linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "locking.h"
  17#include "tree-log.h"
  18#include "inode-map.h"
  19#include "volumes.h"
  20#include "dev-replace.h"
  21#include "qgroup.h"
  22
  23#define BTRFS_ROOT_TRANS_TAG 0
  24
  25static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  26        [TRANS_STATE_RUNNING]           = 0U,
  27        [TRANS_STATE_BLOCKED]           =  __TRANS_START,
  28        [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
  29        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
  30                                           __TRANS_ATTACH |
  31                                           __TRANS_JOIN),
  32        [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
  33                                           __TRANS_ATTACH |
  34                                           __TRANS_JOIN |
  35                                           __TRANS_JOIN_NOLOCK),
  36        [TRANS_STATE_COMPLETED]         = (__TRANS_START |
  37                                           __TRANS_ATTACH |
  38                                           __TRANS_JOIN |
  39                                           __TRANS_JOIN_NOLOCK),
  40};
  41
  42void btrfs_put_transaction(struct btrfs_transaction *transaction)
  43{
  44        WARN_ON(refcount_read(&transaction->use_count) == 0);
  45        if (refcount_dec_and_test(&transaction->use_count)) {
  46                BUG_ON(!list_empty(&transaction->list));
  47                WARN_ON(!RB_EMPTY_ROOT(
  48                                &transaction->delayed_refs.href_root.rb_root));
  49                if (transaction->delayed_refs.pending_csums)
  50                        btrfs_err(transaction->fs_info,
  51                                  "pending csums is %llu",
  52                                  transaction->delayed_refs.pending_csums);
  53                /*
  54                 * If any block groups are found in ->deleted_bgs then it's
  55                 * because the transaction was aborted and a commit did not
  56                 * happen (things failed before writing the new superblock
  57                 * and calling btrfs_finish_extent_commit()), so we can not
  58                 * discard the physical locations of the block groups.
  59                 */
  60                while (!list_empty(&transaction->deleted_bgs)) {
  61                        struct btrfs_block_group_cache *cache;
  62
  63                        cache = list_first_entry(&transaction->deleted_bgs,
  64                                                 struct btrfs_block_group_cache,
  65                                                 bg_list);
  66                        list_del_init(&cache->bg_list);
  67                        btrfs_put_block_group_trimming(cache);
  68                        btrfs_put_block_group(cache);
  69                }
  70                WARN_ON(!list_empty(&transaction->dev_update_list));
  71                kfree(transaction);
  72        }
  73}
  74
  75static noinline void switch_commit_roots(struct btrfs_transaction *trans)
  76{
  77        struct btrfs_fs_info *fs_info = trans->fs_info;
  78        struct btrfs_root *root, *tmp;
  79
  80        down_write(&fs_info->commit_root_sem);
  81        list_for_each_entry_safe(root, tmp, &trans->switch_commits,
  82                                 dirty_list) {
  83                list_del_init(&root->dirty_list);
  84                free_extent_buffer(root->commit_root);
  85                root->commit_root = btrfs_root_node(root);
  86                if (is_fstree(root->root_key.objectid))
  87                        btrfs_unpin_free_ino(root);
  88                extent_io_tree_release(&root->dirty_log_pages);
  89                btrfs_qgroup_clean_swapped_blocks(root);
  90        }
  91
  92        /* We can free old roots now. */
  93        spin_lock(&trans->dropped_roots_lock);
  94        while (!list_empty(&trans->dropped_roots)) {
  95                root = list_first_entry(&trans->dropped_roots,
  96                                        struct btrfs_root, root_list);
  97                list_del_init(&root->root_list);
  98                spin_unlock(&trans->dropped_roots_lock);
  99                btrfs_drop_and_free_fs_root(fs_info, root);
 100                spin_lock(&trans->dropped_roots_lock);
 101        }
 102        spin_unlock(&trans->dropped_roots_lock);
 103        up_write(&fs_info->commit_root_sem);
 104}
 105
 106static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 107                                         unsigned int type)
 108{
 109        if (type & TRANS_EXTWRITERS)
 110                atomic_inc(&trans->num_extwriters);
 111}
 112
 113static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 114                                         unsigned int type)
 115{
 116        if (type & TRANS_EXTWRITERS)
 117                atomic_dec(&trans->num_extwriters);
 118}
 119
 120static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 121                                          unsigned int type)
 122{
 123        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 124}
 125
 126static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 127{
 128        return atomic_read(&trans->num_extwriters);
 129}
 130
 131/*
 132 * either allocate a new transaction or hop into the existing one
 133 */
 134static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 135                                     unsigned int type)
 136{
 137        struct btrfs_transaction *cur_trans;
 138
 139        spin_lock(&fs_info->trans_lock);
 140loop:
 141        /* The file system has been taken offline. No new transactions. */
 142        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 143                spin_unlock(&fs_info->trans_lock);
 144                return -EROFS;
 145        }
 146
 147        cur_trans = fs_info->running_transaction;
 148        if (cur_trans) {
 149                if (cur_trans->aborted) {
 150                        spin_unlock(&fs_info->trans_lock);
 151                        return cur_trans->aborted;
 152                }
 153                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 154                        spin_unlock(&fs_info->trans_lock);
 155                        return -EBUSY;
 156                }
 157                refcount_inc(&cur_trans->use_count);
 158                atomic_inc(&cur_trans->num_writers);
 159                extwriter_counter_inc(cur_trans, type);
 160                spin_unlock(&fs_info->trans_lock);
 161                return 0;
 162        }
 163        spin_unlock(&fs_info->trans_lock);
 164
 165        /*
 166         * If we are ATTACH, we just want to catch the current transaction,
 167         * and commit it. If there is no transaction, just return ENOENT.
 168         */
 169        if (type == TRANS_ATTACH)
 170                return -ENOENT;
 171
 172        /*
 173         * JOIN_NOLOCK only happens during the transaction commit, so
 174         * it is impossible that ->running_transaction is NULL
 175         */
 176        BUG_ON(type == TRANS_JOIN_NOLOCK);
 177
 178        cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 179        if (!cur_trans)
 180                return -ENOMEM;
 181
 182        spin_lock(&fs_info->trans_lock);
 183        if (fs_info->running_transaction) {
 184                /*
 185                 * someone started a transaction after we unlocked.  Make sure
 186                 * to redo the checks above
 187                 */
 188                kfree(cur_trans);
 189                goto loop;
 190        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 191                spin_unlock(&fs_info->trans_lock);
 192                kfree(cur_trans);
 193                return -EROFS;
 194        }
 195
 196        cur_trans->fs_info = fs_info;
 197        atomic_set(&cur_trans->num_writers, 1);
 198        extwriter_counter_init(cur_trans, type);
 199        init_waitqueue_head(&cur_trans->writer_wait);
 200        init_waitqueue_head(&cur_trans->commit_wait);
 201        cur_trans->state = TRANS_STATE_RUNNING;
 202        /*
 203         * One for this trans handle, one so it will live on until we
 204         * commit the transaction.
 205         */
 206        refcount_set(&cur_trans->use_count, 2);
 207        cur_trans->flags = 0;
 208        cur_trans->start_time = ktime_get_seconds();
 209
 210        memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 211
 212        cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 213        cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 214        atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 215
 216        /*
 217         * although the tree mod log is per file system and not per transaction,
 218         * the log must never go across transaction boundaries.
 219         */
 220        smp_mb();
 221        if (!list_empty(&fs_info->tree_mod_seq_list))
 222                WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 223        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 224                WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 225        atomic64_set(&fs_info->tree_mod_seq, 0);
 226
 227        spin_lock_init(&cur_trans->delayed_refs.lock);
 228
 229        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 230        INIT_LIST_HEAD(&cur_trans->dev_update_list);
 231        INIT_LIST_HEAD(&cur_trans->switch_commits);
 232        INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 233        INIT_LIST_HEAD(&cur_trans->io_bgs);
 234        INIT_LIST_HEAD(&cur_trans->dropped_roots);
 235        mutex_init(&cur_trans->cache_write_mutex);
 236        spin_lock_init(&cur_trans->dirty_bgs_lock);
 237        INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 238        spin_lock_init(&cur_trans->dropped_roots_lock);
 239        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 240        extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 241                        IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 242        fs_info->generation++;
 243        cur_trans->transid = fs_info->generation;
 244        fs_info->running_transaction = cur_trans;
 245        cur_trans->aborted = 0;
 246        spin_unlock(&fs_info->trans_lock);
 247
 248        return 0;
 249}
 250
 251/*
 252 * this does all the record keeping required to make sure that a reference
 253 * counted root is properly recorded in a given transaction.  This is required
 254 * to make sure the old root from before we joined the transaction is deleted
 255 * when the transaction commits
 256 */
 257static int record_root_in_trans(struct btrfs_trans_handle *trans,
 258                               struct btrfs_root *root,
 259                               int force)
 260{
 261        struct btrfs_fs_info *fs_info = root->fs_info;
 262
 263        if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 264            root->last_trans < trans->transid) || force) {
 265                WARN_ON(root == fs_info->extent_root);
 266                WARN_ON(!force && root->commit_root != root->node);
 267
 268                /*
 269                 * see below for IN_TRANS_SETUP usage rules
 270                 * we have the reloc mutex held now, so there
 271                 * is only one writer in this function
 272                 */
 273                set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 274
 275                /* make sure readers find IN_TRANS_SETUP before
 276                 * they find our root->last_trans update
 277                 */
 278                smp_wmb();
 279
 280                spin_lock(&fs_info->fs_roots_radix_lock);
 281                if (root->last_trans == trans->transid && !force) {
 282                        spin_unlock(&fs_info->fs_roots_radix_lock);
 283                        return 0;
 284                }
 285                radix_tree_tag_set(&fs_info->fs_roots_radix,
 286                                   (unsigned long)root->root_key.objectid,
 287                                   BTRFS_ROOT_TRANS_TAG);
 288                spin_unlock(&fs_info->fs_roots_radix_lock);
 289                root->last_trans = trans->transid;
 290
 291                /* this is pretty tricky.  We don't want to
 292                 * take the relocation lock in btrfs_record_root_in_trans
 293                 * unless we're really doing the first setup for this root in
 294                 * this transaction.
 295                 *
 296                 * Normally we'd use root->last_trans as a flag to decide
 297                 * if we want to take the expensive mutex.
 298                 *
 299                 * But, we have to set root->last_trans before we
 300                 * init the relocation root, otherwise, we trip over warnings
 301                 * in ctree.c.  The solution used here is to flag ourselves
 302                 * with root IN_TRANS_SETUP.  When this is 1, we're still
 303                 * fixing up the reloc trees and everyone must wait.
 304                 *
 305                 * When this is zero, they can trust root->last_trans and fly
 306                 * through btrfs_record_root_in_trans without having to take the
 307                 * lock.  smp_wmb() makes sure that all the writes above are
 308                 * done before we pop in the zero below
 309                 */
 310                btrfs_init_reloc_root(trans, root);
 311                smp_mb__before_atomic();
 312                clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 313        }
 314        return 0;
 315}
 316
 317
 318void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 319                            struct btrfs_root *root)
 320{
 321        struct btrfs_fs_info *fs_info = root->fs_info;
 322        struct btrfs_transaction *cur_trans = trans->transaction;
 323
 324        /* Add ourselves to the transaction dropped list */
 325        spin_lock(&cur_trans->dropped_roots_lock);
 326        list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 327        spin_unlock(&cur_trans->dropped_roots_lock);
 328
 329        /* Make sure we don't try to update the root at commit time */
 330        spin_lock(&fs_info->fs_roots_radix_lock);
 331        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 332                             (unsigned long)root->root_key.objectid,
 333                             BTRFS_ROOT_TRANS_TAG);
 334        spin_unlock(&fs_info->fs_roots_radix_lock);
 335}
 336
 337int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 338                               struct btrfs_root *root)
 339{
 340        struct btrfs_fs_info *fs_info = root->fs_info;
 341
 342        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 343                return 0;
 344
 345        /*
 346         * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 347         * and barriers
 348         */
 349        smp_rmb();
 350        if (root->last_trans == trans->transid &&
 351            !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 352                return 0;
 353
 354        mutex_lock(&fs_info->reloc_mutex);
 355        record_root_in_trans(trans, root, 0);
 356        mutex_unlock(&fs_info->reloc_mutex);
 357
 358        return 0;
 359}
 360
 361static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 362{
 363        return (trans->state >= TRANS_STATE_BLOCKED &&
 364                trans->state < TRANS_STATE_UNBLOCKED &&
 365                !trans->aborted);
 366}
 367
 368/* wait for commit against the current transaction to become unblocked
 369 * when this is done, it is safe to start a new transaction, but the current
 370 * transaction might not be fully on disk.
 371 */
 372static void wait_current_trans(struct btrfs_fs_info *fs_info)
 373{
 374        struct btrfs_transaction *cur_trans;
 375
 376        spin_lock(&fs_info->trans_lock);
 377        cur_trans = fs_info->running_transaction;
 378        if (cur_trans && is_transaction_blocked(cur_trans)) {
 379                refcount_inc(&cur_trans->use_count);
 380                spin_unlock(&fs_info->trans_lock);
 381
 382                wait_event(fs_info->transaction_wait,
 383                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 384                           cur_trans->aborted);
 385                btrfs_put_transaction(cur_trans);
 386        } else {
 387                spin_unlock(&fs_info->trans_lock);
 388        }
 389}
 390
 391static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 392{
 393        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 394                return 0;
 395
 396        if (type == TRANS_START)
 397                return 1;
 398
 399        return 0;
 400}
 401
 402static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 403{
 404        struct btrfs_fs_info *fs_info = root->fs_info;
 405
 406        if (!fs_info->reloc_ctl ||
 407            !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 408            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 409            root->reloc_root)
 410                return false;
 411
 412        return true;
 413}
 414
 415static struct btrfs_trans_handle *
 416start_transaction(struct btrfs_root *root, unsigned int num_items,
 417                  unsigned int type, enum btrfs_reserve_flush_enum flush,
 418                  bool enforce_qgroups)
 419{
 420        struct btrfs_fs_info *fs_info = root->fs_info;
 421        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 422        struct btrfs_trans_handle *h;
 423        struct btrfs_transaction *cur_trans;
 424        u64 num_bytes = 0;
 425        u64 qgroup_reserved = 0;
 426        bool reloc_reserved = false;
 427        int ret;
 428
 429        /* Send isn't supposed to start transactions. */
 430        ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 431
 432        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 433                return ERR_PTR(-EROFS);
 434
 435        if (current->journal_info) {
 436                WARN_ON(type & TRANS_EXTWRITERS);
 437                h = current->journal_info;
 438                refcount_inc(&h->use_count);
 439                WARN_ON(refcount_read(&h->use_count) > 2);
 440                h->orig_rsv = h->block_rsv;
 441                h->block_rsv = NULL;
 442                goto got_it;
 443        }
 444
 445        /*
 446         * Do the reservation before we join the transaction so we can do all
 447         * the appropriate flushing if need be.
 448         */
 449        if (num_items && root != fs_info->chunk_root) {
 450                struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 451                u64 delayed_refs_bytes = 0;
 452
 453                qgroup_reserved = num_items * fs_info->nodesize;
 454                ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 455                                enforce_qgroups);
 456                if (ret)
 457                        return ERR_PTR(ret);
 458
 459                /*
 460                 * We want to reserve all the bytes we may need all at once, so
 461                 * we only do 1 enospc flushing cycle per transaction start.  We
 462                 * accomplish this by simply assuming we'll do 2 x num_items
 463                 * worth of delayed refs updates in this trans handle, and
 464                 * refill that amount for whatever is missing in the reserve.
 465                 */
 466                num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 467                if (delayed_refs_rsv->full == 0) {
 468                        delayed_refs_bytes = num_bytes;
 469                        num_bytes <<= 1;
 470                }
 471
 472                /*
 473                 * Do the reservation for the relocation root creation
 474                 */
 475                if (need_reserve_reloc_root(root)) {
 476                        num_bytes += fs_info->nodesize;
 477                        reloc_reserved = true;
 478                }
 479
 480                ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 481                if (ret)
 482                        goto reserve_fail;
 483                if (delayed_refs_bytes) {
 484                        btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 485                                                          delayed_refs_bytes);
 486                        num_bytes -= delayed_refs_bytes;
 487                }
 488        } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 489                   !delayed_refs_rsv->full) {
 490                /*
 491                 * Some people call with btrfs_start_transaction(root, 0)
 492                 * because they can be throttled, but have some other mechanism
 493                 * for reserving space.  We still want these guys to refill the
 494                 * delayed block_rsv so just add 1 items worth of reservation
 495                 * here.
 496                 */
 497                ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 498                if (ret)
 499                        goto reserve_fail;
 500        }
 501again:
 502        h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 503        if (!h) {
 504                ret = -ENOMEM;
 505                goto alloc_fail;
 506        }
 507
 508        /*
 509         * If we are JOIN_NOLOCK we're already committing a transaction and
 510         * waiting on this guy, so we don't need to do the sb_start_intwrite
 511         * because we're already holding a ref.  We need this because we could
 512         * have raced in and did an fsync() on a file which can kick a commit
 513         * and then we deadlock with somebody doing a freeze.
 514         *
 515         * If we are ATTACH, it means we just want to catch the current
 516         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 517         */
 518        if (type & __TRANS_FREEZABLE)
 519                sb_start_intwrite(fs_info->sb);
 520
 521        if (may_wait_transaction(fs_info, type))
 522                wait_current_trans(fs_info);
 523
 524        do {
 525                ret = join_transaction(fs_info, type);
 526                if (ret == -EBUSY) {
 527                        wait_current_trans(fs_info);
 528                        if (unlikely(type == TRANS_ATTACH))
 529                                ret = -ENOENT;
 530                }
 531        } while (ret == -EBUSY);
 532
 533        if (ret < 0)
 534                goto join_fail;
 535
 536        cur_trans = fs_info->running_transaction;
 537
 538        h->transid = cur_trans->transid;
 539        h->transaction = cur_trans;
 540        h->root = root;
 541        refcount_set(&h->use_count, 1);
 542        h->fs_info = root->fs_info;
 543
 544        h->type = type;
 545        h->can_flush_pending_bgs = true;
 546        INIT_LIST_HEAD(&h->new_bgs);
 547
 548        smp_mb();
 549        if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 550            may_wait_transaction(fs_info, type)) {
 551                current->journal_info = h;
 552                btrfs_commit_transaction(h);
 553                goto again;
 554        }
 555
 556        if (num_bytes) {
 557                trace_btrfs_space_reservation(fs_info, "transaction",
 558                                              h->transid, num_bytes, 1);
 559                h->block_rsv = &fs_info->trans_block_rsv;
 560                h->bytes_reserved = num_bytes;
 561                h->reloc_reserved = reloc_reserved;
 562        }
 563
 564got_it:
 565        btrfs_record_root_in_trans(h, root);
 566
 567        if (!current->journal_info)
 568                current->journal_info = h;
 569        return h;
 570
 571join_fail:
 572        if (type & __TRANS_FREEZABLE)
 573                sb_end_intwrite(fs_info->sb);
 574        kmem_cache_free(btrfs_trans_handle_cachep, h);
 575alloc_fail:
 576        if (num_bytes)
 577                btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 578                                        num_bytes);
 579reserve_fail:
 580        btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 581        return ERR_PTR(ret);
 582}
 583
 584struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 585                                                   unsigned int num_items)
 586{
 587        return start_transaction(root, num_items, TRANS_START,
 588                                 BTRFS_RESERVE_FLUSH_ALL, true);
 589}
 590
 591struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 592                                        struct btrfs_root *root,
 593                                        unsigned int num_items,
 594                                        int min_factor)
 595{
 596        struct btrfs_fs_info *fs_info = root->fs_info;
 597        struct btrfs_trans_handle *trans;
 598        u64 num_bytes;
 599        int ret;
 600
 601        /*
 602         * We have two callers: unlink and block group removal.  The
 603         * former should succeed even if we will temporarily exceed
 604         * quota and the latter operates on the extent root so
 605         * qgroup enforcement is ignored anyway.
 606         */
 607        trans = start_transaction(root, num_items, TRANS_START,
 608                                  BTRFS_RESERVE_FLUSH_ALL, false);
 609        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
 610                return trans;
 611
 612        trans = btrfs_start_transaction(root, 0);
 613        if (IS_ERR(trans))
 614                return trans;
 615
 616        num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 617        ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
 618                                       num_bytes, min_factor);
 619        if (ret) {
 620                btrfs_end_transaction(trans);
 621                return ERR_PTR(ret);
 622        }
 623
 624        trans->block_rsv = &fs_info->trans_block_rsv;
 625        trans->bytes_reserved = num_bytes;
 626        trace_btrfs_space_reservation(fs_info, "transaction",
 627                                      trans->transid, num_bytes, 1);
 628
 629        return trans;
 630}
 631
 632struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 633{
 634        return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 635                                 true);
 636}
 637
 638struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 639{
 640        return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 641                                 BTRFS_RESERVE_NO_FLUSH, true);
 642}
 643
 644/*
 645 * btrfs_attach_transaction() - catch the running transaction
 646 *
 647 * It is used when we want to commit the current the transaction, but
 648 * don't want to start a new one.
 649 *
 650 * Note: If this function return -ENOENT, it just means there is no
 651 * running transaction. But it is possible that the inactive transaction
 652 * is still in the memory, not fully on disk. If you hope there is no
 653 * inactive transaction in the fs when -ENOENT is returned, you should
 654 * invoke
 655 *     btrfs_attach_transaction_barrier()
 656 */
 657struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 658{
 659        return start_transaction(root, 0, TRANS_ATTACH,
 660                                 BTRFS_RESERVE_NO_FLUSH, true);
 661}
 662
 663/*
 664 * btrfs_attach_transaction_barrier() - catch the running transaction
 665 *
 666 * It is similar to the above function, the difference is this one
 667 * will wait for all the inactive transactions until they fully
 668 * complete.
 669 */
 670struct btrfs_trans_handle *
 671btrfs_attach_transaction_barrier(struct btrfs_root *root)
 672{
 673        struct btrfs_trans_handle *trans;
 674
 675        trans = start_transaction(root, 0, TRANS_ATTACH,
 676                                  BTRFS_RESERVE_NO_FLUSH, true);
 677        if (trans == ERR_PTR(-ENOENT))
 678                btrfs_wait_for_commit(root->fs_info, 0);
 679
 680        return trans;
 681}
 682
 683/* wait for a transaction commit to be fully complete */
 684static noinline void wait_for_commit(struct btrfs_transaction *commit)
 685{
 686        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 687}
 688
 689int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 690{
 691        struct btrfs_transaction *cur_trans = NULL, *t;
 692        int ret = 0;
 693
 694        if (transid) {
 695                if (transid <= fs_info->last_trans_committed)
 696                        goto out;
 697
 698                /* find specified transaction */
 699                spin_lock(&fs_info->trans_lock);
 700                list_for_each_entry(t, &fs_info->trans_list, list) {
 701                        if (t->transid == transid) {
 702                                cur_trans = t;
 703                                refcount_inc(&cur_trans->use_count);
 704                                ret = 0;
 705                                break;
 706                        }
 707                        if (t->transid > transid) {
 708                                ret = 0;
 709                                break;
 710                        }
 711                }
 712                spin_unlock(&fs_info->trans_lock);
 713
 714                /*
 715                 * The specified transaction doesn't exist, or we
 716                 * raced with btrfs_commit_transaction
 717                 */
 718                if (!cur_trans) {
 719                        if (transid > fs_info->last_trans_committed)
 720                                ret = -EINVAL;
 721                        goto out;
 722                }
 723        } else {
 724                /* find newest transaction that is committing | committed */
 725                spin_lock(&fs_info->trans_lock);
 726                list_for_each_entry_reverse(t, &fs_info->trans_list,
 727                                            list) {
 728                        if (t->state >= TRANS_STATE_COMMIT_START) {
 729                                if (t->state == TRANS_STATE_COMPLETED)
 730                                        break;
 731                                cur_trans = t;
 732                                refcount_inc(&cur_trans->use_count);
 733                                break;
 734                        }
 735                }
 736                spin_unlock(&fs_info->trans_lock);
 737                if (!cur_trans)
 738                        goto out;  /* nothing committing|committed */
 739        }
 740
 741        wait_for_commit(cur_trans);
 742        btrfs_put_transaction(cur_trans);
 743out:
 744        return ret;
 745}
 746
 747void btrfs_throttle(struct btrfs_fs_info *fs_info)
 748{
 749        wait_current_trans(fs_info);
 750}
 751
 752static int should_end_transaction(struct btrfs_trans_handle *trans)
 753{
 754        struct btrfs_fs_info *fs_info = trans->fs_info;
 755
 756        if (btrfs_check_space_for_delayed_refs(fs_info))
 757                return 1;
 758
 759        return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 760}
 761
 762int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 763{
 764        struct btrfs_transaction *cur_trans = trans->transaction;
 765
 766        smp_mb();
 767        if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 768            cur_trans->delayed_refs.flushing)
 769                return 1;
 770
 771        return should_end_transaction(trans);
 772}
 773
 774static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 775
 776{
 777        struct btrfs_fs_info *fs_info = trans->fs_info;
 778
 779        if (!trans->block_rsv) {
 780                ASSERT(!trans->bytes_reserved);
 781                return;
 782        }
 783
 784        if (!trans->bytes_reserved)
 785                return;
 786
 787        ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 788        trace_btrfs_space_reservation(fs_info, "transaction",
 789                                      trans->transid, trans->bytes_reserved, 0);
 790        btrfs_block_rsv_release(fs_info, trans->block_rsv,
 791                                trans->bytes_reserved);
 792        trans->bytes_reserved = 0;
 793}
 794
 795static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 796                                   int throttle)
 797{
 798        struct btrfs_fs_info *info = trans->fs_info;
 799        struct btrfs_transaction *cur_trans = trans->transaction;
 800        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 801        int err = 0;
 802
 803        if (refcount_read(&trans->use_count) > 1) {
 804                refcount_dec(&trans->use_count);
 805                trans->block_rsv = trans->orig_rsv;
 806                return 0;
 807        }
 808
 809        btrfs_trans_release_metadata(trans);
 810        trans->block_rsv = NULL;
 811
 812        btrfs_create_pending_block_groups(trans);
 813
 814        btrfs_trans_release_chunk_metadata(trans);
 815
 816        if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 817                if (throttle)
 818                        return btrfs_commit_transaction(trans);
 819                else
 820                        wake_up_process(info->transaction_kthread);
 821        }
 822
 823        if (trans->type & __TRANS_FREEZABLE)
 824                sb_end_intwrite(info->sb);
 825
 826        WARN_ON(cur_trans != info->running_transaction);
 827        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 828        atomic_dec(&cur_trans->num_writers);
 829        extwriter_counter_dec(cur_trans, trans->type);
 830
 831        cond_wake_up(&cur_trans->writer_wait);
 832        btrfs_put_transaction(cur_trans);
 833
 834        if (current->journal_info == trans)
 835                current->journal_info = NULL;
 836
 837        if (throttle)
 838                btrfs_run_delayed_iputs(info);
 839
 840        if (trans->aborted ||
 841            test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 842                wake_up_process(info->transaction_kthread);
 843                err = -EIO;
 844        }
 845
 846        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 847        return err;
 848}
 849
 850int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 851{
 852        return __btrfs_end_transaction(trans, 0);
 853}
 854
 855int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 856{
 857        return __btrfs_end_transaction(trans, 1);
 858}
 859
 860/*
 861 * when btree blocks are allocated, they have some corresponding bits set for
 862 * them in one of two extent_io trees.  This is used to make sure all of
 863 * those extents are sent to disk but does not wait on them
 864 */
 865int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 866                               struct extent_io_tree *dirty_pages, int mark)
 867{
 868        int err = 0;
 869        int werr = 0;
 870        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 871        struct extent_state *cached_state = NULL;
 872        u64 start = 0;
 873        u64 end;
 874
 875        atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 876        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 877                                      mark, &cached_state)) {
 878                bool wait_writeback = false;
 879
 880                err = convert_extent_bit(dirty_pages, start, end,
 881                                         EXTENT_NEED_WAIT,
 882                                         mark, &cached_state);
 883                /*
 884                 * convert_extent_bit can return -ENOMEM, which is most of the
 885                 * time a temporary error. So when it happens, ignore the error
 886                 * and wait for writeback of this range to finish - because we
 887                 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 888                 * to __btrfs_wait_marked_extents() would not know that
 889                 * writeback for this range started and therefore wouldn't
 890                 * wait for it to finish - we don't want to commit a
 891                 * superblock that points to btree nodes/leafs for which
 892                 * writeback hasn't finished yet (and without errors).
 893                 * We cleanup any entries left in the io tree when committing
 894                 * the transaction (through extent_io_tree_release()).
 895                 */
 896                if (err == -ENOMEM) {
 897                        err = 0;
 898                        wait_writeback = true;
 899                }
 900                if (!err)
 901                        err = filemap_fdatawrite_range(mapping, start, end);
 902                if (err)
 903                        werr = err;
 904                else if (wait_writeback)
 905                        werr = filemap_fdatawait_range(mapping, start, end);
 906                free_extent_state(cached_state);
 907                cached_state = NULL;
 908                cond_resched();
 909                start = end + 1;
 910        }
 911        atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 912        return werr;
 913}
 914
 915/*
 916 * when btree blocks are allocated, they have some corresponding bits set for
 917 * them in one of two extent_io trees.  This is used to make sure all of
 918 * those extents are on disk for transaction or log commit.  We wait
 919 * on all the pages and clear them from the dirty pages state tree
 920 */
 921static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
 922                                       struct extent_io_tree *dirty_pages)
 923{
 924        int err = 0;
 925        int werr = 0;
 926        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 927        struct extent_state *cached_state = NULL;
 928        u64 start = 0;
 929        u64 end;
 930
 931        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 932                                      EXTENT_NEED_WAIT, &cached_state)) {
 933                /*
 934                 * Ignore -ENOMEM errors returned by clear_extent_bit().
 935                 * When committing the transaction, we'll remove any entries
 936                 * left in the io tree. For a log commit, we don't remove them
 937                 * after committing the log because the tree can be accessed
 938                 * concurrently - we do it only at transaction commit time when
 939                 * it's safe to do it (through extent_io_tree_release()).
 940                 */
 941                err = clear_extent_bit(dirty_pages, start, end,
 942                                       EXTENT_NEED_WAIT, 0, 0, &cached_state);
 943                if (err == -ENOMEM)
 944                        err = 0;
 945                if (!err)
 946                        err = filemap_fdatawait_range(mapping, start, end);
 947                if (err)
 948                        werr = err;
 949                free_extent_state(cached_state);
 950                cached_state = NULL;
 951                cond_resched();
 952                start = end + 1;
 953        }
 954        if (err)
 955                werr = err;
 956        return werr;
 957}
 958
 959int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
 960                       struct extent_io_tree *dirty_pages)
 961{
 962        bool errors = false;
 963        int err;
 964
 965        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
 966        if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
 967                errors = true;
 968
 969        if (errors && !err)
 970                err = -EIO;
 971        return err;
 972}
 973
 974int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
 975{
 976        struct btrfs_fs_info *fs_info = log_root->fs_info;
 977        struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
 978        bool errors = false;
 979        int err;
 980
 981        ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 982
 983        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
 984        if ((mark & EXTENT_DIRTY) &&
 985            test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
 986                errors = true;
 987
 988        if ((mark & EXTENT_NEW) &&
 989            test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
 990                errors = true;
 991
 992        if (errors && !err)
 993                err = -EIO;
 994        return err;
 995}
 996
 997/*
 998 * When btree blocks are allocated the corresponding extents are marked dirty.
 999 * This function ensures such extents are persisted on disk for transaction or
1000 * log commit.
1001 *
1002 * @trans: transaction whose dirty pages we'd like to write
1003 */
1004static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1005{
1006        int ret;
1007        int ret2;
1008        struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1009        struct btrfs_fs_info *fs_info = trans->fs_info;
1010        struct blk_plug plug;
1011
1012        blk_start_plug(&plug);
1013        ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1014        blk_finish_plug(&plug);
1015        ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1016
1017        extent_io_tree_release(&trans->transaction->dirty_pages);
1018
1019        if (ret)
1020                return ret;
1021        else if (ret2)
1022                return ret2;
1023        else
1024                return 0;
1025}
1026
1027/*
1028 * this is used to update the root pointer in the tree of tree roots.
1029 *
1030 * But, in the case of the extent allocation tree, updating the root
1031 * pointer may allocate blocks which may change the root of the extent
1032 * allocation tree.
1033 *
1034 * So, this loops and repeats and makes sure the cowonly root didn't
1035 * change while the root pointer was being updated in the metadata.
1036 */
1037static int update_cowonly_root(struct btrfs_trans_handle *trans,
1038                               struct btrfs_root *root)
1039{
1040        int ret;
1041        u64 old_root_bytenr;
1042        u64 old_root_used;
1043        struct btrfs_fs_info *fs_info = root->fs_info;
1044        struct btrfs_root *tree_root = fs_info->tree_root;
1045
1046        old_root_used = btrfs_root_used(&root->root_item);
1047
1048        while (1) {
1049                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1050                if (old_root_bytenr == root->node->start &&
1051                    old_root_used == btrfs_root_used(&root->root_item))
1052                        break;
1053
1054                btrfs_set_root_node(&root->root_item, root->node);
1055                ret = btrfs_update_root(trans, tree_root,
1056                                        &root->root_key,
1057                                        &root->root_item);
1058                if (ret)
1059                        return ret;
1060
1061                old_root_used = btrfs_root_used(&root->root_item);
1062        }
1063
1064        return 0;
1065}
1066
1067/*
1068 * update all the cowonly tree roots on disk
1069 *
1070 * The error handling in this function may not be obvious. Any of the
1071 * failures will cause the file system to go offline. We still need
1072 * to clean up the delayed refs.
1073 */
1074static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1075{
1076        struct btrfs_fs_info *fs_info = trans->fs_info;
1077        struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1078        struct list_head *io_bgs = &trans->transaction->io_bgs;
1079        struct list_head *next;
1080        struct extent_buffer *eb;
1081        int ret;
1082
1083        eb = btrfs_lock_root_node(fs_info->tree_root);
1084        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1085                              0, &eb);
1086        btrfs_tree_unlock(eb);
1087        free_extent_buffer(eb);
1088
1089        if (ret)
1090                return ret;
1091
1092        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1093        if (ret)
1094                return ret;
1095
1096        ret = btrfs_run_dev_stats(trans);
1097        if (ret)
1098                return ret;
1099        ret = btrfs_run_dev_replace(trans);
1100        if (ret)
1101                return ret;
1102        ret = btrfs_run_qgroups(trans);
1103        if (ret)
1104                return ret;
1105
1106        ret = btrfs_setup_space_cache(trans);
1107        if (ret)
1108                return ret;
1109
1110        /* run_qgroups might have added some more refs */
1111        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1112        if (ret)
1113                return ret;
1114again:
1115        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1116                struct btrfs_root *root;
1117                next = fs_info->dirty_cowonly_roots.next;
1118                list_del_init(next);
1119                root = list_entry(next, struct btrfs_root, dirty_list);
1120                clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1121
1122                if (root != fs_info->extent_root)
1123                        list_add_tail(&root->dirty_list,
1124                                      &trans->transaction->switch_commits);
1125                ret = update_cowonly_root(trans, root);
1126                if (ret)
1127                        return ret;
1128                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1129                if (ret)
1130                        return ret;
1131        }
1132
1133        while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1134                ret = btrfs_write_dirty_block_groups(trans);
1135                if (ret)
1136                        return ret;
1137                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1138                if (ret)
1139                        return ret;
1140        }
1141
1142        if (!list_empty(&fs_info->dirty_cowonly_roots))
1143                goto again;
1144
1145        list_add_tail(&fs_info->extent_root->dirty_list,
1146                      &trans->transaction->switch_commits);
1147
1148        /* Update dev-replace pointer once everything is committed */
1149        fs_info->dev_replace.committed_cursor_left =
1150                fs_info->dev_replace.cursor_left_last_write_of_item;
1151
1152        return 0;
1153}
1154
1155/*
1156 * dead roots are old snapshots that need to be deleted.  This allocates
1157 * a dirty root struct and adds it into the list of dead roots that need to
1158 * be deleted
1159 */
1160void btrfs_add_dead_root(struct btrfs_root *root)
1161{
1162        struct btrfs_fs_info *fs_info = root->fs_info;
1163
1164        spin_lock(&fs_info->trans_lock);
1165        if (list_empty(&root->root_list))
1166                list_add_tail(&root->root_list, &fs_info->dead_roots);
1167        spin_unlock(&fs_info->trans_lock);
1168}
1169
1170/*
1171 * update all the cowonly tree roots on disk
1172 */
1173static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1174{
1175        struct btrfs_fs_info *fs_info = trans->fs_info;
1176        struct btrfs_root *gang[8];
1177        int i;
1178        int ret;
1179        int err = 0;
1180
1181        spin_lock(&fs_info->fs_roots_radix_lock);
1182        while (1) {
1183                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1184                                                 (void **)gang, 0,
1185                                                 ARRAY_SIZE(gang),
1186                                                 BTRFS_ROOT_TRANS_TAG);
1187                if (ret == 0)
1188                        break;
1189                for (i = 0; i < ret; i++) {
1190                        struct btrfs_root *root = gang[i];
1191                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1192                                        (unsigned long)root->root_key.objectid,
1193                                        BTRFS_ROOT_TRANS_TAG);
1194                        spin_unlock(&fs_info->fs_roots_radix_lock);
1195
1196                        btrfs_free_log(trans, root);
1197                        btrfs_update_reloc_root(trans, root);
1198
1199                        btrfs_save_ino_cache(root, trans);
1200
1201                        /* see comments in should_cow_block() */
1202                        clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1203                        smp_mb__after_atomic();
1204
1205                        if (root->commit_root != root->node) {
1206                                list_add_tail(&root->dirty_list,
1207                                        &trans->transaction->switch_commits);
1208                                btrfs_set_root_node(&root->root_item,
1209                                                    root->node);
1210                        }
1211
1212                        err = btrfs_update_root(trans, fs_info->tree_root,
1213                                                &root->root_key,
1214                                                &root->root_item);
1215                        spin_lock(&fs_info->fs_roots_radix_lock);
1216                        if (err)
1217                                break;
1218                        btrfs_qgroup_free_meta_all_pertrans(root);
1219                }
1220        }
1221        spin_unlock(&fs_info->fs_roots_radix_lock);
1222        return err;
1223}
1224
1225/*
1226 * defrag a given btree.
1227 * Every leaf in the btree is read and defragged.
1228 */
1229int btrfs_defrag_root(struct btrfs_root *root)
1230{
1231        struct btrfs_fs_info *info = root->fs_info;
1232        struct btrfs_trans_handle *trans;
1233        int ret;
1234
1235        if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1236                return 0;
1237
1238        while (1) {
1239                trans = btrfs_start_transaction(root, 0);
1240                if (IS_ERR(trans))
1241                        return PTR_ERR(trans);
1242
1243                ret = btrfs_defrag_leaves(trans, root);
1244
1245                btrfs_end_transaction(trans);
1246                btrfs_btree_balance_dirty(info);
1247                cond_resched();
1248
1249                if (btrfs_fs_closing(info) || ret != -EAGAIN)
1250                        break;
1251
1252                if (btrfs_defrag_cancelled(info)) {
1253                        btrfs_debug(info, "defrag_root cancelled");
1254                        ret = -EAGAIN;
1255                        break;
1256                }
1257        }
1258        clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1259        return ret;
1260}
1261
1262/*
1263 * Do all special snapshot related qgroup dirty hack.
1264 *
1265 * Will do all needed qgroup inherit and dirty hack like switch commit
1266 * roots inside one transaction and write all btree into disk, to make
1267 * qgroup works.
1268 */
1269static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1270                                   struct btrfs_root *src,
1271                                   struct btrfs_root *parent,
1272                                   struct btrfs_qgroup_inherit *inherit,
1273                                   u64 dst_objectid)
1274{
1275        struct btrfs_fs_info *fs_info = src->fs_info;
1276        int ret;
1277
1278        /*
1279         * Save some performance in the case that qgroups are not
1280         * enabled. If this check races with the ioctl, rescan will
1281         * kick in anyway.
1282         */
1283        if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1284                return 0;
1285
1286        /*
1287         * Ensure dirty @src will be committed.  Or, after coming
1288         * commit_fs_roots() and switch_commit_roots(), any dirty but not
1289         * recorded root will never be updated again, causing an outdated root
1290         * item.
1291         */
1292        record_root_in_trans(trans, src, 1);
1293
1294        /*
1295         * We are going to commit transaction, see btrfs_commit_transaction()
1296         * comment for reason locking tree_log_mutex
1297         */
1298        mutex_lock(&fs_info->tree_log_mutex);
1299
1300        ret = commit_fs_roots(trans);
1301        if (ret)
1302                goto out;
1303        ret = btrfs_qgroup_account_extents(trans);
1304        if (ret < 0)
1305                goto out;
1306
1307        /* Now qgroup are all updated, we can inherit it to new qgroups */
1308        ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1309                                   inherit);
1310        if (ret < 0)
1311                goto out;
1312
1313        /*
1314         * Now we do a simplified commit transaction, which will:
1315         * 1) commit all subvolume and extent tree
1316         *    To ensure all subvolume and extent tree have a valid
1317         *    commit_root to accounting later insert_dir_item()
1318         * 2) write all btree blocks onto disk
1319         *    This is to make sure later btree modification will be cowed
1320         *    Or commit_root can be populated and cause wrong qgroup numbers
1321         * In this simplified commit, we don't really care about other trees
1322         * like chunk and root tree, as they won't affect qgroup.
1323         * And we don't write super to avoid half committed status.
1324         */
1325        ret = commit_cowonly_roots(trans);
1326        if (ret)
1327                goto out;
1328        switch_commit_roots(trans->transaction);
1329        ret = btrfs_write_and_wait_transaction(trans);
1330        if (ret)
1331                btrfs_handle_fs_error(fs_info, ret,
1332                        "Error while writing out transaction for qgroup");
1333
1334out:
1335        mutex_unlock(&fs_info->tree_log_mutex);
1336
1337        /*
1338         * Force parent root to be updated, as we recorded it before so its
1339         * last_trans == cur_transid.
1340         * Or it won't be committed again onto disk after later
1341         * insert_dir_item()
1342         */
1343        if (!ret)
1344                record_root_in_trans(trans, parent, 1);
1345        return ret;
1346}
1347
1348/*
1349 * new snapshots need to be created at a very specific time in the
1350 * transaction commit.  This does the actual creation.
1351 *
1352 * Note:
1353 * If the error which may affect the commitment of the current transaction
1354 * happens, we should return the error number. If the error which just affect
1355 * the creation of the pending snapshots, just return 0.
1356 */
1357static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1358                                   struct btrfs_pending_snapshot *pending)
1359{
1360
1361        struct btrfs_fs_info *fs_info = trans->fs_info;
1362        struct btrfs_key key;
1363        struct btrfs_root_item *new_root_item;
1364        struct btrfs_root *tree_root = fs_info->tree_root;
1365        struct btrfs_root *root = pending->root;
1366        struct btrfs_root *parent_root;
1367        struct btrfs_block_rsv *rsv;
1368        struct inode *parent_inode;
1369        struct btrfs_path *path;
1370        struct btrfs_dir_item *dir_item;
1371        struct dentry *dentry;
1372        struct extent_buffer *tmp;
1373        struct extent_buffer *old;
1374        struct timespec64 cur_time;
1375        int ret = 0;
1376        u64 to_reserve = 0;
1377        u64 index = 0;
1378        u64 objectid;
1379        u64 root_flags;
1380        uuid_le new_uuid;
1381
1382        ASSERT(pending->path);
1383        path = pending->path;
1384
1385        ASSERT(pending->root_item);
1386        new_root_item = pending->root_item;
1387
1388        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1389        if (pending->error)
1390                goto no_free_objectid;
1391
1392        /*
1393         * Make qgroup to skip current new snapshot's qgroupid, as it is
1394         * accounted by later btrfs_qgroup_inherit().
1395         */
1396        btrfs_set_skip_qgroup(trans, objectid);
1397
1398        btrfs_reloc_pre_snapshot(pending, &to_reserve);
1399
1400        if (to_reserve > 0) {
1401                pending->error = btrfs_block_rsv_add(root,
1402                                                     &pending->block_rsv,
1403                                                     to_reserve,
1404                                                     BTRFS_RESERVE_NO_FLUSH);
1405                if (pending->error)
1406                        goto clear_skip_qgroup;
1407        }
1408
1409        key.objectid = objectid;
1410        key.offset = (u64)-1;
1411        key.type = BTRFS_ROOT_ITEM_KEY;
1412
1413        rsv = trans->block_rsv;
1414        trans->block_rsv = &pending->block_rsv;
1415        trans->bytes_reserved = trans->block_rsv->reserved;
1416        trace_btrfs_space_reservation(fs_info, "transaction",
1417                                      trans->transid,
1418                                      trans->bytes_reserved, 1);
1419        dentry = pending->dentry;
1420        parent_inode = pending->dir;
1421        parent_root = BTRFS_I(parent_inode)->root;
1422        record_root_in_trans(trans, parent_root, 0);
1423
1424        cur_time = current_time(parent_inode);
1425
1426        /*
1427         * insert the directory item
1428         */
1429        ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1430        BUG_ON(ret); /* -ENOMEM */
1431
1432        /* check if there is a file/dir which has the same name. */
1433        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1434                                         btrfs_ino(BTRFS_I(parent_inode)),
1435                                         dentry->d_name.name,
1436                                         dentry->d_name.len, 0);
1437        if (dir_item != NULL && !IS_ERR(dir_item)) {
1438                pending->error = -EEXIST;
1439                goto dir_item_existed;
1440        } else if (IS_ERR(dir_item)) {
1441                ret = PTR_ERR(dir_item);
1442                btrfs_abort_transaction(trans, ret);
1443                goto fail;
1444        }
1445        btrfs_release_path(path);
1446
1447        /*
1448         * pull in the delayed directory update
1449         * and the delayed inode item
1450         * otherwise we corrupt the FS during
1451         * snapshot
1452         */
1453        ret = btrfs_run_delayed_items(trans);
1454        if (ret) {      /* Transaction aborted */
1455                btrfs_abort_transaction(trans, ret);
1456                goto fail;
1457        }
1458
1459        record_root_in_trans(trans, root, 0);
1460        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1461        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1462        btrfs_check_and_init_root_item(new_root_item);
1463
1464        root_flags = btrfs_root_flags(new_root_item);
1465        if (pending->readonly)
1466                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1467        else
1468                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1469        btrfs_set_root_flags(new_root_item, root_flags);
1470
1471        btrfs_set_root_generation_v2(new_root_item,
1472                        trans->transid);
1473        uuid_le_gen(&new_uuid);
1474        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1475        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1476                        BTRFS_UUID_SIZE);
1477        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1478                memset(new_root_item->received_uuid, 0,
1479                       sizeof(new_root_item->received_uuid));
1480                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1481                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1482                btrfs_set_root_stransid(new_root_item, 0);
1483                btrfs_set_root_rtransid(new_root_item, 0);
1484        }
1485        btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1486        btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1487        btrfs_set_root_otransid(new_root_item, trans->transid);
1488
1489        old = btrfs_lock_root_node(root);
1490        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1491        if (ret) {
1492                btrfs_tree_unlock(old);
1493                free_extent_buffer(old);
1494                btrfs_abort_transaction(trans, ret);
1495                goto fail;
1496        }
1497
1498        btrfs_set_lock_blocking_write(old);
1499
1500        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1501        /* clean up in any case */
1502        btrfs_tree_unlock(old);
1503        free_extent_buffer(old);
1504        if (ret) {
1505                btrfs_abort_transaction(trans, ret);
1506                goto fail;
1507        }
1508        /* see comments in should_cow_block() */
1509        set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1510        smp_wmb();
1511
1512        btrfs_set_root_node(new_root_item, tmp);
1513        /* record when the snapshot was created in key.offset */
1514        key.offset = trans->transid;
1515        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1516        btrfs_tree_unlock(tmp);
1517        free_extent_buffer(tmp);
1518        if (ret) {
1519                btrfs_abort_transaction(trans, ret);
1520                goto fail;
1521        }
1522
1523        /*
1524         * insert root back/forward references
1525         */
1526        ret = btrfs_add_root_ref(trans, objectid,
1527                                 parent_root->root_key.objectid,
1528                                 btrfs_ino(BTRFS_I(parent_inode)), index,
1529                                 dentry->d_name.name, dentry->d_name.len);
1530        if (ret) {
1531                btrfs_abort_transaction(trans, ret);
1532                goto fail;
1533        }
1534
1535        key.offset = (u64)-1;
1536        pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1537        if (IS_ERR(pending->snap)) {
1538                ret = PTR_ERR(pending->snap);
1539                btrfs_abort_transaction(trans, ret);
1540                goto fail;
1541        }
1542
1543        ret = btrfs_reloc_post_snapshot(trans, pending);
1544        if (ret) {
1545                btrfs_abort_transaction(trans, ret);
1546                goto fail;
1547        }
1548
1549        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1550        if (ret) {
1551                btrfs_abort_transaction(trans, ret);
1552                goto fail;
1553        }
1554
1555        /*
1556         * Do special qgroup accounting for snapshot, as we do some qgroup
1557         * snapshot hack to do fast snapshot.
1558         * To co-operate with that hack, we do hack again.
1559         * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1560         */
1561        ret = qgroup_account_snapshot(trans, root, parent_root,
1562                                      pending->inherit, objectid);
1563        if (ret < 0)
1564                goto fail;
1565
1566        ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1567                                    dentry->d_name.len, BTRFS_I(parent_inode),
1568                                    &key, BTRFS_FT_DIR, index);
1569        /* We have check then name at the beginning, so it is impossible. */
1570        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1571        if (ret) {
1572                btrfs_abort_transaction(trans, ret);
1573                goto fail;
1574        }
1575
1576        btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1577                                         dentry->d_name.len * 2);
1578        parent_inode->i_mtime = parent_inode->i_ctime =
1579                current_time(parent_inode);
1580        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1581        if (ret) {
1582                btrfs_abort_transaction(trans, ret);
1583                goto fail;
1584        }
1585        ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1586                                  objectid);
1587        if (ret) {
1588                btrfs_abort_transaction(trans, ret);
1589                goto fail;
1590        }
1591        if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1592                ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1593                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1594                                          objectid);
1595                if (ret && ret != -EEXIST) {
1596                        btrfs_abort_transaction(trans, ret);
1597                        goto fail;
1598                }
1599        }
1600
1601        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1602        if (ret) {
1603                btrfs_abort_transaction(trans, ret);
1604                goto fail;
1605        }
1606
1607fail:
1608        pending->error = ret;
1609dir_item_existed:
1610        trans->block_rsv = rsv;
1611        trans->bytes_reserved = 0;
1612clear_skip_qgroup:
1613        btrfs_clear_skip_qgroup(trans);
1614no_free_objectid:
1615        kfree(new_root_item);
1616        pending->root_item = NULL;
1617        btrfs_free_path(path);
1618        pending->path = NULL;
1619
1620        return ret;
1621}
1622
1623/*
1624 * create all the snapshots we've scheduled for creation
1625 */
1626static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1627{
1628        struct btrfs_pending_snapshot *pending, *next;
1629        struct list_head *head = &trans->transaction->pending_snapshots;
1630        int ret = 0;
1631
1632        list_for_each_entry_safe(pending, next, head, list) {
1633                list_del(&pending->list);
1634                ret = create_pending_snapshot(trans, pending);
1635                if (ret)
1636                        break;
1637        }
1638        return ret;
1639}
1640
1641static void update_super_roots(struct btrfs_fs_info *fs_info)
1642{
1643        struct btrfs_root_item *root_item;
1644        struct btrfs_super_block *super;
1645
1646        super = fs_info->super_copy;
1647
1648        root_item = &fs_info->chunk_root->root_item;
1649        super->chunk_root = root_item->bytenr;
1650        super->chunk_root_generation = root_item->generation;
1651        super->chunk_root_level = root_item->level;
1652
1653        root_item = &fs_info->tree_root->root_item;
1654        super->root = root_item->bytenr;
1655        super->generation = root_item->generation;
1656        super->root_level = root_item->level;
1657        if (btrfs_test_opt(fs_info, SPACE_CACHE))
1658                super->cache_generation = root_item->generation;
1659        if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1660                super->uuid_tree_generation = root_item->generation;
1661}
1662
1663int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1664{
1665        struct btrfs_transaction *trans;
1666        int ret = 0;
1667
1668        spin_lock(&info->trans_lock);
1669        trans = info->running_transaction;
1670        if (trans)
1671                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1672        spin_unlock(&info->trans_lock);
1673        return ret;
1674}
1675
1676int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1677{
1678        struct btrfs_transaction *trans;
1679        int ret = 0;
1680
1681        spin_lock(&info->trans_lock);
1682        trans = info->running_transaction;
1683        if (trans)
1684                ret = is_transaction_blocked(trans);
1685        spin_unlock(&info->trans_lock);
1686        return ret;
1687}
1688
1689/*
1690 * wait for the current transaction commit to start and block subsequent
1691 * transaction joins
1692 */
1693static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1694                                            struct btrfs_transaction *trans)
1695{
1696        wait_event(fs_info->transaction_blocked_wait,
1697                   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1698}
1699
1700/*
1701 * wait for the current transaction to start and then become unblocked.
1702 * caller holds ref.
1703 */
1704static void wait_current_trans_commit_start_and_unblock(
1705                                        struct btrfs_fs_info *fs_info,
1706                                        struct btrfs_transaction *trans)
1707{
1708        wait_event(fs_info->transaction_wait,
1709                   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1710}
1711
1712/*
1713 * commit transactions asynchronously. once btrfs_commit_transaction_async
1714 * returns, any subsequent transaction will not be allowed to join.
1715 */
1716struct btrfs_async_commit {
1717        struct btrfs_trans_handle *newtrans;
1718        struct work_struct work;
1719};
1720
1721static void do_async_commit(struct work_struct *work)
1722{
1723        struct btrfs_async_commit *ac =
1724                container_of(work, struct btrfs_async_commit, work);
1725
1726        /*
1727         * We've got freeze protection passed with the transaction.
1728         * Tell lockdep about it.
1729         */
1730        if (ac->newtrans->type & __TRANS_FREEZABLE)
1731                __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1732
1733        current->journal_info = ac->newtrans;
1734
1735        btrfs_commit_transaction(ac->newtrans);
1736        kfree(ac);
1737}
1738
1739int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1740                                   int wait_for_unblock)
1741{
1742        struct btrfs_fs_info *fs_info = trans->fs_info;
1743        struct btrfs_async_commit *ac;
1744        struct btrfs_transaction *cur_trans;
1745
1746        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1747        if (!ac)
1748                return -ENOMEM;
1749
1750        INIT_WORK(&ac->work, do_async_commit);
1751        ac->newtrans = btrfs_join_transaction(trans->root);
1752        if (IS_ERR(ac->newtrans)) {
1753                int err = PTR_ERR(ac->newtrans);
1754                kfree(ac);
1755                return err;
1756        }
1757
1758        /* take transaction reference */
1759        cur_trans = trans->transaction;
1760        refcount_inc(&cur_trans->use_count);
1761
1762        btrfs_end_transaction(trans);
1763
1764        /*
1765         * Tell lockdep we've released the freeze rwsem, since the
1766         * async commit thread will be the one to unlock it.
1767         */
1768        if (ac->newtrans->type & __TRANS_FREEZABLE)
1769                __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1770
1771        schedule_work(&ac->work);
1772
1773        /* wait for transaction to start and unblock */
1774        if (wait_for_unblock)
1775                wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1776        else
1777                wait_current_trans_commit_start(fs_info, cur_trans);
1778
1779        if (current->journal_info == trans)
1780                current->journal_info = NULL;
1781
1782        btrfs_put_transaction(cur_trans);
1783        return 0;
1784}
1785
1786
1787static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1788{
1789        struct btrfs_fs_info *fs_info = trans->fs_info;
1790        struct btrfs_transaction *cur_trans = trans->transaction;
1791
1792        WARN_ON(refcount_read(&trans->use_count) > 1);
1793
1794        btrfs_abort_transaction(trans, err);
1795
1796        spin_lock(&fs_info->trans_lock);
1797
1798        /*
1799         * If the transaction is removed from the list, it means this
1800         * transaction has been committed successfully, so it is impossible
1801         * to call the cleanup function.
1802         */
1803        BUG_ON(list_empty(&cur_trans->list));
1804
1805        list_del_init(&cur_trans->list);
1806        if (cur_trans == fs_info->running_transaction) {
1807                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1808                spin_unlock(&fs_info->trans_lock);
1809                wait_event(cur_trans->writer_wait,
1810                           atomic_read(&cur_trans->num_writers) == 1);
1811
1812                spin_lock(&fs_info->trans_lock);
1813        }
1814        spin_unlock(&fs_info->trans_lock);
1815
1816        btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1817
1818        spin_lock(&fs_info->trans_lock);
1819        if (cur_trans == fs_info->running_transaction)
1820                fs_info->running_transaction = NULL;
1821        spin_unlock(&fs_info->trans_lock);
1822
1823        if (trans->type & __TRANS_FREEZABLE)
1824                sb_end_intwrite(fs_info->sb);
1825        btrfs_put_transaction(cur_trans);
1826        btrfs_put_transaction(cur_trans);
1827
1828        trace_btrfs_transaction_commit(trans->root);
1829
1830        if (current->journal_info == trans)
1831                current->journal_info = NULL;
1832        btrfs_scrub_cancel(fs_info);
1833
1834        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1835}
1836
1837/*
1838 * Release reserved delayed ref space of all pending block groups of the
1839 * transaction and remove them from the list
1840 */
1841static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1842{
1843       struct btrfs_fs_info *fs_info = trans->fs_info;
1844       struct btrfs_block_group_cache *block_group, *tmp;
1845
1846       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1847               btrfs_delayed_refs_rsv_release(fs_info, 1);
1848               list_del_init(&block_group->bg_list);
1849       }
1850}
1851
1852static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1853{
1854        struct btrfs_fs_info *fs_info = trans->fs_info;
1855
1856        /*
1857         * We use writeback_inodes_sb here because if we used
1858         * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1859         * Currently are holding the fs freeze lock, if we do an async flush
1860         * we'll do btrfs_join_transaction() and deadlock because we need to
1861         * wait for the fs freeze lock.  Using the direct flushing we benefit
1862         * from already being in a transaction and our join_transaction doesn't
1863         * have to re-take the fs freeze lock.
1864         */
1865        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1866                writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1867        } else {
1868                struct btrfs_pending_snapshot *pending;
1869                struct list_head *head = &trans->transaction->pending_snapshots;
1870
1871                /*
1872                 * Flush dellaloc for any root that is going to be snapshotted.
1873                 * This is done to avoid a corrupted version of files, in the
1874                 * snapshots, that had both buffered and direct IO writes (even
1875                 * if they were done sequentially) due to an unordered update of
1876                 * the inode's size on disk.
1877                 */
1878                list_for_each_entry(pending, head, list) {
1879                        int ret;
1880
1881                        ret = btrfs_start_delalloc_snapshot(pending->root);
1882                        if (ret)
1883                                return ret;
1884                }
1885        }
1886        return 0;
1887}
1888
1889static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1890{
1891        struct btrfs_fs_info *fs_info = trans->fs_info;
1892
1893        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1894                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1895        } else {
1896                struct btrfs_pending_snapshot *pending;
1897                struct list_head *head = &trans->transaction->pending_snapshots;
1898
1899                /*
1900                 * Wait for any dellaloc that we started previously for the roots
1901                 * that are going to be snapshotted. This is to avoid a corrupted
1902                 * version of files in the snapshots that had both buffered and
1903                 * direct IO writes (even if they were done sequentially).
1904                 */
1905                list_for_each_entry(pending, head, list)
1906                        btrfs_wait_ordered_extents(pending->root,
1907                                                   U64_MAX, 0, U64_MAX);
1908        }
1909}
1910
1911int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1912{
1913        struct btrfs_fs_info *fs_info = trans->fs_info;
1914        struct btrfs_transaction *cur_trans = trans->transaction;
1915        struct btrfs_transaction *prev_trans = NULL;
1916        int ret;
1917
1918        /* Stop the commit early if ->aborted is set */
1919        if (unlikely(READ_ONCE(cur_trans->aborted))) {
1920                ret = cur_trans->aborted;
1921                btrfs_end_transaction(trans);
1922                return ret;
1923        }
1924
1925        btrfs_trans_release_metadata(trans);
1926        trans->block_rsv = NULL;
1927
1928        /* make a pass through all the delayed refs we have so far
1929         * any runnings procs may add more while we are here
1930         */
1931        ret = btrfs_run_delayed_refs(trans, 0);
1932        if (ret) {
1933                btrfs_end_transaction(trans);
1934                return ret;
1935        }
1936
1937        cur_trans = trans->transaction;
1938
1939        /*
1940         * set the flushing flag so procs in this transaction have to
1941         * start sending their work down.
1942         */
1943        cur_trans->delayed_refs.flushing = 1;
1944        smp_wmb();
1945
1946        btrfs_create_pending_block_groups(trans);
1947
1948        ret = btrfs_run_delayed_refs(trans, 0);
1949        if (ret) {
1950                btrfs_end_transaction(trans);
1951                return ret;
1952        }
1953
1954        if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1955                int run_it = 0;
1956
1957                /* this mutex is also taken before trying to set
1958                 * block groups readonly.  We need to make sure
1959                 * that nobody has set a block group readonly
1960                 * after a extents from that block group have been
1961                 * allocated for cache files.  btrfs_set_block_group_ro
1962                 * will wait for the transaction to commit if it
1963                 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1964                 *
1965                 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1966                 * only one process starts all the block group IO.  It wouldn't
1967                 * hurt to have more than one go through, but there's no
1968                 * real advantage to it either.
1969                 */
1970                mutex_lock(&fs_info->ro_block_group_mutex);
1971                if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1972                                      &cur_trans->flags))
1973                        run_it = 1;
1974                mutex_unlock(&fs_info->ro_block_group_mutex);
1975
1976                if (run_it) {
1977                        ret = btrfs_start_dirty_block_groups(trans);
1978                        if (ret) {
1979                                btrfs_end_transaction(trans);
1980                                return ret;
1981                        }
1982                }
1983        }
1984
1985        spin_lock(&fs_info->trans_lock);
1986        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1987                spin_unlock(&fs_info->trans_lock);
1988                refcount_inc(&cur_trans->use_count);
1989                ret = btrfs_end_transaction(trans);
1990
1991                wait_for_commit(cur_trans);
1992
1993                if (unlikely(cur_trans->aborted))
1994                        ret = cur_trans->aborted;
1995
1996                btrfs_put_transaction(cur_trans);
1997
1998                return ret;
1999        }
2000
2001        cur_trans->state = TRANS_STATE_COMMIT_START;
2002        wake_up(&fs_info->transaction_blocked_wait);
2003
2004        if (cur_trans->list.prev != &fs_info->trans_list) {
2005                prev_trans = list_entry(cur_trans->list.prev,
2006                                        struct btrfs_transaction, list);
2007                if (prev_trans->state != TRANS_STATE_COMPLETED) {
2008                        refcount_inc(&prev_trans->use_count);
2009                        spin_unlock(&fs_info->trans_lock);
2010
2011                        wait_for_commit(prev_trans);
2012                        ret = prev_trans->aborted;
2013
2014                        btrfs_put_transaction(prev_trans);
2015                        if (ret)
2016                                goto cleanup_transaction;
2017                } else {
2018                        spin_unlock(&fs_info->trans_lock);
2019                }
2020        } else {
2021                spin_unlock(&fs_info->trans_lock);
2022        }
2023
2024        extwriter_counter_dec(cur_trans, trans->type);
2025
2026        ret = btrfs_start_delalloc_flush(trans);
2027        if (ret)
2028                goto cleanup_transaction;
2029
2030        ret = btrfs_run_delayed_items(trans);
2031        if (ret)
2032                goto cleanup_transaction;
2033
2034        wait_event(cur_trans->writer_wait,
2035                   extwriter_counter_read(cur_trans) == 0);
2036
2037        /* some pending stuffs might be added after the previous flush. */
2038        ret = btrfs_run_delayed_items(trans);
2039        if (ret)
2040                goto cleanup_transaction;
2041
2042        btrfs_wait_delalloc_flush(trans);
2043
2044        btrfs_scrub_pause(fs_info);
2045        /*
2046         * Ok now we need to make sure to block out any other joins while we
2047         * commit the transaction.  We could have started a join before setting
2048         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2049         */
2050        spin_lock(&fs_info->trans_lock);
2051        cur_trans->state = TRANS_STATE_COMMIT_DOING;
2052        spin_unlock(&fs_info->trans_lock);
2053        wait_event(cur_trans->writer_wait,
2054                   atomic_read(&cur_trans->num_writers) == 1);
2055
2056        /* ->aborted might be set after the previous check, so check it */
2057        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2058                ret = cur_trans->aborted;
2059                goto scrub_continue;
2060        }
2061        /*
2062         * the reloc mutex makes sure that we stop
2063         * the balancing code from coming in and moving
2064         * extents around in the middle of the commit
2065         */
2066        mutex_lock(&fs_info->reloc_mutex);
2067
2068        /*
2069         * We needn't worry about the delayed items because we will
2070         * deal with them in create_pending_snapshot(), which is the
2071         * core function of the snapshot creation.
2072         */
2073        ret = create_pending_snapshots(trans);
2074        if (ret) {
2075                mutex_unlock(&fs_info->reloc_mutex);
2076                goto scrub_continue;
2077        }
2078
2079        /*
2080         * We insert the dir indexes of the snapshots and update the inode
2081         * of the snapshots' parents after the snapshot creation, so there
2082         * are some delayed items which are not dealt with. Now deal with
2083         * them.
2084         *
2085         * We needn't worry that this operation will corrupt the snapshots,
2086         * because all the tree which are snapshoted will be forced to COW
2087         * the nodes and leaves.
2088         */
2089        ret = btrfs_run_delayed_items(trans);
2090        if (ret) {
2091                mutex_unlock(&fs_info->reloc_mutex);
2092                goto scrub_continue;
2093        }
2094
2095        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2096        if (ret) {
2097                mutex_unlock(&fs_info->reloc_mutex);
2098                goto scrub_continue;
2099        }
2100
2101        /*
2102         * make sure none of the code above managed to slip in a
2103         * delayed item
2104         */
2105        btrfs_assert_delayed_root_empty(fs_info);
2106
2107        WARN_ON(cur_trans != trans->transaction);
2108
2109        /* btrfs_commit_tree_roots is responsible for getting the
2110         * various roots consistent with each other.  Every pointer
2111         * in the tree of tree roots has to point to the most up to date
2112         * root for every subvolume and other tree.  So, we have to keep
2113         * the tree logging code from jumping in and changing any
2114         * of the trees.
2115         *
2116         * At this point in the commit, there can't be any tree-log
2117         * writers, but a little lower down we drop the trans mutex
2118         * and let new people in.  By holding the tree_log_mutex
2119         * from now until after the super is written, we avoid races
2120         * with the tree-log code.
2121         */
2122        mutex_lock(&fs_info->tree_log_mutex);
2123
2124        ret = commit_fs_roots(trans);
2125        if (ret) {
2126                mutex_unlock(&fs_info->tree_log_mutex);
2127                mutex_unlock(&fs_info->reloc_mutex);
2128                goto scrub_continue;
2129        }
2130
2131        /*
2132         * Since the transaction is done, we can apply the pending changes
2133         * before the next transaction.
2134         */
2135        btrfs_apply_pending_changes(fs_info);
2136
2137        /* commit_fs_roots gets rid of all the tree log roots, it is now
2138         * safe to free the root of tree log roots
2139         */
2140        btrfs_free_log_root_tree(trans, fs_info);
2141
2142        /*
2143         * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2144         * new delayed refs. Must handle them or qgroup can be wrong.
2145         */
2146        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2147        if (ret) {
2148                mutex_unlock(&fs_info->tree_log_mutex);
2149                mutex_unlock(&fs_info->reloc_mutex);
2150                goto scrub_continue;
2151        }
2152
2153        /*
2154         * Since fs roots are all committed, we can get a quite accurate
2155         * new_roots. So let's do quota accounting.
2156         */
2157        ret = btrfs_qgroup_account_extents(trans);
2158        if (ret < 0) {
2159                mutex_unlock(&fs_info->tree_log_mutex);
2160                mutex_unlock(&fs_info->reloc_mutex);
2161                goto scrub_continue;
2162        }
2163
2164        ret = commit_cowonly_roots(trans);
2165        if (ret) {
2166                mutex_unlock(&fs_info->tree_log_mutex);
2167                mutex_unlock(&fs_info->reloc_mutex);
2168                goto scrub_continue;
2169        }
2170
2171        /*
2172         * The tasks which save the space cache and inode cache may also
2173         * update ->aborted, check it.
2174         */
2175        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2176                ret = cur_trans->aborted;
2177                mutex_unlock(&fs_info->tree_log_mutex);
2178                mutex_unlock(&fs_info->reloc_mutex);
2179                goto scrub_continue;
2180        }
2181
2182        btrfs_prepare_extent_commit(fs_info);
2183
2184        cur_trans = fs_info->running_transaction;
2185
2186        btrfs_set_root_node(&fs_info->tree_root->root_item,
2187                            fs_info->tree_root->node);
2188        list_add_tail(&fs_info->tree_root->dirty_list,
2189                      &cur_trans->switch_commits);
2190
2191        btrfs_set_root_node(&fs_info->chunk_root->root_item,
2192                            fs_info->chunk_root->node);
2193        list_add_tail(&fs_info->chunk_root->dirty_list,
2194                      &cur_trans->switch_commits);
2195
2196        switch_commit_roots(cur_trans);
2197
2198        ASSERT(list_empty(&cur_trans->dirty_bgs));
2199        ASSERT(list_empty(&cur_trans->io_bgs));
2200        update_super_roots(fs_info);
2201
2202        btrfs_set_super_log_root(fs_info->super_copy, 0);
2203        btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2204        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2205               sizeof(*fs_info->super_copy));
2206
2207        btrfs_commit_device_sizes(cur_trans);
2208
2209        clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2210        clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2211
2212        btrfs_trans_release_chunk_metadata(trans);
2213
2214        spin_lock(&fs_info->trans_lock);
2215        cur_trans->state = TRANS_STATE_UNBLOCKED;
2216        fs_info->running_transaction = NULL;
2217        spin_unlock(&fs_info->trans_lock);
2218        mutex_unlock(&fs_info->reloc_mutex);
2219
2220        wake_up(&fs_info->transaction_wait);
2221
2222        ret = btrfs_write_and_wait_transaction(trans);
2223        if (ret) {
2224                btrfs_handle_fs_error(fs_info, ret,
2225                                      "Error while writing out transaction");
2226                mutex_unlock(&fs_info->tree_log_mutex);
2227                goto scrub_continue;
2228        }
2229
2230        ret = write_all_supers(fs_info, 0);
2231        /*
2232         * the super is written, we can safely allow the tree-loggers
2233         * to go about their business
2234         */
2235        mutex_unlock(&fs_info->tree_log_mutex);
2236        if (ret)
2237                goto scrub_continue;
2238
2239        btrfs_finish_extent_commit(trans);
2240
2241        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2242                btrfs_clear_space_info_full(fs_info);
2243
2244        fs_info->last_trans_committed = cur_trans->transid;
2245        /*
2246         * We needn't acquire the lock here because there is no other task
2247         * which can change it.
2248         */
2249        cur_trans->state = TRANS_STATE_COMPLETED;
2250        wake_up(&cur_trans->commit_wait);
2251        clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2252
2253        spin_lock(&fs_info->trans_lock);
2254        list_del_init(&cur_trans->list);
2255        spin_unlock(&fs_info->trans_lock);
2256
2257        btrfs_put_transaction(cur_trans);
2258        btrfs_put_transaction(cur_trans);
2259
2260        if (trans->type & __TRANS_FREEZABLE)
2261                sb_end_intwrite(fs_info->sb);
2262
2263        trace_btrfs_transaction_commit(trans->root);
2264
2265        btrfs_scrub_continue(fs_info);
2266
2267        if (current->journal_info == trans)
2268                current->journal_info = NULL;
2269
2270        kmem_cache_free(btrfs_trans_handle_cachep, trans);
2271
2272        return ret;
2273
2274scrub_continue:
2275        btrfs_scrub_continue(fs_info);
2276cleanup_transaction:
2277        btrfs_trans_release_metadata(trans);
2278        btrfs_cleanup_pending_block_groups(trans);
2279        btrfs_trans_release_chunk_metadata(trans);
2280        trans->block_rsv = NULL;
2281        btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2282        if (current->journal_info == trans)
2283                current->journal_info = NULL;
2284        cleanup_transaction(trans, ret);
2285
2286        return ret;
2287}
2288
2289/*
2290 * return < 0 if error
2291 * 0 if there are no more dead_roots at the time of call
2292 * 1 there are more to be processed, call me again
2293 *
2294 * The return value indicates there are certainly more snapshots to delete, but
2295 * if there comes a new one during processing, it may return 0. We don't mind,
2296 * because btrfs_commit_super will poke cleaner thread and it will process it a
2297 * few seconds later.
2298 */
2299int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2300{
2301        int ret;
2302        struct btrfs_fs_info *fs_info = root->fs_info;
2303
2304        spin_lock(&fs_info->trans_lock);
2305        if (list_empty(&fs_info->dead_roots)) {
2306                spin_unlock(&fs_info->trans_lock);
2307                return 0;
2308        }
2309        root = list_first_entry(&fs_info->dead_roots,
2310                        struct btrfs_root, root_list);
2311        list_del_init(&root->root_list);
2312        spin_unlock(&fs_info->trans_lock);
2313
2314        btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2315
2316        btrfs_kill_all_delayed_nodes(root);
2317
2318        if (btrfs_header_backref_rev(root->node) <
2319                        BTRFS_MIXED_BACKREF_REV)
2320                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2321        else
2322                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2323
2324        return (ret < 0) ? 0 : 1;
2325}
2326
2327void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2328{
2329        unsigned long prev;
2330        unsigned long bit;
2331
2332        prev = xchg(&fs_info->pending_changes, 0);
2333        if (!prev)
2334                return;
2335
2336        bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2337        if (prev & bit)
2338                btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2339        prev &= ~bit;
2340
2341        bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2342        if (prev & bit)
2343                btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2344        prev &= ~bit;
2345
2346        bit = 1 << BTRFS_PENDING_COMMIT;
2347        if (prev & bit)
2348                btrfs_debug(fs_info, "pending commit done");
2349        prev &= ~bit;
2350
2351        if (prev)
2352                btrfs_warn(fs_info,
2353                        "unknown pending changes left 0x%lx, ignoring", prev);
2354}
2355