes);
5529                        ticket->bytes = 0;
5530                        space_info->tickets_id++;
5531                        wake_up(&ticket->wait);
5532                } else {
5533                        trace_btrfs_space_reservation(fs_info, "space_info",
5534                                                      space_info->flags,
5535                                                      num_bytes, 1);
5536                        update_bytes_may_use(space_info, num_bytes);
5537                        ticket->bytes -= num_bytes;
5538                        num_bytes = 0;
5539                }
5540        }
5541
5542        if (num_bytes && head == &space_info->priority_tickets) {
5543                head = &space_info->tickets;
5544                goto again;
5545        }
5546}
5547
5548static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5549                                    struct btrfs_block_rsv *block_rsv,
5550                                    struct btrfs_block_rsv *dest, u64 num_bytes,
5551                                    u64 *qgroup_to_release_ret)
5552{
5553        struct btrfs_space_info *space_info = block_rsv->space_info;
5554        u64 qgroup_to_release = 0;
5555        u64 ret;
5556
5557        spin_lock(&block_rsv->lock);
5558        if (num_bytes == (u64)-1) {
5559                num_bytes = block_rsv->size;
5560                qgroup_to_release = block_rsv->qgroup_rsv_size;
5561        }
5562        block_rsv->size -= num_bytes;
5563        if (block_rsv->reserved >= block_rsv->size) {
5564                num_bytes = block_rsv->reserved - block_rsv->size;
5565                block_rsv->reserved = block_rsv->size;
5566                block_rsv->full = 1;
5567        } else {
5568                num_bytes = 0;
5569        }
5570        if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5571                qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5572                                    block_rsv->qgroup_rsv_size;
5573                block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5574        } else {
5575                qgroup_to_release = 0;
5576        }
5577        spin_unlock(&block_rsv->lock);
5578
5579        ret = num_bytes;
5580        if (num_bytes > 0) {
5581                if (dest) {
5582                        spin_lock(&dest->lock);
5583                        if (!dest->full) {
5584                                u64 bytes_to_add;
5585
5586                                bytes_to_add = dest->size - dest->reserved;
5587                                bytes_to_add = min(num_bytes, bytes_to_add);
5588                                dest->reserved += bytes_to_add;
5589                                if (dest->reserved >= dest->size)
5590                                        dest->full = 1;
5591                                num_bytes -= bytes_to_add;
5592                        }
5593                        spin_unlock(&dest->lock);
5594                }
5595                if (num_bytes)
5596                        space_info_add_old_bytes(fs_info, space_info,
5597                                                 num_bytes);
5598        }
5599        if (qgroup_to_release_ret)
5600                *qgroup_to_release_ret = qgroup_to_release;
5601        return ret;
5602}
5603
5604int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5605                            struct btrfs_block_rsv *dst, u64 num_bytes,
5606                            bool update_size)
5607{
5608        int ret;
5609
5610        ret = block_rsv_use_bytes(src, num_bytes);
5611        if (ret)
5612                return ret;
5613
5614        block_rsv_add_bytes(dst, num_bytes, update_size);
5615        return 0;
5616}
5617
5618void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5619{
5620        memset(rsv, 0, sizeof(*rsv));
5621        spin_lock_init(&rsv->lock);
5622        rsv->type = type;
5623}
5624
5625void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5626                                   struct btrfs_block_rsv *rsv,
5627                                   unsigned short type)
5628{
5629        btrfs_init_block_rsv(rsv, type);
5630        rsv->space_info = __find_space_info(fs_info,
5631                                            BTRFS_BLOCK_GROUP_METADATA);
5632}
5633
5634struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5635                                              unsigned short type)
5636{
5637        struct btrfs_block_rsv *block_rsv;
5638
5639        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5640        if (!block_rsv)
5641                return NULL;
5642
5643        btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5644        return block_rsv;
5645}
5646
5647void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5648                          struct btrfs_block_rsv *rsv)
5649{
5650        if (!rsv)
5651                return;
5652        btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5653        kfree(rsv);
5654}
5655
5656int btrfs_block_rsv_add(struct btrfs_root *root,
5657                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5658                        enum btrfs_reserve_flush_enum flush)
5659{
5660        int ret;
5661
5662        if (num_bytes == 0)
5663                return 0;
5664
5665        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5666        if (!ret)
5667                block_rsv_add_bytes(block_rsv, num_bytes, true);
5668
5669        return ret;
5670}
5671
5672int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5673{
5674        u64 num_bytes = 0;
5675        int ret = -ENOSPC;
5676
5677        if (!block_rsv)
5678                return 0;
5679
5680        spin_lock(&block_rsv->lock);
5681        num_bytes = div_factor(block_rsv->size, min_factor);
5682        if (block_rsv->reserved >= num_bytes)
5683                ret = 0;
5684        spin_unlock(&block_rsv->lock);
5685
5686        return ret;
5687}
5688
5689int btrfs_block_rsv_refill(struct btrfs_root *root,
5690                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5691                           enum btrfs_reserve_flush_enum flush)
5692{
5693        u64 num_bytes = 0;
5694        int ret = -ENOSPC;
5695
5696        if (!block_rsv)
5697                return 0;
5698
5699        spin_lock(&block_rsv->lock);
5700        num_bytes = min_reserved;
5701        if (block_rsv->reserved >= num_bytes)
5702                ret = 0;
5703        else
5704                num_bytes -= block_rsv->reserved;
5705        spin_unlock(&block_rsv->lock);
5706
5707        if (!ret)
5708                return 0;
5709
5710        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5711        if (!ret) {
5712                block_rsv_add_bytes(block_rsv, num_bytes, false);
5713                return 0;
5714        }
5715
5716        return ret;
5717}
5718
5719static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5720                                     struct btrfs_block_rsv *block_rsv,
5721                                     u64 num_bytes, u64 *qgroup_to_release)
5722{
5723        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5724        struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5725        struct btrfs_block_rsv *target = delayed_rsv;
5726
5727        if (target->full || target == block_rsv)
5728                target = global_rsv;
5729
5730        if (block_rsv->space_info != target->space_info)
5731                target = NULL;
5732
5733        return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5734                                       qgroup_to_release);
5735}
5736
5737void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5738                             struct btrfs_block_rsv *block_rsv,
5739                             u64 num_bytes)
5740{
5741        __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5742}
5743
5744/**
5745 * btrfs_inode_rsv_release - release any excessive reservation.
5746 * @inode - the inode we need to release from.
5747 * @qgroup_free - free or convert qgroup meta.
5748 *   Unlike normal operation, qgroup meta reservation needs to know if we are
5749 *   freeing qgroup reservation or just converting it into per-trans.  Normally
5750 *   @qgroup_free is true for error handling, and false for normal release.
5751 *
5752 * This is the same as btrfs_block_rsv_release, except that it handles the
5753 * tracepoint for the reservation.
5754 */
5755static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5756{
5757        struct btrfs_fs_info *fs_info = inode->root->fs_info;
5758        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5759        u64 released = 0;
5760        u64 qgroup_to_release = 0;
5761
5762        /*
5763         * Since we statically set the block_rsv->size we just want to say we
5764         * are releasing 0 bytes, and then we'll just get the reservation over
5765         * the size free'd.
5766         */
5767        released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5768                                             &qgroup_to_release);
5769        if (released > 0)
5770                trace_btrfs_space_reservation(fs_info, "delalloc",
5771                                              btrfs_ino(inode), released, 0);
5772        if (qgroup_free)
5773                btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5774        else
5775                btrfs_qgroup_convert_reserved_meta(inode->root,
5776                                                   qgroup_to_release);
5777}
5778
5779/**
5780 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5781 * @fs_info - the fs_info for our fs.
5782 * @nr - the number of items to drop.
5783 *
5784 * This drops the delayed ref head's count from the delayed refs rsv and frees
5785 * any excess reservation we had.
5786 */
5787void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5788{
5789        struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5790        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5791        u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5792        u64 released = 0;
5793
5794        released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5795                                           num_bytes, NULL);
5796        if (released)
5797                trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5798                                              0, released, 0);
5799}
5800
5801static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5802{
5803        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5804        struct btrfs_space_info *sinfo = block_rsv->space_info;
5805        u64 num_bytes;
5806
5807        /*
5808         * The global block rsv is based on the size of the extent tree, the
5809         * checksum tree and the root tree.  If the fs is empty we want to set
5810         * it to a minimal amount for safety.
5811         */
5812        num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5813                btrfs_root_used(&fs_info->csum_root->root_item) +
5814                btrfs_root_used(&fs_info->tree_root->root_item);
5815        num_bytes = max_t(u64, num_bytes, SZ_16M);
5816
5817        spin_lock(&sinfo->lock);
5818        spin_lock(&block_rsv->lock);
5819
5820        block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5821
5822        if (block_rsv->reserved < block_rsv->size) {
5823                num_bytes = btrfs_space_info_used(sinfo, true);
5824                if (sinfo->total_bytes > num_bytes) {
5825                        num_bytes = sinfo->total_bytes - num_bytes;
5826                        num_bytes = min(num_bytes,
5827                                        block_rsv->size - block_rsv->reserved);
5828                        block_rsv->reserved += num_bytes;
5829                        update_bytes_may_use(sinfo, num_bytes);
5830                        trace_btrfs_space_reservation(fs_info, "space_info",
5831                                                      sinfo->flags, num_bytes,
5832                                                      1);
5833                }
5834        } else if (block_rsv->reserved > block_rsv->size) {
5835                num_bytes = block_rsv->reserved - block_rsv->size;
5836                update_bytes_may_use(sinfo, -num_bytes);
5837                trace_btrfs_space_reservation(fs_info, "space_info",
5838                                      sinfo->flags, num_bytes, 0);
5839                block_rsv->reserved = block_rsv->size;
5840        }
5841
5842        if (block_rsv->reserved == block_rsv->size)
5843                block_rsv->full = 1;
5844        else
5845                block_rsv->full = 0;
5846
5847        spin_unlock(&block_rsv->lock);
5848        spin_unlock(&sinfo->lock);
5849}
5850
5851static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5852{
5853        struct btrfs_space_info *space_info;
5854
5855        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5856        fs_info->chunk_block_rsv.space_info = space_info;
5857
5858        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5859        fs_info->global_block_rsv.space_info = space_info;
5860        fs_info->trans_block_rsv.space_info = space_info;
5861        fs_info->empty_block_rsv.space_info = space_info;
5862        fs_info->delayed_block_rsv.space_info = space_info;
5863        fs_info->delayed_refs_rsv.space_info = space_info;
5864
5865        fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5866        fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
5867        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5868        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5869        if (fs_info->quota_root)
5870                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5871        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5872
5873        update_global_block_rsv(fs_info);
5874}
5875
5876static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5877{
5878        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5879                                (u64)-1, NULL);
5880        WARN_ON(fs_info->trans_block_rsv.size > 0);
5881        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5882        WARN_ON(fs_info->chunk_block_rsv.size > 0);
5883        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5884        WARN_ON(fs_info->delayed_block_rsv.size > 0);
5885        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5886        WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5887        WARN_ON(fs_info->delayed_refs_rsv.size > 0);
5888}
5889
5890/*
5891 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5892 * @trans - the trans that may have generated delayed refs
5893 *
5894 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5895 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5896 */
5897void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5898{
5899        struct btrfs_fs_info *fs_info = trans->fs_info;
5900        struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5901        u64 num_bytes;
5902
5903        if (!trans->delayed_ref_updates)
5904                return;
5905
5906        num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5907                                                   trans->delayed_ref_updates);
5908        spin_lock(&delayed_rsv->lock);
5909        delayed_rsv->size += num_bytes;
5910        delayed_rsv->full = 0;
5911        spin_unlock(&delayed_rsv->lock);
5912        trans->delayed_ref_updates = 0;
5913}
5914
5915/*
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5918 */
5919void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920{
5921        struct btrfs_fs_info *fs_info = trans->fs_info;
5922
5923        if (!trans->chunk_bytes_reserved)
5924                return;
5925
5926        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927
5928        block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929                                trans->chunk_bytes_reserved, NULL);
5930        trans->chunk_bytes_reserved = 0;
5931}
5932
5933/*
5934 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935 * root: the root of the parent directory
5936 * rsv: block reservation
5937 * items: the number of items that we need do reservation
5938 * use_global_rsv: allow fallback to the global block reservation
5939 *
5940 * This function is used to reserve the space for snapshot/subvolume
5941 * creation and deletion. Those operations are different with the
5942 * common file/directory operations, they change two fs/file trees
5943 * and root tree, the number of items that the qgroup reserves is
5944 * different with the free space reservation. So we can not use
5945 * the space reservation mechanism in start_transaction().
5946 */
5947int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5948                                     struct btrfs_block_rsv *rsv, int items,
5949                                     bool use_global_rsv)
5950{
5951        u64 qgroup_num_bytes = 0;
5952        u64 num_bytes;
5953        int ret;
5954        struct btrfs_fs_info *fs_info = root->fs_info;
5955        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5956
5957        if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5958                /* One for parent inode, two for dir entries */
5959                qgroup_num_bytes = 3 * fs_info->nodesize;
5960                ret = btrfs_qgroup_reserve_meta_prealloc(root,
5961                                qgroup_num_bytes, true);
5962                if (ret)
5963                        return ret;
5964        }
5965
5966        num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5967        rsv->space_info = __find_space_info(fs_info,
5968                                            BTRFS_BLOCK_GROUP_METADATA);
5969        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5970                                  BTRFS_RESERVE_FLUSH_ALL);
5971
5972        if (ret == -ENOSPC && use_global_rsv)
5973                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5974
5975        if (ret && qgroup_num_bytes)
5976                btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5977
5978        return ret;
5979}
5980
5981void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5982                                      struct btrfs_block_rsv *rsv)
5983{
5984        btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5985}
5986
5987static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5988                                                 struct btrfs_inode *inode)
5989{
5990        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5991        u64 reserve_size = 0;
5992        u64 qgroup_rsv_size = 0;
5993        u64 csum_leaves;
5994        unsigned outstanding_extents;
5995
5996        lockdep_assert_held(&inode->lock);
5997        outstanding_extents = inode->outstanding_extents;
5998        if (outstanding_extents)
5999                reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6000                                                outstanding_extents + 1);
6001        csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6002                                                 inode->csum_bytes);
6003        reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6004                                                       csum_leaves);
6005        /*
6006         * For qgroup rsv, the calculation is very simple:
6007         * account one nodesize for each outstanding extent
6008         *
6009         * This is overestimating in most cases.
6010         */
6011        qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
6012
6013        spin_lock(&block_rsv->lock);
6014        block_rsv->size = reserve_size;
6015        block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6016        spin_unlock(&block_rsv->lock);
6017}
6018
6019static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
6020                                    u64 num_bytes, u64 *meta_reserve,
6021                                    u64 *qgroup_reserve)
6022{
6023        u64 nr_extents = count_max_extents(num_bytes);
6024        u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
6025
6026        /* We add one for the inode update at finish ordered time */
6027        *meta_reserve = btrfs_calc_trans_metadata_size(fs_info,
6028                                                nr_extents + csum_leaves + 1);
6029        *qgroup_reserve = nr_extents * fs_info->nodesize;
6030}
6031
6032int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6033{
6034        struct btrfs_root *root = inode->root;
6035        struct btrfs_fs_info *fs_info = root->fs_info;
6036        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6037        u64 meta_reserve, qgroup_reserve;
6038        unsigned nr_extents;
6039        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6040        int ret = 0;
6041        bool delalloc_lock = true;
6042
6043        /* If we are a free space inode we need to not flush since we will be in
6044         * the middle of a transaction commit.  We also don't need the delalloc
6045         * mutex since we won't race with anybody.  We need this mostly to make
6046         * lockdep shut its filthy mouth.
6047         *
6048         * If we have a transaction open (can happen if we call truncate_block
6049         * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6050         */
6051        if (btrfs_is_free_space_inode(inode)) {
6052                flush = BTRFS_RESERVE_NO_FLUSH;
6053                delalloc_lock = false;
6054        } else {
6055                if (current->journal_info)
6056                        flush = BTRFS_RESERVE_FLUSH_LIMIT;
6057
6058                if (btrfs_transaction_in_commit(fs_info))
6059                        schedule_timeout(1);
6060        }
6061
6062        if (delalloc_lock)
6063                mutex_lock(&inode->delalloc_mutex);
6064
6065        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6066
6067        /*
6068         * We always want to do it this way, every other way is wrong and ends
6069         * in tears.  Pre-reserving the amount we are going to add will always
6070         * be the right way, because otherwise if we have enough parallelism we
6071         * could end up with thousands of inodes all holding little bits of
6072         * reservations they were able to make previously and the only way to
6073         * reclaim that space is to ENOSPC out the operations and clear
6074         * everything out and try again, which is bad.  This way we just
6075         * over-reserve slightly, and clean up the mess when we are done.
6076         */
6077        calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
6078                                &qgroup_reserve);
6079        ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
6080        if (ret)
6081                goto out_fail;
6082        ret = reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
6083        if (ret)
6084                goto out_qgroup;
6085
6086        /*
6087         * Now we need to update our outstanding extents and csum bytes _first_
6088         * and then add the reservation to the block_rsv.  This keeps us from
6089         * racing with an ordered completion or some such that would think it
6090         * needs to free the reservation we just made.
6091         */
6092        spin_lock(&inode->lock);
6093        nr_extents = count_max_extents(num_bytes);
6094        btrfs_mod_outstanding_extents(inode, nr_extents);
6095        inode->csum_bytes += num_bytes;
6096        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6097        spin_unlock(&inode->lock);
6098
6099        /* Now we can safely add our space to our block rsv */
6100        block_rsv_add_bytes(block_rsv, meta_reserve, false);
6101        trace_btrfs_space_reservation(root->fs_info, "delalloc",
6102                                      btrfs_ino(inode), meta_reserve, 1);
6103
6104        spin_lock(&block_rsv->lock);
6105        block_rsv->qgroup_rsv_reserved += qgroup_reserve;
6106        spin_unlock(&block_rsv->lock);
6107
6108        if (delalloc_lock)
6109                mutex_unlock(&inode->delalloc_mutex);
6110        return 0;
6111out_qgroup:
6112        btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
6113out_fail:
6114        btrfs_inode_rsv_release(inode, true);
6115        if (delalloc_lock)
6116                mutex_unlock(&inode->delalloc_mutex);
6117        return ret;
6118}
6119
6120/**
6121 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6122 * @inode: the inode to release the reservation for.
6123 * @num_bytes: the number of bytes we are releasing.
6124 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6125 *
6126 * This will release the metadata reservation for an inode.  This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
6128 * reservations, or on error for the same reason.
6129 */
6130void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6131                                     bool qgroup_free)
6132{
6133        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6134
6135        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6136        spin_lock(&inode->lock);
6137        inode->csum_bytes -= num_bytes;
6138        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6139        spin_unlock(&inode->lock);
6140
6141        if (btrfs_is_testing(fs_info))
6142                return;
6143
6144        btrfs_inode_rsv_release(inode, qgroup_free);
6145}
6146
6147/**
6148 * btrfs_delalloc_release_extents - release our outstanding_extents
6149 * @inode: the inode to balance the reservation for.
6150 * @num_bytes: the number of bytes we originally reserved with
6151 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6152 *
6153 * When we reserve space we increase outstanding_extents for the extents we may
6154 * add.  Once we've set the range as delalloc or created our ordered extents we
6155 * have outstanding_extents to track the real usage, so we use this to free our
6156 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6157 * with btrfs_delalloc_reserve_metadata.
6158 */
6159void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6160                                    bool qgroup_free)
6161{
6162        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6163        unsigned num_extents;
6164
6165        spin_lock(&inode->lock);
6166        num_extents = count_max_extents(num_bytes);
6167        btrfs_mod_outstanding_extents(inode, -num_extents);
6168        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6169        spin_unlock(&inode->lock);
6170
6171        if (btrfs_is_testing(fs_info))
6172                return;
6173
6174        btrfs_inode_rsv_release(inode, qgroup_free);
6175}
6176
6177/**
6178 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6179 * delalloc
6180 * @inode: inode we're writing to
6181 * @start: start range we are writing to
6182 * @len: how long the range we are writing to
6183 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6184 *            current reservation.
6185 *
6186 * This will do the following things
6187 *
6188 * o reserve space in data space info for num bytes
6189 *   and reserve precious corresponding qgroup space
6190 *   (Done in check_data_free_space)
6191 *
6192 * o reserve space for metadata space, based on the number of outstanding
6193 *   extents and how much csums will be needed
6194 *   also reserve metadata space in a per root over-reserve method.
6195 * o add to the inodes->delalloc_bytes
6196 * o add it to the fs_info's delalloc inodes list.
6197 *   (Above 3 all done in delalloc_reserve_metadata)
6198 *
6199 * Return 0 for success
6200 * Return <0 for error(-ENOSPC or -EQUOT)
6201 */
6202int btrfs_delalloc_reserve_space(struct inode *inode,
6203                        struct extent_changeset **reserved, u64 start, u64 len)
6204{
6205        int ret;
6206
6207        ret = btrfs_check_data_free_space(inode, reserved, start, len);
6208        if (ret < 0)
6209                return ret;
6210        ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6211        if (ret < 0)
6212                btrfs_free_reserved_data_space(inode, *reserved, start, len);
6213        return ret;
6214}
6215
6216/**
6217 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6218 * @inode: inode we're releasing space for
6219 * @start: start position of the space already reserved
6220 * @len: the len of the space already reserved
6221 * @release_bytes: the len of the space we consumed or didn't use
6222 *
6223 * This function will release the metadata space that was not used and will
6224 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6225 * list if there are no delalloc bytes left.
6226 * Also it will handle the qgroup reserved space.
6227 */
6228void btrfs_delalloc_release_space(struct inode *inode,
6229                                  struct extent_changeset *reserved,
6230                                  u64 start, u64 len, bool qgroup_free)
6231{
6232        btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6233        btrfs_free_reserved_data_space(inode, reserved, start, len);
6234}
6235
6236static int update_block_group(struct btrfs_trans_handle *trans,
6237                              u64 bytenr, u64 num_bytes, int alloc)
6238{
6239        struct btrfs_fs_info *info = trans->fs_info;
6240        struct btrfs_block_group_cache *cache = NULL;
6241        u64 total = num_bytes;
6242        u64 old_val;
6243        u64 byte_in_group;
6244        int factor;
6245        int ret = 0;
6246
6247        /* block accounting for super block */
6248        spin_lock(&info->delalloc_root_lock);
6249        old_val = btrfs_super_bytes_used(info->super_copy);
6250        if (alloc)
6251                old_val += num_bytes;
6252        else
6253                old_val -= num_bytes;
6254        btrfs_set_super_bytes_used(info->super_copy, old_val);
6255        spin_unlock(&info->delalloc_root_lock);
6256
6257        while (total) {
6258                cache = btrfs_lookup_block_group(info, bytenr);
6259                if (!cache) {
6260                        ret = -ENOENT;
6261                        break;
6262                }
6263                factor = btrfs_bg_type_to_factor(cache->flags);
6264
6265                /*
6266                 * If this block group has free space cache written out, we
6267                 * need to make sure to load it if we are removing space.  This
6268                 * is because we need the unpinning stage to actually add the
6269                 * space back to the block group, otherwise we will leak space.
6270                 */
6271                if (!alloc && cache->cached == BTRFS_CACHE_NO)
6272                        cache_block_group(cache, 1);
6273
6274                byte_in_group = bytenr - cache->key.objectid;
6275                WARN_ON(byte_in_group > cache->key.offset);
6276
6277                spin_lock(&cache->space_info->lock);
6278                spin_lock(&cache->lock);
6279
6280                if (btrfs_test_opt(info, SPACE_CACHE) &&
6281                    cache->disk_cache_state < BTRFS_DC_CLEAR)
6282                        cache->disk_cache_state = BTRFS_DC_CLEAR;
6283
6284                old_val = btrfs_block_group_used(&cache->item);
6285                num_bytes = min(total, cache->key.offset - byte_in_group);
6286                if (alloc) {
6287                        old_val += num_bytes;
6288                        btrfs_set_block_group_used(&cache->item, old_val);
6289                        cache->reserved -= num_bytes;
6290                        cache->space_info->bytes_reserved -= num_bytes;
6291                        cache->space_info->bytes_used += num_bytes;
6292                        cache->space_info->disk_used += num_bytes * factor;
6293                        spin_unlock(&cache->lock);
6294                        spin_unlock(&cache->space_info->lock);
6295                } else {
6296                        old_val -= num_bytes;
6297                        btrfs_set_block_group_used(&cache->item, old_val);
6298                        cache->pinned += num_bytes;
6299                        update_bytes_pinned(cache->space_info, num_bytes);
6300                        cache->space_info->bytes_used -= num_bytes;
6301                        cache->space_info->disk_used -= num_bytes * factor;
6302                        spin_unlock(&cache->lock);
6303                        spin_unlock(&cache->space_info->lock);
6304
6305                        trace_btrfs_space_reservation(info, "pinned",
6306                                                      cache->space_info->flags,
6307                                                      num_bytes, 1);
6308                        percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6309                                           num_bytes,
6310                                           BTRFS_TOTAL_BYTES_PINNED_BATCH);
6311                        set_extent_dirty(info->pinned_extents,
6312                                         bytenr, bytenr + num_bytes - 1,
6313                                         GFP_NOFS | __GFP_NOFAIL);
6314                }
6315
6316                spin_lock(&trans->transaction->dirty_bgs_lock);
6317                if (list_empty(&cache->dirty_list)) {
6318                        list_add_tail(&cache->dirty_list,
6319                                      &trans->transaction->dirty_bgs);
6320                        trans->delayed_ref_updates++;
6321                        btrfs_get_block_group(cache);
6322                }
6323                spin_unlock(&trans->transaction->dirty_bgs_lock);
6324
6325                /*
6326                 * No longer have used bytes in this block group, queue it for
6327                 * deletion. We do this after adding the block group to the
6328                 * dirty list to avoid races between cleaner kthread and space
6329                 * cache writeout.
6330                 */
6331                if (!alloc && old_val == 0)
6332                        btrfs_mark_bg_unused(cache);
6333
6334                btrfs_put_block_group(cache);
6335                total -= num_bytes;
6336                bytenr += num_bytes;
6337        }
6338
6339        /* Modified block groups are accounted for in the delayed_refs_rsv. */
6340        btrfs_update_delayed_refs_rsv(trans);
6341        return ret;
6342}
6343
6344static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6345{
6346        struct btrfs_block_group_cache *cache;
6347        u64 bytenr;
6348
6349        spin_lock(&fs_info->block_group_cache_lock);
6350        bytenr = fs_info->first_logical_byte;
6351        spin_unlock(&fs_info->block_group_cache_lock);
6352
6353        if (bytenr < (u64)-1)
6354                return bytenr;
6355
6356        cache = btrfs_lookup_first_block_group(fs_info, search_start);
6357        if (!cache)
6358                return 0;
6359
6360        bytenr = cache->key.objectid;
6361        btrfs_put_block_group(cache);
6362
6363        return bytenr;
6364}
6365
6366static int pin_down_extent(struct btrfs_block_group_cache *cache,
6367                           u64 bytenr, u64 num_bytes, int reserved)
6368{
6369        struct btrfs_fs_info *fs_info = cache->fs_info;
6370
6371        spin_lock(&cache->space_info->lock);
6372        spin_lock(&cache->lock);
6373        cache->pinned += num_bytes;
6374        update_bytes_pinned(cache->space_info, num_bytes);
6375        if (reserved) {
6376                cache->reserved -= num_bytes;
6377                cache->space_info->bytes_reserved -= num_bytes;
6378        }
6379        spin_unlock(&cache->lock);
6380        spin_unlock(&cache->space_info->lock);
6381
6382        trace_btrfs_space_reservation(fs_info, "pinned",
6383                                      cache->space_info->flags, num_bytes, 1);
6384        percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6385                    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6386        set_extent_dirty(fs_info->pinned_extents, bytenr,
6387                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388        return 0;
6389}
6390
6391/*
6392 * this function must be called within transaction
6393 */
6394int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6395                     u64 bytenr, u64 num_bytes, int reserved)
6396{
6397        struct btrfs_block_group_cache *cache;
6398
6399        cache = btrfs_lookup_block_group(fs_info, bytenr);
6400        BUG_ON(!cache); /* Logic error */
6401
6402        pin_down_extent(cache, bytenr, num_bytes, reserved);
6403
6404        btrfs_put_block_group(cache);
6405        return 0;
6406}
6407
6408/*
6409 * this function must be called within transaction
6410 */
6411int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6412                                    u64 bytenr, u64 num_bytes)
6413{
6414        struct btrfs_block_group_cache *cache;
6415        int ret;
6416
6417        cache = btrfs_lookup_block_group(fs_info, bytenr);
6418        if (!cache)
6419                return -EINVAL;
6420
6421        /*
6422         * pull in the free space cache (if any) so that our pin
6423         * removes the free space from the cache.  We have load_only set
6424         * to one because the slow code to read in the free extents does check
6425         * the pinned extents.
6426         */
6427        cache_block_group(cache, 1);
6428
6429        pin_down_extent(cache, bytenr, num_bytes, 0);
6430
6431        /* remove us from the free space cache (if we're there at all) */
6432        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6433        btrfs_put_block_group(cache);
6434        return ret;
6435}
6436
6437static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438                                   u64 start, u64 num_bytes)
6439{
6440        int ret;
6441        struct btrfs_block_group_cache *block_group;
6442        struct btrfs_caching_control *caching_ctl;
6443
6444        block_group = btrfs_lookup_block_group(fs_info, start);
6445        if (!block_group)
6446                return -EINVAL;
6447
6448        cache_block_group(block_group, 0);
6449        caching_ctl = get_caching_control(block_group);
6450
6451        if (!caching_ctl) {
6452                /* Logic error */
6453                BUG_ON(!block_group_cache_done(block_group));
6454                ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455        } else {
6456                mutex_lock(&caching_ctl->mutex);
6457
6458                if (start >= caching_ctl->progress) {
6459                        ret = add_excluded_extent(fs_info, start, num_bytes);
6460                } else if (start + num_bytes <= caching_ctl->progress) {
6461                        ret = btrfs_remove_free_space(block_group,
6462                                                      start, num_bytes);
6463                } else {
6464                        num_bytes = caching_ctl->progress - start;
6465                        ret = btrfs_remove_free_space(block_group,
6466                                                      start, num_bytes);
6467                        if (ret)
6468                                goto out_lock;
6469
6470                        num_bytes = (start + num_bytes) -
6471                                caching_ctl->progress;
6472                        start = caching_ctl->progress;
6473                        ret = add_excluded_extent(fs_info, start, num_bytes);
6474                }
6475out_lock:
6476                mutex_unlock(&caching_ctl->mutex);
6477                put_caching_control(caching_ctl);
6478        }
6479        btrfs_put_block_group(block_group);
6480        return ret;
6481}
6482
6483int btrfs_exclude_logged_extents(struct extent_buffer *eb)
6484{
6485        struct btrfs_fs_info *fs_info = eb->fs_info;
6486        struct btrfs_file_extent_item *item;
6487        struct btrfs_key key;
6488        int found_type;
6489        int i;
6490        int ret = 0;
6491
6492        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6493                return 0;
6494
6495        for (i = 0; i < btrfs_header_nritems(eb); i++) {
6496                btrfs_item_key_to_cpu(eb, &key, i);
6497                if (key.type != BTRFS_EXTENT_DATA_KEY)
6498                        continue;
6499                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6500                found_type = btrfs_file_extent_type(eb, item);
6501                if (found_type == BTRFS_FILE_EXTENT_INLINE)
6502                        continue;
6503                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6504                        continue;
6505                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6506                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6507                ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6508                if (ret)
6509                        break;
6510        }
6511
6512        return ret;
6513}
6514
6515static void
6516btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517{
6518        atomic_inc(&bg->reservations);
6519}
6520
6521void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522                                        const u64 start)
6523{
6524        struct btrfs_block_group_cache *bg;
6525
6526        bg = btrfs_lookup_block_group(fs_info, start);
6527        ASSERT(bg);
6528        if (atomic_dec_and_test(&bg->reservations))
6529                wake_up_var(&bg->reservations);
6530        btrfs_put_block_group(bg);
6531}
6532
6533void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6534{
6535        struct btrfs_space_info *space_info = bg->space_info;
6536
6537        ASSERT(bg->ro);
6538
6539        if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6540                return;
6541
6542        /*
6543         * Our block group is read only but before we set it to read only,
6544         * some task might have had allocated an extent from it already, but it
6545         * has not yet created a respective ordered extent (and added it to a
6546         * root's list of ordered extents).
6547         * Therefore wait for any task currently allocating extents, since the
6548         * block group's reservations counter is incremented while a read lock
6549         * on the groups' semaphore is held and decremented after releasing
6550         * the read access on that semaphore and creating the ordered extent.
6551         */
6552        down_write(&space_info->groups_sem);
6553        up_write(&space_info->groups_sem);
6554
6555        wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6556}
6557
6558/**
6559 * btrfs_add_reserved_bytes - update the block_group and space info counters
6560 * @cache:      The cache we are manipulating
6561 * @ram_bytes:  The number of bytes of file content, and will be same to
6562 *              @num_bytes except for the compress path.
6563 * @num_bytes:  The number of bytes in question
6564 * @delalloc:   The blocks are allocated for the delalloc write
6565 *
6566 * This is called by the allocator when it reserves space. If this is a
6567 * reservation and the block group has become read only we cannot make the
6568 * reservation and return -EAGAIN, otherwise this function always succeeds.
6569 */
6570static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6571                                    u64 ram_bytes, u64 num_bytes, int delalloc)
6572{
6573        struct btrfs_space_info *space_info = cache->space_info;
6574        int ret = 0;
6575
6576        spin_lock(&space_info->lock);
6577        spin_lock(&cache->lock);
6578        if (cache->ro) {
6579                ret = -EAGAIN;
6580        } else {
6581                cache->reserved += num_bytes;
6582                space_info->bytes_reserved += num_bytes;
6583                update_bytes_may_use(space_info, -ram_bytes);
6584                if (delalloc)
6585                        cache->delalloc_bytes += num_bytes;
6586        }
6587        spin_unlock(&cache->lock);
6588        spin_unlock(&space_info->lock);
6589        return ret;
6590}
6591
6592/**
6593 * btrfs_free_reserved_bytes - update the block_group and space info counters
6594 * @cache:      The cache we are manipulating
6595 * @num_bytes:  The number of bytes in question
6596 * @delalloc:   The blocks are allocated for the delalloc write
6597 *
6598 * This is called by somebody who is freeing space that was never actually used
6599 * on disk.  For example if you reserve some space for a new leaf in transaction
6600 * A and before transaction A commits you free that leaf, you call this with
6601 * reserve set to 0 in order to clear the reservation.
6602 */
6603
6604static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6605                                      u64 num_bytes, int delalloc)
6606{
6607        struct btrfs_space_info *space_info = cache->space_info;
6608
6609        spin_lock(&space_info->lock);
6610        spin_lock(&cache->lock);
6611        if (cache->ro)
6612                space_info->bytes_readonly += num_bytes;
6613        cache->reserved -= num_bytes;
6614        space_info->bytes_reserved -= num_bytes;
6615        space_info->max_extent_size = 0;
6616
6617        if (delalloc)
6618                cache->delalloc_bytes -= num_bytes;
6619        spin_unlock(&cache->lock);
6620        spin_unlock(&space_info->lock);
6621}
6622void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6623{
6624        struct btrfs_caching_control *next;
6625        struct btrfs_caching_control *caching_ctl;
6626        struct btrfs_block_group_cache *cache;
6627
6628        down_write(&fs_info->commit_root_sem);
6629
6630        list_for_each_entry_safe(caching_ctl, next,
6631                                 &fs_info->caching_block_groups, list) {
6632                cache = caching_ctl->block_group;
6633                if (block_group_cache_done(cache)) {
6634                        cache->last_byte_to_unpin = (u64)-1;
6635                        list_del_init(&caching_ctl->list);
6636                        put_caching_control(caching_ctl);
6637                } else {
6638                        cache->last_byte_to_unpin = caching_ctl->progress;
6639                }
6640        }
6641
6642        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6643                fs_info->pinned_extents = &fs_info->freed_extents[1];
6644        else
6645                fs_info->pinned_extents = &fs_info->freed_extents[0];
6646
6647        up_write(&fs_info->commit_root_sem);
6648
6649        update_global_block_rsv(fs_info);
6650}
6651
6652/*
6653 * Returns the free cluster for the given space info and sets empty_cluster to
6654 * what it should be based on the mount options.
6655 */
6656static struct btrfs_free_cluster *
6657fetch_cluster_info(struct btrfs_fs_info *fs_info,
6658                   struct btrfs_space_info *space_info, u64 *empty_cluster)
6659{
6660        struct btrfs_free_cluster *ret = NULL;
6661
6662        *empty_cluster = 0;
6663        if (btrfs_mixed_space_info(space_info))
6664                return ret;
6665
6666        if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6667                ret = &fs_info->meta_alloc_cluster;
6668                if (btrfs_test_opt(fs_info, SSD))
6669                        *empty_cluster = SZ_2M;
6670                else
6671                        *empty_cluster = SZ_64K;
6672        } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6673                   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6674                *empty_cluster = SZ_2M;
6675                ret = &fs_info->data_alloc_cluster;
6676        }
6677
6678        return ret;
6679}
6680
6681static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6682                              u64 start, u64 end,
6683                              const bool return_free_space)
6684{
6685        struct btrfs_block_group_cache *cache = NULL;
6686        struct btrfs_space_info *space_info;
6687        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6688        struct btrfs_free_cluster *cluster = NULL;
6689        u64 len;
6690        u64 total_unpinned = 0;
6691        u64 empty_cluster = 0;
6692        bool readonly;
6693
6694        while (start <= end) {
6695                readonly = false;
6696                if (!cache ||
6697                    start >= cache->key.objectid + cache->key.offset) {
6698                        if (cache)
6699                                btrfs_put_block_group(cache);
6700                        total_unpinned = 0;
6701                        cache = btrfs_lookup_block_group(fs_info, start);
6702                        BUG_ON(!cache); /* Logic error */
6703
6704                        cluster = fetch_cluster_info(fs_info,
6705                                                     cache->space_info,
6706                                                     &empty_cluster);
6707                        empty_cluster <<= 1;
6708                }
6709
6710                len = cache->key.objectid + cache->key.offset - start;
6711                len = min(len, end + 1 - start);
6712
6713                if (start < cache->last_byte_to_unpin) {
6714                        len = min(len, cache->last_byte_to_unpin - start);
6715                        if (return_free_space)
6716                                btrfs_add_free_space(cache, start, len);
6717                }
6718
6719                start += len;
6720                total_unpinned += len;
6721                space_info = cache->space_info;
6722
6723                /*
6724                 * If this space cluster has been marked as fragmented and we've
6725                 * unpinned enough in this block group to potentially allow a
6726                 * cluster to be created inside of it go ahead and clear the
6727                 * fragmented check.
6728                 */
6729                if (cluster && cluster->fragmented &&
6730                    total_unpinned > empty_cluster) {
6731                        spin_lock(&cluster->lock);
6732                        cluster->fragmented = 0;
6733                        spin_unlock(&cluster->lock);
6734                }
6735
6736                spin_lock(&space_info->lock);
6737                spin_lock(&cache->lock);
6738                cache->pinned -= len;
6739                update_bytes_pinned(space_info, -len);
6740
6741                trace_btrfs_space_reservation(fs_info, "pinned",
6742                                              space_info->flags, len, 0);
6743                space_info->max_extent_size = 0;
6744                percpu_counter_add_batch(&space_info->total_bytes_pinned,
6745                            -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6746                if (cache->ro) {
6747                        space_info->bytes_readonly += len;
6748                        readonly = true;
6749                }
6750                spin_unlock(&cache->lock);
6751                if (!readonly && return_free_space &&
6752                    global_rsv->space_info == space_info) {
6753                        u64 to_add = len;
6754
6755                        spin_lock(&global_rsv->lock);
6756                        if (!global_rsv->full) {
6757                                to_add = min(len, global_rsv->size -
6758                                             global_rsv->reserved);
6759                                global_rsv->reserved += to_add;
6760                                update_bytes_may_use(space_info, to_add);
6761                                if (global_rsv->reserved >= global_rsv->size)
6762                                        global_rsv->full = 1;
6763                                trace_btrfs_space_reservation(fs_info,
6764                                                              "space_info",
6765                                                              space_info->flags,
6766                                                              to_add, 1);
6767                                len -= to_add;
6768                        }
6769                        spin_unlock(&global_rsv->lock);
6770                        /* Add to any tickets we may have */
6771                        if (len)
6772                                space_info_add_new_bytes(fs_info, space_info,
6773                                                         len);
6774                }
6775                spin_unlock(&space_info->lock);
6776        }
6777
6778        if (cache)
6779                btrfs_put_block_group(cache);
6780        return 0;
6781}
6782
6783int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6784{
6785        struct btrfs_fs_info *fs_info = trans->fs_info;
6786        struct btrfs_block_group_cache *block_group, *tmp;
6787        struct list_head *deleted_bgs;
6788        struct extent_io_tree *unpin;
6789        u64 start;
6790        u64 end;
6791        int ret;
6792
6793        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6794                unpin = &fs_info->freed_extents[1];
6795        else
6796                unpin = &fs_info->freed_extents[0];
6797
6798        while (!trans->aborted) {
6799                struct extent_state *cached_state = NULL;
6800
6801                mutex_lock(&fs_info->unused_bg_unpin_mutex);
6802                ret = find_first_extent_bit(unpin, 0, &start, &end,
6803                                            EXTENT_DIRTY, &cached_state);
6804                if (ret) {
6805                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6806                        break;
6807                }
6808
6809                if (btrfs_test_opt(fs_info, DISCARD))
6810                        ret = btrfs_discard_extent(fs_info, start,
6811                                                   end + 1 - start, NULL);
6812
6813                clear_extent_dirty(unpin, start, end, &cached_state);
6814                unpin_extent_range(fs_info, start, end, true);
6815                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6816                free_extent_state(cached_state);
6817                cond_resched();
6818        }
6819
6820        /*
6821         * Transaction is finished.  We don't need the lock anymore.  We
6822         * do need to clean up the block groups in case of a transaction
6823         * abort.
6824         */
6825        deleted_bgs = &trans->transaction->deleted_bgs;
6826        list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827                u64 trimmed = 0;
6828
6829                ret = -EROFS;
6830                if (!trans->aborted)
6831                        ret = btrfs_discard_extent(fs_info,
6832                                                   block_group->key.objectid,
6833                                                   block_group->key.offset,
6834                                                   &trimmed);
6835
6836                list_del_init(&block_group->bg_list);
6837                btrfs_put_block_group_trimming(block_group);
6838                btrfs_put_block_group(block_group);
6839
6840                if (ret) {
6841                        const char *errstr = btrfs_decode_error(ret);
6842                        btrfs_warn(fs_info,
6843                           "discard failed while removing blockgroup: errno=%d %s",
6844                                   ret, errstr);
6845                }
6846        }
6847
6848        return 0;
6849}
6850
6851static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6852                               struct btrfs_delayed_ref_node *node, u64 parent,
6853                               u64 root_objectid, u64 owner_objectid,
6854                               u64 owner_offset, int refs_to_drop,
6855                               struct btrfs_delayed_extent_op *extent_op)
6856{
6857        struct btrfs_fs_info *info = trans->fs_info;
6858        struct btrfs_key key;
6859        struct btrfs_path *path;
6860        struct btrfs_root *extent_root = info->extent_root;
6861        struct extent_buffer *leaf;
6862        struct btrfs_extent_item *ei;
6863        struct btrfs_extent_inline_ref *iref;
6864        int ret;
6865        int is_data;
6866        int extent_slot = 0;
6867        int found_extent = 0;
6868        int num_to_del = 1;
6869        u32 item_size;
6870        u64 refs;
6871        u64 bytenr = node->bytenr;
6872        u64 num_bytes = node->num_bytes;
6873        int last_ref = 0;
6874        bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6875
6876        path = btrfs_alloc_path();
6877        if (!path)
6878                return -ENOMEM;
6879
6880        path->reada = READA_FORWARD;
6881        path->leave_spinning = 1;
6882
6883        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884        BUG_ON(!is_data && refs_to_drop != 1);
6885
6886        if (is_data)
6887                skinny_metadata = false;
6888
6889        ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6890                                    parent, root_objectid, owner_objectid,
6891                                    owner_offset);
6892        if (ret == 0) {
6893                extent_slot = path->slots[0];
6894                while (extent_slot >= 0) {
6895                        btrfs_item_key_to_cpu(path->nodes[0], &key,
6896                                              extent_slot);
6897                        if (key.objectid != bytenr)
6898                                break;
6899                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6900                            key.offset == num_bytes) {
6901                                found_extent = 1;
6902                                break;
6903                        }
6904                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
6905                            key.offset == owner_objectid) {
6906                                found_extent = 1;
6907                                break;
6908                        }
6909                        if (path->slots[0] - extent_slot > 5)
6910                                break;
6911                        extent_slot--;
6912                }
6913
6914                if (!found_extent) {
6915                        BUG_ON(iref);
6916                        ret = remove_extent_backref(trans, path, NULL,
6917                                                    refs_to_drop,
6918                                                    is_data, &last_ref);
6919                        if (ret) {
6920                                btrfs_abort_transaction(trans, ret);
6921                                goto out;
6922                        }
6923                        btrfs_release_path(path);
6924                        path->leave_spinning = 1;
6925
6926                        key.objectid = bytenr;
6927                        key.type = BTRFS_EXTENT_ITEM_KEY;
6928                        key.offset = num_bytes;
6929
6930                        if (!is_data && skinny_metadata) {
6931                                key.type = BTRFS_METADATA_ITEM_KEY;
6932                                key.offset = owner_objectid;
6933                        }
6934
6935                        ret = btrfs_search_slot(trans, extent_root,
6936                                                &key, path, -1, 1);
6937                        if (ret > 0 && skinny_metadata && path->slots[0]) {
6938                                /*
6939                                 * Couldn't find our skinny metadata item,
6940                                 * see if we have ye olde extent item.
6941                                 */
6942                                path->slots[0]--;
6943                                btrfs_item_key_to_cpu(path->nodes[0], &key,
6944                                                      path->slots[0]);
6945                                if (key.objectid == bytenr &&
6946                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
6947                                    key.offset == num_bytes)
6948                                        ret = 0;
6949                        }
6950
6951                        if (ret > 0 && skinny_metadata) {
6952                                skinny_metadata = false;
6953                                key.objectid = bytenr;
6954                                key.type = BTRFS_EXTENT_ITEM_KEY;
6955                                key.offset = num_bytes;
6956                                btrfs_release_path(path);
6957                                ret = btrfs_search_slot(trans, extent_root,
6958                                                        &key, path, -1, 1);
6959                        }
6960
6961                        if (ret) {
6962                                btrfs_err(info,
6963                                          "umm, got %d back from search, was looking for %llu",
6964                                          ret, bytenr);
6965                                if (ret > 0)
6966                                        btrfs_print_leaf(path->nodes[0]);
6967                        }
6968                        if (ret < 0) {
6969                                btrfs_abort_transaction(trans, ret);
6970                                goto out;
6971                        }
6972                        extent_slot = path->slots[0];
6973                }
6974        } else if (WARN_ON(ret == -ENOENT)) {
6975                btrfs_print_leaf(path->nodes[0]);
6976                btrfs_err(info,
6977                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6978                        bytenr, parent, root_objectid, owner_objectid,
6979                        owner_offset);
6980                btrfs_abort_transaction(trans, ret);
6981                goto out;
6982        } else {
6983                btrfs_abort_transaction(trans, ret);
6984                goto out;
6985        }
6986
6987        leaf = path->nodes[0];
6988        item_size = btrfs_item_size_nr(leaf, extent_slot);
6989        if (unlikely(item_size < sizeof(*ei))) {
6990                ret = -EINVAL;
6991                btrfs_print_v0_err(info);
6992                btrfs_abort_transaction(trans, ret);
6993                goto out;
6994        }
6995        ei = btrfs_item_ptr(leaf, extent_slot,
6996                            struct btrfs_extent_item);
6997        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998            key.type == BTRFS_EXTENT_ITEM_KEY) {
6999                struct btrfs_tree_block_info *bi;
7000                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001                bi = (struct btrfs_tree_block_info *)(ei + 1);
7002                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7003        }
7004
7005        refs = btrfs_extent_refs(leaf, ei);
7006        if (refs < refs_to_drop) {
7007                btrfs_err(info,
7008                          "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7009                          refs_to_drop, refs, bytenr);
7010                ret = -EINVAL;
7011                btrfs_abort_transaction(trans, ret);
7012                goto out;
7013        }
7014        refs -= refs_to_drop;
7015
7016        if (refs > 0) {
7017                if (extent_op)
7018                        __run_delayed_extent_op(extent_op, leaf, ei);
7019                /*
7020                 * In the case of inline back ref, reference count will
7021                 * be updated by remove_extent_backref
7022                 */
7023                if (iref) {
7024                        BUG_ON(!found_extent);
7025                } else {
7026                        btrfs_set_extent_refs(leaf, ei, refs);
7027                        btrfs_mark_buffer_dirty(leaf);
7028                }
7029                if (found_extent) {
7030                        ret = remove_extent_backref(trans, path, iref,
7031                                                    refs_to_drop, is_data,
7032                                                    &last_ref);
7033                        if (ret) {
7034                                btrfs_abort_transaction(trans, ret);
7035                                goto out;
7036                        }
7037                }
7038        } else {
7039                if (found_extent) {
7040                        BUG_ON(is_data && refs_to_drop !=
7041                               extent_data_ref_count(path, iref));
7042                        if (iref) {
7043                                BUG_ON(path->slots[0] != extent_slot);
7044                        } else {
7045                                BUG_ON(path->slots[0] != extent_slot + 1);
7046                                path->slots[0] = extent_slot;
7047                                num_to_del = 2;
7048                        }
7049                }
7050
7051                last_ref = 1;
7052                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7053                                      num_to_del);
7054                if (ret) {
7055                        btrfs_abort_transaction(trans, ret);
7056                        goto out;
7057                }
7058                btrfs_release_path(path);
7059
7060                if (is_data) {
7061                        ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7062                        if (ret) {
7063                                btrfs_abort_transaction(trans, ret);
7064                                goto out;
7065                        }
7066                }
7067
7068                ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7069                if (ret) {
7070                        btrfs_abort_transaction(trans, ret);
7071                        goto out;
7072                }
7073
7074                ret = update_block_group(trans, bytenr, num_bytes, 0);
7075                if (ret) {
7076                        btrfs_abort_transaction(trans, ret);
7077                        goto out;
7078                }
7079        }
7080        btrfs_release_path(path);
7081
7082out:
7083        btrfs_free_path(path);
7084        return ret;
7085}
7086
7087/*
7088 * when we free an block, it is possible (and likely) that we free the last
7089 * delayed ref for that extent as well.  This searches the delayed ref tree for
7090 * a given extent, and if there are no other delayed refs to be processed, it
7091 * removes it from the tree.
7092 */
7093static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7094                                      u64 bytenr)
7095{
7096        struct btrfs_delayed_ref_head *head;
7097        struct btrfs_delayed_ref_root *delayed_refs;
7098        int ret = 0;
7099
7100        delayed_refs = &trans->transaction->delayed_refs;
7101        spin_lock(&delayed_refs->lock);
7102        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7103        if (!head)
7104                goto out_delayed_unlock;
7105
7106        spin_lock(&head->lock);
7107        if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7108                goto out;
7109
7110        if (cleanup_extent_op(head) != NULL)
7111                goto out;
7112
7113        /*
7114         * waiting for the lock here would deadlock.  If someone else has it
7115         * locked they are already in the process of dropping it anyway
7116         */
7117        if (!mutex_trylock(&head->mutex))
7118                goto out;
7119
7120        btrfs_delete_ref_head(delayed_refs, head);
7121        head->processing = 0;
7122
7123        spin_unlock(&head->lock);
7124        spin_unlock(&delayed_refs->lock);
7125
7126        BUG_ON(head->extent_op);
7127        if (head->must_insert_reserved)
7128                ret = 1;
7129
7130        btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
7131        mutex_unlock(&head->mutex);
7132        btrfs_put_delayed_ref_head(head);
7133        return ret;
7134out:
7135        spin_unlock(&head->lock);
7136
7137out_delayed_unlock:
7138        spin_unlock(&delayed_refs->lock);
7139        return 0;
7140}
7141
7142void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7143                           struct btrfs_root *root,
7144                           struct extent_buffer *buf,
7145                           u64 parent, int last_ref)
7146{
7147        struct btrfs_fs_info *fs_info = root->fs_info;
7148        struct btrfs_ref generic_ref = { 0 };
7149        int pin = 1;
7150        int ret;
7151
7152        btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7153                               buf->start, buf->len, parent);
7154        btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7155                            root->root_key.objectid);
7156
7157        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7158                int old_ref_mod, new_ref_mod;
7159
7160                btrfs_ref_tree_mod(fs_info, &generic_ref);
7161                ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
7162                                                 &old_ref_mod, &new_ref_mod);
7163                BUG_ON(ret); /* -ENOMEM */
7164                pin = old_ref_mod >= 0 && new_ref_mod < 0;
7165        }
7166
7167        if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7168                struct btrfs_block_group_cache *cache;
7169
7170                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7171                        ret = check_ref_cleanup(trans, buf->start);
7172                        if (!ret)
7173                                goto out;
7174                }
7175
7176                pin = 0;
7177                cache = btrfs_lookup_block_group(fs_info, buf->start);
7178
7179                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7180                        pin_down_extent(cache, buf->start, buf->len, 1);
7181                        btrfs_put_block_group(cache);
7182                        goto out;
7183                }
7184
7185                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7186
7187                btrfs_add_free_space(cache, buf->start, buf->len);
7188                btrfs_free_reserved_bytes(cache, buf->len, 0);
7189                btrfs_put_block_group(cache);
7190                trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7191        }
7192out:
7193        if (pin)
7194                add_pinned_bytes(fs_info, &generic_ref, 1);
7195
7196        if (last_ref) {
7197                /*
7198                 * Deleting the buffer, clear the corrupt flag since it doesn't
7199                 * matter anymore.
7200                 */
7201                clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7202        }
7203}
7204
7205/* Can return -ENOMEM */
7206int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
7207{
7208        struct btrfs_fs_info *fs_info = trans->fs_info;
7209        int old_ref_mod, new_ref_mod;
7210        int ret;
7211
7212        if (btrfs_is_testing(fs_info))
7213                return 0;
7214
7215        /*
7216         * tree log blocks never actually go into the extent allocation
7217         * tree, just update pinning info and exit early.
7218         */
7219        if ((ref->type == BTRFS_REF_METADATA &&
7220             ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7221            (ref->type == BTRFS_REF_DATA &&
7222             ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
7223                /* unlocks the pinned mutex */
7224                btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
7225                old_ref_mod = new_ref_mod = 0;
7226                ret = 0;
7227        } else if (ref->type == BTRFS_REF_METADATA) {
7228                ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
7229                                                 &old_ref_mod, &new_ref_mod);
7230        } else {
7231                ret = btrfs_add_delayed_data_ref(trans, ref, 0,
7232                                                 &old_ref_mod, &new_ref_mod);
7233        }
7234
7235        if (!((ref->type == BTRFS_REF_METADATA &&
7236               ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7237              (ref->type == BTRFS_REF_DATA &&
7238               ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
7239                btrfs_ref_tree_mod(fs_info, ref);
7240
7241        if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7242                add_pinned_bytes(fs_info, ref, 1);
7243
7244        return ret;
7245}
7246
7247/*
7248 * when we wait for progress in the block group caching, its because
7249 * our allocation attempt failed at least once.  So, we must sleep
7250 * and let some progress happen before we try again.
7251 *
7252 * This function will sleep at least once waiting for new free space to
7253 * show up, and then it will check the block group free space numbers
7254 * for our min num_bytes.  Another option is to have it go ahead
7255 * and look in the rbtree for a free extent of a given size, but this
7256 * is a good start.
7257 *
7258 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7259 * any of the information in this block group.
7260 */
7261static noinline void
7262wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7263                                u64 num_bytes)
7264{
7265        struct btrfs_caching_control *caching_ctl;
7266
7267        caching_ctl = get_caching_control(cache);
7268        if (!caching_ctl)
7269                return;
7270
7271        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7272                   (cache->free_space_ctl->free_space >= num_bytes));
7273
7274        put_caching_control(caching_ctl);
7275}
7276
7277static noinline int
7278wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7279{
7280        struct btrfs_caching_control *caching_ctl;
7281        int ret = 0;
7282
7283        caching_ctl = get_caching_control(cache);
7284        if (!caching_ctl)
7285                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7286
7287        wait_event(caching_ctl->wait, block_group_cache_done(cache));
7288        if (cache->cached == BTRFS_CACHE_ERROR)
7289                ret = -EIO;
7290        put_caching_control(caching_ctl);
7291        return ret;
7292}
7293
7294enum btrfs_loop_type {
7295        LOOP_CACHING_NOWAIT = 0,
7296        LOOP_CACHING_WAIT = 1,
7297        LOOP_ALLOC_CHUNK = 2,
7298        LOOP_NO_EMPTY_SIZE = 3,
7299};
7300
7301static inline void
7302btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7303                       int delalloc)
7304{
7305        if (delalloc)
7306                down_read(&cache->data_rwsem);
7307}
7308
7309static inline void
7310btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7311                       int delalloc)
7312{
7313        btrfs_get_block_group(cache);
7314        if (delalloc)
7315                down_read(&cache->data_rwsem);
7316}
7317
7318static struct btrfs_block_group_cache *
7319btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7320                   struct btrfs_free_cluster *cluster,
7321                   int delalloc)
7322{
7323        struct btrfs_block_group_cache *used_bg = NULL;
7324
7325        spin_lock(&cluster->refill_lock);
7326        while (1) {
7327                used_bg = cluster->block_group;
7328                if (!used_bg)
7329                        return NULL;
7330
7331                if (used_bg == block_group)
7332                        return used_bg;
7333
7334                btrfs_get_block_group(used_bg);
7335
7336                if (!delalloc)
7337                        return used_bg;
7338
7339                if (down_read_trylock(&used_bg->data_rwsem))
7340                        return used_bg;
7341
7342                spin_unlock(&cluster->refill_lock);
7343
7344                /* We should only have one-level nested. */
7345                down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7346
7347                spin_lock(&cluster->refill_lock);
7348                if (used_bg == cluster->block_group)
7349                        return used_bg;
7350
7351                up_read(&used_bg->data_rwsem);
7352                btrfs_put_block_group(used_bg);
7353        }
7354}
7355
7356static inline void
7357btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7358                         int delalloc)
7359{
7360        if (delalloc)
7361                up_read(&cache->data_rwsem);
7362        btrfs_put_block_group(cache);
7363}
7364
7365/*
7366 * Structure used internally for find_free_extent() function.  Wraps needed
7367 * parameters.
7368 */
7369struct find_free_extent_ctl {
7370        /* Basic allocation info */
7371        u64 ram_bytes;
7372        u64 num_bytes;
7373        u64 empty_size;
7374        u64 flags;
7375        int delalloc;
7376
7377        /* Where to start the search inside the bg */
7378        u64 search_start;
7379
7380        /* For clustered allocation */
7381        u64 empty_cluster;
7382
7383        bool have_caching_bg;
7384        bool orig_have_caching_bg;
7385
7386        /* RAID index, converted from flags */
7387        int index;
7388
7389        /*
7390         * Current loop number, check find_free_extent_update_loop() for details
7391         */
7392        int loop;
7393
7394        /*
7395         * Whether we're refilling a cluster, if true we need to re-search
7396         * current block group but don't try to refill the cluster again.
7397         */
7398        bool retry_clustered;
7399
7400        /*
7401         * Whether we're updating free space cache, if true we need to re-search
7402         * current block group but don't try updating free space cache again.
7403         */
7404        bool retry_unclustered;
7405
7406        /* If current block group is cached */
7407        int cached;
7408
7409        /* Max contiguous hole found */
7410        u64 max_extent_size;
7411
7412        /* Total free space from free space cache, not always contiguous */
7413        u64 total_free_space;
7414
7415        /* Found result */
7416        u64 found_offset;
7417};
7418
7419
7420/*
7421 * Helper function for find_free_extent().
7422 *
7423 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7424 * Return -EAGAIN to inform caller that we need to re-search this block group
7425 * Return >0 to inform caller that we find nothing
7426 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7427 */
7428static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7429                struct btrfs_free_cluster *last_ptr,
7430                struct find_free_extent_ctl *ffe_ctl,
7431                struct btrfs_block_group_cache **cluster_bg_ret)
7432{
7433        struct btrfs_block_group_cache *cluster_bg;
7434        u64 aligned_cluster;
7435        u64 offset;
7436        int ret;
7437
7438        cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7439        if (!cluster_bg)
7440                goto refill_cluster;
7441        if (cluster_bg != bg && (cluster_bg->ro ||
7442            !block_group_bits(cluster_bg, ffe_ctl->flags)))
7443                goto release_cluster;
7444
7445        offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7446                        ffe_ctl->num_bytes, cluster_bg->key.objectid,
7447                        &ffe_ctl->max_extent_size);
7448        if (offset) {
7449                /* We have a block, we're done */
7450                spin_unlock(&last_ptr->refill_lock);
7451                trace_btrfs_reserve_extent_cluster(cluster_bg,
7452                                ffe_ctl->search_start, ffe_ctl->num_bytes);
7453                *cluster_bg_ret = cluster_bg;
7454                ffe_ctl->found_offset = offset;
7455                return 0;
7456        }
7457        WARN_ON(last_ptr->block_group != cluster_bg);
7458
7459release_cluster:
7460        /*
7461         * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7462         * lets just skip it and let the allocator find whatever block it can
7463         * find. If we reach this point, we will have tried the cluster
7464         * allocator plenty of times and not have found anything, so we are
7465         * likely way too fragmented for the clustering stuff to find anything.
7466         *
7467         * However, if the cluster is taken from the current block group,
7468         * release the cluster first, so that we stand a better chance of
7469         * succeeding in the unclustered allocation.
7470         */
7471        if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7472                spin_unlock(&last_ptr->refill_lock);
7473                btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7474                return -ENOENT;
7475        }
7476
7477        /* This cluster didn't work out, free it and start over */
7478        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7479
7480        if (cluster_bg != bg)
7481                btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7482
7483refill_cluster:
7484        if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7485                spin_unlock(&last_ptr->refill_lock);
7486                return -ENOENT;
7487        }
7488
7489        aligned_cluster = max_t(u64,
7490                        ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7491                        bg->full_stripe_len);
7492        ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7493                        ffe_ctl->num_bytes, aligned_cluster);
7494        if (ret == 0) {
7495                /* Now pull our allocation out of this cluster */
7496                offset = btrfs_alloc_from_cluster(bg, last_ptr,
7497                                ffe_ctl->num_bytes, ffe_ctl->search_start,
7498                                &ffe_ctl->max_extent_size);
7499                if (offset) {
7500                        /* We found one, proceed */
7501                        spin_unlock(&last_ptr->refill_lock);
7502                        trace_btrfs_reserve_extent_cluster(bg,
7503                                        ffe_ctl->search_start,
7504                                        ffe_ctl->num_bytes);
7505                        ffe_ctl->found_offset = offset;
7506                        return 0;
7507                }
7508        } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7509                   !ffe_ctl->retry_clustered) {
7510                spin_unlock(&last_ptr->refill_lock);
7511
7512                ffe_ctl->retry_clustered = true;
7513                wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7514                                ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7515                return -EAGAIN;
7516        }
7517        /*
7518         * At this point we either didn't find a cluster or we weren't able to
7519         * allocate a block from our cluster.  Free the cluster we've been
7520         * trying to use, and go to the next block group.
7521         */
7522        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7523        spin_unlock(&last_ptr->refill_lock);
7524        return 1;
7525}
7526
7527/*
7528 * Return >0 to inform caller that we find nothing
7529 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7530 * Return -EAGAIN to inform caller that we need to re-search this block group
7531 */
7532static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7533                struct btrfs_free_cluster *last_ptr,
7534                struct find_free_extent_ctl *ffe_ctl)
7535{
7536        u64 offset;
7537
7538        /*
7539         * We are doing an unclustered allocation, set the fragmented flag so
7540         * we don't bother trying to setup a cluster again until we get more
7541         * space.
7542         */
7543        if (unlikely(last_ptr)) {
7544                spin_lock(&last_ptr->lock);
7545                last_ptr->fragmented = 1;
7546                spin_unlock(&last_ptr->lock);
7547        }
7548        if (ffe_ctl->cached) {
7549                struct btrfs_free_space_ctl *free_space_ctl;
7550
7551                free_space_ctl = bg->free_space_ctl;
7552                spin_lock(&free_space_ctl->tree_lock);
7553                if (free_space_ctl->free_space <
7554                    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7555                    ffe_ctl->empty_size) {
7556                        ffe_ctl->total_free_space = max_t(u64,
7557                                        ffe_ctl->total_free_space,
7558                                        free_space_ctl->free_space);
7559                        spin_unlock(&free_space_ctl->tree_lock);
7560                        return 1;
7561                }
7562                spin_unlock(&free_space_ctl->tree_lock);
7563        }
7564
7565        offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7566                        ffe_ctl->num_bytes, ffe_ctl->empty_size,
7567                        &ffe_ctl->max_extent_size);
7568
7569        /*
7570         * If we didn't find a chunk, and we haven't failed on this block group
7571         * before, and this block group is in the middle of caching and we are
7572         * ok with waiting, then go ahead and wait for progress to be made, and
7573         * set @retry_unclustered to true.
7574         *
7575         * If @retry_unclustered is true then we've already waited on this
7576         * block group once and should move on to the next block group.
7577         */
7578        if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7579            ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7580                wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7581                                                ffe_ctl->empty_size);
7582                ffe_ctl->retry_unclustered = true;
7583                return -EAGAIN;
7584        } else if (!offset) {
7585                return 1;
7586        }
7587        ffe_ctl->found_offset = offset;
7588        return 0;
7589}
7590
7591/*
7592 * Return >0 means caller needs to re-search for free extent
7593 * Return 0 means we have the needed free extent.
7594 * Return <0 means we failed to locate any free extent.
7595 */
7596static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7597                                        struct btrfs_free_cluster *last_ptr,
7598                                        struct btrfs_key *ins,
7599                                        struct find_free_extent_ctl *ffe_ctl,
7600                                        int full_search, bool use_cluster)
7601{
7602        struct btrfs_root *root = fs_info->extent_root;
7603        int ret;
7604
7605        if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7606            ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7607                ffe_ctl->orig_have_caching_bg = true;
7608
7609        if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7610            ffe_ctl->have_caching_bg)
7611                return 1;
7612
7613        if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7614                return 1;
7615
7616        if (ins->objectid) {
7617                if (!use_cluster && last_ptr) {
7618                        spin_lock(&last_ptr->lock);
7619                        last_ptr->window_start = ins->objectid;
7620                        spin_unlock(&last_ptr->lock);
7621                }
7622                return 0;
7623        }
7624
7625        /*
7626         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7627         *                      caching kthreads as we move along
7628         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7629         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7630         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7631         *                     again
7632         */
7633        if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7634                ffe_ctl->index = 0;
7635                if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7636                        /*
7637                         * We want to skip the LOOP_CACHING_WAIT step if we
7638                         * don't have any uncached bgs and we've already done a
7639                         * full search through.
7640                         */
7641                        if (ffe_ctl->orig_have_caching_bg || !full_search)
7642                                ffe_ctl->loop = LOOP_CACHING_WAIT;
7643                        else
7644                                ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7645                } else {
7646                        ffe_ctl->loop++;
7647                }
7648
7649                if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7650                        struct btrfs_trans_handle *trans;
7651                        int exist = 0;
7652
7653                        trans = current->journal_info;
7654                        if (trans)
7655                                exist = 1;
7656                        else
7657                                trans = btrfs_join_transaction(root);
7658
7659                        if (IS_ERR(trans)) {
7660                                ret = PTR_ERR(trans);
7661                                return ret;
7662                        }
7663
7664                        ret = do_chunk_alloc(trans, ffe_ctl->flags,
7665                                             CHUNK_ALLOC_FORCE);
7666
7667                        /*
7668                         * If we can't allocate a new chunk we've already looped
7669                         * through at least once, move on to the NO_EMPTY_SIZE
7670                         * case.
7671                         */
7672                        if (ret == -ENOSPC)
7673                                ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7674
7675                        /* Do not bail out on ENOSPC since we can do more. */
7676                        if (ret < 0 && ret != -ENOSPC)
7677                                btrfs_abort_transaction(trans, ret);
7678                        else
7679                                ret = 0;
7680                        if (!exist)
7681                                btrfs_end_transaction(trans);
7682                        if (ret)
7683                                return ret;
7684                }
7685
7686                if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7687                        /*
7688                         * Don't loop again if we already have no empty_size and
7689                         * no empty_cluster.
7690                         */
7691                        if (ffe_ctl->empty_size == 0 &&
7692                            ffe_ctl->empty_cluster == 0)
7693                                return -ENOSPC;
7694                        ffe_ctl->empty_size = 0;
7695                        ffe_ctl->empty_cluster = 0;
7696                }
7697                return 1;
7698        }
7699        return -ENOSPC;
7700}
7701
7702/*
7703 * walks the btree of allocated extents and find a hole of a given size.
7704 * The key ins is changed to record the hole:
7705 * ins->objectid == start position
7706 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7707 * ins->offset == the size of the hole.
7708 * Any available blocks before search_start are skipped.
7709 *
7710 * If there is no suitable free space, we will record the max size of
7711 * the free space extent currently.
7712 *
7713 * The overall logic and call chain:
7714 *
7715 * find_free_extent()
7716 * |- Iterate through all block groups
7717 * |  |- Get a valid block group
7718 * |  |- Try to do clustered allocation in that block group
7719 * |  |- Try to do unclustered allocation in that block group
7720 * |  |- Check if the result is valid
7721 * |  |  |- If valid, then exit
7722 * |  |- Jump to next block group
7723 * |
7724 * |- Push harder to find free extents
7725 *    |- If not found, re-iterate all block groups
7726 */
7727static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7728                                u64 ram_bytes, u64 num_bytes, u64 empty_size,
7729                                u64 hint_byte, struct btrfs_key *ins,
7730                                u64 flags, int delalloc)
7731{
7732        int ret = 0;
7733        struct btrfs_free_cluster *last_ptr = NULL;
7734        struct btrfs_block_group_cache *block_group = NULL;
7735        struct find_free_extent_ctl ffe_ctl = {0};
7736        struct btrfs_space_info *space_info;
7737        bool use_cluster = true;
7738        bool full_search = false;
7739
7740        WARN_ON(num_bytes < fs_info->sectorsize);
7741
7742        ffe_ctl.ram_bytes = ram_bytes;
7743        ffe_ctl.num_bytes = num_bytes;
7744        ffe_ctl.empty_size = empty_size;
7745        ffe_ctl.flags = flags;
7746        ffe_ctl.search_start = 0;
7747        ffe_ctl.retry_clustered = false;
7748        ffe_ctl.retry_unclustered = false;
7749        ffe_ctl.delalloc = delalloc;
7750        ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7751        ffe_ctl.have_caching_bg = false;
7752        ffe_ctl.orig_have_caching_bg = false;
7753        ffe_ctl.found_offset = 0;
7754
7755        ins->type = BTRFS_EXTENT_ITEM_KEY;
7756        ins->objectid = 0;
7757        ins->offset = 0;
7758
7759        trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7760
7761        space_info = __find_space_info(fs_info, flags);
7762        if (!space_info) {
7763                btrfs_err(fs_info, "No space info for %llu", flags);
7764                return -ENOSPC;
7765        }
7766
7767        /*
7768         * If our free space is heavily fragmented we may not be able to make
7769         * big contiguous allocations, so instead of doing the expensive search
7770         * for free space, simply return ENOSPC with our max_extent_size so we
7771         * can go ahead and search for a more manageable chunk.
7772         *
7773         * If our max_extent_size is large enough for our allocation simply
7774         * disable clustering since we will likely not be able to find enough
7775         * space to create a cluster and induce latency trying.
7776         */
7777        if (unlikely(space_info->max_extent_size)) {
7778                spin_lock(&space_info->lock);
7779                if (space_info->max_extent_size &&
7780                    num_bytes > space_info->max_extent_size) {
7781                        ins->offset = space_info->max_extent_size;
7782                        spin_unlock(&space_info->lock);
7783                        return -ENOSPC;
7784                } else if (space_info->max_extent_size) {
7785                        use_cluster = false;
7786                }
7787                spin_unlock(&space_info->lock);
7788        }
7789
7790        last_ptr = fetch_cluster_info(fs_info, space_info,
7791                                      &ffe_ctl.empty_cluster);
7792        if (last_ptr) {
7793                spin_lock(&last_ptr->lock);
7794                if (last_ptr->block_group)
7795                        hint_byte = last_ptr->window_start;
7796                if (last_ptr->fragmented) {
7797                        /*
7798                         * We still set window_start so we can keep track of the
7799                         * last place we found an allocation to try and save
7800                         * some time.
7801                         */
7802                        hint_byte = last_ptr->window_start;
7803                        use_cluster = false;
7804                }
7805                spin_unlock(&last_ptr->lock);
7806        }
7807
7808        ffe_ctl.search_start = max(ffe_ctl.search_start,
7809                                   first_logical_byte(fs_info, 0));
7810        ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7811        if (ffe_ctl.search_start == hint_byte) {
7812                block_group = btrfs_lookup_block_group(fs_info,
7813                                                       ffe_ctl.search_start);
7814                /*
7815                 * we don't want to use the block group if it doesn't match our
7816                 * allocation bits, or if its not cached.
7817                 *
7818                 * However if we are re-searching with an ideal block group
7819                 * picked out then we don't care that the block group is cached.
7820                 */
7821                if (block_group && block_group_bits(block_group, flags) &&
7822                    block_group->cached != BTRFS_CACHE_NO) {
7823                        down_read(&space_info->groups_sem);
7824                        if (list_empty(&block_group->list) ||
7825                            block_group->ro) {
7826                                /*
7827                                 * someone is removing this block group,
7828                                 * we can't jump into the have_block_group
7829                                 * target because our list pointers are not
7830                                 * valid
7831                                 */
7832                                btrfs_put_block_group(block_group);
7833                                up_read(&space_info->groups_sem);
7834                        } else {
7835                                ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7836                                                block_group->flags);
7837                                btrfs_lock_block_group(block_group, delalloc);
7838                                goto have_block_group;
7839                        }
7840                } else if (block_group) {
7841                        btrfs_put_block_group(block_group);
7842                }
7843        }
7844search:
7845        ffe_ctl.have_caching_bg = false;
7846        if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7847            ffe_ctl.index == 0)
7848                full_search = true;
7849        down_read(&space_info->groups_sem);
7850        list_for_each_entry(block_group,
7851                            &space_info->block_groups[ffe_ctl.index], list) {
7852                /* If the block group is read-only, we can skip it entirely. */
7853                if (unlikely(block_group->ro))
7854                        continue;
7855
7856                btrfs_grab_block_group(block_group, delalloc);
7857                ffe_ctl.search_start = block_group->key.objectid;
7858
7859                /*
7860                 * this can happen if we end up cycling through all the
7861                 * raid types, but we want to make sure we only allocate
7862                 * for the proper type.
7863                 */
7864                if (!block_group_bits(block_group, flags)) {
7865                        u64 extra = BTRFS_BLOCK_GROUP_DUP |
7866                                BTRFS_BLOCK_GROUP_RAID1 |
7867                                BTRFS_BLOCK_GROUP_RAID5 |
7868                                BTRFS_BLOCK_GROUP_RAID6 |
7869                                BTRFS_BLOCK_GROUP_RAID10;
7870
7871                        /*
7872                         * if they asked for extra copies and this block group
7873                         * doesn't provide them, bail.  This does allow us to
7874                         * fill raid0 from raid1.
7875                         */
7876                        if ((flags & extra) && !(block_group->flags & extra))
7877                                goto loop;
7878                }
7879
7880have_block_group:
7881                ffe_ctl.cached = block_group_cache_done(block_group);
7882                if (unlikely(!ffe_ctl.cached)) {
7883                        ffe_ctl.have_caching_bg = true;
7884                        ret = cache_block_group(block_group, 0);
7885                        BUG_ON(ret < 0);
7886                        ret = 0;
7887                }
7888
7889                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7890                        goto loop;
7891
7892                /*
7893                 * Ok we want to try and use the cluster allocator, so
7894                 * lets look there
7895                 */
7896                if (last_ptr && use_cluster) {
7897                        struct btrfs_block_group_cache *cluster_bg = NULL;
7898
7899                        ret = find_free_extent_clustered(block_group, last_ptr,
7900                                                         &ffe_ctl, &cluster_bg);
7901
7902                        if (ret == 0) {
7903                                if (cluster_bg && cluster_bg != block_group) {
7904                                        btrfs_release_block_group(block_group,
7905                                                                  delalloc);
7906                                        block_group = cluster_bg;
7907                                }
7908                                goto checks;
7909                        } else if (ret == -EAGAIN) {
7910                                goto have_block_group;
7911                        } else if (ret > 0) {
7912                                goto loop;
7913                        }
7914                        /* ret == -ENOENT case falls through */
7915                }
7916
7917                ret = find_free_extent_unclustered(block_group, last_ptr,
7918                                                   &ffe_ctl);
7919                if (ret == -EAGAIN)
7920                        goto have_block_group;
7921                else if (ret > 0)
7922                        goto loop;
7923                /* ret == 0 case falls through */
7924checks:
7925                ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7926                                             fs_info->stripesize);
7927
7928                /* move on to the next group */
7929                if (ffe_ctl.search_start + num_bytes >
7930                    block_group->key.objectid + block_group->key.offset) {
7931                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7932                                             num_bytes);
7933                        goto loop;
7934                }
7935
7936                if (ffe_ctl.found_offset < ffe_ctl.search_start)
7937                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7938                                ffe_ctl.search_start - ffe_ctl.found_offset);
7939
7940                ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7941                                num_bytes, delalloc);
7942                if (ret == -EAGAIN) {
7943                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7944                                             num_bytes);
7945                        goto loop;
7946                }
7947                btrfs_inc_block_group_reservations(block_group);
7948
7949                /* we are all good, lets return */
7950                ins->objectid = ffe_ctl.search_start;
7951                ins->offset = num_bytes;
7952
7953                trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7954                                           num_bytes);
7955                btrfs_release_block_group(block_group, delalloc);
7956                break;
7957loop:
7958                ffe_ctl.retry_clustered = false;
7959                ffe_ctl.retry_unclustered = false;
7960                BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7961                       ffe_ctl.index);
7962                btrfs_release_block_group(block_group, delalloc);
7963                cond_resched();
7964        }
7965        up_read(&space_info->groups_sem);
7966
7967        ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
7968                                           full_search, use_cluster);
7969        if (ret > 0)
7970                goto search;
7971
7972        if (ret == -ENOSPC) {
7973                /*
7974                 * Use ffe_ctl->total_free_space as fallback if we can't find
7975                 * any contiguous hole.
7976                 */
7977                if (!ffe_ctl.max_extent_size)
7978                        ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
7979                spin_lock(&space_info->lock);
7980                space_info->max_extent_size = ffe_ctl.max_extent_size;
7981                spin_unlock(&space_info->lock);
7982                ins->offset = ffe_ctl.max_extent_size;
7983        }
7984        return ret;
7985}
7986
7987#define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
7988do {                                                                    \
7989        struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
7990        spin_lock(&__rsv->lock);                                        \
7991        btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
7992                   __rsv->size, __rsv->reserved);                       \
7993        spin_unlock(&__rsv->lock);                                      \
7994} while (0)
7995
7996static void dump_space_info(struct btrfs_fs_info *fs_info,
7997                            struct btrfs_space_info *info, u64 bytes,
7998                            int dump_block_groups)
7999{
8000        struct btrfs_block_group_cache *cache;
8001        int index = 0;
8002
8003        spin_lock(&info->lock);
8004        btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8005                   info->flags,
8006                   info->total_bytes - btrfs_space_info_used(info, true),
8007                   info->full ? "" : "not ");
8008        btrfs_info(fs_info,
8009                "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8010                info->total_bytes, info->bytes_used, info->bytes_pinned,
8011                info->bytes_reserved, info->bytes_may_use,
8012                info->bytes_readonly);
8013        spin_unlock(&info->lock);
8014
8015        DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8016        DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8017        DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8018        DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8019        DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8020
8021        if (!dump_block_groups)
8022                return;
8023
8024        down_read(&info->groups_sem);
8025again:
8026        list_for_each_entry(cache, &info->block_groups[index], list) {
8027                spin_lock(&cache->lock);
8028                btrfs_info(fs_info,
8029                        "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8030                        cache->key.objectid, cache->key.offset,
8031                        btrfs_block_group_used(&cache->item), cache->pinned,
8032                        cache->reserved, cache->ro ? "[readonly]" : "");
8033                btrfs_dump_free_space(cache, bytes);
8034                spin_unlock(&cache->lock);
8035        }
8036        if (++index < BTRFS_NR_RAID_TYPES)
8037                goto again;
8038        up_read(&info->groups_sem);
8039}
8040
8041/*
8042 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8043 *                        hole that is at least as big as @num_bytes.
8044 *
8045 * @root           -    The root that will contain this extent
8046 *
8047 * @ram_bytes      -    The amount of space in ram that @num_bytes take. This
8048 *                      is used for accounting purposes. This value differs
8049 *                      from @num_bytes only in the case of compressed extents.
8050 *
8051 * @num_bytes      -    Number of bytes to allocate on-disk.
8052 *
8053 * @min_alloc_size -    Indicates the minimum amount of space that the
8054 *                      allocator should try to satisfy. In some cases
8055 *                      @num_bytes may be larger than what is required and if
8056 *                      the filesystem is fragmented then allocation fails.
8057 *                      However, the presence of @min_alloc_size gives a
8058 *                      chance to try and satisfy the smaller allocation.
8059 *
8060 * @empty_size     -    A hint that you plan on doing more COW. This is the
8061 *                      size in bytes the allocator should try to find free
8062 *                      next to the block it returns.  This is just a hint and
8063 *                      may be ignored by the allocator.
8064 *
8065 * @hint_byte      -    Hint to the allocator to start searching above the byte
8066 *                      address passed. It might be ignored.
8067 *
8068 * @ins            -    This key is modified to record the found hole. It will
8069 *                      have the following values:
8070 *                      ins->objectid == start position
8071 *                      ins->flags = BTRFS_EXTENT_ITEM_KEY
8072 *                      ins->offset == the size of the hole.
8073 *
8074 * @is_data        -    Boolean flag indicating whether an extent is
8075 *                      allocated for data (true) or metadata (false)
8076 *
8077 * @delalloc       -    Boolean flag indicating whether this allocation is for
8078 *                      delalloc or not. If 'true' data_rwsem of block groups
8079 *                      is going to be acquired.
8080 *
8081 *
8082 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8083 * case -ENOSPC is returned then @ins->offset will contain the size of the
8084 * largest available hole the allocator managed to find.
8085 */
8086int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8087                         u64 num_bytes, u64 min_alloc_size,
8088                         u64 empty_size, u64 hint_byte,
8089                         struct btrfs_key *ins, int is_data, int delalloc)
8090{
8091        struct btrfs_fs_info *fs_info = root->fs_info;
8092        bool final_tried = num_bytes == min_alloc_size;
8093        u64 flags;
8094        int ret;
8095
8096        flags = get_alloc_profile_by_root(root, is_data);
8097again:
8098        WARN_ON(num_bytes < fs_info->sectorsize);
8099        ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8100                               hint_byte, ins, flags, delalloc);
8101        if (!ret && !is_data) {
8102                btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8103        } else if (ret == -ENOSPC) {
8104                if (!final_tried && ins->offset) {
8105                        num_bytes = min(num_bytes >> 1, ins->offset);
8106                        num_bytes = round_down(num_bytes,
8107                                               fs_info->sectorsize);
8108                        num_bytes = max(num_bytes, min_alloc_size);
8109                        ram_bytes = num_bytes;
8110                        if (num_bytes == min_alloc_size)
8111                                final_tried = true;
8112                        goto again;
8113                } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8114                        struct btrfs_space_info *sinfo;
8115
8116                        sinfo = __find_space_info(fs_info, flags);
8117                        btrfs_err(fs_info,
8118                                  "allocation failed flags %llu, wanted %llu",
8119                                  flags, num_bytes);
8120                        if (sinfo)
8121                                dump_space_info(fs_info, sinfo, num_bytes, 1);
8122                }
8123        }
8124
8125        return ret;
8126}
8127
8128static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8129                                        u64 start, u64 len,
8130                                        int pin, int delalloc)
8131{
8132        struct btrfs_block_group_cache *cache;
8133        int ret = 0;
8134
8135        cache = btrfs_lookup_block_group(fs_info, start);
8136        if (!cache) {
8137                btrfs_err(fs_info, "Unable to find block group for %llu",
8138                          start);
8139                return -ENOSPC;
8140        }
8141
8142        if (pin)
8143                pin_down_extent(cache, start, len, 1);
8144        else {
8145                if (btrfs_test_opt(fs_info, DISCARD))
8146                        ret = btrfs_discard_extent(fs_info, start, len, NULL);
8147                btrfs_add_free_space(cache, start, len);
8148                btrfs_free_reserved_bytes(cache, len, delalloc);
8149                trace_btrfs_reserved_extent_free(fs_info, start, len);
8150        }
8151
8152        btrfs_put_block_group(cache);
8153        return ret;
8154}
8155
8156int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8157                               u64 start, u64 len, int delalloc)
8158{
8159        return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8160}
8161
8162int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8163                                       u64 start, u64 len)
8164{
8165        return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8166}
8167
8168static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8169                                      u64 parent, u64 root_objectid,
8170                                      u64 flags, u64 owner, u64 offset,
8171                                      struct btrfs_key *ins, int ref_mod)
8172{
8173        struct btrfs_fs_info *fs_info = trans->fs_info;
8174        int ret;
8175        struct btrfs_extent_item *extent_item;
8176        struct btrfs_extent_inline_ref *iref;
8177        struct btrfs_path *path;
8178        struct extent_buffer *leaf;
8179        int type;
8180        u32 size;
8181
8182        if (parent > 0)
8183                type = BTRFS_SHARED_DATA_REF_KEY;
8184        else
8185                type = BTRFS_EXTENT_DATA_REF_KEY;
8186
8187        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8188
8189        path = btrfs_alloc_path();
8190        if (!path)
8191                return -ENOMEM;
8192
8193        path->leave_spinning = 1;
8194        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8195                                      ins, size);
8196        if (ret) {
8197                btrfs_free_path(path);
8198                return ret;
8199        }
8200
8201        leaf = path->nodes[0];
8202        extent_item = btrfs_item_ptr(leaf, path->slots[0],
8203                                     struct btrfs_extent_item);
8204        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8205        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206        btrfs_set_extent_flags(leaf, extent_item,
8207                               flags | BTRFS_EXTENT_FLAG_DATA);
8208
8209        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8210        btrfs_set_extent_inline_ref_type(leaf, iref, type);
8211        if (parent > 0) {
8212                struct btrfs_shared_data_ref *ref;
8213                ref = (struct btrfs_shared_data_ref *)(iref + 1);
8214                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8215                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8216        } else {
8217                struct btrfs_extent_data_ref *ref;
8218                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8219                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8220                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8221                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8222                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8223        }
8224
8225        btrfs_mark_buffer_dirty(path->nodes[0]);
8226        btrfs_free_path(path);
8227
8228        ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8229        if (ret)
8230                return ret;
8231
8232        ret = update_block_group(trans, ins->objectid, ins->offset, 1);
8233        if (ret) { /* -ENOENT, logic error */
8234                btrfs_err(fs_info, "update block group failed for %llu %llu",
8235                        ins->objectid, ins->offset);
8236                BUG();
8237        }
8238        trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8239        return ret;
8240}
8241
8242static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8243                                     struct btrfs_delayed_ref_node *node,
8244                                     struct btrfs_delayed_extent_op *extent_op)
8245{
8246        struct btrfs_fs_info *fs_info = trans->fs_info;
8247        int ret;
8248        struct btrfs_extent_item *extent_item;
8249        struct btrfs_key extent_key;
8250        struct btrfs_tree_block_info *block_info;
8251        struct btrfs_extent_inline_ref *iref;
8252        struct btrfs_path *path;
8253        struct extent_buffer *leaf;
8254        struct btrfs_delayed_tree_ref *ref;
8255        u32 size = sizeof(*extent_item) + sizeof(*iref);
8256        u64 num_bytes;
8257        u64 flags = extent_op->flags_to_set;
8258        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8259
8260        ref = btrfs_delayed_node_to_tree_ref(node);
8261
8262        extent_key.objectid = node->bytenr;
8263        if (skinny_metadata) {
8264                extent_key.offset = ref->level;
8265                extent_key.type = BTRFS_METADATA_ITEM_KEY;
8266                num_bytes = fs_info->nodesize;
8267        } else {
8268                extent_key.offset = node->num_bytes;
8269                extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8270                size += sizeof(*block_info);
8271                num_bytes = node->num_bytes;
8272        }
8273
8274        path = btrfs_alloc_path();
8275        if (!path)
8276                return -ENOMEM;
8277
8278        path->leave_spinning = 1;
8279        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8280                                      &extent_key, size);
8281        if (ret) {
8282                btrfs_free_path(path);
8283                return ret;
8284        }
8285
8286        leaf = path->nodes[0];
8287        extent_item = btrfs_item_ptr(leaf, path->slots[0],
8288                                     struct btrfs_extent_item);
8289        btrfs_set_extent_refs(leaf, extent_item, 1);
8290        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8291        btrfs_set_extent_flags(leaf, extent_item,
8292                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8293
8294        if (skinny_metadata) {
8295                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8296        } else {
8297                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8298                btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8299                btrfs_set_tree_block_level(leaf, block_info, ref->level);
8300                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8301        }
8302
8303        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8304                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8305                btrfs_set_extent_inline_ref_type(leaf, iref,
8306                                                 BTRFS_SHARED_BLOCK_REF_KEY);
8307                btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8308        } else {
8309                btrfs_set_extent_inline_ref_type(leaf, iref,
8310                                                 BTRFS_TREE_BLOCK_REF_KEY);
8311                btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8312        }
8313
8314        btrfs_mark_buffer_dirty(leaf);
8315        btrfs_free_path(path);
8316
8317        ret = remove_from_free_space_tree(trans, extent_key.objectid,
8318                                          num_bytes);
8319        if (ret)
8320                return ret;
8321
8322        ret = update_block_group(trans, extent_key.objectid,
8323                                 fs_info->nodesize, 1);
8324        if (ret) { /* -ENOENT, logic error */
8325                btrfs_err(fs_info, "update block group failed for %llu %llu",
8326                        extent_key.objectid, extent_key.offset);
8327                BUG();
8328        }
8329
8330        trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8331                                          fs_info->nodesize);
8332        return ret;
8333}
8334
8335int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8336                                     struct btrfs_root *root, u64 owner,
8337                                     u64 offset, u64 ram_bytes,
8338                                     struct btrfs_key *ins)
8339{
8340        struct btrfs_ref generic_ref = { 0 };
8341        int ret;
8342
8343        BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8344
8345        btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8346                               ins->objectid, ins->offset, 0);
8347        btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8348        btrfs_ref_tree_mod(root->fs_info, &generic_ref);
8349        ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8350                                         ram_bytes, NULL, NULL);
8351        return ret;
8352}
8353
8354/*
8355 * this is used by the tree logging recovery code.  It records that
8356 * an extent has been allocated and makes sure to clear the free
8357 * space cache bits as well
8358 */
8359int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8360                                   u64 root_objectid, u64 owner, u64 offset,
8361                                   struct btrfs_key *ins)
8362{
8363        struct btrfs_fs_info *fs_info = trans->fs_info;
8364        int ret;
8365        struct btrfs_block_group_cache *block_group;
8366        struct btrfs_space_info *space_info;
8367
8368        /*
8369         * Mixed block groups will exclude before processing the log so we only
8370         * need to do the exclude dance if this fs isn't mixed.
8371         */
8372        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8373                ret = __exclude_logged_extent(fs_info, ins->objectid,
8374                                              ins->offset);
8375                if (ret)
8376                        return ret;
8377        }
8378
8379        block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8380        if (!block_group)
8381                return -EINVAL;
8382
8383        space_info = block_group->space_info;
8384        spin_lock(&space_info->lock);
8385        spin_lock(&block_group->lock);
8386        space_info->bytes_reserved += ins->offset;
8387        block_group->reserved += ins->offset;
8388        spin_unlock(&block_group->lock);
8389        spin_unlock(&space_info->lock);
8390
8391        ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8392                                         offset, ins, 1);
8393        btrfs_put_block_group(block_group);
8394        return ret;
8395}
8396
8397static struct extent_buffer *
8398btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8399                      u64 bytenr, int level, u64 owner)
8400{
8401        struct btrfs_fs_info *fs_info = root->fs_info;
8402        struct extent_buffer *buf;
8403
8404        buf = btrfs_find_create_tree_block(fs_info, bytenr);
8405        if (IS_ERR(buf))
8406                return buf;
8407
8408        /*
8409         * Extra safety check in case the extent tree is corrupted and extent
8410         * allocator chooses to use a tree block which is already used and
8411         * locked.
8412         */
8413        if (buf->lock_owner == current->pid) {
8414                btrfs_err_rl(fs_info,
8415"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8416                        buf->start, btrfs_header_owner(buf), current->pid);
8417                free_extent_buffer(buf);
8418                return ERR_PTR(-EUCLEAN);
8419        }
8420
8421        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8422        btrfs_tree_lock(buf);
8423        btrfs_clean_tree_block(buf);
8424        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8425
8426        btrfs_set_lock_blocking_write(buf);
8427        set_extent_buffer_uptodate(buf);
8428
8429        memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8430        btrfs_set_header_level(buf, level);
8431        btrfs_set_header_bytenr(buf, buf->start);
8432        btrfs_set_header_generation(buf, trans->transid);
8433        btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8434        btrfs_set_header_owner(buf, owner);
8435        write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8436        write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8437        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8438                buf->log_index = root->log_transid % 2;
8439                /*
8440                 * we allow two log transactions at a time, use different
8441                 * EXTENT bit to differentiate dirty pages.
8442                 */
8443                if (buf->log_index == 0)
8444                        set_extent_dirty(&root->dirty_log_pages, buf->start,
8445                                        buf->start + buf->len - 1, GFP_NOFS);
8446                else
8447                        set_extent_new(&root->dirty_log_pages, buf->start,
8448                                        buf->start + buf->len - 1);
8449        } else {
8450                buf->log_index = -1;
8451                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8452                         buf->start + buf->len - 1, GFP_NOFS);
8453        }
8454        trans->dirty = true;
8455        /* this returns a buffer locked for blocking */
8456        return buf;
8457}
8458
8459static struct btrfs_block_rsv *
8460use_block_rsv(struct btrfs_trans_handle *trans,
8461              struct btrfs_root *root, u32 blocksize)
8462{
8463        struct btrfs_fs_info *fs_info = root->fs_info;
8464        struct btrfs_block_rsv *block_rsv;
8465        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8466        int ret;
8467        bool global_updated = false;
8468
8469        block_rsv = get_block_rsv(trans, root);
8470
8471        if (unlikely(block_rsv->size == 0))
8472                goto try_reserve;
8473again:
8474        ret = block_rsv_use_bytes(block_rsv, blocksize);
8475        if (!ret)
8476                return block_rsv;
8477
8478        if (block_rsv->failfast)
8479                return ERR_PTR(ret);
8480
8481        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8482                global_updated = true;
8483                update_global_block_rsv(fs_info);
8484                goto again;
8485        }
8486
8487        /*
8488         * The global reserve still exists to save us from ourselves, so don't
8489         * warn_on if we are short on our delayed refs reserve.
8490         */
8491        if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8492            btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8493                static DEFINE_RATELIMIT_STATE(_rs,
8494                                DEFAULT_RATELIMIT_INTERVAL * 10,
8495                                /*DEFAULT_RATELIMIT_BURST*/ 1);
8496                if (__ratelimit(&_rs))
8497                        WARN(1, KERN_DEBUG
8498                                "BTRFS: block rsv returned %d\n", ret);
8499        }
8500try_reserve:
8501        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8502                                     BTRFS_RESERVE_NO_FLUSH);
8503        if (!ret)
8504                return block_rsv;
8505        /*
8506         * If we couldn't reserve metadata bytes try and use some from
8507         * the global reserve if its space type is the same as the global
8508         * reservation.
8509         */
8510        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8511            block_rsv->space_info == global_rsv->space_info) {
8512                ret = block_rsv_use_bytes(global_rsv, blocksize);
8513                if (!ret)
8514                        return global_rsv;
8515        }
8516        return ERR_PTR(ret);
8517}
8518
8519static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8520                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
8521{
8522        block_rsv_add_bytes(block_rsv, blocksize, false);
8523        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8524}
8525
8526/*
8527 * finds a free extent and does all the dirty work required for allocation
8528 * returns the tree buffer or an ERR_PTR on error.
8529 */
8530struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8531                                             struct btrfs_root *root,
8532                                             u64 parent, u64 root_objectid,
8533                                             const struct btrfs_disk_key *key,
8534                                             int level, u64 hint,
8535                                             u64 empty_size)
8536{
8537        struct btrfs_fs_info *fs_info = root->fs_info;
8538        struct btrfs_key ins;
8539        struct btrfs_block_rsv *block_rsv;
8540        struct extent_buffer *buf;
8541        struct btrfs_delayed_extent_op *extent_op;
8542        struct btrfs_ref generic_ref = { 0 };
8543        u64 flags = 0;
8544        int ret;
8545        u32 blocksize = fs_info->nodesize;
8546        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8547
8548#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8549        if (btrfs_is_testing(fs_info)) {
8550                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8551                                            level, root_objectid);
8552                if (!IS_ERR(buf))
8553                        root->alloc_bytenr += blocksize;
8554                return buf;
8555        }
8556#endif
8557
8558        block_rsv = use_block_rsv(trans, root, blocksize);
8559        if (IS_ERR(block_rsv))
8560                return ERR_CAST(block_rsv);
8561
8562        ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8563                                   empty_size, hint, &ins, 0, 0);
8564        if (ret)
8565                goto out_unuse;
8566
8567        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8568                                    root_objectid);
8569        if (IS_ERR(buf)) {
8570                ret = PTR_ERR(buf);
8571                goto out_free_reserved;
8572        }
8573
8574        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8575                if (parent == 0)
8576                        parent = ins.objectid;
8577                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8578        } else
8579                BUG_ON(parent > 0);
8580
8581        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8582                extent_op = btrfs_alloc_delayed_extent_op();
8583                if (!extent_op) {
8584                        ret = -ENOMEM;
8585                        goto out_free_buf;
8586                }
8587                if (key)
8588                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
8589                else
8590                        memset(&extent_op->key, 0, sizeof(extent_op->key));
8591                extent_op->flags_to_set = flags;
8592                extent_op->update_key = skinny_metadata ? false : true;
8593                extent_op->update_flags = true;
8594                extent_op->is_data = false;
8595                extent_op->level = level;
8596
8597                btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8598                                       ins.objectid, ins.offset, parent);
8599                generic_ref.real_root = root->root_key.objectid;
8600                btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8601                btrfs_ref_tree_mod(fs_info, &generic_ref);
8602                ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
8603                                                 extent_op, NULL, NULL);
8604                if (ret)
8605                        goto out_free_delayed;
8606        }
8607        return buf;
8608
8609out_free_delayed:
8610        btrfs_free_delayed_extent_op(extent_op);
8611out_free_buf:
8612        free_extent_buffer(buf);
8613out_free_reserved:
8614        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8615out_unuse:
8616        unuse_block_rsv(fs_info, block_rsv, blocksize);
8617        return ERR_PTR(ret);
8618}
8619
8620struct walk_control {
8621        u64 refs[BTRFS_MAX_LEVEL];
8622        u64 flags[BTRFS_MAX_LEVEL];
8623        struct btrfs_key update_progress;
8624        struct btrfs_key drop_progress;
8625        int drop_level;
8626        int stage;
8627        int level;
8628        int shared_level;
8629        int update_ref;
8630        int keep_locks;
8631        int reada_slot;
8632        int reada_count;
8633        int restarted;
8634};
8635
8636#define DROP_REFERENCE  1
8637#define UPDATE_BACKREF  2
8638
8639static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8640                                     struct btrfs_root *root,
8641                                     struct walk_control *wc,
8642                                     struct btrfs_path *path)
8643{
8644        struct btrfs_fs_info *fs_info = root->fs_info;
8645        u64 bytenr;
8646        u64 generation;
8647        u64 refs;
8648        u64 flags;
8649        u32 nritems;
8650        struct btrfs_key key;
8651        struct extent_buffer *eb;
8652        int ret;
8653        int slot;
8654        int nread = 0;
8655
8656        if (path->slots[wc->level] < wc->reada_slot) {
8657                wc->reada_count = wc->reada_count * 2 / 3;
8658                wc->reada_count = max(wc->reada_count, 2);
8659        } else {
8660                wc->reada_count = wc->reada_count * 3 / 2;
8661                wc->reada_count = min_t(int, wc->reada_count,
8662                                        BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8663        }
8664
8665        eb = path->nodes[wc->level];
8666        nritems = btrfs_header_nritems(eb);
8667
8668        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8669                if (nread >= wc->reada_count)
8670                        break;
8671
8672                cond_resched();
8673                bytenr = btrfs_node_blockptr(eb, slot);
8674                generation = btrfs_node_ptr_generation(eb, slot);
8675
8676                if (slot == path->slots[wc->level])
8677                        goto reada;
8678
8679                if (wc->stage == UPDATE_BACKREF &&
8680                    generation <= root->root_key.offset)
8681                        continue;
8682
8683                /* We don't lock the tree block, it's OK to be racy here */
8684                ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8685                                               wc->level - 1, 1, &refs,
8686                                               &flags);
8687                /* We don't care about errors in readahead. */
8688                if (ret < 0)
8689                        continue;
8690                BUG_ON(refs == 0);
8691
8692                if (wc->stage == DROP_REFERENCE) {
8693                        if (refs == 1)
8694                                goto reada;
8695
8696                        if (wc->level == 1 &&
8697                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8698                                continue;
8699                        if (!wc->update_ref ||
8700                            generation <= root->root_key.offset)
8701                                continue;
8702                        btrfs_node_key_to_cpu(eb, &key, slot);
8703                        ret = btrfs_comp_cpu_keys(&key,
8704                                                  &wc->update_progress);
8705                        if (ret < 0)
8706                                continue;
8707                } else {
8708                        if (wc->level == 1 &&
8709                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8710                                continue;
8711                }
8712reada:
8713                readahead_tree_block(fs_info, bytenr);
8714                nread++;
8715        }
8716        wc->reada_slot = slot;
8717}
8718
8719/*
8720 * helper to process tree block while walking down the tree.
8721 *
8722 * when wc->stage == UPDATE_BACKREF, this function updates
8723 * back refs for pointers in the block.
8724 *
8725 * NOTE: return value 1 means we should stop walking down.
8726 */
8727static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8728                                   struct btrfs_root *root,
8729                                   struct btrfs_path *path,
8730                                   struct walk_control *wc, int lookup_info)
8731{
8732        struct btrfs_fs_info *fs_info = root->fs_info;
8733        int level = wc->level;
8734        struct extent_buffer *eb = path->nodes[level];
8735        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8736        int ret;
8737
8738        if (wc->stage == UPDATE_BACKREF &&
8739            btrfs_header_owner(eb) != root->root_key.objectid)
8740                return 1;
8741
8742        /*
8743         * when reference count of tree block is 1, it won't increase
8744         * again. once full backref flag is set, we never clear it.
8745         */
8746        if (lookup_info &&
8747            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8748             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8749                BUG_ON(!path->locks[level]);
8750                ret = btrfs_lookup_extent_info(trans, fs_info,
8751                                               eb->start, level, 1,
8752                                               &wc->refs[level],
8753                                               &wc->flags[level]);
8754                BUG_ON(ret == -ENOMEM);
8755                if (ret)
8756                        return ret;
8757                BUG_ON(wc->refs[level] == 0);
8758        }
8759
8760        if (wc->stage == DROP_REFERENCE) {
8761                if (wc->refs[level] > 1)
8762                        return 1;
8763
8764                if (path->locks[level] && !wc->keep_locks) {
8765                        btrfs_tree_unlock_rw(eb, path->locks[level]);
8766                        path->locks[level] = 0;
8767                }
8768                return 0;
8769        }
8770
8771        /* wc->stage == UPDATE_BACKREF */
8772        if (!(wc->flags[level] & flag)) {
8773                BUG_ON(!path->locks[level]);
8774                ret = btrfs_inc_ref(trans, root, eb, 1);
8775                BUG_ON(ret); /* -ENOMEM */
8776                ret = btrfs_dec_ref(trans, root, eb, 0);
8777                BUG_ON(ret); /* -ENOMEM */
8778                ret = btrfs_set_disk_extent_flags(trans, eb->start,
8779                                                  eb->len, flag,
8780                                                  btrfs_header_level(eb), 0);
8781                BUG_ON(ret); /* -ENOMEM */
8782                wc->flags[level] |= flag;
8783        }
8784
8785        /*
8786         * the block is shared by multiple trees, so it's not good to
8787         * keep the tree lock
8788         */
8789        if (path->locks[level] && level > 0) {
8790                btrfs_tree_unlock_rw(eb, path->locks[level]);
8791                path->locks[level] = 0;
8792        }
8793        return 0;
8794}
8795
8796/*
8797 * This is used to verify a ref exists for this root to deal with a bug where we
8798 * would have a drop_progress key that hadn't been updated properly.
8799 */
8800static int check_ref_exists(struct btrfs_trans_handle *trans,
8801                            struct btrfs_root *root, u64 bytenr, u64 parent,
8802                            int level)
8803{
8804        struct btrfs_path *path;
8805        struct btrfs_extent_inline_ref *iref;
8806        int ret;
8807
8808        path = btrfs_alloc_path();
8809        if (!path)
8810                return -ENOMEM;
8811
8812        ret = lookup_extent_backref(trans, path, &iref, bytenr,
8813                                    root->fs_info->nodesize, parent,
8814                                    root->root_key.objectid, level, 0);
8815        btrfs_free_path(path);
8816        if (ret == -ENOENT)
8817                return 0;
8818        if (ret < 0)
8819                return ret;
8820        return 1;
8821}
8822
8823/*
8824 * helper to process tree block pointer.
8825 *
8826 * when wc->stage == DROP_REFERENCE, this function checks
8827 * reference count of the block pointed to. if the block
8828 * is shared and we need update back refs for the subtree
8829 * rooted at the block, this function changes wc->stage to
8830 * UPDATE_BACKREF. if the block is shared and there is no
8831 * need to update back, this function drops the reference
8832 * to the block.
8833 *
8834 * NOTE: return value 1 means we should stop walking down.
8835 */
8836static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8837                                 struct btrfs_root *root,
8838                                 struct btrfs_path *path,
8839                                 struct walk_control *wc, int *lookup_info)
8840{
8841        struct btrfs_fs_info *fs_info = root->fs_info;
8842        u64 bytenr;
8843        u64 generation;
8844        u64 parent;
8845        struct btrfs_key key;
8846        struct btrfs_key first_key;
8847        struct btrfs_ref ref = { 0 };
8848        struct extent_buffer *next;
8849        int level = wc->level;
8850        int reada = 0;
8851        int ret = 0;
8852        bool need_account = false;
8853
8854        generation = btrfs_node_ptr_generation(path->nodes[level],
8855                                               path->slots[level]);
8856        /*
8857         * if the lower level block was created before the snapshot
8858         * was created, we know there is no need to update back refs
8859         * for the subtree
8860         */
8861        if (wc->stage == UPDATE_BACKREF &&
8862            generation <= root->root_key.offset) {
8863                *lookup_info = 1;
8864                return 1;
8865        }
8866
8867        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8868        btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8869                              path->slots[level]);
8870
8871        next = find_extent_buffer(fs_info, bytenr);
8872        if (!next) {
8873                next = btrfs_find_create_tree_block(fs_info, bytenr);
8874                if (IS_ERR(next))
8875                        return PTR_ERR(next);
8876
8877                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8878                                               level - 1);
8879                reada = 1;
8880        }
8881        btrfs_tree_lock(next);
8882        btrfs_set_lock_blocking_write(next);
8883
8884        ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8885                                       &wc->refs[level - 1],
8886                                       &wc->flags[level - 1]);
8887        if (ret < 0)
8888                goto out_unlock;
8889
8890        if (unlikely(wc->refs[level - 1] == 0)) {
8891                btrfs_err(fs_info, "Missing references.");
8892                ret = -EIO;
8893                goto out_unlock;
8894        }
8895        *lookup_info = 0;
8896
8897        if (wc->stage == DROP_REFERENCE) {
8898                if (wc->refs[level - 1] > 1) {
8899                        need_account = true;
8900                        if (level == 1 &&
8901                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8902                                goto skip;
8903
8904                        if (!wc->update_ref ||
8905                            generation <= root->root_key.offset)
8906                                goto skip;
8907
8908                        btrfs_node_key_to_cpu(path->nodes[level], &key,
8909                                              path->slots[level]);
8910                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8911                        if (ret < 0)
8912                                goto skip;
8913
8914                        wc->stage = UPDATE_BACKREF;
8915                        wc->shared_level = level - 1;
8916                }
8917        } else {
8918                if (level == 1 &&
8919                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8920                        goto skip;
8921        }
8922
8923        if (!btrfs_buffer_uptodate(next, generation, 0)) {
8924                btrfs_tree_unlock(next);
8925                free_extent_buffer(next);
8926                next = NULL;
8927                *lookup_info = 1;
8928        }
8929
8930        if (!next) {
8931                if (reada && level == 1)
8932                        reada_walk_down(trans, root, wc, path);
8933                next = read_tree_block(fs_info, bytenr, generation, level - 1,
8934                                       &first_key);
8935                if (IS_ERR(next)) {
8936                        return PTR_ERR(next);
8937                } else if (!extent_buffer_uptodate(next)) {
8938                        free_extent_buffer(next);
8939                        return -EIO;
8940                }
8941                btrfs_tree_lock(next);
8942                btrfs_set_lock_blocking_write(next);
8943        }
8944
8945        level--;
8946        ASSERT(level == btrfs_header_level(next));
8947        if (level != btrfs_header_level(next)) {
8948                btrfs_err(root->fs_info, "mismatched level");
8949                ret = -EIO;
8950                goto out_unlock;
8951        }
8952        path->nodes[level] = next;
8953        path->slots[level] = 0;
8954        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8955        wc->level = level;
8956        if (wc->level == 1)
8957                wc->reada_slot = 0;
8958        return 0;
8959skip:
8960        wc->refs[level - 1] = 0;
8961        wc->flags[level - 1] = 0;
8962        if (wc->stage == DROP_REFERENCE) {
8963                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8964                        parent = path->nodes[level]->start;
8965                } else {
8966                        ASSERT(root->root_key.objectid ==
8967                               btrfs_header_owner(path->nodes[level]));
8968                        if (root->root_key.objectid !=
8969                            btrfs_header_owner(path->nodes[level])) {
8970                                btrfs_err(root->fs_info,
8971                                                "mismatched block owner");
8972                                ret = -EIO;
8973                                goto out_unlock;
8974                        }
8975                        parent = 0;
8976                }
8977
8978                /*
8979                 * If we had a drop_progress we need to verify the refs are set
8980                 * as expected.  If we find our ref then we know that from here
8981                 * on out everything should be correct, and we can clear the
8982                 * ->restarted flag.
8983                 */
8984                if (wc->restarted) {
8985                        ret = check_ref_exists(trans, root, bytenr, parent,
8986                                               level - 1);
8987                        if (ret < 0)
8988                                goto out_unlock;
8989                        if (ret == 0)
8990                                goto no_delete;
8991                        ret = 0;
8992                        wc->restarted = 0;
8993                }
8994
8995                /*
8996                 * Reloc tree doesn't contribute to qgroup numbers, and we have
8997                 * already accounted them at merge time (replace_path),
8998                 * thus we could skip expensive subtree trace here.
8999                 */
9000                if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9001                    need_account) {
9002                        ret = btrfs_qgroup_trace_subtree(trans, next,
9003                                                         generation, level - 1);
9004                        if (ret) {
9005                                btrfs_err_rl(fs_info,
9006                                             "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9007                                             ret);
9008                        }
9009                }
9010
9011                /*
9012                 * We need to update the next key in our walk control so we can
9013                 * update the drop_progress key accordingly.  We don't care if
9014                 * find_next_key doesn't find a key because that means we're at
9015                 * the end and are going to clean up now.
9016                 */
9017                wc->drop_level = level;
9018                find_next_key(path, level, &wc->drop_progress);
9019
9020                btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
9021                                       fs_info->nodesize, parent);
9022                btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
9023                ret = btrfs_free_extent(trans, &ref);
9024                if (ret)
9025                        goto out_unlock;
9026        }
9027no_delete:
9028        *lookup_info = 1;
9029        ret = 1;
9030
9031out_unlock:
9032        btrfs_tree_unlock(next);
9033        free_extent_buffer(next);
9034
9035        return ret;
9036}
9037
9038/*
9039 * helper to process tree block while walking up the tree.
9040 *
9041 * when wc->stage == DROP_REFERENCE, this function drops
9042 * reference count on the block.
9043 *
9044 * when wc->stage == UPDATE_BACKREF, this function changes
9045 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9046 * to UPDATE_BACKREF previously while processing the block.
9047 *
9048 * NOTE: return value 1 means we should stop walking up.
9049 */
9050static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9051                                 struct btrfs_root *root,
9052                                 struct btrfs_path *path,
9053                                 struct walk_control *wc)
9054{
9055        struct btrfs_fs_info *fs_info = root->fs_info;
9056        int ret;
9057        int level = wc->level;
9058        struct extent_buffer *eb = path->nodes[level];
9059        u64 parent = 0;
9060
9061        if (wc->stage == UPDATE_BACKREF) {
9062                BUG_ON(wc->shared_level < level);
9063                if (level < wc->shared_level)
9064                        goto out;
9065
9066                ret = find_next_key(path, level + 1, &wc->update_progress);
9067                if (ret > 0)
9068                        wc->update_ref = 0;
9069
9070                wc->stage = DROP_REFERENCE;
9071                wc->shared_level = -1;
9072                path->slots[level] = 0;
9073
9074                /*
9075                 * check reference count again if the block isn't locked.
9076                 * we should start walking down the tree again if reference
9077                 * count is one.
9078                 */
9079                if (!path->locks[level]) {
9080                        BUG_ON(level == 0);
9081                        btrfs_tree_lock(eb);
9082                        btrfs_set_lock_blocking_write(eb);
9083                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9084
9085                        ret = btrfs_lookup_extent_info(trans, fs_info,
9086                                                       eb->start, level, 1,
9087                                                       &wc->refs[level],
9088                                                       &wc->flags[level]);
9089                        if (ret < 0) {
9090                                btrfs_tree_unlock_rw(eb, path->locks[level]);
9091                                path->locks[level] = 0;
9092                                return ret;
9093                        }
9094                        BUG_ON(wc->refs[level] == 0);
9095                        if (wc->refs[level] == 1) {
9096                                btrfs_tree_unlock_rw(eb, path->locks[level]);
9097                                path->locks[level] = 0;
9098                                return 1;
9099                        }
9100                }
9101        }
9102
9103        /* wc->stage == DROP_REFERENCE */
9104        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9105
9106        if (wc->refs[level] == 1) {
9107                if (level == 0) {
9108                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9109                                ret = btrfs_dec_ref(trans, root, eb, 1);
9110                        else
9111                                ret = btrfs_dec_ref(trans, root, eb, 0);
9112                        BUG_ON(ret); /* -ENOMEM */
9113                        if (is_fstree(root->root_key.objectid)) {
9114                                ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9115                                if (ret) {
9116                                        btrfs_err_rl(fs_info,
9117        "error %d accounting leaf items, quota is out of sync, rescan required",
9118                                             ret);
9119                                }
9120                        }
9121                }
9122                /* make block locked assertion in btrfs_clean_tree_block happy */
9123                if (!path->locks[level] &&
9124                    btrfs_header_generation(eb) == trans->transid) {
9125                        btrfs_tree_lock(eb);
9126                        btrfs_set_lock_blocking_write(eb);
9127                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9128                }
9129                btrfs_clean_tree_block(eb);
9130        }
9131
9132        if (eb == root->node) {
9133                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9134                        parent = eb->start;
9135                else if (root->root_key.objectid != btrfs_header_owner(eb))
9136                        goto owner_mismatch;
9137        } else {
9138                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9139                        parent = path->nodes[level + 1]->start;
9140                else if (root->root_key.objectid !=
9141                         btrfs_header_owner(path->nodes[level + 1]))
9142                        goto owner_mismatch;
9143        }
9144
9145        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9146out:
9147        wc->refs[level] = 0;
9148        wc->flags[level] = 0;
9149        return 0;
9150
9151owner_mismatch:
9152        btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9153                     btrfs_header_owner(eb), root->root_key.objectid);
9154        return -EUCLEAN;
9155}
9156
9157static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9158                                   struct btrfs_root *root,
9159                                   struct btrfs_path *path,
9160                                   struct walk_control *wc)
9161{
9162        int level = wc->level;
9163        int lookup_info = 1;
9164        int ret;
9165
9166        while (level >= 0) {
9167                ret = walk_down_proc(trans, root, path, wc, lookup_info);
9168                if (ret > 0)
9169                        break;
9170
9171                if (level == 0)
9172                        break;
9173
9174                if (path->slots[level] >=
9175                    btrfs_header_nritems(path->nodes[level]))
9176                        break;
9177
9178                ret = do_walk_down(trans, root, path, wc, &lookup_info);
9179                if (ret > 0) {
9180                        path->slots[level]++;
9181                        continue;
9182                } else if (ret < 0)
9183                        return ret;
9184                level = wc->level;
9185        }
9186        return 0;
9187}
9188
9189static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9190                                 struct btrfs_root *root,
9191                                 struct btrfs_path *path,
9192                                 struct walk_control *wc, int max_level)
9193{
9194        int level = wc->level;
9195        int ret;
9196
9197        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9198        while (level < max_level && path->nodes[level]) {
9199                wc->level = level;
9200                if (path->slots[level] + 1 <
9201                    btrfs_header_nritems(path->nodes[level])) {
9202                        path->slots[level]++;
9203                        return 0;
9204                } else {
9205                        ret = walk_up_proc(trans, root, path, wc);
9206                        if (ret > 0)
9207                                return 0;
9208                        if (ret < 0)
9209                                return ret;
9210
9211                        if (path->locks[level]) {
9212                                btrfs_tree_unlock_rw(path->nodes[level],
9213                                                     path->locks[level]);
9214                                path->locks[level] = 0;
9215                        }
9216                        free_extent_buffer(path->nodes[level]);
9217                        path->nodes[level] = NULL;
9218                        level++;
9219                }
9220        }
9221        return 1;
9222}
9223
9224/*
9225 * drop a subvolume tree.
9226 *
9227 * this function traverses the tree freeing any blocks that only
9228 * referenced by the tree.
9229 *
9230 * when a shared tree block is found. this function decreases its
9231 * reference count by one. if update_ref is true, this function
9232 * also make sure backrefs for the shared block and all lower level
9233 * blocks are properly updated.
9234 *
9235 * If called with for_reloc == 0, may exit early with -EAGAIN
9236 */
9237int btrfs_drop_snapshot(struct btrfs_root *root,
9238                         struct btrfs_block_rsv *block_rsv, int update_ref,
9239                         int for_reloc)
9240{
9241        struct btrfs_fs_info *fs_info = root->fs_info;
9242        struct btrfs_path *path;
9243        struct btrfs_trans_handle *trans;
9244        struct btrfs_root *tree_root = fs_info->tree_root;
9245        struct btrfs_root_item *root_item = &root->root_item;
9246        struct walk_control *wc;
9247        struct btrfs_key key;
9248        int err = 0;
9249        int ret;
9250        int level;
9251        bool root_dropped = false;
9252
9253        btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9254
9255        path = btrfs_alloc_path();
9256        if (!path) {
9257                err = -ENOMEM;
9258                goto out;
9259        }
9260
9261        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9262        if (!wc) {
9263                btrfs_free_path(path);
9264                err = -ENOMEM;
9265                goto out;
9266        }
9267
9268        trans = btrfs_start_transaction(tree_root, 0);
9269        if (IS_ERR(trans)) {
9270                err = PTR_ERR(trans);
9271                goto out_free;
9272        }
9273
9274        err = btrfs_run_delayed_items(trans);
9275        if (err)
9276                goto out_end_trans;
9277
9278        if (block_rsv)
9279                trans->block_rsv = block_rsv;
9280
9281        /*
9282         * This will help us catch people modifying the fs tree while we're
9283         * dropping it.  It is unsafe to mess with the fs tree while it's being
9284         * dropped as we unlock the root node and parent nodes as we walk down
9285         * the tree, assuming nothing will change.  If something does change
9286         * then we'll have stale information and drop references to blocks we've
9287         * already dropped.
9288         */
9289        set_bit(BTRFS_ROOT_DELETING, &root->state);
9290        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9291                level = btrfs_header_level(root->node);
9292                path->nodes[level] = btrfs_lock_root_node(root);
9293                btrfs_set_lock_blocking_write(path->nodes[level]);
9294                path->slots[level] = 0;
9295                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9296                memset(&wc->update_progress, 0,
9297                       sizeof(wc->update_progress));
9298        } else {
9299                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9300                memcpy(&wc->update_progress, &key,
9301                       sizeof(wc->update_progress));
9302
9303                level = root_item->drop_level;
9304                BUG_ON(level == 0);
9305                path->lowest_level = level;
9306                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9307                path->lowest_level = 0;
9308                if (ret < 0) {
9309                        err = ret;
9310                        goto out_end_trans;
9311                }
9312                WARN_ON(ret > 0);
9313
9314                /*
9315                 * unlock our path, this is safe because only this
9316                 * function is allowed to delete this snapshot
9317                 */
9318                btrfs_unlock_up_safe(path, 0);
9319
9320                level = btrfs_header_level(root->node);
9321                while (1) {
9322                        btrfs_tree_lock(path->nodes[level]);
9323                        btrfs_set_lock_blocking_write(path->nodes[level]);
9324                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9325
9326                        ret = btrfs_lookup_extent_info(trans, fs_info,
9327                                                path->nodes[level]->start,
9328                                                level, 1, &wc->refs[level],
9329                                                &wc->flags[level]);
9330                        if (ret < 0) {
9331                                err = ret;
9332                                goto out_end_trans;
9333                        }
9334                        BUG_ON(wc->refs[level] == 0);
9335
9336                        if (level == root_item->drop_level)
9337                                break;
9338
9339                        btrfs_tree_unlock(path->nodes[level]);
9340                        path->locks[level] = 0;
9341                        WARN_ON(wc->refs[level] != 1);
9342                        level--;
9343                }
9344        }
9345
9346        wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
9347        wc->level = level;
9348        wc->shared_level = -1;
9349        wc->stage = DROP_REFERENCE;
9350        wc->update_ref = update_ref;
9351        wc->keep_locks = 0;
9352        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9353
9354        while (1) {
9355
9356                ret = walk_down_tree(trans, root, path, wc);
9357                if (ret < 0) {
9358                        err = ret;
9359                        break;
9360                }
9361
9362                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9363                if (ret < 0) {
9364                        err = ret;
9365                        break;
9366                }
9367
9368                if (ret > 0) {
9369                        BUG_ON(wc->stage != DROP_REFERENCE);
9370                        break;
9371                }
9372
9373                if (wc->stage == DROP_REFERENCE) {
9374                        wc->drop_level = wc->level;
9375                        btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9376                                              &wc->drop_progress,
9377                                              path->slots[wc->drop_level]);
9378                }
9379                btrfs_cpu_key_to_disk(&root_item->drop_progress,
9380                                      &wc->drop_progress);
9381                root_item->drop_level = wc->drop_level;
9382
9383                BUG_ON(wc->level == 0);
9384                if (btrfs_should_end_transaction(trans) ||
9385                    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9386                        ret = btrfs_update_root(trans, tree_root,
9387                                                &root->root_key,
9388                                                root_item);
9389                        if (ret) {
9390                                btrfs_abort_transaction(trans, ret);
9391                                err = ret;
9392                                goto out_end_trans;
9393                        }
9394
9395                        btrfs_end_transaction_throttle(trans);
9396                        if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9397                                btrfs_debug(fs_info,
9398                                            "drop snapshot early exit");
9399                                err = -EAGAIN;
9400                                goto out_free;
9401                        }
9402
9403                        trans = btrfs_start_transaction(tree_root, 0);
9404                        if (IS_ERR(trans)) {
9405                                err = PTR_ERR(trans);
9406                                goto out_free;
9407                        }
9408                        if (block_rsv)
9409                                trans->block_rsv = block_rsv;
9410                }
9411        }
9412        btrfs_release_path(path);
9413        if (err)
9414                goto out_end_trans;
9415
9416        ret = btrfs_del_root(trans, &root->root_key);
9417        if (ret) {
9418                btrfs_abort_transaction(trans, ret);
9419                err = ret;
9420                goto out_end_trans;
9421        }
9422
9423        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9424                ret = btrfs_find_root(tree_root, &root->root_key, path,
9425                                      NULL, NULL);
9426                if (ret < 0) {
9427                        btrfs_abort_transaction(trans, ret);
9428                        err = ret;
9429                        goto out_end_trans;
9430                } else if (ret > 0) {
9431                        /* if we fail to delete the orphan item this time
9432                         * around, it'll get picked up the next time.
9433                         *
9434                         * The most common failure here is just -ENOENT.
9435                         */
9436                        btrfs_del_orphan_item(trans, tree_root,
9437                                              root->root_key.objectid);
9438                }
9439        }
9440
9441        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9442                btrfs_add_dropped_root(trans, root);
9443        } else {
9444                free_extent_buffer(root->node);
9445                free_extent_buffer(root->commit_root);
9446                btrfs_put_fs_root(root);
9447        }
9448        root_dropped = true;
9449out_end_trans:
9450        btrfs_end_transaction_throttle(trans);
9451out_free:
9452        kfree(wc);
9453        btrfs_free_path(path);
9454out:
9455        /*
9456         * So if we need to stop dropping the snapshot for whatever reason we
9457         * need to make sure to add it back to the dead root list so that we
9458         * keep trying to do the work later.  This also cleans up roots if we
9459         * don't have it in the radix (like when we recover after a power fail
9460         * or unmount) so we don't leak memory.
9461         */
9462        if (!for_reloc && !root_dropped)
9463                btrfs_add_dead_root(root);
9464        if (err && err != -EAGAIN)
9465                btrfs_handle_fs_error(fs_info, err, NULL);
9466        return err;
9467}
9468
9469/*
9470 * drop subtree rooted at tree block 'node'.
9471 *
9472 * NOTE: this function will unlock and release tree block 'node'
9473 * only used by relocation code
9474 */
9475int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9476                        struct btrfs_root *root,
9477                        struct extent_buffer *node,
9478                        struct extent_buffer *parent)
9479{
9480        struct btrfs_fs_info *fs_info = root->fs_info;
9481        struct btrfs_path *path;
9482        struct walk_control *wc;
9483        int level;
9484        int parent_level;
9485        int ret = 0;
9486        int wret;
9487
9488        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9489
9490        path = btrfs_alloc_path();
9491        if (!path)
9492                return -ENOMEM;
9493
9494        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9495        if (!wc) {
9496                btrfs_free_path(path);
9497                return -ENOMEM;
9498        }
9499
9500        btrfs_assert_tree_locked(parent);
9501        parent_level = btrfs_header_level(parent);
9502        extent_buffer_get(parent);
9503        path->nodes[parent_level] = parent;
9504        path->slots[parent_level] = btrfs_header_nritems(parent);
9505
9506        btrfs_assert_tree_locked(node);
9507        level = btrfs_header_level(node);
9508        path->nodes[level] = node;
9509        path->slots[level] = 0;
9510        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9511
9512        wc->refs[parent_level] = 1;
9513        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9514        wc->level = level;
9515        wc->shared_level = -1;
9516        wc->stage = DROP_REFERENCE;
9517        wc->update_ref = 0;
9518        wc->keep_locks = 1;
9519        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9520
9521        while (1) {
9522                wret = walk_down_tree(trans, root, path, wc);
9523                if (wret < 0) {
9524                        ret = wret;
9525                        break;
9526                }
9527
9528                wret = walk_up_tree(trans, root, path, wc, parent_level);
9529                if (wret < 0)
9530                        ret = wret;
9531                if (wret != 0)
9532                        break;
9533        }
9534
9535        kfree(wc);
9536        btrfs_free_path(path);
9537        return ret;
9538}
9539
9540static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9541{
9542        u64 num_devices;
9543        u64 stripped;
9544
9545        /*
9546         * if restripe for this chunk_type is on pick target profile and
9547         * return, otherwise do the usual balance
9548         */
9549        stripped = get_restripe_target(fs_info, flags);
9550        if (stripped)
9551                return extended_to_chunk(stripped);
9552
9553        num_devices = fs_info->fs_devices->rw_devices;
9554
9555        stripped = BTRFS_BLOCK_GROUP_RAID0 |
9556                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9557                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9558
9559        if (num_devices == 1) {
9560                stripped |= BTRFS_BLOCK_GROUP_DUP;
9561                stripped = flags & ~stripped;
9562
9563                /* turn raid0 into single device chunks */
9564                if (flags & BTRFS_BLOCK_GROUP_RAID0)
9565                        return stripped;
9566
9567                /* turn mirroring into duplication */
9568                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9569                             BTRFS_BLOCK_GROUP_RAID10))
9570                        return stripped | BTRFS_BLOCK_GROUP_DUP;
9571        } else {
9572                /* they already had raid on here, just return */
9573                if (flags & stripped)
9574                        return flags;
9575
9576                stripped |= BTRFS_BLOCK_GROUP_DUP;
9577                stripped = flags & ~stripped;
9578
9579                /* switch duplicated blocks with raid1 */
9580                if (flags & BTRFS_BLOCK_GROUP_DUP)
9581                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
9582
9583                /* this is drive concat, leave it alone */
9584        }
9585
9586        return flags;
9587}
9588
9589static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9590{
9591        struct btrfs_space_info *sinfo = cache->space_info;
9592        u64 num_bytes;
9593        u64 sinfo_used;
9594        u64 min_allocable_bytes;
9595        int ret = -ENOSPC;
9596
9597        /*
9598         * We need some metadata space and system metadata space for
9599         * allocating chunks in some corner cases until we force to set
9600         * it to be readonly.
9601         */
9602        if ((sinfo->flags &
9603             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9604            !force)
9605                min_allocable_bytes = SZ_1M;
9606        else
9607                min_allocable_bytes = 0;
9608
9609        spin_lock(&sinfo->lock);
9610        spin_lock(&cache->lock);
9611
9612        if (cache->ro) {
9613                cache->ro++;
9614                ret = 0;
9615                goto out;
9616        }
9617
9618        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9619                    cache->bytes_super - btrfs_block_group_used(&cache->item);
9620        sinfo_used = btrfs_space_info_used(sinfo, true);
9621
9622        if (sinfo_used + num_bytes + min_allocable_bytes <=
9623            sinfo->total_bytes) {
9624                sinfo->bytes_readonly += num_bytes;
9625                cache->ro++;
9626                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9627                ret = 0;
9628        }
9629out:
9630        spin_unlock(&cache->lock);
9631        spin_unlock(&sinfo->lock);
9632        if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9633                btrfs_info(cache->fs_info,
9634                        "unable to make block group %llu ro",
9635                        cache->key.objectid);
9636                btrfs_info(cache->fs_info,
9637                        "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9638                        sinfo_used, num_bytes, min_allocable_bytes);
9639                dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9640        }
9641        return ret;
9642}
9643
9644int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9645
9646{
9647        struct btrfs_fs_info *fs_info = cache->fs_info;
9648        struct btrfs_trans_handle *trans;
9649        u64 alloc_flags;
9650        int ret;
9651
9652again:
9653        trans = btrfs_join_transaction(fs_info->extent_root);
9654        if (IS_ERR(trans))
9655                return PTR_ERR(trans);
9656
9657        /*
9658         * we're not allowed to set block groups readonly after the dirty
9659         * block groups cache has started writing.  If it already started,
9660         * back off and let this transaction commit
9661         */
9662        mutex_lock(&fs_info->ro_block_group_mutex);
9663        if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9664                u64 transid = trans->transid;
9665
9666                mutex_unlock(&fs_info->ro_block_group_mutex);
9667                btrfs_end_transaction(trans);
9668
9669                ret = btrfs_wait_for_commit(fs_info, transid);
9670                if (ret)
9671                        return ret;
9672                goto again;
9673        }
9674
9675        /*
9676         * if we are changing raid levels, try to allocate a corresponding
9677         * block group with the new raid level.
9678         */
9679        alloc_flags = update_block_group_flags(fs_info, cache->flags);
9680        if (alloc_flags != cache->flags) {
9681                ret = do_chunk_alloc(trans, alloc_flags,
9682                                     CHUNK_ALLOC_FORCE);
9683                /*
9684                 * ENOSPC is allowed here, we may have enough space
9685                 * already allocated at the new raid level to
9686                 * carry on
9687                 */
9688                if (ret == -ENOSPC)
9689                        ret = 0;
9690                if (ret < 0)
9691                        goto out;
9692        }
9693
9694        ret = inc_block_group_ro(cache, 0);
9695        if (!ret)
9696                goto out;
9697        alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9698        ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9699        if (ret < 0)
9700                goto out;
9701        ret = inc_block_group_ro(cache, 0);
9702out:
9703        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9704                alloc_flags = update_block_group_flags(fs_info, cache->flags);
9705                mutex_lock(&fs_info->chunk_mutex);
9706                check_system_chunk(trans, alloc_flags);
9707                mutex_unlock(&fs_info->chunk_mutex);
9708        }
9709        mutex_unlock(&fs_info->ro_block_group_mutex);
9710
9711        btrfs_end_transaction(trans);
9712        return ret;
9713}
9714
9715int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9716{
9717        u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9718
9719        return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9720}
9721
9722/*
9723 * helper to account the unused space of all the readonly block group in the
9724 * space_info. takes mirrors into account.
9725 */
9726u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9727{
9728        struct btrfs_block_group_cache *block_group;
9729        u64 free_bytes = 0;
9730        int factor;
9731
9732        /* It's df, we don't care if it's racy */
9733        if (list_empty(&sinfo->ro_bgs))
9734                return 0;
9735
9736        spin_lock(&sinfo->lock);
9737        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9738                spin_lock(&block_group->lock);
9739
9740                if (!block_group->ro) {
9741                        spin_unlock(&block_group->lock);
9742                        continue;
9743                }
9744
9745                factor = btrfs_bg_type_to_factor(block_group->flags);
9746                free_bytes += (block_group->key.offset -
9747                               btrfs_block_group_used(&block_group->item)) *
9748                               factor;
9749
9750                spin_unlock(&block_group->lock);
9751        }
9752        spin_unlock(&sinfo->lock);
9753
9754        return free_bytes;
9755}
9756
9757void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9758{
9759        struct btrfs_space_info *sinfo = cache->space_info;
9760        u64 num_bytes;
9761
9762        BUG_ON(!cache->ro);
9763
9764        spin_lock(&sinfo->lock);
9765        spin_lock(&cache->lock);
9766        if (!--cache->ro) {
9767                num_bytes = cache->key.offset - cache->reserved -
9768                            cache->pinned - cache->bytes_super -
9769                            btrfs_block_group_used(&cache->item);
9770                sinfo->bytes_readonly -= num_bytes;
9771                list_del_init(&cache->ro_list);
9772        }
9773        spin_unlock(&cache->lock);
9774        spin_unlock(&sinfo->lock);
9775}
9776
9777/*
9778 * Checks to see if it's even possible to relocate this block group.
9779 *
9780 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9781 * ok to go ahead and try.
9782 */
9783int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9784{
9785        struct btrfs_block_group_cache *block_group;
9786        struct btrfs_space_info *space_info;
9787        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9788        struct btrfs_device *device;
9789        u64 min_free;
9790        u64 dev_min = 1;
9791        u64 dev_nr = 0;
9792        u64 target;
9793        int debug;
9794        int index;
9795        int full = 0;
9796        int ret = 0;
9797
9798        debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9799
9800        block_group = btrfs_lookup_block_group(fs_info, bytenr);
9801
9802        /* odd, couldn't find the block group, leave it alone */
9803        if (!block_group) {
9804                if (debug)
9805                        btrfs_warn(fs_info,
9806                                   "can't find block group for bytenr %llu",
9807                                   bytenr);
9808                return -1;
9809        }
9810
9811        min_free = btrfs_block_group_used(&block_group->item);
9812
9813        /* no bytes used, we're good */
9814        if (!min_free)
9815                goto out;
9816
9817        space_info = block_group->space_info;
9818        spin_lock(&space_info->lock);
9819
9820        full = space_info->full;
9821
9822        /*
9823         * if this is the last block group we have in this space, we can't
9824         * relocate it unless we're able to allocate a new chunk below.
9825         *
9826         * Otherwise, we need to make sure we have room in the space to handle
9827         * all of the extents from this block group.  If we can, we're good
9828         */
9829        if ((space_info->total_bytes != block_group->key.offset) &&
9830            (btrfs_space_info_used(space_info, false) + min_free <
9831             space_info->total_bytes)) {
9832                spin_unlock(&space_info->lock);
9833                goto out;
9834        }
9835        spin_unlock(&space_info->lock);
9836
9837        /*
9838         * ok we don't have enough space, but maybe we have free space on our
9839         * devices to allocate new chunks for relocation, so loop through our
9840         * alloc devices and guess if we have enough space.  if this block
9841         * group is going to be restriped, run checks against the target
9842         * profile instead of the current one.
9843         */
9844        ret = -1;
9845
9846        /*
9847         * index:
9848         *      0: raid10
9849         *      1: raid1
9850         *      2: dup
9851         *      3: raid0
9852         *      4: single
9853         */
9854        target = get_restripe_target(fs_info, block_group->flags);
9855        if (target) {
9856                index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9857        } else {
9858                /*
9859                 * this is just a balance, so if we were marked as full
9860                 * we know there is no space for a new chunk
9861                 */
9862                if (full) {
9863                        if (debug)
9864                                btrfs_warn(fs_info,
9865                                           "no space to alloc new chunk for block group %llu",
9866                                           block_group->key.objectid);
9867                        goto out;
9868                }
9869
9870                index = btrfs_bg_flags_to_raid_index(block_group->flags);
9871        }
9872
9873        if (index == BTRFS_RAID_RAID10) {
9874                dev_min = 4;
9875                /* Divide by 2 */
9876                min_free >>= 1;
9877        } else if (index == BTRFS_RAID_RAID1) {
9878                dev_min = 2;
9879        } else if (index == BTRFS_RAID_DUP) {
9880                /* Multiply by 2 */
9881                min_free <<= 1;
9882        } else if (index == BTRFS_RAID_RAID0) {
9883                dev_min = fs_devices->rw_devices;
9884                min_free = div64_u64(min_free, dev_min);
9885        }
9886
9887        mutex_lock(&fs_info->chunk_mutex);
9888        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9889                u64 dev_offset;
9890
9891                /*
9892                 * check to make sure we can actually find a chunk with enough
9893                 * space to fit our block group in.
9894                 */
9895                if (device->total_bytes > device->bytes_used + min_free &&
9896                    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9897                        ret = find_free_dev_extent(device, min_free,
9898                                                   &dev_offset, NULL);
9899                        if (!ret)
9900                                dev_nr++;
9901
9902                        if (dev_nr >= dev_min)
9903                                break;
9904
9905                        ret = -1;
9906                }
9907        }
9908        if (debug && ret == -1)
9909                btrfs_warn(fs_info,
9910                           "no space to allocate a new chunk for block group %llu",
9911                           block_group->key.objectid);
9912        mutex_unlock(&fs_info->chunk_mutex);
9913out:
9914        btrfs_put_block_group(block_group);
9915        return ret;
9916}
9917
9918static int find_first_block_group(struct btrfs_fs_info *fs_info,
9919                                  struct btrfs_path *path,
9920                                  struct btrfs_key *key)
9921{
9922        struct btrfs_root *root = fs_info->extent_root;
9923        int ret = 0;
9924        struct btrfs_key found_key;
9925        struct extent_buffer *leaf;
9926        struct btrfs_block_group_item bg;
9927        u64 flags;
9928        int slot;
9929
9930        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9931        if (ret < 0)
9932                goto out;
9933
9934        while (1) {
9935                slot = path->slots[0];
9936                leaf = path->nodes[0];
9937                if (slot >= btrfs_header_nritems(leaf)) {
9938                        ret = btrfs_next_leaf(root, path);
9939                        if (ret == 0)
9940                                continue;
9941                        if (ret < 0)
9942                                goto out;
9943                        break;
9944                }
9945                btrfs_item_key_to_cpu(leaf, &found_key, slot);
9946
9947                if (found_key.objectid >= key->objectid &&
9948                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9949                        struct extent_map_tree *em_tree;
9950                        struct extent_map *em;
9951
9952                        em_tree = &root->fs_info->mapping_tree.map_tree;
9953                        read_lock(&em_tree->lock);
9954                        em = lookup_extent_mapping(em_tree, found_key.objectid,
9955                                                   found_key.offset);
9956                        read_unlock(&em_tree->lock);
9957                        if (!em) {
9958                                btrfs_err(fs_info,
9959                        "logical %llu len %llu found bg but no related chunk",
9960                                          found_key.objectid, found_key.offset);
9961                                ret = -ENOENT;
9962                        } else if (em->start != found_key.objectid ||
9963                                   em->len != found_key.offset) {
9964                                btrfs_err(fs_info,
9965                "block group %llu len %llu mismatch with chunk %llu len %llu",
9966                                          found_key.objectid, found_key.offset,
9967                                          em->start, em->len);
9968                                ret = -EUCLEAN;
9969                        } else {
9970                                read_extent_buffer(leaf, &bg,
9971                                        btrfs_item_ptr_offset(leaf, slot),
9972                                        sizeof(bg));
9973                                flags = btrfs_block_group_flags(&bg) &
9974                                        BTRFS_BLOCK_GROUP_TYPE_MASK;
9975
9976                                if (flags != (em->map_lookup->type &
9977                                              BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9978                                        btrfs_err(fs_info,
9979"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9980                                                found_key.objectid,
9981                                                found_key.offset, flags,
9982                                                (BTRFS_BLOCK_GROUP_TYPE_MASK &
9983                                                 em->map_lookup->type));
9984                                        ret = -EUCLEAN;
9985                                } else {
9986                                        ret = 0;
9987                                }
9988                        }
9989                        free_extent_map(em);
9990                        goto out;
9991                }
9992                path->slots[0]++;
9993        }
9994out:
9995        return ret;
9996}
9997
9998void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9999{
10000        struct btrfs_block_group_cache *block_group;
10001        u64 last = 0;
10002
10003        while (1) {
10004                struct inode *inode;
10005
10006                block_group = btrfs_lookup_first_block_group(info, last);
10007                while (block_group) {
10008                        wait_block_group_cache_done(block_group);
10009                        spin_lock(&block_group->lock);
10010                        if (block_group->iref)
10011                                break;
10012                        spin_unlock(&block_group->lock);
10013                        block_group = next_block_group(block_group);
10014                }
10015                if (!block_group) {
10016                        if (last == 0)
10017                                break;
10018                        last = 0;
10019                        continue;
10020                }
10021
10022                inode = block_group->inode;
10023                block_group->iref = 0;
10024                block_group->inode = NULL;
10025                spin_unlock(&block_group->lock);
10026                ASSERT(block_group->io_ctl.inode == NULL);
10027                iput(inode);
10028                last = block_group->key.objectid + block_group->key.offset;
10029                btrfs_put_block_group(block_group);
10030        }
10031}
10032
10033/*
10034 * Must be called only after stopping all workers, since we could have block
10035 * group caching kthreads running, and therefore they could race with us if we
10036 * freed the block groups before stopping them.
10037 */
10038int btrfs_free_block_groups(struct btrfs_fs_info *info)
10039{
10040        struct btrfs_block_group_cache *block_group;
10041        struct btrfs_space_info *space_info;
10042        struct btrfs_caching_control *caching_ctl;
10043        struct rb_node *n;
10044
10045        down_write(&info->commit_root_sem);
10046        while (!list_empty(&info->caching_block_groups)) {
10047                caching_ctl = list_entry(info->caching_block_groups.next,
10048                                         struct btrfs_caching_control, list);
10049                list_del(&caching_ctl->list);
10050                put_caching_control(caching_ctl);
10051        }
10052        up_write(&info->commit_root_sem);
10053
10054        spin_lock(&info->unused_bgs_lock);
10055        while (!list_empty(&info->unused_bgs)) {
10056                block_group = list_first_entry(&info->unused_bgs,
10057                                               struct btrfs_block_group_cache,
10058                                               bg_list);
10059                list_del_init(&block_group->bg_list);
10060                btrfs_put_block_group(block_group);
10061        }
10062        spin_unlock(&info->unused_bgs_lock);
10063
10064        spin_lock(&info->block_group_cache_lock);
10065        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10066                block_group = rb_entry(n, struct btrfs_block_group_cache,
10067                                       cache_node);
10068                rb_erase(&block_group->cache_node,
10069                         &info->block_group_cache_tree);
10070                RB_CLEAR_NODE(&block_group->cache_node);
10071                spin_unlock(&info->block_group_cache_lock);
10072
10073                down_write(&block_group->space_info->groups_sem);
10074                list_del(&block_group->list);
10075                up_write(&block_group->space_info->groups_sem);
10076
10077                /*
10078                 * We haven't cached this block group, which means we could
10079                 * possibly have excluded extents on this block group.
10080                 */
10081                if (block_group->cached == BTRFS_CACHE_NO ||
10082                    block_group->cached == BTRFS_CACHE_ERROR)
10083                        free_excluded_extents(block_group);
10084
10085                btrfs_remove_free_space_cache(block_group);
10086                ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10087                ASSERT(list_empty(&block_group->dirty_list));
10088                ASSERT(list_empty(&block_group->io_list));
10089                ASSERT(list_empty(&block_group->bg_list));
10090                ASSERT(atomic_read(&block_group->count) == 1);
10091                btrfs_put_block_group(block_group);
10092
10093                spin_lock(&info->block_group_cache_lock);
10094        }
10095        spin_unlock(&info->block_group_cache_lock);
10096
10097        /* now that all the block groups are freed, go through and
10098         * free all the space_info structs.  This is only called during
10099         * the final stages of unmount, and so we know nobody is
10100         * using them.  We call synchronize_rcu() once before we start,
10101         * just to be on the safe side.
10102         */
10103        synchronize_rcu();
10104
10105        release_global_block_rsv(info);
10106
10107        while (!list_empty(&info->space_info)) {
10108                int i;
10109
10110                space_info = list_entry(info->space_info.next,
10111                                        struct btrfs_space_info,
10112                                        list);
10113
10114                /*
10115                 * Do not hide this behind enospc_debug, this is actually
10116                 * important and indicates a real bug if this happens.
10117                 */
10118                if (WARN_ON(space_info->bytes_pinned > 0 ||
10119                            space_info->bytes_reserved > 0 ||
10120                            space_info->bytes_may_use > 0))
10121                        dump_space_info(info, space_info, 0, 0);
10122                list_del(&space_info->list);
10123                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10124                        struct kobject *kobj;
10125                        kobj = space_info->block_group_kobjs[i];
10126                        space_info->block_group_kobjs[i] = NULL;
10127                        if (kobj) {
10128                                kobject_del(kobj);
10129                                kobject_put(kobj);
10130                        }
10131                }
10132                kobject_del(&space_info->kobj);
10133                kobject_put(&space_info->kobj);
10134        }
10135        return 0;
10136}
10137
10138/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10139void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10140{
10141        struct btrfs_space_info *space_info;
10142        struct raid_kobject *rkobj;
10143        LIST_HEAD(list);
10144        int index;
10145        int ret = 0;
10146
10147        spin_lock(&fs_info->pending_raid_kobjs_lock);
10148        list_splice_init(&fs_info->pending_raid_kobjs, &list);
10149        spin_unlock(&fs_info->pending_raid_kobjs_lock);
10150
10151        list_for_each_entry(rkobj, &list, list) {
10152                space_info = __find_space_info(fs_info, rkobj->flags);
10153                index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10154
10155                ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10156                                  "%s", get_raid_name(index));
10157                if (ret) {
10158                        kobject_put(&rkobj->kobj);
10159                        break;
10160                }
10161        }
10162        if (ret)
10163                btrfs_warn(fs_info,
10164                           "failed to add kobject for block cache, ignoring");
10165}
10166
10167static void link_block_group(struct btrfs_block_group_cache *cache)
10168{
10169        struct btrfs_space_info *space_info = cache->space_info;
10170        struct btrfs_fs_info *fs_info = cache->fs_info;
10171        int index = btrfs_bg_flags_to_raid_index(cache->flags);
10172        bool first = false;
10173
10174        down_write(&space_info->groups_sem);
10175        if (list_empty(&space_info->block_groups[index]))
10176                first = true;
10177        list_add_tail(&cache->list, &space_info->block_groups[index]);
10178        up_write(&space_info->groups_sem);
10179
10180        if (first) {
10181                struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10182                if (!rkobj) {
10183                        btrfs_warn(cache->fs_info,
10184                                "couldn't alloc memory for raid level kobject");
10185                        return;
10186                }
10187                rkobj->flags = cache->flags;
10188                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10189
10190                spin_lock(&fs_info->pending_raid_kobjs_lock);
10191                list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10192                spin_unlock(&fs_info->pending_raid_kobjs_lock);
10193                space_info->block_group_kobjs[index] = &rkobj->kobj;
10194        }
10195}
10196
10197static struct btrfs_block_group_cache *
10198btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10199                               u64 start, u64 size)
10200{
10201        struct btrfs_block_group_cache *cache;
10202
10203        cache = kzalloc(sizeof(*cache), GFP_NOFS);
10204        if (!cache)
10205                return NULL;
10206
10207        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10208                                        GFP_NOFS);
10209        if (!cache->free_space_ctl) {
10210                kfree(cache);
10211                return NULL;
10212        }
10213
10214        cache->key.objectid = start;
10215        cache->key.offset = size;
10216        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10217
10218        cache->fs_info = fs_info;
10219        cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10220        set_free_space_tree_thresholds(cache);
10221
10222        atomic_set(&cache->count, 1);
10223        spin_lock_init(&cache->lock);
10224        init_rwsem(&cache->data_rwsem);
10225        INIT_LIST_HEAD(&cache->list);
10226        INIT_LIST_HEAD(&cache->cluster_list);
10227        INIT_LIST_HEAD(&cache->bg_list);
10228        INIT_LIST_HEAD(&cache->ro_list);
10229        INIT_LIST_HEAD(&cache->dirty_list);
10230        INIT_LIST_HEAD(&cache->io_list);
10231        btrfs_init_free_space_ctl(cache);
10232        atomic_set(&cache->trimming, 0);
10233        mutex_init(&cache->free_space_lock);
10234        btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10235
10236        return cache;
10237}
10238
10239
10240/*
10241 * Iterate all chunks and verify that each of them has the corresponding block
10242 * group
10243 */
10244static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10245{
10246        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10247        struct extent_map *em;
10248        struct btrfs_block_group_cache *bg;
10249        u64 start = 0;
10250        int ret = 0;
10251
10252        while (1) {
10253                read_lock(&map_tree->map_tree.lock);
10254                /*
10255                 * lookup_extent_mapping will return the first extent map
10256                 * intersecting the range, so setting @len to 1 is enough to
10257                 * get the first chunk.
10258                 */
10259                em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10260                read_unlock(&map_tree->map_tree.lock);
10261                if (!em)
10262                        break;
10263
10264                bg = btrfs_lookup_block_group(fs_info, em->start);
10265                if (!bg) {
10266                        btrfs_err(fs_info,
10267        "chunk start=%llu len=%llu doesn't have corresponding block group",
10268                                     em->start, em->len);
10269                        ret = -EUCLEAN;
10270                        free_extent_map(em);
10271                        break;
10272                }
10273                if (bg->key.objectid != em->start ||
10274                    bg->key.offset != em->len ||
10275                    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10276                    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10277                        btrfs_err(fs_info,
10278"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10279                                em->start, em->len,
10280                                em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10281                                bg->key.objectid, bg->key.offset,
10282                                bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10283                        ret = -EUCLEAN;
10284                        free_extent_map(em);
10285                        btrfs_put_block_group(bg);
10286                        break;
10287                }
10288                start = em->start + em->len;
10289                free_extent_map(em);
10290                btrfs_put_block_group(bg);
10291        }
10292        return ret;
10293}
10294
10295int btrfs_read_block_groups(struct btrfs_fs_info *info)
10296{
10297        struct btrfs_path *path;
10298        int ret;
10299        struct btrfs_block_group_cache *cache;
10300        struct btrfs_space_info *space_info;
10301        struct btrfs_key key;
10302        struct btrfs_key found_key;
10303        struct extent_buffer *leaf;
10304        int need_clear = 0;
10305        u64 cache_gen;
10306        u64 feature;
10307        int mixed;
10308
10309        feature = btrfs_super_incompat_flags(info->super_copy);
10310        mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10311
10312        key.objectid = 0;
10313        key.offset = 0;
10314        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10315        path = btrfs_alloc_path();
10316        if (!path)
10317                return -ENOMEM;
10318        path->reada = READA_FORWARD;
10319
10320        cache_gen = btrfs_super_cache_generation(info->super_copy);
10321        if (btrfs_test_opt(info, SPACE_CACHE) &&
10322            btrfs_super_generation(info->super_copy) != cache_gen)
10323                need_clear = 1;
10324        if (btrfs_test_opt(info, CLEAR_CACHE))
10325                need_clear = 1;
10326
10327        while (1) {
10328                ret = find_first_block_group(info, path, &key);
10329                if (ret > 0)
10330                        break;
10331                if (ret != 0)
10332                        goto error;
10333
10334                leaf = path->nodes[0];
10335                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10336
10337                cache = btrfs_create_block_group_cache(info, found_key.objectid,
10338                                                       found_key.offset);
10339                if (!cache) {
10340                        ret = -ENOMEM;
10341                        goto error;
10342                }
10343
10344                if (need_clear) {
10345                        /*
10346                         * When we mount with old space cache, we need to
10347                         * set BTRFS_DC_CLEAR and set dirty flag.
10348                         *
10349                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10350                         *    truncate the old free space cache inode and
10351                         *    setup a new one.
10352                         * b) Setting 'dirty flag' makes sure that we flush
10353                         *    the new space cache info onto disk.
10354                         */
10355                        if (btrfs_test_opt(info, SPACE_CACHE))
10356                                cache->disk_cache_state = BTRFS_DC_CLEAR;
10357                }
10358
10359                read_extent_buffer(leaf, &cache->item,
10360                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
10361                                   sizeof(cache->item));
10362                cache->flags = btrfs_block_group_flags(&cache->item);
10363                if (!mixed &&
10364                    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10365                    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10366                        btrfs_err(info,
10367"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10368                                  cache->key.objectid);
10369                        ret = -EINVAL;
10370                        goto error;
10371                }
10372
10373                key.objectid = found_key.objectid + found_key.offset;
10374                btrfs_release_path(path);
10375
10376                /*
10377                 * We need to exclude the super stripes now so that the space
10378                 * info has super bytes accounted for, otherwise we'll think
10379                 * we have more space than we actually do.
10380                 */
10381                ret = exclude_super_stripes(cache);
10382                if (ret) {
10383                        /*
10384                         * We may have excluded something, so call this just in
10385                         * case.
10386                         */
10387                        free_excluded_extents(cache);
10388                        btrfs_put_block_group(cache);
10389                        goto error;
10390                }
10391
10392                /*
10393                 * check for two cases, either we are full, and therefore
10394                 * don't need to bother with the caching work since we won't
10395                 * find any space, or we are empty, and we can just add all
10396                 * the space in and be done with it.  This saves us _a_lot_ of
10397                 * time, particularly in the full case.
10398                 */
10399                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10400                        cache->last_byte_to_unpin = (u64)-1;
10401                        cache->cached = BTRFS_CACHE_FINISHED;
10402                        free_excluded_extents(cache);
10403                } else if (btrfs_block_group_used(&cache->item) == 0) {
10404                        cache->last_byte_to_unpin = (u64)-1;
10405                        cache->cached = BTRFS_CACHE_FINISHED;
10406                        add_new_free_space(cache, found_key.objectid,
10407                                           found_key.objectid +
10408                                           found_key.offset);
10409                        free_excluded_extents(cache);
10410                }
10411
10412                ret = btrfs_add_block_group_cache(info, cache);
10413                if (ret) {
10414                        btrfs_remove_free_space_cache(cache);
10415                        btrfs_put_block_group(cache);
10416                        goto error;
10417                }
10418
10419                trace_btrfs_add_block_group(info, cache, 0);
10420                update_space_info(info, cache->flags, found_key.offset,
10421                                  btrfs_block_group_used(&cache->item),
10422                                  cache->bytes_super, &space_info);
10423
10424                cache->space_info = space_info;
10425
10426                link_block_group(cache);
10427
10428                set_avail_alloc_bits(info, cache->flags);
10429                if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10430                        inc_block_group_ro(cache, 1);
10431                } else if (btrfs_block_group_used(&cache->item) == 0) {
10432                        ASSERT(list_empty(&cache->bg_list));
10433                        btrfs_mark_bg_unused(cache);
10434                }
10435        }
10436
10437        list_for_each_entry_rcu(space_info, &info->space_info, list) {
10438                if (!(get_alloc_profile(info, space_info->flags) &
10439                      (BTRFS_BLOCK_GROUP_RAID10 |
10440                       BTRFS_BLOCK_GROUP_RAID1 |
10441                       BTRFS_BLOCK_GROUP_RAID5 |
10442                       BTRFS_BLOCK_GROUP_RAID6 |
10443                       BTRFS_BLOCK_GROUP_DUP)))
10444                        continue;
10445                /*
10446                 * avoid allocating from un-mirrored block group if there are
10447                 * mirrored block groups.
10448                 */
10449                list_for_each_entry(cache,
10450                                &space_info->block_groups[BTRFS_RAID_RAID0],
10451                                list)
10452                        inc_block_group_ro(cache, 1);
10453                list_for_each_entry(cache,
10454                                &space_info->block_groups[BTRFS_RAID_SINGLE],
10455                                list)
10456                        inc_block_group_ro(cache, 1);
10457        }
10458
10459        btrfs_add_raid_kobjects(info);
10460        init_global_block_rsv(info);
10461        ret = check_chunk_block_group_mappings(info);
10462error:
10463        btrfs_free_path(path);
10464        return ret;
10465}
10466
10467void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10468{
10469        struct btrfs_fs_info *fs_info = trans->fs_info;
10470        struct btrfs_block_group_cache *block_group;
10471        struct btrfs_root *extent_root = fs_info->extent_root;
10472        struct btrfs_block_group_item item;
10473        struct btrfs_key key;
10474        int ret = 0;
10475
10476        if (!trans->can_flush_pending_bgs)
10477                return;
10478
10479        while (!list_empty(&trans->new_bgs)) {
10480                block_group = list_first_entry(&trans->new_bgs,
10481                                               struct btrfs_block_group_cache,
10482                                               bg_list);
10483                if (ret)
10484                        goto next;
10485
10486                spin_lock(&block_group->lock);
10487                memcpy(&item, &block_group->item, sizeof(item));
10488                memcpy(&key, &block_group->key, sizeof(key));
10489                spin_unlock(&block_group->lock);
10490
10491                ret = btrfs_insert_item(trans, extent_root, &key, &item,
10492                                        sizeof(item));
10493                if (ret)
10494                        btrfs_abort_transaction(trans, ret);
10495                ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10496                if (ret)
10497                        btrfs_abort_transaction(trans, ret);
10498                add_block_group_free_space(trans, block_group);
10499                /* already aborted the transaction if it failed. */
10500next:
10501                btrfs_delayed_refs_rsv_release(fs_info, 1);
10502                list_del_init(&block_group->bg_list);
10503        }
10504        btrfs_trans_release_chunk_metadata(trans);
10505}
10506
10507int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10508                           u64 type, u64 chunk_offset, u64 size)
10509{
10510        struct btrfs_fs_info *fs_info = trans->fs_info;
10511        struct btrfs_block_group_cache *cache;
10512        int ret;
10513
10514        btrfs_set_log_full_commit(trans);
10515
10516        cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10517        if (!cache)
10518                return -ENOMEM;
10519
10520        btrfs_set_block_group_used(&cache->item, bytes_used);
10521        btrfs_set_block_group_chunk_objectid(&cache->item,
10522                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10523        btrfs_set_block_group_flags(&cache->item, type);
10524
10525        cache->flags = type;
10526        cache->last_byte_to_unpin = (u64)-1;
10527        cache->cached = BTRFS_CACHE_FINISHED;
10528        cache->needs_free_space = 1;
10529        ret = exclude_super_stripes(cache);
10530        if (ret) {
10531                /*
10532                 * We may have excluded something, so call this just in
10533                 * case.
10534                 */
10535                free_excluded_extents(cache);
10536                btrfs_put_block_group(cache);
10537                return ret;
10538        }
10539
10540        add_new_free_space(cache, chunk_offset, chunk_offset + size);
10541
10542        free_excluded_extents(cache);
10543
10544#ifdef CONFIG_BTRFS_DEBUG
10545        if (btrfs_should_fragment_free_space(cache)) {
10546                u64 new_bytes_used = size - bytes_used;
10547
10548                bytes_used += new_bytes_used >> 1;
10549                fragment_free_space(cache);
10550        }
10551#endif
10552        /*
10553         * Ensure the corresponding space_info object is created and
10554         * assigned to our block group. We want our bg to be added to the rbtree
10555         * with its ->space_info set.
10556         */
10557        cache->space_info = __find_space_info(fs_info, cache->flags);
10558        ASSERT(cache->space_info);
10559
10560        ret = btrfs_add_block_group_cache(fs_info, cache);
10561        if (ret) {
10562                btrfs_remove_free_space_cache(cache);
10563                btrfs_put_block_group(cache);
10564                return ret;
10565        }
10566
10567        /*
10568         * Now that our block group has its ->space_info set and is inserted in
10569         * the rbtree, update the space info's counters.
10570         */
10571        trace_btrfs_add_block_group(fs_info, cache, 1);
10572        update_space_info(fs_info, cache->flags, size, bytes_used,
10573                                cache->bytes_super, &cache->space_info);
10574        update_global_block_rsv(fs_info);
10575
10576        link_block_group(cache);
10577
10578        list_add_tail(&cache->bg_list, &trans->new_bgs);
10579        trans->delayed_ref_updates++;
10580        btrfs_update_delayed_refs_rsv(trans);
10581
10582        set_avail_alloc_bits(fs_info, type);
10583        return 0;
10584}
10585
10586static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10587{
10588        u64 extra_flags = chunk_to_extended(flags) &
10589                                BTRFS_EXTENDED_PROFILE_MASK;
10590
10591        write_seqlock(&fs_info->profiles_lock);
10592        if (flags & BTRFS_BLOCK_GROUP_DATA)
10593                fs_info->avail_data_alloc_bits &= ~extra_flags;
10594        if (flags & BTRFS_BLOCK_GROUP_METADATA)
10595                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10596        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10597                fs_info->avail_system_alloc_bits &= ~extra_flags;
10598        write_sequnlock(&fs_info->profiles_lock);
10599}
10600
10601int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10602                             u64 group_start, struct extent_map *em)
10603{
10604        struct btrfs_fs_info *fs_info = trans->fs_info;
10605        struct btrfs_root *root = fs_info->extent_root;
10606        struct btrfs_path *path;
10607        struct btrfs_block_group_cache *block_group;
10608        struct btrfs_free_cluster *cluster;
10609        struct btrfs_root *tree_root = fs_info->tree_root;
10610        struct btrfs_key key;
10611        struct inode *inode;
10612        struct kobject *kobj = NULL;
10613        int ret;
10614        int index;
10615        int factor;
10616        struct btrfs_caching_control *caching_ctl = NULL;
10617        bool remove_em;
10618        bool remove_rsv = false;
10619
10620        block_group = btrfs_lookup_block_group(fs_info, group_start);
10621        BUG_ON(!block_group);
10622        BUG_ON(!block_group->ro);
10623
10624        trace_btrfs_remove_block_group(block_group);
10625        /*
10626         * Free the reserved super bytes from this block group before
10627         * remove it.
10628         */
10629        free_excluded_extents(block_group);
10630        btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10631                                  block_group->key.offset);
10632
10633        memcpy(&key, &block_group->key, sizeof(key));
10634        index = btrfs_bg_flags_to_raid_index(block_group->flags);
10635        factor = btrfs_bg_type_to_factor(block_group->flags);
10636
10637        /* make sure this block group isn't part of an allocation cluster */
10638        cluster = &fs_info->data_alloc_cluster;
10639        spin_lock(&cluster->refill_lock);
10640        btrfs_return_cluster_to_free_space(block_group, cluster);
10641        spin_unlock(&cluster->refill_lock);
10642
10643        /*
10644         * make sure this block group isn't part of a metadata
10645         * allocation cluster
10646         */
10647        cluster = &fs_info->meta_alloc_cluster;
10648        spin_lock(&cluster->refill_lock);
10649        btrfs_return_cluster_to_free_space(block_group, cluster);
10650        spin_unlock(&cluster->refill_lock);
10651
10652        path = btrfs_alloc_path();
10653        if (!path) {
10654                ret = -ENOMEM;
10655                goto out;
10656        }
10657
10658        /*
10659         * get the inode first so any iput calls done for the io_list
10660         * aren't the final iput (no unlinks allowed now)
10661         */
10662        inode = lookup_free_space_inode(block_group, path);
10663
10664        mutex_lock(&trans->transaction->cache_write_mutex);
10665        /*
10666         * Make sure our free space cache IO is done before removing the
10667         * free space inode
10668         */
10669        spin_lock(&trans->transaction->dirty_bgs_lock);
10670        if (!list_empty(&block_group->io_list)) {
10671                list_del_init(&block_group->io_list);
10672
10673                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10674
10675                spin_unlock(&trans->transaction->dirty_bgs_lock);
10676                btrfs_wait_cache_io(trans, block_group, path);
10677                btrfs_put_block_group(block_group);
10678                spin_lock(&trans->transaction->dirty_bgs_lock);
10679        }
10680
10681        if (!list_empty(&block_group->dirty_list)) {
10682                list_del_init(&block_group->dirty_list);
10683                remove_rsv = true;
10684                btrfs_put_block_group(block_group);
10685        }
10686        spin_unlock(&trans->transaction->dirty_bgs_lock);
10687        mutex_unlock(&trans->transaction->cache_write_mutex);
10688
10689        if (!IS_ERR(inode)) {
10690                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10691                if (ret) {
10692                        btrfs_add_delayed_iput(inode);
10693                        goto out;
10694                }
10695                clear_nlink(inode);
10696                /* One for the block groups ref */
10697                spin_lock(&block_group->lock);
10698                if (block_group->iref) {
10699                        block_group->iref = 0;
10700                        block_group->inode = NULL;
10701                        spin_unlock(&block_group->lock);
10702                        iput(inode);
10703                } else {
10704                        spin_unlock(&block_group->lock);
10705                }
10706                /* One for our lookup ref */
10707                btrfs_add_delayed_iput(inode);
10708        }
10709
10710        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10711        key.offset = block_group->key.objectid;
10712        key.type = 0;
10713
10714        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10715        if (ret < 0)
10716                goto out;
10717        if (ret > 0)
10718                btrfs_release_path(path);
10719        if (ret == 0) {
10720                ret = btrfs_del_item(trans, tree_root, path);
10721                if (ret)
10722                        goto out;
10723                btrfs_release_path(path);
10724        }
10725
10726        spin_lock(&fs_info->block_group_cache_lock);
10727        rb_erase(&block_group->cache_node,
10728                 &fs_info->block_group_cache_tree);
10729        RB_CLEAR_NODE(&block_group->cache_node);
10730
10731        if (fs_info->first_logical_byte == block_group->key.objectid)
10732                fs_info->first_logical_byte = (u64)-1;
10733        spin_unlock(&fs_info->block_group_cache_lock);
10734
10735        down_write(&block_group->space_info->groups_sem);
10736        /*
10737         * we must use list_del_init so people can check to see if they
10738         * are still on the list after taking the semaphore
10739         */
10740        list_del_init(&block_group->list);
10741        if (list_empty(&block_group->space_info->block_groups[index])) {
10742                kobj = block_group->space_info->block_group_kobjs[index];
10743                block_group->space_info->block_group_kobjs[index] = NULL;
10744                clear_avail_alloc_bits(fs_info, block_group->flags);
10745        }
10746        up_write(&block_group->space_info->groups_sem);
10747        if (kobj) {
10748                kobject_del(kobj);
10749                kobject_put(kobj);
10750        }
10751
10752        if (block_group->has_caching_ctl)
10753                caching_ctl = get_caching_control(block_group);
10754        if (block_group->cached == BTRFS_CACHE_STARTED)
10755                wait_block_group_cache_done(block_group);
10756        if (block_group->has_caching_ctl) {
10757                down_write(&fs_info->commit_root_sem);
10758                if (!caching_ctl) {
10759                        struct btrfs_caching_control *ctl;
10760
10761                        list_for_each_entry(ctl,
10762                                    &fs_info->caching_block_groups, list)
10763                                if (ctl->block_group == block_group) {
10764                                        caching_ctl = ctl;
10765                                        refcount_inc(&caching_ctl->count);
10766                                        break;
10767                                }
10768                }
10769                if (caching_ctl)
10770                        list_del_init(&caching_ctl->list);
10771                up_write(&fs_info->commit_root_sem);
10772                if (caching_ctl) {
10773                        /* Once for the caching bgs list and once for us. */
10774                        put_caching_control(caching_ctl);
10775                        put_caching_control(caching_ctl);
10776                }
10777        }
10778
10779        spin_lock(&trans->transaction->dirty_bgs_lock);
10780        WARN_ON(!list_empty(&block_group->dirty_list));
10781        WARN_ON(!list_empty(&block_group->io_list));
10782        spin_unlock(&trans->transaction->dirty_bgs_lock);
10783
10784        btrfs_remove_free_space_cache(block_group);
10785
10786        spin_lock(&block_group->space_info->lock);
10787        list_del_init(&block_group->ro_list);
10788
10789        if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10790                WARN_ON(block_group->space_info->total_bytes
10791                        < block_group->key.offset);
10792                WARN_ON(block_group->space_info->bytes_readonly
10793                        < block_group->key.offset);
10794                WARN_ON(block_group->space_info->disk_total
10795                        < block_group->key.offset * factor);
10796        }
10797        block_group->space_info->total_bytes -= block_group->key.offset;
10798        block_group->space_info->bytes_readonly -= block_group->key.offset;
10799        block_group->space_info->disk_total -= block_group->key.offset * factor;
10800
10801        spin_unlock(&block_group->space_info->lock);
10802
10803        memcpy(&key, &block_group->key, sizeof(key));
10804
10805        mutex_lock(&fs_info->chunk_mutex);
10806        spin_lock(&block_group->lock);
10807        block_group->removed = 1;
10808        /*
10809         * At this point trimming can't start on this block group, because we
10810         * removed the block group from the tree fs_info->block_group_cache_tree
10811         * so no one can't find it anymore and even if someone already got this
10812         * block group before we removed it from the rbtree, they have already
10813         * incremented block_group->trimming - if they didn't, they won't find
10814         * any free space entries because we already removed them all when we
10815         * called btrfs_remove_free_space_cache().
10816         *
10817         * And we must not remove the extent map from the fs_info->mapping_tree
10818         * to prevent the same logical address range and physical device space
10819         * ranges from being reused for a new block group. This is because our
10820         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10821         * completely transactionless, so while it is trimming a range the
10822         * currently running transaction might finish and a new one start,
10823         * allowing for new block groups to be created that can reuse the same
10824         * physical device locations unless we take this special care.
10825         *
10826         * There may also be an implicit trim operation if the file system
10827         * is mounted with -odiscard. The same protections must remain
10828         * in place until the extents have been discarded completely when
10829         * the transaction commit has completed.
10830         */
10831        remove_em = (atomic_read(&block_group->trimming) == 0);
10832        spin_unlock(&block_group->lock);
10833
10834        mutex_unlock(&fs_info->chunk_mutex);
10835
10836        ret = remove_block_group_free_space(trans, block_group);
10837        if (ret)
10838                goto out;
10839
10840        btrfs_put_block_group(block_group);
10841        btrfs_put_block_group(block_group);
10842
10843        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10844        if (ret > 0)
10845                ret = -EIO;
10846        if (ret < 0)
10847                goto out;
10848
10849        ret = btrfs_del_item(trans, root, path);
10850        if (ret)
10851                goto out;
10852
10853        if (remove_em) {
10854                struct extent_map_tree *em_tree;
10855
10856                em_tree = &fs_info->mapping_tree.map_tree;
10857                write_lock(&em_tree->lock);
10858                remove_extent_mapping(em_tree, em);
10859                write_unlock(&em_tree->lock);
10860                /* once for the tree */
10861                free_extent_map(em);
10862        }
10863out:
10864        if (remove_rsv)
10865                btrfs_delayed_refs_rsv_release(fs_info, 1);
10866        btrfs_free_path(path);
10867        return ret;
10868}
10869
10870struct btrfs_trans_handle *
10871btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10872                                     const u64 chunk_offset)
10873{
10874        struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10875        struct extent_map *em;
10876        struct map_lookup *map;
10877        unsigned int num_items;
10878
10879        read_lock(&em_tree->lock);
10880        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10881        read_unlock(&em_tree->lock);
10882        ASSERT(em && em->start == chunk_offset);
10883
10884        /*
10885         * We need to reserve 3 + N units from the metadata space info in order
10886         * to remove a block group (done at btrfs_remove_chunk() and at
10887         * btrfs_remove_block_group()), which are used for:
10888         *
10889         * 1 unit for adding the free space inode's orphan (located in the tree
10890         * of tree roots).
10891         * 1 unit for deleting the block group item (located in the extent
10892         * tree).
10893         * 1 unit for deleting the free space item (located in tree of tree
10894         * roots).
10895         * N units for deleting N device extent items corresponding to each
10896         * stripe (located in the device tree).
10897         *
10898         * In order to remove a block group we also need to reserve units in the
10899         * system space info in order to update the chunk tree (update one or
10900         * more device items and remove one chunk item), but this is done at
10901         * btrfs_remove_chunk() through a call to check_system_chunk().
10902         */
10903        map = em->map_lookup;
10904        num_items = 3 + map->num_stripes;
10905        free_extent_map(em);
10906
10907        return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10908                                                           num_items, 1);
10909}
10910
10911/*
10912 * Process the unused_bgs list and remove any that don't have any allocated
10913 * space inside of them.
10914 */
10915void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10916{
10917        struct btrfs_block_group_cache *block_group;
10918        struct btrfs_space_info *space_info;
10919        struct btrfs_trans_handle *trans;
10920        int ret = 0;
10921
10922        if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10923                return;
10924
10925        spin_lock(&fs_info->unused_bgs_lock);
10926        while (!list_empty(&fs_info->unused_bgs)) {
10927                u64 start, end;
10928                int trimming;
10929
10930                block_group = list_first_entry(&fs_info->unused_bgs,
10931                                               struct btrfs_block_group_cache,
10932                                               bg_list);
10933                list_del_init(&block_group->bg_list);
10934
10935                space_info = block_group->space_info;
10936
10937                if (ret || btrfs_mixed_space_info(space_info)) {
10938                        btrfs_put_block_group(block_group);
10939                        continue;
10940                }
10941                spin_unlock(&fs_info->unused_bgs_lock);
10942
10943                mutex_lock(&fs_info->delete_unused_bgs_mutex);
10944
10945                /* Don't want to race with allocators so take the groups_sem */
10946                down_write(&space_info->groups_sem);
10947                spin_lock(&block_group->lock);
10948                if (block_group->reserved || block_group->pinned ||
10949                    btrfs_block_group_used(&block_group->item) ||
10950                    block_group->ro ||
10951                    list_is_singular(&block_group->list)) {
10952                        /*
10953                         * We want to bail if we made new allocations or have
10954                         * outstanding allocations in this block group.  We do
10955                         * the ro check in case balance is currently acting on
10956                         * this block group.
10957                         */
10958                        trace_btrfs_skip_unused_block_group(block_group);
10959                        spin_unlock(&block_group->lock);
10960                        up_write(&space_info->groups_sem);
10961                        goto next;
10962                }
10963                spin_unlock(&block_group->lock);
10964
10965                /* We don't want to force the issue, only flip if it's ok. */
10966                ret = inc_block_group_ro(block_group, 0);
10967                up_write(&space_info->groups_sem);
10968                if (ret < 0) {
10969                        ret = 0;
10970                        goto next;
10971                }
10972
10973                /*
10974                 * Want to do this before we do anything else so we can recover
10975                 * properly if we fail to join the transaction.
10976                 */
10977                trans = btrfs_start_trans_remove_block_group(fs_info,
10978                                                     block_group->key.objectid);
10979                if (IS_ERR(trans)) {
10980                        btrfs_dec_block_group_ro(block_group);
10981                        ret = PTR_ERR(trans);
10982                        goto next;
10983                }
10984
10985                /*
10986                 * We could have pending pinned extents for this block group,
10987                 * just delete them, we don't care about them anymore.
10988                 */
10989                start = block_group->key.objectid;
10990                end = start + block_group->key.offset - 1;
10991                /*
10992                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10993                 * btrfs_finish_extent_commit(). If we are at transaction N,
10994                 * another task might be running finish_extent_commit() for the
10995                 * previous transaction N - 1, and have seen a range belonging
10996                 * to the block group in freed_extents[] before we were able to
10997                 * clear the whole block group range from freed_extents[]. This
10998                 * means that task can lookup for the block group after we
10999                 * unpinned it from freed_extents[] and removed it, leading to
11000                 * a BUG_ON() at btrfs_unpin_extent_range().
11001                 */
11002                mutex_lock(&fs_info->unused_bg_unpin_mutex);
11003                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11004                                  EXTENT_DIRTY);
11005                if (ret) {
11006                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11007                        btrfs_dec_block_group_ro(block_group);
11008                        goto end_trans;
11009                }
11010                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11011                                  EXTENT_DIRTY);
11012                if (ret) {
11013                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11014                        btrfs_dec_block_group_ro(block_group);
11015                        goto end_trans;
11016                }
11017                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11018
11019                /* Reset pinned so btrfs_put_block_group doesn't complain */
11020                spin_lock(&space_info->lock);
11021                spin_lock(&block_group->lock);
11022
11023                update_bytes_pinned(space_info, -block_group->pinned);
11024                space_info->bytes_readonly += block_group->pinned;
11025                percpu_counter_add_batch(&space_info->total_bytes_pinned,
11026                                   -block_group->pinned,
11027                                   BTRFS_TOTAL_BYTES_PINNED_BATCH);
11028                block_group->pinned = 0;
11029
11030                spin_unlock(&block_group->lock);
11031                spin_unlock(&space_info->lock);
11032
11033                /* DISCARD can flip during remount */
11034                trimming = btrfs_test_opt(fs_info, DISCARD);
11035
11036                /* Implicit trim during transaction commit. */
11037                if (trimming)
11038                        btrfs_get_block_group_trimming(block_group);
11039
11040                /*
11041                 * Btrfs_remove_chunk will abort the transaction if things go
11042                 * horribly wrong.
11043                 */
11044                ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11045
11046                if (ret) {
11047                        if (trimming)
11048                                btrfs_put_block_group_trimming(block_group);
11049                        goto end_trans;
11050                }
11051
11052                /*
11053                 * If we're not mounted with -odiscard, we can just forget
11054                 * about this block group. Otherwise we'll need to wait
11055                 * until transaction commit to do the actual discard.
11056                 */
11057                if (trimming) {
11058                        spin_lock(&fs_info->unused_bgs_lock);
11059                        /*
11060                         * A concurrent scrub might have added us to the list
11061                         * fs_info->unused_bgs, so use a list_move operation
11062                         * to add the block group to the deleted_bgs list.
11063                         */
11064                        list_move(&block_group->bg_list,
11065                                  &trans->transaction->deleted_bgs);
11066                        spin_unlock(&fs_info->unused_bgs_lock);
11067                        btrfs_get_block_group(block_group);
11068                }
11069end_trans:
11070                btrfs_end_transaction(trans);
11071next:
11072                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11073                btrfs_put_block_group(block_group);
11074                spin_lock(&fs_info->unused_bgs_lock);
11075        }
11076        spin_unlock(&fs_info->unused_bgs_lock);
11077}
11078
11079int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11080{
11081        struct btrfs_super_block *disk_super;
11082        u64 features;
11083        u64 flags;
11084        int mixed = 0;
11085        int ret;
11086
11087        disk_super = fs_info->super_copy;
11088        if (!btrfs_super_root(disk_super))
11089                return -EINVAL;
11090
11091        features = btrfs_super_incompat_flags(disk_super);
11092        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11093                mixed = 1;
11094
11095        flags = BTRFS_BLOCK_GROUP_SYSTEM;
11096        ret = create_space_info(fs_info, flags);
11097        if (ret)
11098                goto out;
11099
11100        if (mixed) {
11101                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11102                ret = create_space_info(fs_info, flags);
11103        } else {
11104                flags = BTRFS_BLOCK_GROUP_METADATA;
11105                ret = create_space_info(fs_info, flags);
11106                if (ret)
11107                        goto out;
11108
11109                flags = BTRFS_BLOCK_GROUP_DATA;
11110                ret = create_space_info(fs_info, flags);
11111        }
11112out:
11113        return ret;
11114}
11115
11116int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11117                                   u64 start, u64 end)
11118{
11119        return unpin_extent_range(fs_info, start, end, false);
11120}
11121
11122/*
11123 * It used to be that old block groups would be left around forever.
11124 * Iterating over them would be enough to trim unused space.  Since we
11125 * now automatically remove them, we also need to iterate over unallocated
11126 * space.
11127 *
11128 * We don't want a transaction for this since the discard may take a
11129 * substantial amount of time.  We don't require that a transaction be
11130 * running, but we do need to take a running transaction into account
11131 * to ensure that we're not discarding chunks that were released or
11132 * allocated in the current transaction.
11133 *
11134 * Holding the chunks lock will prevent other threads from allocating
11135 * or releasing chunks, but it won't prevent a running transaction
11136 * from committing and releasing the memory that the pending chunks
11137 * list head uses.  For that, we need to take a reference to the
11138 * transaction and hold the commit root sem.  We only need to hold
11139 * it while performing the free space search since we have already
11140 * held back allocations.
11141 */
11142static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
11143{
11144        u64 start = SZ_1M, len = 0, end = 0;
11145        int ret;
11146
11147        *trimmed = 0;
11148
11149        /* Discard not supported = nothing to do. */
11150        if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11151                return 0;
11152
11153        /* Not writable = nothing to do. */
11154        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11155                return 0;
11156
11157        /* No free space = nothing to do. */
11158        if (device->total_bytes <= device->bytes_used)
11159                return 0;
11160
11161        ret = 0;
11162
11163        while (1) {
11164                struct btrfs_fs_info *fs_info = device->fs_info;
11165                u64 bytes;
11166
11167                ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11168                if (ret)
11169                        break;
11170
11171                find_first_clear_extent_bit(&device->alloc_state, start,
11172                                            &start, &end,
11173                                            CHUNK_TRIMMED | CHUNK_ALLOCATED);
11174                /*
11175                 * If find_first_clear_extent_bit find a range that spans the
11176                 * end of the device it will set end to -1, in this case it's up
11177                 * to the caller to trim the value to the size of the device.
11178                 */
11179                end = min(end, device->total_bytes - 1);
11180                len = end - start + 1;
11181
11182                /* We didn't find any extents */
11183                if (!len) {
11184                        mutex_unlock(&fs_info->chunk_mutex);
11185                        ret = 0;
11186                        break;
11187                }
11188
11189                ret = btrfs_issue_discard(device->bdev, start, len,
11190                                          &bytes);
11191                if (!ret)
11192                        set_extent_bits(&device->alloc_state, start,
11193                                        start + bytes - 1,
11194                                        CHUNK_TRIMMED);
11195                mutex_unlock(&fs_info->chunk_mutex);
11196
11197                if (ret)
11198                        break;
11199
11200                start += len;
11201                *trimmed += bytes;
11202
11203                if (fatal_signal_pending(current)) {
11204                        ret = -ERESTARTSYS;
11205                        break;
11206                }
11207
11208                cond_resched();
11209        }
11210
11211        return ret;
11212}
11213
11214/*
11215 * Trim the whole filesystem by:
11216 * 1) trimming the free space in each block group
11217 * 2) trimming the unallocated space on each device
11218 *
11219 * This will also continue trimming even if a block group or device encounters
11220 * an error.  The return value will be the last error, or 0 if nothing bad
11221 * happens.
11222 */
11223int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11224{
11225        struct btrfs_block_group_cache *cache = NULL;
11226        struct btrfs_device *device;
11227        struct list_head *devices;
11228        u64 group_trimmed;
11229        u64 start;
11230        u64 end;
11231        u64 trimmed = 0;
11232        u64 bg_failed = 0;
11233        u64 dev_failed = 0;
11234        int bg_ret = 0;
11235        int dev_ret = 0;
11236        int ret = 0;
11237
11238        cache = btrfs_lookup_first_block_group(fs_info, range->start);
11239        for (; cache; cache = next_block_group(cache)) {
11240                if (cache->key.objectid >= (range->start + range->len)) {
11241                        btrfs_put_block_group(cache);
11242                        break;
11243                }
11244
11245                start = max(range->start, cache->key.objectid);
11246                end = min(range->start + range->len,
11247                                cache->key.objectid + cache->key.offset);
11248
11249                if (end - start >= range->minlen) {
11250                        if (!block_group_cache_done(cache)) {
11251                                ret = cache_block_group(cache, 0);
11252                                if (ret) {
11253                                        bg_failed++;
11254                                        bg_ret = ret;
11255                                        continue;
11256                                }
11257                                ret = wait_block_group_cache_done(cache);
11258                                if (ret) {
11259                                        bg_failed++;
11260                                        bg_ret = ret;
11261                                        continue;
11262                                }
11263                        }
11264                        ret = btrfs_trim_block_group(cache,
11265                                                     &group_trimmed,
11266                                                     start,
11267                                                     end,
11268                                                     range->minlen);
11269
11270                        trimmed += group_trimmed;
11271                        if (ret) {
11272                                bg_failed++;
11273                                bg_ret = ret;
11274                                continue;
11275                        }
11276                }
11277        }
11278
11279        if (bg_failed)
11280                btrfs_warn(fs_info,
11281                        "failed to trim %llu block group(s), last error %d",
11282                        bg_failed, bg_ret);
11283        mutex_lock(&fs_info->fs_devices->device_list_mutex);
11284        devices = &fs_info->fs_devices->devices;
11285        list_for_each_entry(device, devices, dev_list) {
11286                ret = btrfs_trim_free_extents(device, &group_trimmed);
11287                if (ret) {
11288                        dev_failed++;
11289                        dev_ret = ret;
11290                        break;
11291                }
11292
11293                trimmed += group_trimmed;
11294        }
11295        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11296
11297        if (dev_failed)
11298                btrfs_warn(fs_info,
11299                        "failed to trim %llu device(s), last error %d",
11300                        dev_failed, dev_ret);
11301        range->len = trimmed;
11302        if (bg_ret)
11303                return bg_ret;
11304        return dev_ret;
11305}
11306
11307/*
11308 * btrfs_{start,end}_write_no_snapshotting() are similar to
11309 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11310 * data into the page cache through nocow before the subvolume is snapshoted,
11311 * but flush the data into disk after the snapshot creation, or to prevent
11312 * operations while snapshotting is ongoing and that cause the snapshot to be
11313 * inconsistent (writes followed by expanding truncates for example).
11314 */
11315void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11316{
11317        percpu_counter_dec(&root->subv_writers->counter);
11318        cond_wake_up(&root->subv_writers->wait);
11319}
11320
11321int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11322{
11323        if (atomic_read(&root->will_be_snapshotted))
11324                return 0;
11325
11326        percpu_counter_inc(&root->subv_writers->counter);
11327        /*
11328         * Make sure counter is updated before we check for snapshot creation.
11329         */
11330        smp_mb();
11331        if (atomic_read(&root->will_be_snapshotted)) {
11332                btrfs_end_write_no_snapshotting(root);
11333                return 0;
11334        }
11335        return 1;
11336}
11337
11338void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11339{
11340        while (true) {
11341                int ret;
11342
11343                ret = btrfs_start_write_no_snapshotting(root);
11344                if (ret)
11345                        break;
11346                wait_var_event(&root->will_be_snapshotted,
11347                               !atomic_read(&root->will_be_snapshotted));
11348        }
11349}
11350
11351void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11352{
11353        struct btrfs_fs_info *fs_info = bg->fs_info;
11354
11355        spin_lock(&fs_info->unused_bgs_lock);
11356        if (list_empty(&bg->bg_list)) {
11357                btrfs_get_block_group(bg);
11358                trace_btrfs_add_unused_block_group(bg);
11359                list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11360        }
11361        spin_unlock(&fs_info->unused_bgs_lock);
11362}
11363